1
|
Ciabrelli F, Atinbayeva N, Pane A, Iovino N. Epigenetic inheritance and gene expression regulation in early Drosophila embryos. EMBO Rep 2024; 25:4131-4152. [PMID: 39285248 PMCID: PMC11467379 DOI: 10.1038/s44319-024-00245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Precise spatiotemporal regulation of gene expression is of paramount importance for eukaryotic development. The maternal-to-zygotic transition (MZT) during early embryogenesis in Drosophila involves the gradual replacement of maternally contributed mRNAs and proteins by zygotic gene products. The zygotic genome is transcriptionally activated during the first 3 hours of development, in a process known as "zygotic genome activation" (ZGA), by the orchestrated activities of a few pioneer factors. Their decisive role during ZGA has been characterized in detail, whereas the contribution of chromatin factors to this process has been historically overlooked. In this review, we aim to summarize the current knowledge of how chromatin regulation impacts the first stages of Drosophila embryonic development. In particular, we will address the following questions: how chromatin factors affect ZGA and transcriptional silencing, and how genome architecture promotes the integration of these processes early during development. Remarkably, certain chromatin marks can be intergenerationally inherited, and their presence in the early embryo becomes critical for the regulation of gene expression at later stages. Finally, we speculate on the possible roles of these chromatin marks as carriers of epialleles during transgenerational epigenetic inheritance (TEI).
Collapse
Affiliation(s)
- Filippo Ciabrelli
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Attilio Pane
- Institute of Biomedical Sciences/UFRJ, 21941902, Rio de Janeiro, Brazil
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany.
| |
Collapse
|
2
|
Mumford CC, Tanizawa H, Wiles ET, McNaught KJ, Jamieson K, Tsukamoto K, Selker EU. The RPD3L deacetylation complex is required for facultative heterochromatin repression in Neurospora crassa. Proc Natl Acad Sci U S A 2024; 121:e2404770121. [PMID: 39074265 PMCID: PMC11317574 DOI: 10.1073/pnas.2404770121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Repression of facultative heterochromatin is essential for developmental processes in numerous organisms. Methylation of histone H3 lysine 27 (H3K27) by Polycomb repressive complex 2 is a prominent feature of facultative heterochromatin in both fungi and higher eukaryotes. Although this methylation is frequently associated with silencing, the detailed mechanism of repression remains incompletely understood. We utilized a forward genetics approach to identify genes required to maintain silencing at facultative heterochromatin genes in Neurospora crassa and identified three previously uncharacterized genes that are important for silencing: sds3 (NCU01599), rlp1 (RPD3L protein 1; NCU09007), and rlp2 (RPD3L protein 2; NCU02898). We found that SDS3, RLP1, and RLP2 associate with N. crassa homologs of the Saccharomyces cerevisiae Rpd3L complex and are required for repression of a subset of H3K27-methylated genes. Deletion of these genes does not lead to loss of H3K27 methylation but increases acetylation of histone H3 lysine 14 at up-regulated genes, suggesting that RPD3L-driven deacetylation is a factor required for silencing of facultative heterochromatin in N. crassa, and perhaps in other organisms.
Collapse
Affiliation(s)
| | - Hideki Tanizawa
- Institute of Molecular Biology, University of Oregon, Eugene, OR97403
| | | | - Kevin J. McNaught
- Institute of Molecular Biology, University of Oregon, Eugene, OR97403
| | - Kirsty Jamieson
- Institute of Molecular Biology, University of Oregon, Eugene, OR97403
| | - Kenta Tsukamoto
- Institute of Molecular Biology, University of Oregon, Eugene, OR97403
| | - Eric U. Selker
- Institute of Molecular Biology, University of Oregon, Eugene, OR97403
| |
Collapse
|
3
|
Amiard S, Feit L, Vanrobays E, Simon L, Le Goff S, Loizeau L, Wolff L, Butter F, Bourbousse C, Barneche F, Tatout C, Probst AV. The TELOMERE REPEAT BINDING proteins TRB4 and TRB5 function as transcriptional activators of PRC2-controlled genes to regulate plant development. PLANT COMMUNICATIONS 2024; 5:100890. [PMID: 38566416 PMCID: PMC11287191 DOI: 10.1016/j.xplc.2024.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/07/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Plant-specific transcriptional regulators called TELOMERE REPEAT BINDING proteins (TRBs) combine two DNA-binding domains, the GH1 domain, which binds to linker DNA and is shared with H1 histones, and the Myb/SANT domain, which specifically recognizes the telobox DNA-binding site motif. TRB1, TRB2, and TRB3 proteins recruit Polycomb group complex 2 (PRC2) to deposit H3K27me3 and JMJ14 to remove H3K4me3 at gene promoters containing telobox motifs to repress transcription. Here, we demonstrate that TRB4 and TRB5, two related paralogs belonging to a separate TRB clade conserved in spermatophytes, regulate the transcription of several hundred genes involved in developmental responses to environmental cues. TRB4 binds to several thousand sites in the genome, mainly at transcription start sites and promoter regions of transcriptionally active and H3K4me3-marked genes, but, unlike TRB1, it is not enriched at H3K27me3-marked gene bodies. However, TRB4 can physically interact with the catalytic components of PRC2, SWINGER, and CURLY LEAF (CLF). Unexpectedly, we show that TRB4 and TRB5 are required for distinctive phenotypic traits observed in clf mutant plants and thus function as transcriptional activators of several hundred CLF-controlled genes, including key flowering genes. We further demonstrate that TRB4 shares multiple target genes with TRB1 and physically and genetically interacts with members of both TRB clades. Collectively, these results reveal that TRB proteins engage in both positive and negative interactions with other members of the family to regulate plant development through both PRC2-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Simon Amiard
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France.
| | - Léa Feit
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Emmanuel Vanrobays
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Lauriane Simon
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Samuel Le Goff
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Loriane Loizeau
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Léa Wolff
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Falk Butter
- Institute of Molecular Biology, 55128 Mainz, Germany
| | - Clara Bourbousse
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Fredy Barneche
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Christophe Tatout
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Aline V Probst
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France.
| |
Collapse
|
4
|
Anyetei-Anum CS, Leatham-Jensen MP, Fox GC, Smith BR, Krajewski K, Strahl BD, Dowen JM, Matera AG, Duronio RJ, McKay DJ. Dual roles of histone H3 lysine-4 in antagonizing Polycomb group function and promoting target gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600669. [PMID: 38979215 PMCID: PMC11230394 DOI: 10.1101/2024.06.25.600669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tight control over cell identity gene expression is necessary for proper adult form and function. The opposing activities of Polycomb and trithorax complexes determine the ON/OFF state of targets like the Hox genes. Trithorax encodes a methyltransferase specific to histone H3 lysine-4 (H3K4). However, there is no direct evidence that H3K4 regulates Polycomb group target genes in vivo . Here, we demonstrate two key roles for replication-dependent histone H3.2K4 in target control. We find that H3.2K4 antagonizes Polycomb group catalytic activity and that it is required for proper target gene activation. We conclude that H3.2K4 directly regulates expression of Polycomb targets.
Collapse
|
5
|
Innis SM, Cabot RA. Chromatin profiling and state predictions reveal insights into epigenetic regulation during early porcine development. Epigenetics Chromatin 2024; 17:16. [PMID: 38773546 PMCID: PMC11106951 DOI: 10.1186/s13072-024-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/16/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Given their physiological similarities to humans, pigs are increasingly used as model organisms in human-oriented biomedical studies. Additionally, their value to animal agriculture across the globe has led to the development of numerous studies to investigate how to improve livestock welfare and production efficiency. As such, pigs are uniquely poised as compelling models that can yield findings with potential implications in both human and animal contexts. Despite this, many gaps remain in our knowledge about the foundational mechanisms that govern gene expression in swine across different developmental stages, particularly in early development. To address some of these gaps, we profiled the histone marks H3K4me3, H3K27ac, and H3K27me3 and the SWI/SNF central ATPase BRG1 in two porcine cell lines representing discrete early developmental time points and used the resulting information to construct predicted chromatin state maps for these cells. We combined this approach with analysis of publicly available RNA-seq data to examine the relationship between epigenetic status and gene expression in these cell types. RESULTS In porcine fetal fibroblast (PFF) and trophectoderm cells (PTr2), we saw expected patterns of enrichment for each of the profiled epigenetic features relative to specific genomic regions. H3K4me3 was primarily enriched at and around global gene promoters, H3K27ac was enriched in promoter and intergenic regions, H3K27me3 had broad stretches of enrichment across the genome and narrower enrichment patterns in and around the promoter regions of some genes, and BRG1 primarily had detectable enrichment at and around promoter regions and in intergenic stretches, with many instances of H3K27ac co-enrichment. We used this information to perform genome-wide chromatin state predictions for 10 different states using ChromHMM. Using the predicted chromatin state maps, we identified a subset of genomic regions marked by broad H3K4me3 enrichment, and annotation of these regions revealed that they were highly associated with essential developmental processes and consisted largely of expressed genes. We then compared the identities of the genes marked by these regions to genes identified as cell-type-specific using transcriptome data and saw that a subset of broad H3K4me3-marked genes was also specifically expressed in either PFF or PTr2 cells. CONCLUSIONS These findings enhance our understanding of the epigenetic landscape present in early swine development and provide insight into how variabilities in chromatin state are linked to cell identity. Furthermore, this data captures foundational epigenetic details in two valuable porcine cell lines and contributes to the growing body of knowledge surrounding the epigenetic landscape in this species.
Collapse
Affiliation(s)
- Sarah M Innis
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Ryan A Cabot
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
Wu J, Yue B. Regulation of myogenic cell proliferation and differentiation during mammalian skeletal myogenesis. Biomed Pharmacother 2024; 174:116563. [PMID: 38583341 DOI: 10.1016/j.biopha.2024.116563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/14/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Mammalian skeletal myogenesis is a complex process that allows precise control of myogenic cells' proliferation, differentiation, and fusion to form multinucleated, contractile, and functional muscle fibers. Typically, myogenic progenitors continue growth and division until acquiring a differentiated state, which then permanently leaves the cell cycle and enters terminal differentiation. These processes have been intensively studied using the skeletal muscle developing models in vitro and in vivo, uncovering a complex cellular intrinsic network during mammalian skeletal myogenesis containing transcription factors, translation factors, extracellular matrix, metabolites, and mechano-sensors. Examining the events and how they are knitted together will better understand skeletal myogenesis's molecular basis. This review describes various regulatory mechanisms and recent advances in myogenic cell proliferation and differentiation during mammalian skeletal myogenesis. We focus on significant cell cycle regulators, myogenic factors, and chromatin regulators impacting the coordination of the cell proliferation versus differentiation decision, which will better clarify the complex signaling underlying skeletal myogenesis.
Collapse
Affiliation(s)
- Jiyao Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China; College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China.
| |
Collapse
|
7
|
Konuma T, Zhou MM. Distinct Histone H3 Lysine 27 Modifications Dictate Different Outcomes of Gene Transcription. J Mol Biol 2024; 436:168376. [PMID: 38056822 DOI: 10.1016/j.jmb.2023.168376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Site-specific histone modifications have long been recognized to play an important role in directing gene transcription in chromatin in biology of health and disease. However, concrete illustration of how different histone modifications in a site-specific manner dictate gene transcription outcomes, as postulated in the influential "Histone code hypothesis", introduced by Allis and colleagues in 2000, has been lacking. In this review, we summarize our latest understanding of the dynamic regulation of gene transcriptional activation, silence, and repression in chromatin that is directed distinctively by histone H3 lysine 27 acetylation, methylation, and crotonylation, respectively. This represents a special example of a long-anticipated verification of the "Histone code hypothesis."
Collapse
Affiliation(s)
- Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
8
|
Del Blanco B, Niñerola S, Martín-González AM, Paraíso-Luna J, Kim M, Muñoz-Viana R, Racovac C, Sanchez-Mut JV, Ruan Y, Barco Á. Kdm1a safeguards the topological boundaries of PRC2-repressed genes and prevents aging-related euchromatinization in neurons. Nat Commun 2024; 15:1781. [PMID: 38453932 PMCID: PMC10920760 DOI: 10.1038/s41467-024-45773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Kdm1a is a histone demethylase linked to intellectual disability with essential roles during gastrulation and the terminal differentiation of specialized cell types, including neurons, that remains highly expressed in the adult brain. To explore Kdm1a's function in adult neurons, we develop inducible and forebrain-restricted Kdm1a knockouts. By applying multi-omic transcriptome, epigenome and chromatin conformation data, combined with super-resolution microscopy, we find that Kdm1a elimination causes the neuronal activation of nonneuronal genes that are silenced by the polycomb repressor complex and interspersed with active genes. Functional assays demonstrate that the N-terminus of Kdm1a contains an intrinsically disordered region that is essential to segregate Kdm1a-repressed genes from the neighboring active chromatin environment. Finally, we show that the segregation of Kdm1a-target genes is weakened in neurons during natural aging, underscoring the role of Kdm1a safeguarding neuronal genome organization and gene silencing throughout life.
Collapse
Affiliation(s)
- Beatriz Del Blanco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain.
| | - Sergio Niñerola
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Ana M Martín-González
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Juan Paraíso-Luna
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
- Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Minji Kim
- The Jackson laboratory for Genomic Medicine, Farmington, CT, 06030, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rafael Muñoz-Viana
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
- Bioinformatics Unit, Hospital universitario Puerta de Hierro Majadahonda, 28220, Majadahonda, Spain
| | - Carina Racovac
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Jose V Sanchez-Mut
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Yijun Ruan
- The Jackson laboratory for Genomic Medicine, Farmington, CT, 06030, USA
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, P.R. China
| | - Ángel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
9
|
Ma Y, Wang W, Liu S, Qiao X, Xing Y, Zhou Q, Zhang Z. Epigenetic Regulation of Neuroinflammation in Alzheimer's Disease. Cells 2023; 13:79. [PMID: 38201283 PMCID: PMC10778497 DOI: 10.3390/cells13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease and clinically manifests with cognitive decline and behavioral disabilities. Over the past years, mounting studies have demonstrated that the inflammatory response plays a key role in the onset and development of AD, and neuroinflammation has been proposed as the third major pathological driving factor of AD, ranking after the two well-known core pathologies, amyloid β (Aβ) deposits and neurofibrillary tangles (NFTs). Epigenetic mechanisms, referring to heritable changes in gene expression independent of DNA sequence alterations, are crucial regulators of neuroinflammation which have emerged as potential therapeutic targets for AD. Upon regulation of transcriptional repression or activation, epigenetic modification profiles are closely involved in inflammatory gene expression and signaling pathways of neuronal differentiation and cognitive function in central nervous system disorders. In this review, we summarize the current knowledge about epigenetic control mechanisms with a focus on DNA and histone modifications involved in the regulation of inflammatory genes and signaling pathways in AD, and the inhibitors under clinical assessment are also discussed.
Collapse
Affiliation(s)
- Yajing Ma
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.W.); (Y.X.)
| | - Sufang Liu
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA;
| | - Xiaomeng Qiao
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Ying Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.W.); (Y.X.)
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Zhijian Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| |
Collapse
|
10
|
Krauß L, Schneider C, Hessmann E, Saur D, Schneider G. Epigenetic control of pancreatic cancer metastasis. Cancer Metastasis Rev 2023; 42:1113-1131. [PMID: 37659057 PMCID: PMC10713713 DOI: 10.1007/s10555-023-10132-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
Surgical resection, when combined with chemotherapy, has been shown to significantly improve the survival rate of patients with pancreatic ductal adenocarcinoma (PDAC). However, this treatment option is only feasible for a fraction of patients, as more than 50% of cases are diagnosed with metastasis. The multifaceted process of metastasis is still not fully understood, but recent data suggest that transcriptional and epigenetic plasticity play significant roles. Interfering with epigenetic reprogramming can potentially control the adaptive processes responsible for metastatic progression and therapy resistance, thereby enhancing treatment responses and preventing recurrence. This review will focus on the relevance of histone-modifying enzymes in pancreatic cancer, specifically on their impact on the metastatic cascade. Additionally, it will also provide a brief update on the current clinical developments in epigenetic therapies.
Collapse
Affiliation(s)
- Lukas Krauß
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany.
| | - Carolin Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, 37075, Göttingen, Germany
- CCC-N (Comprehensive Cancer Center Lower Saxony), 37075, Göttingen, Germany
| | - Dieter Saur
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675, Munich, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Günter Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany.
- CCC-N (Comprehensive Cancer Center Lower Saxony), 37075, Göttingen, Germany.
| |
Collapse
|
11
|
Erokhin M, Mogila V, Lomaev D, Chetverina D. Polycomb Recruiters Inside and Outside of the Repressed Domains. Int J Mol Sci 2023; 24:11394. [PMID: 37511153 PMCID: PMC10379775 DOI: 10.3390/ijms241411394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The establishment and stable inheritance of individual patterns of gene expression in different cell types are required for the development of multicellular organisms. The important epigenetic regulators are the Polycomb group (PcG) and Trithorax group (TrxG) proteins, which control the silenced and active states of genes, respectively. In Drosophila, the PcG/TrxG group proteins are recruited to the DNA regulatory sequences termed the Polycomb response elements (PREs). The PREs are composed of the binding sites for different DNA-binding proteins, the so-called PcG recruiters. Currently, the role of the PcG recruiters in the targeting of the PcG proteins to PREs is well documented. However, there are examples where the PcG recruiters are also implicated in the active transcription and in the TrxG function. In addition, there is increasing evidence that the genome-wide PcG recruiters interact with the chromatin outside of the PREs and overlap with the proteins of differing regulatory classes. Recent studies of the interactomes of the PcG recruiters significantly expanded our understanding that they have numerous interactors besides the PcG proteins and that their functions extend beyond the regulation of the PRE repressive activity. Here, we summarize current data about the functions of the PcG recruiters.
Collapse
Affiliation(s)
- Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Vladic Mogila
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Dmitry Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
12
|
Deshpande N, Bryk M. Diverse and dynamic forms of gene regulation by the S. cerevisiae histone methyltransferase Set1. Curr Genet 2023; 69:91-114. [PMID: 37000206 DOI: 10.1007/s00294-023-01265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 04/01/2023]
Abstract
Gene transcription is an essential and highly regulated process. In eukaryotic cells, the structural organization of nucleosomes with DNA wrapped around histone proteins impedes transcription. Chromatin remodelers, transcription factors, co-activators, and histone-modifying enzymes work together to make DNA accessible to RNA polymerase. Histone lysine methylation can positively or negatively regulate gene transcription. Methylation of histone 3 lysine 4 by SET-domain-containing proteins is evolutionarily conserved from yeast to humans. In higher eukaryotes, mutations in SET-domain proteins are associated with defects in the development and segmentation of embryos, skeletal and muscle development, and diseases, including several leukemias. Since histone methyltransferases are evolutionarily conserved, the mechanisms of gene regulation mediated by these enzymes are also conserved. Budding yeast Saccharomyces cerevisiae is an excellent model system to study the impact of histone 3 lysine 4 (H3K4) methylation on eukaryotic gene regulation. Unlike larger eukaryotes, yeast cells have only one enzyme that catalyzes H3K4 methylation, Set1. In this review, we summarize current knowledge about the impact of Set1-catalyzed H3K4 methylation on gene transcription in S. cerevisiae. We describe the COMPASS complex, factors that influence H3K4 methylation, and the roles of Set1 in gene silencing at telomeres and heterochromatin, as well as repression and activation at euchromatic loci. We also discuss proteins that "read" H3K4 methyl marks to regulate transcription and summarize alternate functions for Set1 beyond H3K4 methylation.
Collapse
Affiliation(s)
- Neha Deshpande
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Mary Bryk
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
13
|
Ritchie FD, Lizarraga SB. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front Neurosci 2023; 17:989109. [PMID: 36845425 PMCID: PMC9950662 DOI: 10.3389/fnins.2023.989109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Brain size is controlled by several factors during neuronal development, including neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size abnormalities, such as microcephaly and macrocephaly. Mutations in histone methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36 and H3K4) have been identified in neurodevelopmental disorders involving both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both associated with transcriptional activation and are proposed to sterically hinder the repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome wide transcriptional repression of genes that regulate cell fate transitions and neuronal arborization. Here we provide a review of neurodevelopmental processes and disorders associated with H3K36 and H3K4 histone methyltransferases, with emphasis on processes that contribute to brain size abnormalities. Additionally, we discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes vs. PRC2 could contribute to brain size abnormalities which is an underexplored mechanism in relation to brain size control.
Collapse
|
14
|
Taslim TH, Hussein AM, Keshri R, Ishibashi JR, Chan TC, Nguyen BN, Liu S, Brewer D, Harper S, Lyons S, Garver B, Dang J, Balachandar N, Jhajharia S, Castillo DD, Mathieu J, Ruohola-Baker H. Stress-induced reversible cell-cycle arrest requires PRC2/PRC1-mediated control of mitophagy in Drosophila germline stem cells and human iPSCs. Stem Cell Reports 2022; 18:269-288. [PMID: 36493777 PMCID: PMC9860083 DOI: 10.1016/j.stemcr.2022.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Following acute genotoxic stress, both normal and tumorous stem cells can undergo cell-cycle arrest to avoid apoptosis and later re-enter the cell cycle to regenerate daughter cells. However, the mechanism of protective, reversible proliferative arrest, "quiescence," remains unresolved. Here, we show that mitophagy is a prerequisite for reversible quiescence in both irradiated Drosophila germline stem cells (GSCs) and human induced pluripotent stem cells (hiPSCs). In GSCs, mitofission (Drp1) or mitophagy (Pink1/Parkin) genes are essential to enter quiescence, whereas mitochondrial biogenesis (PGC1α) or fusion (Mfn2) genes are crucial for exiting quiescence. Furthermore, mitophagy-dependent quiescence lies downstream of mTOR- and PRC2-mediated repression and relies on the mitochondrial pool of cyclin E. Mitophagy-dependent reduction of cyclin E in GSCs and in hiPSCs during mTOR inhibition prevents the usual G1/S transition, pushing the cells toward reversible quiescence (G0). This alternative method of G1/S control may present new opportunities for therapeutic purposes.
Collapse
Affiliation(s)
- Tommy H Taslim
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Abdiasis M Hussein
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Riya Keshri
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Julien R Ishibashi
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Tung C Chan
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Bich N Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Shuozhi Liu
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Daniel Brewer
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Stuart Harper
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Scott Lyons
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Ben Garver
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Jimmy Dang
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Nanditaa Balachandar
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA; Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Samriddhi Jhajharia
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA; Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Debra Del Castillo
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Julie Mathieu
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA.
| |
Collapse
|
15
|
p300/CBP sustains Polycomb silencing by non-enzymatic functions. Mol Cell 2022; 82:3580-3597.e9. [DOI: 10.1016/j.molcel.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/16/2022] [Accepted: 09/06/2022] [Indexed: 12/29/2022]
|
16
|
Chen Q, Yang B, Liu X, Zhang XD, Zhang L, Liu T. Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Am J Cancer Res 2022; 12:4935-4948. [PMID: 35836809 PMCID: PMC9274749 DOI: 10.7150/thno.73223] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 01/12/2023] Open
Abstract
The histone acetyltransferases CBP and p300, often referred to as CBP/p300 due to their sequence homology and functional overlap and co-operation, are emerging as critical drivers of oncogenesis in the past several years. CBP/p300 induces histone H3 lysine 27 acetylation (H3K27ac) at target gene promoters, enhancers and super-enhancers, thereby activating gene transcription. While earlier studies indicate that CBP/p300 deletion/loss can promote tumorigenesis, CBP/p300 have more recently been shown to be over-expressed in cancer cells and drug-resistant cancer cells, activate oncogene transcription and induce cancer cell proliferation, survival, tumorigenesis, metastasis, immune evasion and drug-resistance. Small molecule CBP/p300 histone acetyltransferase inhibitors, bromodomain inhibitors, CBP/p300 and BET bromodomain dual inhibitors and p300 protein degraders have recently been discovered. The CBP/p300 inhibitors and degraders reduce H3K27ac, down-regulate oncogene transcription, induce cancer cell growth inhibition and cell death, activate immune response, overcome drug resistance and suppress tumor progression in vivo. In addition, CBP/p300 inhibitors enhance the anticancer efficacy of chemotherapy, radiotherapy and epigenetic anticancer agents, including BET bromodomain inhibitors; and the combination therapies exert substantial anticancer effects in mouse models of human cancers including drug-resistant cancers. Currently, two CBP/p300 inhibitors are under clinical evaluation in patients with advanced and drug-resistant solid tumors or hematological malignancies. In summary, CBP/p300 have recently been identified as critical tumorigenic drivers, and CBP/p300 inhibitors and protein degraders are emerging as promising novel anticancer agents for clinical translation.
Collapse
Affiliation(s)
- Qingjuan Chen
- Department of Oncology, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi 723000, China
| | - Binhui Yang
- Department of Oncology, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi 723000, China
| | - Xiaochen Liu
- Department of Oncology, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi 723000, China
| | - Xu D. Zhang
- School of Medicine and Public Health, Priority Research Centre for Cancer Research, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia.,Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,✉ Corresponding authors: E-mail: (Xu D. Zhang), (Lirong Zhang); (Tao Liu)
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,✉ Corresponding authors: E-mail: (Xu D. Zhang), (Lirong Zhang); (Tao Liu)
| | - Tao Liu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Children's Cancer Institute Australia, Randwick, Sydney, NSW 2031, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia.,✉ Corresponding authors: E-mail: (Xu D. Zhang), (Lirong Zhang); (Tao Liu)
| |
Collapse
|
17
|
Parreno V, Martinez AM, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res 2022; 32:231-253. [PMID: 35046519 PMCID: PMC8888700 DOI: 10.1038/s41422-021-00606-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by uncontrolled growth. Polycomb Group (PcG) proteins are members of multiprotein complexes that are highly conserved throughout evolution. Historically, they have been described as essential for maintaining epigenetic cellular memory by locking homeotic genes in a transcriptionally repressed state. What was initially thought to be a function restricted to a few target genes, subsequently turned out to be of much broader relevance, since the main role of PcG complexes is to ensure a dynamically choregraphed spatio-temporal regulation of their numerous target genes during development. Their ability to modify chromatin landscapes and refine the expression of master genes controlling major switches in cellular decisions under physiological conditions is often misregulated in tumors. Surprisingly, their functional implication in the initiation and progression of cancer may be either dependent on Polycomb complexes, or specific for a subunit that acts independently of other PcG members. In this review, we describe how misregulated Polycomb proteins play a pleiotropic role in cancer by altering a broad spectrum of biological processes such as the proliferation-differentiation balance, metabolism and the immune response, all of which are crucial in tumor progression. We also illustrate how interfering with PcG functions can provide a powerful strategy to counter tumor progression.
Collapse
Affiliation(s)
- Victoria Parreno
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
18
|
TRITHORAX-dependent arginine methylation of HSP68 mediates circadian repression by PERIOD in the monarch butterfly. Proc Natl Acad Sci U S A 2022; 119:2115711119. [PMID: 35064085 PMCID: PMC8795551 DOI: 10.1073/pnas.2115711119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 12/19/2022] Open
Abstract
Circadian repression drives the transcriptional feedback loops that keep circadian (∼24-h) time and synchronize an animal’s physiology and behavior to the daily environmental changes. Although PERIOD (PER) is known to initiate transcriptional repression by displacing the transcription activator CLOCK:BMAL1 from DNA, the underlying mechanism remains unknown. Using the monarch butterfly as a model harboring a simplified version of the mammalian circadian clock, we demonstrate that the binding of heat shock protein 68 (HSP68) to a region homologous to CLOCK mouse exon 19 is essential for CLK–PER interaction and PER repression. We further show that CLK–PER interaction and PER repression are promoted by the methylation of a single arginine methylation site (R45) on HSP68 via TRITHORAX catalytic activity. Transcriptional repression drives feedback loops that are central to the generation of circadian (∼24-h) rhythms. In mammals, circadian repression of circadian locomotor output cycles kaput, and brain and muscle ARNT-like 1 (CLOCK:BMAL1)-mediated transcription is provided by a complex formed by PERIOD (PER) and CRYPTOCHROME (CRY) proteins. PER initiates transcriptional repression by binding CLK:BMAL1, which ultimately results in their removal from DNA. Although PER’s ability to repress transcription is widely recognized, how PER binding triggers repression by removing CLK:BMAL1 from DNA is not known. Here, we use the monarch butterfly as a model system to address this problem because it harbors a simplified version of the CLK:BMAL1-activated circadian clock present in mammals. We report that an intact CLOCK mouse exon 19 homologous region (CLKe19r) and the histone methyltransferase TRITHORAX (TRX) are both necessary for monarch CLK:BMAL1-mediated transcriptional activation, CLK–PER interaction, and PER repression. Our results show that TRX catalytic activity is essential for CLK–PER interaction and PER repression via the methylation of a single arginine methylation site (R45) on heat shock protein 68 (HSP68). Our study reveals TRX and HSP68 as essential links between circadian activation and PER-mediated repression and suggests a potential conserved clock function for HSPs in eukaryotes.
Collapse
|
19
|
Investigating crosstalk between H3K27 acetylation and H3K4 trimethylation in CRISPR/dCas-based epigenome editing and gene activation. Sci Rep 2021; 11:15912. [PMID: 34354157 PMCID: PMC8342468 DOI: 10.1038/s41598-021-95398-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenome editing methods enable the precise manipulation of epigenetic modifications, such as histone posttranscriptional modifications (PTMs), for uncovering their biological functions. While histone PTMs have been correlated with certain gene expression status, the causalities remain elusive. Histone H3 Lysine 27 acetylation (H3K27ac) and histone H3 Lysine 4 trimethylation (H3K4me3) are both associated with active genes, and located at active promoters and enhancers or around transcriptional start sites (TSSs). Although crosstalk between histone lysine acetylation and H3K4me3 has been reported, relationships between specific epigenetic marks during transcriptional activation remain largely unclear. Here, using clustered regularly interspaced short palindromic repeats (CRISPR)/dCas-based epigenome editing methods, we discovered that the ectopic introduction of H3K27ac in the promoter region lead to H3K4me3 enrichment around TSS and transcriptional activation, while H3K4me3 installation at the promoter cannot induce H3K27ac increase and failed to activate gene expression. Blocking the reading of H3K27ac by BRD proteins using inhibitor JQ1 abolished H3K27ac-induced H3K4me3 installation and downstream gene activation. Furthermore, we uncovered that BRD2, not BRD4, mediated H3K4me3 installation and gene activation upon H3K27ac writing. Our studies revealed the relationships between H3K27ac and H3K4me3 in gene activation process and demonstrated the application of CRISPR/dCas-based epigenome editing methods in elucidating the crosstalk between epigenetic mechanisms.
Collapse
|
20
|
Akan I, Halim A, Vakhrushev SY, Clausen H, Hanover JA. Drosophila O-GlcNAcase Mutants Reveal an Expanded Glycoproteome and Novel Growth and Longevity Phenotypes. Cells 2021; 10:cells10051026. [PMID: 33925313 PMCID: PMC8145559 DOI: 10.3390/cells10051026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 12/17/2022] Open
Abstract
The reversible posttranslational O-GlcNAc modification of serine or threonine residues of intracellular proteins is involved in many cellular events from signaling cascades to epigenetic and transcriptional regulation. O-GlcNAcylation is a conserved nutrient-dependent process involving two enzymes, with O-GlcNAc transferase (OGT) adding O-GlcNAc and with O-GlcNAcase (OGA) removing it in a manner that’s protein- and context-dependent. O-GlcNAcylation is essential for epigenetic regulation of gene expression through its action on Polycomb and Trithorax and COMPASS complexes. However, the important role of O-GlcNAc in adult life and health span has been largely unexplored, mainly due the lack of available model systems. Cataloging the O-GlcNAc proteome has proven useful in understanding the biology of this modification in vivo. In this study, we leveraged a recently developed oga knockout fly mutant to identify the O-GlcNAcylated proteins in adult Drosophilamelanogaster. The adult O-GlcNAc proteome revealed many proteins related to cell and organismal growth, development, differentiation, and epigenetics. We identified many O-GlcNAcylated proteins that play a role in increased growth and decreased longevity, including HCF, SIN3A, LOLA, KISMET, ATX2, SHOT, and FOXO. Interestingly, oga mutant flies are larger and have a shorter life span compared to wild type flies, suggesting increased O-GlcNAc results in increased growth. Our results suggest that O-GlcNAc alters the function of many proteins related to transcription, epigenetic modification and signaling pathways that regulate growth rate and longevity. Therefore, our findings highlight the importance of O-GlcNAc in growth and life span in adult Drosophila.
Collapse
Affiliation(s)
- Ilhan Akan
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (A.H.); (S.Y.V.); (H.C.)
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (A.H.); (S.Y.V.); (H.C.)
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (A.H.); (S.Y.V.); (H.C.)
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
- Correspondence:
| |
Collapse
|
21
|
Khan MHF, Akhtar J, Umer Z, Shaheen N, Shaukat A, Munir MS, Mithani A, Anwar S, Tariq M. Kinome-Wide RNAi Screen Uncovers Role of Ballchen in Maintenance of Gene Activation by Trithorax Group in Drosophila. Front Cell Dev Biol 2021; 9:637873. [PMID: 33748127 PMCID: PMC7973098 DOI: 10.3389/fcell.2021.637873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Polycomb group (PcG) and trithorax group (trxG) proteins are evolutionary conserved factors that contribute to cell fate determination and maintenance of cellular identities during development of multicellular organisms. The PcG maintains heritable patterns of gene silencing while trxG acts as anti-silencing factors by conserving activation of cell type specific genes. Genetic and molecular analysis has revealed extensive details about how different PcG and trxG complexes antagonize each other to maintain cell fates, however, the cellular signaling components that contribute to the preservation of gene expression by PcG/trxG remain elusive. Here, we report an ex vivo kinome-wide RNAi screen in Drosophila aimed at identifying cell signaling genes that facilitate trxG in counteracting PcG mediated repression. From the list of trxG candidates, Ballchen (BALL), a histone kinase known to phosphorylate histone H2A at threonine 119 (H2AT119p), was characterized as a trxG regulator. The ball mutant exhibits strong genetic interactions with Polycomb (Pc) and trithorax (trx) mutants and loss of BALL affects expression of trxG target genes. BALL co-localizes with Trithorax on chromatin and depletion of BALL results in increased H2AK118 ubiquitination, a histone mark central to PcG mediated gene silencing. Moreover, BALL was found to substantially associate with known TRX binding sites across the genome. Genome wide distribution of BALL also overlaps with H3K4me3 and H3K27ac at actively transcribed genes. We propose that BALL mediated signaling positively contributes to the maintenance of gene activation by trxG in counteracting the repressive effect of PcG.
Collapse
Affiliation(s)
- Muhammad Haider Farooq Khan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Jawad Akhtar
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zain Umer
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Najma Shaheen
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Ammad Shaukat
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Shahbaz Munir
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Aziz Mithani
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Saima Anwar
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Tariq
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
22
|
Figlia G, Willnow P, Teleman AA. Metabolites Regulate Cell Signaling and Growth via Covalent Modification of Proteins. Dev Cell 2021; 54:156-170. [PMID: 32693055 DOI: 10.1016/j.devcel.2020.06.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/15/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023]
Abstract
Metabolites affect cell growth in two different ways. First, they serve as building blocks for biomass accumulation. Second, metabolites regulate the activity of growth-relevant signaling pathways. They do so in part by covalently attaching to proteins, thereby generating post-translational modifications (PTMs) that affect protein function, the focus of this Perspective. Recent advances in mass spectrometry have revealed a wide variety of such metabolites, including lipids, amino acids, Coenzyme-A, acetate, malonate, and lactate to name a few. An active area of research is to understand which modifications affect protein function and how they do so. In many cases, the cellular levels of these metabolites affect the stoichiometry of the corresponding PTMs, providing a direct link between cell metabolism and the control of cell signaling, transcription, and cell growth.
Collapse
Affiliation(s)
- Gianluca Figlia
- German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg 69120, Germany; Heidelberg University, Heidelberg, Baden-Württemberg 69120, Germany
| | - Philipp Willnow
- German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg 69120, Germany; Heidelberg University, Heidelberg, Baden-Württemberg 69120, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg 69120, Germany; Heidelberg University, Heidelberg, Baden-Württemberg 69120, Germany.
| |
Collapse
|
23
|
Huisman C, Kim YA, Jeon S, Shin B, Choi J, Lim SJ, Youn SM, Park Y, K C M, Kim S, Lee SK, Lee S, Lee JW. The histone H3-lysine 4-methyltransferase Mll4 regulates the development of growth hormone-releasing hormone-producing neurons in the mouse hypothalamus. Nat Commun 2021; 12:256. [PMID: 33431871 PMCID: PMC7801453 DOI: 10.1038/s41467-020-20511-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023] Open
Abstract
In humans, inactivating mutations in MLL4, which encodes a histone H3-lysine 4-methyltransferase, lead to Kabuki syndrome (KS). While dwarfism is a cardinal feature of KS, the underlying etiology remains unclear. Here we report that Mll4 regulates the development of growth hormone-releasing hormone (GHRH)-producing neurons in the mouse hypothalamus. Our two Mll4 mutant mouse models exhibit dwarfism phenotype and impairment of the developmental programs for GHRH-neurons. Our ChIP-seq analysis reveals that, in the developing mouse hypothalamus, Mll4 interacts with the transcription factor Nrf1 to trigger the expression of GHRH-neuronal genes. Interestingly, the deficiency of Mll4 results in a marked reduction of histone marks of active transcription, while treatment with the histone deacetylase inhibitor AR-42 rescues the histone mark signature and restores GHRH-neuronal production in Mll4 mutant mice. Our results suggest that the developmental dysregulation of Mll4-directed epigenetic control of transcription plays a role in the development of GHRH-neurons and dwarfism phenotype in mice.
Collapse
Affiliation(s)
- Christian Huisman
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Young A Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Shin Jeon
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA
| | - Bongjin Shin
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA
| | - Jeonghoon Choi
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Su Jeong Lim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Sung Min Youn
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Younjung Park
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA
| | - Medha K C
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA
| | - Sangsoo Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Soo-Kyung Lee
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA
| | - Seunghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| | - Jae W Lee
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA.
| |
Collapse
|
24
|
Alcalà-Vida R, Awada A, Boutillier AL, Merienne K. Epigenetic mechanisms underlying enhancer modulation of neuronal identity, neuronal activity and neurodegeneration. Neurobiol Dis 2020; 147:105155. [PMID: 33127472 DOI: 10.1016/j.nbd.2020.105155] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases, including Huntington's disease (HD) and Alzheimer's disease (AD), are progressive conditions characterized by selective, disease-dependent loss of neuronal regions and/or subpopulations. Neuronal loss is preceded by a long period of neuronal dysfunction, during which glial cells also undergo major changes, including neuroinflammatory response. Those dramatic changes affecting both neuronal and glial cells associate with epigenetic and transcriptional dysregulations, characterized by defined cell-type-specific signatures. Notably, increasing studies support the view that altered regulation of transcriptional enhancers, which are distal regulatory regions of the genome capable of modulating the activity of promoters through chromatin looping, play a critical role in transcriptional dysregulation in HD and AD. We review current knowledge on enhancers in HD and AD, and highlight challenging issues to better decipher the epigenetic code of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rafael Alcalà-Vida
- LNCA, University of Strasbourg, France; CNRS UMR 7364, Strasbourg, France
| | - Ali Awada
- LNCA, University of Strasbourg, France; CNRS UMR 7364, Strasbourg, France
| | | | - Karine Merienne
- LNCA, University of Strasbourg, France; CNRS UMR 7364, Strasbourg, France.
| |
Collapse
|
25
|
Chetverina DA, Lomaev DV, Erokhin MM. Polycomb and Trithorax Group Proteins: The Long Road from Mutations in Drosophila to Use in Medicine. Acta Naturae 2020; 12:66-85. [PMID: 33456979 PMCID: PMC7800605 DOI: 10.32607/actanaturae.11090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) proteins are evolutionarily conserved factors responsible for the repression and activation of the transcription of multiple genes in Drosophila and mammals. Disruption of the PcG/TrxG expression is associated with many pathological conditions, including cancer, which makes them suitable targets for diagnosis and therapy in medicine. In this review, we focus on the major PcG and TrxG complexes, the mechanisms of PcG/TrxG action, and their recruitment to chromatin. We discuss the alterations associated with the dysfunction of a number of factors of these groups in oncology and the current strategies used to develop drugs based on small-molecule inhibitors.
Collapse
Affiliation(s)
- D. A. Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - D. V. Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - M. M. Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
26
|
Overton IM, Sims AH, Owen JA, Heale BSE, Ford MJ, Lubbock ALR, Pairo-Castineira E, Essafi A. Functional Transcription Factor Target Networks Illuminate Control of Epithelial Remodelling. Cancers (Basel) 2020; 12:cancers12102823. [PMID: 33007944 PMCID: PMC7652213 DOI: 10.3390/cancers12102823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cell identity is governed by gene expression, regulated by transcription factor (TF) binding at cis-regulatory modules. Decoding the relationship between TF binding patterns and gene regulation is nontrivial, remaining a fundamental limitation in understanding cell decision-making. We developed the NetNC software to predict functionally active regulation of TF targets; demonstrated on nine datasets for the TFs Snail, Twist, and modENCODE Highly Occupied Target (HOT) regions. Snail and Twist are canonical drivers of epithelial to mesenchymal transition (EMT), a cell programme important in development, tumour progression and fibrosis. Predicted "neutral" (non-functional) TF binding always accounted for the majority (50% to 95%) of candidate target genes from statistically significant peaks and HOT regions had higher functional binding than most of the Snail and Twist datasets examined. Our results illuminated conserved gene networks that control epithelial plasticity in development and disease. We identified new gene functions and network modules including crosstalk with notch signalling and regulation of chromatin organisation, evidencing networks that reshape Waddington's epigenetic landscape during epithelial remodelling. Expression of orthologous functional TF targets discriminated breast cancer molecular subtypes and predicted novel tumour biology, with implications for precision medicine. Predicted invasion roles were validated using a tractable cell model, supporting our approach.
Collapse
Affiliation(s)
- Ian M. Overton
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
- Department of Systems Biology, Harvard University, Boston, MA 02115, USA;
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH9 3BF, UK
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
- Correspondence:
| | - Andrew H. Sims
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Jeremy A. Owen
- Department of Systems Biology, Harvard University, Boston, MA 02115, USA;
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bret S. E. Heale
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Matthew J. Ford
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Alexander L. R. Lubbock
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Erola Pairo-Castineira
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Abdelkader Essafi
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| |
Collapse
|
27
|
Zraly CB, Zakkar A, Perez JH, Ng J, White KP, Slattery M, Dingwall AK. The Drosophila MLR COMPASS complex is essential for programming cis-regulatory information and maintaining epigenetic memory during development. Nucleic Acids Res 2020; 48:3476-3495. [PMID: 32052053 PMCID: PMC7144903 DOI: 10.1093/nar/gkaa082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/29/2022] Open
Abstract
The MLR COMPASS complex monomethylates H3K4 that serves to epigenetically mark transcriptional enhancers to drive proper gene expression during animal development. Chromatin enrichment analyses of the Drosophila MLR complex reveals dynamic association with promoters and enhancers in embryos with late stage enrichments biased toward both active and poised enhancers. RNAi depletion of the Cmi (also known as Lpt) subunit that contains the chromatin binding PHD finger domains attenuates enhancer functions, but unexpectedly results in inappropriate enhancer activation during stages when hormone responsive enhancers are poised, revealing critical epigenetic roles involved in both the activation and repression of enhancers depending on developmental context. Cmi is necessary for robust H3K4 monomethylation and H3K27 acetylation that mark active enhancers, but not for the chromatin binding of Trr, the MLR methyltransferase. Our data reveal two likely major regulatory modes of MLR function, contributions to enhancer commissioning in early embryogenesis and bookmarking enhancers to enable rapid transcriptional re-activation at subsequent developmental stages.
Collapse
Affiliation(s)
- Claudia B Zraly
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Abdul Zakkar
- Department of Biology, Program in Bioinformatics, Loyola University Chicago, Chicago, IL 60660, USA
| | - John Hertenstein Perez
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Jeffrey Ng
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.,Department of Biology, Program in Bioinformatics, Loyola University Chicago, Chicago, IL 60660, USA
| | - Kevin P White
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Slattery
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.,Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Andrew K Dingwall
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.,Department of Pathology & Laboratory Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
28
|
Bredesen BA, Rehmsmeier M. DNA sequence models of genome-wide Drosophila melanogaster Polycomb binding sites improve generalization to independent Polycomb Response Elements. Nucleic Acids Res 2019; 47:7781-7797. [PMID: 31340029 PMCID: PMC6735708 DOI: 10.1093/nar/gkz617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/01/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Polycomb Response Elements (PREs) are cis-regulatory DNA elements that maintain gene transcription states through DNA replication and mitosis. PREs have little sequence similarity, but are enriched in a number of sequence motifs. Previous methods for modelling Drosophila melanogaster PRE sequences (PREdictor and EpiPredictor) have used a set of 7 motifs and a training set of 12 PREs and 16-23 non-PREs. Advances in experimental methods for mapping chromatin binding factors and modifications has led to the publication of several genome-wide sets of Polycomb targets. In addition to the seven motifs previously used, PREs are enriched in the GTGT motif, recently associated with the sequence-specific DNA binding protein Combgap. We investigated whether models trained on genome-wide Polycomb sites generalize to independent PREs when trained with control sequences generated by naive PRE models and including the GTGT motif. We also developed a new PRE predictor: SVM-MOCCA. Training PRE predictors with genome-wide experimental data improves generalization to independent data, and SVM-MOCCA predicts the majority of PREs in three independent experimental sets. We present 2908 candidate PREs enriched in sequence and chromatin signatures. 2412 of these are also enriched in H3K4me1, a mark of Trithorax activated chromatin, suggesting that PREs/TREs have a common sequence code.
Collapse
Affiliation(s)
- Bjørn André Bredesen
- Computational Biology Unit, Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway
| | - Marc Rehmsmeier
- Computational Biology Unit, Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway.,Integrated Research Institute (IRI) for the Life Sciences and Department of Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
29
|
Genetic Dissection Reveals the Role of Ash1 Domains in Counteracting Polycomb Repression. G3-GENES GENOMES GENETICS 2019; 9:3801-3812. [PMID: 31540973 PMCID: PMC6829142 DOI: 10.1534/g3.119.400579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antagonistic functions of Polycomb and Trithorax proteins are essential for proper development of all metazoans. While the Polycomb proteins maintain the repressed state of many key developmental genes, the Trithorax proteins ensure that these genes stay active in cells where they have to be expressed. Ash1 is the Trithorax protein that was proposed to counteract Polycomb repression by methylating lysine 36 of histone H3. However, it was recently shown that genetic replacement of Drosophila histone H3 with the variant that carried Arginine instead of Lysine at position 36 did not impair the ability of Ash1 to counteract Polycomb repression. This argues that Ash1 counteracts Polycomb repression by methylating yet unknown substrate(s) and that it is time to look beyond Ash1 methyltransferase SET domain, at other evolutionary conserved parts of the protein that received little attention. Here we used Drosophila genetics to demonstrate that Ash1 requires each of the BAH, PHD and SET domains to counteract Polycomb repression, while AT hooks are dispensable. Our findings argue that, in vivo, Ash1 acts as a multimer. Thereby it can combine the input of the SET domain and PHD-BAH cassette residing in different peptides. Finally, using new loss of function alleles, we show that zygotic Ash1 is required to prevent erroneous repression of homeotic genes of the bithorax complex in the embryo.
Collapse
|
30
|
Ahmad K, Spens AE. Separate Polycomb Response Elements control chromatin state and activation of the vestigial gene. PLoS Genet 2019; 15:e1007877. [PMID: 31425502 PMCID: PMC6730940 DOI: 10.1371/journal.pgen.1007877] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 09/06/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Patterned expression of many developmental genes is specified by transcription factor gene expression, but is thought to be refined by chromatin-mediated repression. Regulatory DNA sequences called Polycomb Response Elements (PREs) are required to repress some developmental target genes, and are widespread in genomes, suggesting that they broadly affect developmental programs. While PREs in transgenes can nucleate trimethylation on lysine 27 of the histone H3 tail (H3K27me3), none have been demonstrated to be necessary at endogenous chromatin domains. This failure is thought to be due to the fact that most endogenous H3K27me3 domains contain many PREs, and individual PREs may be redundant. In contrast to these ideas, we show here that PREs near the wing selector gene vestigial have distinctive roles at their endogenous locus, even though both PREs are repressors in transgenes. First, a PRE near the promoter is required for vestigial activation and not for repression. Second, only the distal PRE contributes to H3K27me3, but even removal of both PREs does not eliminate H3K27me3 across the vestigial domain. Thus, endogenous chromatin domains appear to be intrinsically marked by H3K27me3, and PREs appear required to enhance this chromatin modification to high levels at inactive genes.
Collapse
Affiliation(s)
- Kami Ahmad
- Division of Basic Sciences, FHCRC, Seattle, WA, United States of America
| | - Amy E. Spens
- Division of Basic Sciences, FHCRC, Seattle, WA, United States of America
| |
Collapse
|
31
|
Piacentini L, Marchetti M, Bucciarelli E, Casale AM, Cappucci U, Bonifazi P, Renda F, Fanti L. A role of the Trx-G complex in Cid/CENP-A deposition at Drosophila melanogaster centromeres. Chromosoma 2019; 128:503-520. [PMID: 31203392 DOI: 10.1007/s00412-019-00711-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 05/07/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
Abstract
Centromeres are epigenetically determined chromatin structures that specify the assembly site of the kinetochore, the multiprotein machinery that binds microtubules and mediates chromosome segregation during mitosis and meiosis. The centromeric protein A (CENP-A) and its Drosophila orthologue centromere identifier (Cid) are H3 histone variants that replace the canonical H3 histone in centromeric nucleosomes of eukaryotes. CENP-A/Cid is required for recruitment of other centromere and kinetochore proteins and its deficiency disrupts chromosome segregation. Despite the many components that are known to cooperate in centromere function, the complete network of factors involved in CENP-A recruitment remains to be defined. In Drosophila, the Trx-G proteins localize along the heterochromatin with specific patterns and some of them localize to the centromeres of all chromosomes. Here, we show that the Trx, Ash1, and CBP proteins are required for the correct chromosome segregation and that Ash1 and CBP mediate for Cid/CENP-A recruitment at centromeres through post-translational histone modifications. We found that centromeric H3 histone is consistently acetylated in K27 by CBP and that nej and ash1 silencing respectively causes a decrease in H3K27 acetylation and H3K4 methylation along with an impairment of Cid loading.
Collapse
Affiliation(s)
- Lucia Piacentini
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Marcella Marchetti
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | | | - Assunta Maria Casale
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Ugo Cappucci
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Paolo Bonifazi
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Fioranna Renda
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy.,Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - Laura Fanti
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy.
| |
Collapse
|
32
|
Sneppen K, Ringrose L. Theoretical analysis of Polycomb-Trithorax systems predicts that poised chromatin is bistable and not bivalent. Nat Commun 2019; 10:2133. [PMID: 31086177 PMCID: PMC6513952 DOI: 10.1038/s41467-019-10130-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Polycomb (PcG) and Trithorax (TrxG) group proteins give stable epigenetic memory of silent and active gene expression states, but also allow poised states in pluripotent cells. Here we systematically address the relationship between poised, active and silent chromatin, by integrating 73 publications on PcG/TrxG biochemistry into a mathematical model comprising 144 nucleosome modification states and 8 enzymatic reactions. Our model predicts that poised chromatin is bistable and not bivalent. Bivalent chromatin, containing opposing active and silent modifications, is present as an unstable background population in all system states, and different subtypes co-occur with active and silent chromatin. In contrast, bistability, in which the system switches frequently between stable active and silent states, occurs under a wide range of conditions at the transition between monostable active and silent system states. By proposing that bistability and not bivalency is associated with poised chromatin, this work has implications for understanding the molecular nature of pluripotency. Polycomb and Trithorax group proteins regulate silent and active gene expression states, but also allow poised states in pluripotent cells. Here the authors present a mathematical model that integrates data on Polycomb/ Trithorax biochemistry into a single coherent framework which predicts that poised chromatin is not bivalent as previously proposed, but is bistable, meaning that the system switches frequently between stable active and silent states.
Collapse
Affiliation(s)
- Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark.
| | - Leonie Ringrose
- Integrated Research Institute for Life Sciences, Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 22, 10115, Berlin, Germany.
| |
Collapse
|
33
|
Roy D, Chakrabarty J, Mallik R, Chaudhuri S. Rice Trithorax factor ULTRAPETALA 1 (OsULT1) specifically binds to “GAGAG” sequence motif present in Polycomb response elements. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:582-597. [DOI: 10.1016/j.bbagrm.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023]
|
34
|
Dorafshan E, Kahn TG, Glotov A, Savitsky M, Walther M, Reuter G, Schwartz YB. Ash1 counteracts Polycomb repression independent of histone H3 lysine 36 methylation. EMBO Rep 2019; 20:embr.201846762. [PMID: 30833342 DOI: 10.15252/embr.201846762] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Polycomb repression is critical for metazoan development. Equally important but less studied is the Trithorax system, which safeguards Polycomb target genes from the repression in cells where they have to remain active. It was proposed that the Trithorax system acts via methylation of histone H3 at lysine 4 and lysine 36 (H3K36), thereby inhibiting histone methyltransferase activity of the Polycomb complexes. Here we test this hypothesis by asking whether the Trithorax group protein Ash1 requires H3K36 methylation to counteract Polycomb repression. We show that Ash1 is the only Drosophila H3K36-specific methyltransferase necessary to prevent excessive Polycomb repression of homeotic genes. Unexpectedly, our experiments reveal no correlation between the extent of H3K36 methylation and the resistance to Polycomb repression. Furthermore, we find that complete substitution of the zygotic histone H3 with a variant in which lysine 36 is replaced by arginine does not cause excessive repression of homeotic genes. Our results suggest that the model, where the Trithorax group proteins methylate histone H3 to inhibit the histone methyltransferase activity of the Polycomb complexes, needs revision.
Collapse
Affiliation(s)
| | - Tatyana G Kahn
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | | - Matthias Walther
- Institute of Developmental Genetics, Martin-Luther University of Halle-Wittenberg, Halle, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Gunter Reuter
- Institute of Developmental Genetics, Martin-Luther University of Halle-Wittenberg, Halle, Germany
| | - Yuri B Schwartz
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
35
|
Goto S, Takahashi M, Yasutsune N, Inayama S, Kato D, Fukuoka M, Kashiwaba SI, Murakami Y. Identification of GA-Binding Protein Transcription Factor Alpha Subunit (GABPA) as a Novel Bookmarking Factor. Int J Mol Sci 2019; 20:E1093. [PMID: 30836589 PMCID: PMC6429373 DOI: 10.3390/ijms20051093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Mitotic bookmarking constitutes a mechanism for transmitting transcriptional patterns through cell division. Bookmarking factors, comprising a subset of transcription factors (TFs), and multiple histone modifications retained in mitotic chromatin facilitate reactivation of transcription in the early G1 phase. However, the specific TFs that act as bookmarking factors remain largely unknown. Previously, we identified the "early G1 genes" and screened TFs that were predicted to bind to the upstream region of these genes, then identified GA-binding protein transcription factor alpha subunit (GABPA) and Sp1 transcription factor (SP1) as candidate bookmarking factors. Here we show that GABPA and multiple histone acetylation marks such as H3K9/14AC, H3K27AC, and H4K5AC are maintained at specific genomic sites in mitosis. During the M/G1 transition, the levels of these histone acetylations at the upstream regions of genes bound by GABPA in mitosis are decreased. Upon depletion of GABPA, levels of histone acetylation, especially H4K5AC, at several gene regions are increased, along with transcriptional induction at 1 h after release. Therefore, we proposed that GABPA cooperates with the states of histone acetylation to act as a novel bookmarking factor which, may negatively regulate transcription during the early G1 phase.
Collapse
Affiliation(s)
- Shunya Goto
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Masashi Takahashi
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Narumi Yasutsune
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Sumiki Inayama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Dai Kato
- Order-MadeMedical Research Inc., 208Todai-Kashiwa VP, 5-4-19 Kashiwanoha, Kashiwa-shi, Chiba-ken 277-0882, Japan.
| | - Masashi Fukuoka
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan.
| | - Shu-Ichiro Kashiwaba
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Yasufumi Murakami
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
- Order-MadeMedical Research Inc., 208Todai-Kashiwa VP, 5-4-19 Kashiwanoha, Kashiwa-shi, Chiba-ken 277-0882, Japan.
| |
Collapse
|
36
|
Drosophila Hcf regulates the Hippo signaling pathway via association with the histone H3K4 methyltransferase Trr. Biochem J 2019; 476:759-768. [PMID: 30733258 DOI: 10.1042/bcj20180717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/29/2019] [Accepted: 02/06/2019] [Indexed: 01/08/2023]
Abstract
Abstract
Control of organ size is a fundamental aspect in biology and plays important roles in development. The Hippo pathway is a conserved signaling cascade that controls tissue and organ size through the regulation of cell proliferation and apoptosis. Here, we report on the roles of Hcf (host cell factor), the Drosophila homolog of Host cell factor 1, in regulating the Hippo signaling pathway. Loss-of-Hcf function causes tissue undergrowth and the down-regulation of Hippo target gene expression. Genetic analysis reveals that Hcf is required for Hippo pathway-mediated overgrowth. Mechanistically, we show that Hcf associates with the histone H3 lysine-4 methyltransferase Trithorax-related (Trr) to maintain H3K4 mono- and trimethylation. Thus, we conclude that Hcf positively regulates Hippo pathway activity through forming a complex with Trr and controlling H3K4 methylation.
Collapse
|
37
|
Chatterjee S, Cassel R, Schneider-Anthony A, Merienne K, Cosquer B, Tzeplaeff L, Halder Sinha S, Kumar M, Chaturbedy P, Eswaramoorthy M, Le Gras S, Keime C, Bousiges O, Dutar P, Petsophonsakul P, Rampon C, Cassel JC, Buée L, Blum D, Kundu TK, Boutillier AL. Reinstating plasticity and memory in a tauopathy mouse model with an acetyltransferase activator. EMBO Mol Med 2018; 10:e8587. [PMID: 30275019 PMCID: PMC6220301 DOI: 10.15252/emmm.201708587] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/17/2022] Open
Abstract
Chromatin acetylation, a critical regulator of synaptic plasticity and memory processes, is thought to be altered in neurodegenerative diseases. Here, we demonstrate that spatial memory and plasticity (LTD, dendritic spine formation) deficits can be restored in a mouse model of tauopathy following treatment with CSP-TTK21, a small-molecule activator of CBP/p300 histone acetyltransferases (HAT). At the transcriptional level, CSP-TTK21 re-established half of the hippocampal transcriptome in learning mice, likely through increased expression of neuronal activity genes and memory enhancers. At the epigenomic level, the hippocampus of tauopathic mice showed a significant decrease in H2B but not H3K27 acetylation levels, both marks co-localizing at TSS and CBP enhancers. Importantly, CSP-TTK21 treatment increased H2B acetylation levels at decreased peaks, CBP enhancers, and TSS, including genes associated with plasticity and neuronal functions, overall providing a 95% rescue of the H2B acetylome in tauopathic mice. This study is the first to provide in vivo proof-of-concept evidence that CBP/p300 HAT activation efficiently reverses epigenetic, transcriptional, synaptic plasticity, and behavioral deficits associated with Alzheimer's disease lesions in mice.
Collapse
Affiliation(s)
- Snehajyoti Chatterjee
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
- LNCA, CNRS UMR 7364, Strasbourg, France
| | - Raphaelle Cassel
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
- LNCA, CNRS UMR 7364, Strasbourg, France
| | - Anne Schneider-Anthony
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
- LNCA, CNRS UMR 7364, Strasbourg, France
| | - Karine Merienne
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
- LNCA, CNRS UMR 7364, Strasbourg, France
| | - Brigitte Cosquer
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
- LNCA, CNRS UMR 7364, Strasbourg, France
| | - Laura Tzeplaeff
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
- LNCA, CNRS UMR 7364, Strasbourg, France
| | - Sarmistha Halder Sinha
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Manoj Kumar
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Piyush Chaturbedy
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Muthusamy Eswaramoorthy
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Stéphanie Le Gras
- CNRS, Inserm, UMR 7104, Microarray and Sequencing Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Céline Keime
- CNRS, Inserm, UMR 7104, Microarray and Sequencing Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Olivier Bousiges
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
- Laboratory of Biochemistry and Molecular Biology, Hôpital de Hautepierre, University Hospital of Strasbourg, Strasbourg, France
| | - Patrick Dutar
- Centre de Psychiatrie et Neurosciences, INSERM UMRS894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Petnoi Petsophonsakul
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Jean-Christophe Cassel
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
- LNCA, CNRS UMR 7364, Strasbourg, France
| | - Luc Buée
- Inserm, CHU-Lille, UMR-S 1172, Alzheimer & Tauopathies, Université de Lille, Lille, France
| | - David Blum
- Inserm, CHU-Lille, UMR-S 1172, Alzheimer & Tauopathies, Université de Lille, Lille, France
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Anne-Laurence Boutillier
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
- LNCA, CNRS UMR 7364, Strasbourg, France
| |
Collapse
|
38
|
Targeting Epigenetic Crosstalk as a Therapeutic Strategy for EZH2-Aberrant Solid Tumors. Cell 2018; 175:186-199.e19. [DOI: 10.1016/j.cell.2018.08.058] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 07/23/2018] [Accepted: 08/24/2018] [Indexed: 12/24/2022]
|
39
|
Prudêncio P, Guilgur LG, Sobral J, Becker JD, Martinho RG, Navarro-Costa P. The Trithorax group protein dMLL3/4 instructs the assembly of the zygotic genome at fertilization. EMBO Rep 2018; 19:e45728. [PMID: 30037897 PMCID: PMC6073209 DOI: 10.15252/embr.201845728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 12/25/2022] Open
Abstract
The transition from fertilized oocyte to totipotent embryo relies on maternal factors that are synthetized and accumulated during oocyte development. Yet, it is unclear how oocytes regulate the expression of maternal genes within the transcriptional program of oogenesis. Here, we report that the Drosophila Trithorax group protein dMLL3/4 (also known as Trr) is essential for the transition to embryo fate at fertilization. In the absence of dMLL3/4, oocytes develop normally but fail to initiate the embryo mitotic divisions after fertilization. This incapability results from defects in paternal genome reprogramming and maternal meiotic completion. The methyltransferase activity of dMLL3/4 is dispensable for both these processes. We further show that dMLL3/4 promotes the expression of a functionally coherent gene subset that is required for the initiation of post-fertilization development. Accordingly, we identify the evolutionarily conserved IDGF4 glycoprotein (known as oviductin in mammals) as a new oocyte-to-embryo transition gene under direct dMLL3/4 transcriptional control. Based on these observations, we propose that dMLL3/4 plays an instructive role in the oocyte-to-embryo transition that is functionally uncoupled from the requirements of oogenesis.
Collapse
Affiliation(s)
- Pedro Prudêncio
- Center for Biomedical Research and Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | - João Sobral
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Rui Gonçalo Martinho
- Center for Biomedical Research and Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Institute of Biomedicine - iBiMED and Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal
| | - Paulo Navarro-Costa
- Center for Biomedical Research and Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
40
|
Sadasivam DA, Huang DH. Feedback regulation by antagonistic epigenetic factors potentially maintains developmental homeostasis in Drosophila. J Cell Sci 2018; 131:jcs.210179. [PMID: 29661849 DOI: 10.1242/jcs.210179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 04/04/2018] [Indexed: 01/09/2023] Open
Abstract
Drosophila Polycomb group (PcG) repressors confer epigenetically heritable silencing on key regulatory genes through histone H3 trimethylation on lysine 27 (H3K27me3). How the silencing state withstands antagonistic activities from co-expressed trithorax group (trxG) activators is unclear. Upon overexpression of Trx H3K4 methylase, to perturb the silenced state, we find a dynamic process triggered in a stepwise fashion to neutralize the inductive impacts from excess Trx. Shortly after Trx overexpression, there are global increases in H3K4 trimethylation and RNA polymerase II phosphorylation, marking active transcription. Subsequently, these patterns diminish at the same time as the levels of Set1, an abundant H3K4 methylase involved in productive transcription, reduce. Concomitantly, the global H3K27me3 level is markedly reduced, corresponding to an increase in the amount of Utx demethylase. Finally, excess Pc repressive complex 1 (PRC1) is induced and located to numerous ectopic chromosomal sites independently of H3K27me3 and several key recruitment factors. The observation that PRC1 becomes almost completely colocalized with Trx suggests new aspects of recruitment and antagonistic interaction. We propose that these events represent a feedback circuitry ensuring the stability of the silenced state.
Collapse
Affiliation(s)
| | - Der-Hwa Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529
| |
Collapse
|
41
|
Toro CA, Wright H, Aylwin CF, Ojeda SR, Lomniczi A. Trithorax dependent changes in chromatin landscape at enhancer and promoter regions drive female puberty. Nat Commun 2018; 9:57. [PMID: 29302059 PMCID: PMC5754362 DOI: 10.1038/s41467-017-02512-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/01/2017] [Indexed: 12/24/2022] Open
Abstract
Polycomb group (PcG) proteins control the timing of puberty by repressing the Kiss1 gene in hypothalamic arcuate nucleus (ARC) neurons. Here we identify two members of the Trithorax group (TrxG) of modifiers, mixed-lineage leukemia 1 (MLL1), and 3 (MLL3), as central components of an activating epigenetic machinery that dynamically counteracts PcG repression. Preceding puberty, MLL1 changes the chromatin configuration at the promoters of Kiss1 and Tac3, two genes required for puberty to occur, from repressive to permissive. Concomitantly, MLL3 institutes a chromatin structure that changes the functional status of a Kiss1 enhancer from poised to active. RNAi-mediated, ARC-specific Mll1 knockdown reduced Kiss1 and Tac3 expression, whereas CRISPR-Cas9-directed epigenome silencing of the Kiss1 enhancer selectively reduced Kiss1 activity. Both interventions delay puberty and disrupt reproductive cyclicity. Our results demonstrate that an epigenetic switch from transcriptional repression to activation is crucial to the regulatory mechanism controlling the timing of mammalian puberty.
Collapse
Affiliation(s)
- Carlos A Toro
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR, 97006, USA
| | - Hollis Wright
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR, 97006, USA
| | - Carlos F Aylwin
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR, 97006, USA
| | - Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR, 97006, USA.
| | - Alejandro Lomniczi
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR, 97006, USA.
| |
Collapse
|
42
|
Abstract
The question of how noncoding RNAs are involved in Polycomb group (PcG) and Trithorax group (TrxG) regulation has been on an extraordinary journey over the last three decades. Favored models have risen and fallen, and healthy debates have swept back and forth. The field has recently reached a critical mass of compelling data that throws light on several previously unresolved issues. The time is ripe for a fruitful combination of these findings with two other long-running avenues of research, namely the biochemical properties of the PcG/TrxG system and the application of theoretical mathematical models toward an understanding of the system's regulatory properties. I propose that integrating our current knowledge of noncoding RNA into a quantitative biochemical and theoretical framework for PcG and TrxG regulation has the potential to reconcile several apparently conflicting models and identifies fascinating questions for future research.
Collapse
Affiliation(s)
- Leonie Ringrose
- Integrated Research Institute for Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany;
| |
Collapse
|
43
|
Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors. Viruses 2017; 9:v9080210. [PMID: 28783105 PMCID: PMC5580467 DOI: 10.3390/v9080210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
Infection with herpes simplex virus-1 (HSV-1) brings numerous changes in cellular gene expression. Levels of most host mRNAs are reduced, limiting synthesis of host proteins, especially those involved in antiviral defenses. The impact of HSV-1 on host microRNAs (miRNAs), an extensive network of short non-coding RNAs that regulate mRNA stability/translation, remains largely unexplored. Here we show that transcription of the miR-183 cluster (miR-183, miR-96, and miR-182) is selectively induced by HSV-1 during productive infection of primary fibroblasts and neurons. ICP0, a viral E3 ubiquitin ligase expressed as an immediate-early protein, is both necessary and sufficient for this induction. Nuclear exclusion of ICP0 or removal of the RING (really interesting new gene) finger domain that is required for E3 ligase activity prevents induction. ICP0 promotes the degradation of numerous host proteins and for the most part, the downstream consequences are unknown. Induction of the miR-183 cluster can be mimicked by depletion of host transcriptional repressors zinc finger E-box binding homeobox 1 (ZEB1)/-crystallin enhancer binding factor 1 (δEF1) and zinc finger E-box binding homeobox 2 (ZEB2)/Smad-interacting protein 1 (SIP1), which we establish as new substrates for ICP0-mediated degradation. Thus, HSV-1 selectively stimulates expression of the miR-183 cluster by ICP0-mediated degradation of ZEB transcriptional repressors.
Collapse
|
44
|
Kassis JA, Kennison JA, Tamkun JW. Polycomb and Trithorax Group Genes in Drosophila. Genetics 2017; 206:1699-1725. [PMID: 28778878 PMCID: PMC5560782 DOI: 10.1534/genetics.115.185116] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) genes encode important regulators of development and differentiation in metazoans. These two groups of genes were discovered in Drosophila by their opposing effects on homeotic gene (Hox) expression. PcG genes collectively behave as genetic repressors of Hox genes, while the TrxG genes are necessary for HOX gene expression or function. Biochemical studies showed that many PcG proteins are present in two protein complexes, Polycomb repressive complexes 1 and 2, which repress transcription via chromatin modifications. TrxG proteins activate transcription via a variety of mechanisms. Here we summarize the large body of genetic and biochemical experiments in Drosophila on these two important groups of genes.
Collapse
Affiliation(s)
- Judith A Kassis
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Kennison
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - John W Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| |
Collapse
|
45
|
Chen LQ, Luo JH, Cui ZH, Xue M, Wang L, Zhang XY, Pawlowski WP, He Y. ATX3, ATX4, and ATX5 Encode Putative H3K4 Methyltransferases and Are Critical for Plant Development. PLANT PHYSIOLOGY 2017; 174:1795-1806. [PMID: 28550207 PMCID: PMC5490889 DOI: 10.1104/pp.16.01944] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/23/2017] [Indexed: 05/19/2023]
Abstract
Methylation of Lys residues in the tail of the H3 histone is a key regulator of chromatin state and gene expression, conferred by a large family of enzymes containing an evolutionarily conserved SET domain. One of the main types of SET domain proteins are those controlling H3K4 di- and trimethylation. The genome of Arabidopsis (Arabidopsis thaliana) encodes 12 such proteins, including five ARABIDOPSIS TRITHORAX (ATX) proteins and seven ATX-Related proteins. Here, we examined three until-now-unexplored ATX proteins, ATX3, ATX4, and ATX5. We found that they exhibit similar domain structures and expression patterns and are redundantly required for vegetative and reproductive development. Concurrent disruption of the ATX3, ATX4, and ATX5 genes caused marked reduction in H3K4me2 and H3K4me3 levels genome-wide and resulted in thousands of genes expressed ectopically. Furthermore, atx3/atx4/atx5 triple mutants resulted in exaggerated phenotypes when combined with the atx2 mutant but not with atx1 Together, we conclude that ATX3, ATX4, and ATX5 are redundantly required for H3K4 di- and trimethylation at thousands of sites located across the genome, and genomic features associated with targeted regions are different from the ATXR3/SDG2-controlled sites in Arabidopsis.
Collapse
Affiliation(s)
- Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100083, China
| | - Jin-Hong Luo
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100083, China
| | - Zhen-Hai Cui
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100083, China
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, China
| | - Ming Xue
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100083, China
| | - Li Wang
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts 02142
| | - Xiao-Yu Zhang
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | | | - Yan He
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100083, China
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| |
Collapse
|
46
|
Egervari G, Landry J, Callens J, Fullard JF, Roussos P, Keller E, Hurd YL. Striatal H3K27 Acetylation Linked to Glutamatergic Gene Dysregulation in Human Heroin Abusers Holds Promise as Therapeutic Target. Biol Psychiatry 2017; 81:585-594. [PMID: 27863698 PMCID: PMC5346335 DOI: 10.1016/j.biopsych.2016.09.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Opiate abuse and overdose reached epidemic levels in the United States. However, despite significant advances in animal and in vitro models, little knowledge has been directly accrued regarding the neurobiology of the opiate-addicted human brain. METHODS We used postmortem human brain specimens from a homogeneous European Caucasian population of heroin users for transcriptional and epigenetic profiling, as well as direct assessment of chromatin accessibility in the striatum, a brain region central to reward and emotion. A rat heroin self-administration model was used to obtain translational molecular and behavioral insights. RESULTS Our transcriptome approach revealed marked impairments related to glutamatergic neurotransmission and chromatin remodeling in the human striatum. A series of biochemical experiments tracked the specific location of the epigenetic disturbances to hyperacetylation of lysine 27 of histone H3, showing dynamic correlations with heroin use history and acute opiate toxicology. Targeted investigation of GRIA1, a glutamatergic gene implicated in drug-seeking behavior, verified the increased enrichment of lysine-27 acetylated histone H3 at discrete loci, accompanied by enhanced chromatin accessibility at hyperacetylated regions in the gene body. Analogous epigenetic impairments were detected in the striatum of heroin self-administering rats. Using this translational model, we showed that bromodomain inhibitor JQ1, which blocks the functional readout of acetylated lysines, reduced heroin self-administration and cue-induced drug-seeking behavior. CONCLUSIONS Overall, our data suggest that heroin-related histone H3 hyperacetylation contributes to glutamatergic transcriptional changes that underlie addiction behavior and identify JQ1 as a promising candidate for targeted clinical interventions in heroin use disorder.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Psychiatry, Friedman Brain Institute; Fishberg Department of Neuroscience, Friedman Brain Institute
| | - Joseph Landry
- Department of Psychiatry, Friedman Brain Institute; Fishberg Department of Neuroscience, Friedman Brain Institute
| | - James Callens
- Department of Psychiatry, Friedman Brain Institute; Fishberg Department of Neuroscience, Friedman Brain Institute
| | - John F Fullard
- Department of Psychiatry, Friedman Brain Institute; Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York
| | - Panos Roussos
- Department of Psychiatry, Friedman Brain Institute; Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York; Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, New York
| | - Eva Keller
- Department of Forensic Medicine, Semmelweis University, Budapest, Hungary
| | - Yasmin L Hurd
- Department of Psychiatry, Friedman Brain Institute; Fishberg Department of Neuroscience, Friedman Brain Institute.
| |
Collapse
|
47
|
Berry S, Dean C, Howard M. Slow Chromatin Dynamics Allow Polycomb Target Genes to Filter Fluctuations in Transcription Factor Activity. Cell Syst 2017; 4:445-457.e8. [PMID: 28342717 PMCID: PMC5409831 DOI: 10.1016/j.cels.2017.02.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/10/2016] [Accepted: 02/27/2017] [Indexed: 12/18/2022]
Abstract
Genes targeted by Polycomb repressive complex 2 (PRC2) are regulated in cis by chromatin modifications and also in trans by diffusible regulators such as transcription factors. Here, we introduce a mathematical model in which transcription directly antagonizes Polycomb silencing, thereby linking these cis- and trans-regulatory inputs to gene expression. The model is parameterized by recent experimental data showing that PRC2-mediated repressive chromatin modifications accumulate extremely slowly. The model generates self-perpetuating, bistable active and repressed chromatin states that persist through DNA replication, thereby ensuring high-fidelity transmission of the current chromatin state. However, sufficiently strong, persistent activation or repression of transcription promotes switching between active and repressed chromatin states. We observe that when chromatin modification dynamics are slow, transient pulses of transcriptional activation or repression are effectively filtered, such that epigenetic memory is retained. Noise filtering thus depends on slow chromatin dynamics and may represent an important function of PRC2-based regulation.
Collapse
Affiliation(s)
- Scott Berry
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
48
|
Monribot-Villanueva J, Zurita M, Vázquez M. Developmental transcriptional regulation by SUMOylation, an evolving field. Genesis 2017; 55. [PMID: 27935206 DOI: 10.1002/dvg.23009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 02/05/2023]
Abstract
SUMOylation is a reversible post-translational protein modification that affects the intracellular localization, stability, activity, and interactions of its protein targets. The SUMOylation pathway influences several nuclear and cytoplasmic processes. The expression of many genes, in particular those involved in development is finely tuned in space and time by several groups of proteins. There is growing evidence that transcriptional regulation mechanisms involve direct SUMOylation of transcriptional-related proteins such as initiation and elongation factors, and subunits of chromatin modifier and remodeling complexes originally described as members of the trithorax and Polycomb groups in Drosophila. Therefore, it is being unveiled that SUMOylation has a role in both, gene silencing and gene activation mechanisms. The goal of this review is to discuss the information on how SUMO modification in components of these multi-subunit complexes may have an effect in genome architecture and function and, therefore, in the regulation of gene expression in time and space.
Collapse
Affiliation(s)
- Juan Monribot-Villanueva
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mario Zurita
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Martha Vázquez
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
49
|
Xie W, Nagarajan S, Baumgart SJ, Kosinsky RL, Najafova Z, Kari V, Hennion M, Indenbirken D, Bonn S, Grundhoff A, Wegwitz F, Mansouri A, Johnsen SA. RNF40 regulates gene expression in an epigenetic context-dependent manner. Genome Biol 2017; 18:32. [PMID: 28209164 PMCID: PMC5314486 DOI: 10.1186/s13059-017-1159-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022] Open
Abstract
Background Monoubiquitination of H2B (H2Bub1) is a largely enigmatic histone modification that has been linked to transcriptional elongation. Because of this association, it has been commonly assumed that H2Bub1 is an exclusively positively acting histone modification and that increased H2Bub1 occupancy correlates with increased gene expression. In contrast, depletion of the H2B ubiquitin ligases RNF20 or RNF40 alters the expression of only a subset of genes. Results Using conditional Rnf40 knockout mouse embryo fibroblasts, we show that genes occupied by low to moderate amounts of H2Bub1 are selectively regulated in response to Rnf40 deletion, whereas genes marked by high levels of H2Bub1 are mostly unaffected by Rnf40 loss. Furthermore, we find that decreased expression of RNF40-dependent genes is highly associated with widespread narrowing of H3K4me3 peaks. H2Bub1 promotes the broadening of H3K4me3 to increase transcriptional elongation, which together lead to increased tissue-specific gene transcription. Notably, genes upregulated following Rnf40 deletion, including Foxl2, are enriched for H3K27me3, which is decreased following Rnf40 deletion due to decreased expression of the Ezh2 gene. As a consequence, increased expression of some RNF40-“suppressed” genes is associated with enhancer activation via FOXL2. Conclusion Together these findings reveal the complexity and context-dependency whereby one histone modification can have divergent effects on gene transcription. Furthermore, we show that these effects are dependent upon the activity of other epigenetic regulatory proteins and histone modifications. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1159-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wanhua Xie
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Sankari Nagarajan
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Simon J Baumgart
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Robyn Laura Kosinsky
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Zeynab Najafova
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Vijayalakshmi Kari
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Magali Hennion
- Research Group for Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), Griesebachstraße 5, 37077, Göttingen, Germany
| | - Daniela Indenbirken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Stefan Bonn
- Research Group for Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), Griesebachstraße 5, 37077, Göttingen, Germany
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Ahmed Mansouri
- Department of Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg, 37077, Göttingen, Germany.,Department of Clinical Neurophysiology, University of Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
50
|
Chetverina DA, Elizar’ev PV, Lomaev DV, Georgiev PG, Erokhin MM. Control of the gene activity by polycomb and trithorax group proteins in Drosophila. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417020028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|