1
|
Wang S, Chakraborty S, Fu Y, Lee MP, Liu J, Waldhaus J. 3D reconstruction of the mouse cochlea from scRNA-seq data suggests morphogen-based principles in apex-to-base specification. Dev Cell 2024; 59:1538-1552.e6. [PMID: 38593801 PMCID: PMC11187690 DOI: 10.1016/j.devcel.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/03/2023] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
In the mammalian auditory system, frequency discrimination depends on numerous morphological and physiological properties of the organ of Corti, which gradually change along the apex-to-base (tonotopic) axis of the organ. For example, the basilar membrane stiffness changes tonotopically, thus affecting the tuning properties of individual hair cells. At the molecular level, those frequency-specific characteristics are mirrored by gene expression gradients; however, the molecular mechanisms controlling tonotopic gene expression in the mouse cochlea remain elusive. Through analyzing single-cell RNA sequencing (scRNA-seq) data from E12.5 and E14.5 time points, we predicted that morphogens, rather than a cell division-associated mechanism, confer spatial identity in the extending cochlea. Subsequently, we reconstructed the developing cochlea in 3D space from scRNA-seq data to investigate the molecular pathways mediating positional information. The retinoic acid (RA) and hedgehog pathways were found to form opposing apex-to-base gradients, and functional interrogation using mouse cochlear explants suggested that both pathways jointly specify the longitudinal axis.
Collapse
Affiliation(s)
- Shuze Wang
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saikat Chakraborty
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yujuan Fu
- Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| | - Mary P Lee
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joerg Waldhaus
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Cui W, Saqib HSA, Gao W, Wang R, He Y, Yu Y, Lin Z, Zhang Q, Zhang Y, Li S, Zheng H, Zhang Y, Ikhwanuddin M, Ma H. Myo-inositol accelerates the metamorphosis from megalopa to crablet of Scylla paramamosain by modulating cuticle decomposition and reconstruction. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
3
|
Ebeid M, Barnas K, Zhang H, Yaghmour A, Noreikaite G, Bjork BC. PRDM16 expression and function in mammalian cochlear development. Dev Dyn 2022; 251:1666-1683. [PMID: 35451126 PMCID: PMC9790675 DOI: 10.1002/dvdy.480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND PR domain containing 16 (PRDM16) is a key transcriptional regulator in the development of craniofacial, adipose, and neural tissues. Our lab identified PRDM16 expression in the epithelial cells of the Kölliker's organ (KO) that starts at ~E13.5 and is maintained until KO disappearance. A transgenic mouse model that carries a gene trap null allele of Prdm16 (Prdm16cGT ) was used to characterize the impact of Prdm16 loss on cochlear development. RESULTS At P0 Prdm16cGT null cochlea exhibited hypoplastic KO, shortened cochlear duct, increased density of hair cells (HCs) and supporting cells (SCs) in the apical turn as well as multiple isolated ectopic HCs within the KO domain. KO epithelial cells proliferation rate was reduced in the apical turn of the developing Prdm16cGT null cochlea vs controls. Bulk RNA sequencing of cochlear duct cells at E14.5 followed by quantitative real time PCR and mRNA Fluorescence in-situ hybridization (FISH) validation identified differentially expressed genes in Prdm16cGT null vs littermate control cochleae. Upregulated genes at E14.5 included Fgf20, as well as several Notch pathway genes (Lfng, Hes1, and Jag1). CONCLUSIONS This study characterizes Prdm16 expression during cochlear development and establishes its requirement for KO development.
Collapse
Affiliation(s)
- Michael Ebeid
- College of Graduate Studies, Midwestern UniversityDowners GroveIllinoisUSA,Department of AnatomyMidwestern UniversityDowners GroveIllinoisUSA,Chicago College of Osteopathic MedicineMidwestern UniversityDowners GroveIllinoisUSA
| | - Kathy Barnas
- Biomedical Sciences ProgramMidwestern UniversityDowners GroveIllinoisUSA
| | - Hongji Zhang
- Department of AnatomyMidwestern UniversityDowners GroveIllinoisUSA
| | - Amal Yaghmour
- Biomedical Sciences ProgramMidwestern UniversityDowners GroveIllinoisUSA
| | - Gabriele Noreikaite
- Chicago College of Osteopathic MedicineMidwestern UniversityDowners GroveIllinoisUSA
| | - Bryan C. Bjork
- College of Graduate Studies, Midwestern UniversityDowners GroveIllinoisUSA
| |
Collapse
|
4
|
Kelley MW. Cochlear Development; New Tools and Approaches. Front Cell Dev Biol 2022; 10:884240. [PMID: 35813214 PMCID: PMC9260282 DOI: 10.3389/fcell.2022.884240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022] Open
Abstract
The sensory epithelium of the mammalian cochlea, the organ of Corti, is comprised of at least seven unique cell types including two functionally distinct types of mechanosensory hair cells. All of the cell types within the organ of Corti are believed to develop from a population of precursor cells referred to as prosensory cells. Results from previous studies have begun to identify the developmental processes, lineage restrictions and signaling networks that mediate the specification of many of these cell types, however, the small size of the organ and the limited number of each cell type has hampered progress. Recent technical advances, in particular relating to the ability to capture and characterize gene expression at the single cell level, have opened new avenues for understanding cellular specification in the organ of Corti. This review will cover our current understanding of cellular specification in the cochlea, discuss the most commonly used methods for single cell RNA sequencing and describe how results from a recent study using single cell sequencing provided new insights regarding cellular specification.
Collapse
|
5
|
Balendran V, Skidmore JM, Ritter KE, Gao J, Cimerman J, Beyer LA, Hurd EA, Raphael Y, Martin DM. Chromatin remodeler CHD7 is critical for cochlear morphogenesis and neurosensory patterning. Dev Biol 2021; 477:11-21. [PMID: 34004180 DOI: 10.1016/j.ydbio.2021.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/12/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022]
Abstract
Epigenetic regulation of gene transcription by chromatin remodeling proteins has recently emerged as an important contributing factor in inner ear development. Pathogenic variants in CHD7, the gene encoding Chromodomain Helicase DNA binding protein 7, cause CHARGE syndrome, which presents with malformations in the developing ear. Chd7 is broadly expressed in the developing mouse otocyst and mature auditory epithelium, yet the pathogenic effects of Chd7 loss in the cochlea are not well understood. Here we characterized cochlear epithelial phenotypes in mice with deletion of Chd7 throughout the otocyst (using Foxg1Cre/+ and Pax2Cre), in the otic mesenchyme (using TCre), in hair cells (using Atoh1Cre), in developing neuroblasts (using NgnCre), or in spiral ganglion neurons (using ShhCre/+). Pan-otic deletion of Chd7 resulted in shortened cochleae with aberrant projections and axonal looping, disorganized, supernumerary hair cells at the apical turn and a narrowed epithelium with missing hair cells in the middle region. Deletion of Chd7 in the otic mesenchyme had no effect on overall cochlear morphology. Loss of Chd7 in hair cells did not disrupt their formation or organization of the auditory epithelium. Similarly, absence of Chd7 in spiral ganglion neurons had no effect on axonal projections. In contrast, deletion of Chd7 in developing neuroblasts led to smaller spiral ganglia and disorganized cochlear neurites. Together, these observations reveal dosage-, tissue-, and time-sensitive cell autonomous roles for Chd7 in cochlear elongation and cochlear neuron organization, with minimal functions for Chd7 in hair cells. These studies provide novel information about roles for Chd7 in development of auditory neurons.
Collapse
Affiliation(s)
- Vinodh Balendran
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | | | - K Elaine Ritter
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | - Jingxia Gao
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | - Jelka Cimerman
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | - Lisa A Beyer
- Otolaryngology - Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | | | - Yehoash Raphael
- Otolaryngology - Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | - Donna M Martin
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA; Otolaryngology - Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA; Human Genetics, The University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Tissue localization of retinoic acid receptor (RAR) active drugs. Methods Enzymol 2020. [PMID: 32359657 DOI: 10.1016/bs.mie.2020.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The retinoic acid (RA) signaling pathway is crucial for the control of embryonic development and also regulates function of several organ systems in the adult, including the central nervous system. The retinoic acid receptors (RARs) that mediate the majority of the functions of RA can promote proliferation, differentiation, morphogenesis and cell survival. Dysregulation of this signaling pathway has been considered in the pathophysiology of various diseases including neurodegenerative disorders such Alzheimer's disease and amyotrophic lateral sclerosis. Thus, drugs targeted to the RARs have been proposed as treatments for such diseases. Understanding how these drugs distribute in the body is essential to determine their potential effectiveness. However measuring tissue levels of what are often lipophilic drugs can be difficult. Here we describe an indirect measurement of RAR ligand tissue distribution after intraperitoneal injection into rodents that uses a sensitive RA reporter cell line.
Collapse
|
7
|
Bardhan T, Jeng J, Waldmann M, Ceriani F, Johnson SL, Olt J, Rüttiger L, Marcotti W, Holley MC. Gata3 is required for the functional maturation of inner hair cells and their innervation in the mouse cochlea. J Physiol 2019; 597:3389-3406. [PMID: 31069810 PMCID: PMC6636704 DOI: 10.1113/jp277997] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/07/2019] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS The physiological maturation of auditory hair cells and their innervation requires precise temporal and spatial control of cell differentiation. The transcription factor gata3 is essential for the earliest stages of auditory system development and for survival and synaptogenesis in auditory sensory afferent neurons. We show that during postnatal development in the mouse inner ear gata3 is required for the biophysical maturation, growth and innervation of inner hair cells; in contrast, it is required only for the survival of outer hair cells. Loss of gata3 in inner hair cells causes progressive hearing loss and accounts for at least some of the deafness associated with the human hypoparathyroidism, deafness and renal anomaly (HDR) syndrome. The results show that gata3 is critical for later stages of mammalian auditory system development where it plays distinct, complementary roles in the coordinated maturation of sensory hair cells and their innervation. ABSTRACT The zinc finger transcription factor gata3 regulates inner ear development from the formation of the embryonic otic placode. Throughout development, gata3 is expressed dynamically in all the major cochlear cell types. Its role in afferent formation is well established but its possible involvement in hair cell maturation remains unknown. Here, we find that in heterozygous gata3 null mice (gata3+/- ) outer hair cells (OHCs) differentiate normally but their numbers are significantly lower. In contrast, inner hair cells (IHCs) survive normally but they fail to acquire adult basolateral membrane currents, retain pre-hearing current and efferent innervation profiles and have fewer ribbon synapses. Targeted deletion of gata3 driven by otoferlin-cre recombinase (gata3fl/fl otof-cre+/- ) in IHCs does not affect OHCs or the number of IHC afferent synapses but it leads to a failure in IHC maturation comparable to that observed in gata3+/- mice. Auditory brainstem responses in gata3fl/fl otof-cre+/- mice reveal progressive hearing loss that becomes profound by 6-7 months, whilst distortion product otoacoustic emissions are no different to control animals up to this age. Our results, alongside existing data, indicate that gata3 has specific, complementary functions in different cell types during inner ear development and that its continued expression in the sensory epithelium orchestrates critical aspects of physiological development and neural connectivity. Furthermore, our work indicates that hearing loss in human hypoparathyroidism, deafness and renal anomaly (HDR) syndrome arises from functional deficits in IHCs as well as loss of function from OHCs and both afferent and efferent neurons.
Collapse
MESH Headings
- Animals
- Cell Differentiation/physiology
- Cochlea/metabolism
- Cochlea/physiology
- GATA3 Transcription Factor/metabolism
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/physiology
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/physiology
- Hair Cells, Vestibular/metabolism
- Hair Cells, Vestibular/physiology
- Hearing/physiology
- Hearing Loss/metabolism
- Hearing Loss/physiopathology
- Membrane Proteins/metabolism
- Mice, Knockout
- Mice, Transgenic
- Sensory Receptor Cells/metabolism
- Sensory Receptor Cells/physiology
- Synapses/metabolism
Collapse
Affiliation(s)
- Tanaya Bardhan
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Jing‐Yi Jeng
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Marco Waldmann
- Department of OtolaryngologyTübingen Hearing Research CenterSection of Physiological Acoustics and CommunicationUniversity of Tübingen72076TübingenGermany
| | - Federico Ceriani
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | | | - Jennifer Olt
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Lukas Rüttiger
- Department of OtolaryngologyTübingen Hearing Research CenterSection of Physiological Acoustics and CommunicationUniversity of Tübingen72076TübingenGermany
| | - Walter Marcotti
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | | |
Collapse
|
8
|
Rah YC, Park S, Koun S, Park HC, Choi J. In vivo assay of the ethanol-induced embryonic hair cell loss and the protective role of the retinoic and folic acid in zebrafish larvae (Danio rerio). Alcohol 2019; 75:113-121. [PMID: 30640074 DOI: 10.1016/j.alcohol.2018.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 06/15/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
Abstract
In reference to the auditory manifestation of fetal alcohol syndrome, previous work has preferentially focused on the deviant neural development of the auditory system. Changes in the sensory hair cell, the ultimate sensory organ, were not well understood. In this study, we carried out an in vivo assessment of the embryonic hair cell changes on the lateral line of zebrafish upon exposure to various ethanol concentrations (0.25%, 0.5%, 0.75%, and 1.0%). A significant decrease in the hair cell count was confirmed as the ethanol concentration increased. Long-term observation (up to 240 hours post-fertilization [hpf]) suggested an irreversible hair cell loss with little chance of a simple delayed development. For an underlying biological process, a significant increase of hair cell apoptosis and a significant decrease of cytoplasmic mitochondria were confirmed as the ethanol concentration increased. Co-treatment with retinoic (0.1 nM) or folic (0.1 mM) acid with the same concentrations of ethanol resulted in significant increases in the remaining hair cells, compared to the ethanol-only treatment group, for every ethanol concentration. The retinoic acid provided more effective protection over folic acid, resulting in no significant changes in hair cell counts for every ethanol concentration (except 1.0%), compared with that of the negative control (without chemical treatment). Hair cell counts in every ethanol concentration were significantly lower than those in negative controls without chemical treatment after folic acid co-treatment. In conclusion, gestational ethanol exposure causes developmental sensory hair cell loss. Potential underlying mechanisms include retinoic or folic acid deficiency, and mitochondrial damage with subsequent hair cell apoptosis. Hair cell loss could possibly be prevented by administering either retinoic or folic acid, with retinoic acid supplementation as the preferred treatment.
Collapse
|
9
|
Kim YR, Baek JI, Kim SH, Kim MA, Lee B, Ryu N, Kim KH, Choi DG, Kim HM, Murphy MP, Macpherson G, Choo YS, Bok J, Lee KY, Park JW, Kim UK. Therapeutic potential of the mitochondria-targeted antioxidant MitoQ in mitochondrial-ROS induced sensorineural hearing loss caused by Idh2 deficiency. Redox Biol 2018; 20:544-555. [PMID: 30508699 PMCID: PMC6279977 DOI: 10.1016/j.redox.2018.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial NADP+-dependent isocitrate dehydrogenase 2 (IDH2) is a major NADPH-producing enzyme which is essential for maintaining the mitochondrial redox balance in cells. We sought to determine whether IDH2 deficiency induces mitochondrial dysfunction and modulates auditory function, and investigated the protective potential of an antioxidant agent against reactive oxygen species (ROS)-induced cochlear damage in Idh2 knockout (Idh2−/−) mice. Idh2 deficiency leads to damages to hair cells and spiral ganglion neurons (SGNs) in the cochlea and ultimately to apoptotic cell death and progressive sensorineural hearing loss in Idh2−/− mice. Loss of IDH2 activity led to decreased levels of NADPH and glutathione causing abnormal ROS accumulation and oxidative damage, which might trigger apoptosis signal in hair cells and SGNs in Idh2−/− mice. We performed ex vivo experiments to determine whether administration of mitochondria-targeted antioxidants might protect or induce recovery of cells from ROS-induced apoptosis in Idh2-deficient mouse cochlea. MitoQ almost completely neutralized the H2O2-induced ototoxicity, as the survival rate of Idh2−/− hair cells were restored to normal levels. In addition, the lack of IDH2 led to the accumulation of mitochondrial ROS and the depolarization of ΔΨm, resulting in hair cell loss. In the present study, we identified that IDH2 is indispensable for the functional maintenance and survival of hair cells and SGNs. Moreover, the hair cell degeneration caused by IDH2 deficiency can be prevented by MitoQ, which suggests that Idh2−/− mice could be a valuable animal model for evaluating the therapeutic effects of various antioxidant candidates to overcome ROS-induced hearing loss.
Collapse
Affiliation(s)
- Ye-Ri Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea
| | - Jeong-In Baek
- Department of Aroma-Applied Industry, College of Herbal Bio-industry, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Sung Hwan Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea
| | - Min-A Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea
| | - Byeonghyeon Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea
| | - Nari Ryu
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Hee Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea
| | - Deok-Gyun Choi
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hye-Min Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea
| | - Michael P Murphy
- Medical Research Council (MRC)-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Greg Macpherson
- Antipodean Pharmaceuticals Inc, L2 14 Viaduct Harbour Rd, Auckland, New Zealand
| | - Yeon-Sik Choo
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea; BK21PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Jeen-Woo Park
- School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea; Department of Biochemistry, School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
10
|
Duran Alonso MB, Lopez Hernandez I, de la Fuente MA, Garcia-Sancho J, Giraldez F, Schimmang T. Transcription factor induced conversion of human fibroblasts towards the hair cell lineage. PLoS One 2018; 13:e0200210. [PMID: 29979748 PMCID: PMC6034836 DOI: 10.1371/journal.pone.0200210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/21/2018] [Indexed: 12/25/2022] Open
Abstract
Hearing loss is the most common sensorineural disorder, affecting over 5% of the population worldwide. Its most frequent cause is the loss of hair cells (HCs), the mechanosensory receptors of the cochlea. HCs transduce incoming sounds into electrical signals that activate auditory neurons, which in turn send this information to the brain. Although some spontaneous HC regeneration has been observed in neonatal mammals, the very small pool of putative progenitor cells that have been identified in the adult mammalian cochlea is not able to replace the damaged HCs, making any hearing impairment permanent. To date, guided differentiation of human cells to HC-like cells has only been achieved using either embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs). However, use of such cell types suffers from a number of important disadvantages, such as the risk of tumourigenicity if transplanted into the host´s tissue. We have obtained cells expressing hair cell markers from cultures of human fibroblasts by overexpression of GFI1, Pou4f3 and ATOH1 (GPA), three genes that are known to play a critical role in the development of HCs. Immunocytochemical, qPCR and RNAseq analyses demonstrate the expression of genes typically expressed by HCs in the transdifferentiated cells. Our protocol represents a much faster approach than the methods applied to ESCs and iPSCs and validates the combination of GPA as a set of genes whose activation leads to the direct conversion of human somatic cells towards the hair cell lineage. Our observations are expected to contribute to the development of future therapies aimed at the regeneration of the auditory organ and the restoration of hearing.
Collapse
Affiliation(s)
- María Beatriz Duran Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid, Spain
| | - Iris Lopez Hernandez
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid, Spain
| | - Miguel Angel de la Fuente
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid, Spain
| | - Javier Garcia-Sancho
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid, Spain
| | - Fernando Giraldez
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomédica de Barcelona, Barcelona, Spain
| | - Thomas Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid, Spain
| |
Collapse
|
11
|
Zhong C, Chen Z, Luo X, Wang C, Jiang H, Shao J, Guan M, Huang L, Huang X, Wang J. Barhl 1 is required for the differentiation of inner ear hair cell-like cells from mouse embryonic stem cells. Int J Biochem Cell Biol 2018; 96:79-89. [DOI: 10.1016/j.biocel.2018.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
|
12
|
Сhurbanov AY, Karafet TM, Morozov IV, Mikhalskaia VY, Zytsar MV, Bondar AA, Posukh OL. Whole Exome Sequencing Reveals Homozygous Mutations in RAI1, OTOF, and SLC26A4 Genes Associated with Nonsyndromic Hearing Loss in Altaian Families (South Siberia). PLoS One 2016; 11:e0153841. [PMID: 27082237 PMCID: PMC4833413 DOI: 10.1371/journal.pone.0153841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 04/05/2016] [Indexed: 12/15/2022] Open
Abstract
Hearing loss (HL) is one of the most common sensorineural disorders and several dozen genes contribute to its pathogenesis. Establishing a genetic diagnosis of HL is of great importance for clinical evaluation of deaf patients and for estimating recurrence risks for their families. Efforts to identify genes responsible for HL have been challenged by high genetic heterogeneity and different ethnic-specific prevalence of inherited deafness. Here we present the utility of whole exome sequencing (WES) for identifying candidate causal variants for previously unexplained nonsyndromic HL of seven patients from four unrelated Altaian families (the Altai Republic, South Siberia). The WES analysis revealed homozygous missense mutations in three genes associated with HL. Mutation c.2168A>G (SLC26A4) was found in one family, a novel mutation c.1111G>C (OTOF) was revealed in another family, and mutation c.5254G>A (RAI1) was found in two families. Sanger sequencing was applied for screening of identified variants in an ethnically diverse cohort of other patients with HL (n = 116) and in Altaian controls (n = 120). Identified variants were found only in patients of Altaian ethnicity (n = 93). Several lines of evidences support the association of homozygosity for discovered variants c.5254G>A (RAI1), c.1111C>G (OTOF), and c.2168A>G (SLC26A4) with HL in Altaian patients. Local prevalence of identified variants implies possible founder effect in significant number of HL cases in indigenous population of the Altai region. Notably, this is the first reported instance of patients with RAI1 missense mutation whose HL is not accompanied by specific traits typical for Smith-Magenis syndrome. Presumed association of RAI1 gene variant c.5254G>A with isolated HL needs to be proved by further experimental studies.
Collapse
Affiliation(s)
- Alexander Y. Сhurbanov
- Arizona Research Laboratories, Division of Biotechnology, University of Arizona, Tucson, Arizona, United States of America
| | - Tatiana M. Karafet
- Arizona Research Laboratories, Division of Biotechnology, University of Arizona, Tucson, Arizona, United States of America
| | - Igor V. Morozov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Valeriia Yu. Mikhalskaia
- Novosibirsk State University, Novosibirsk, Russian Federation
- Laboratory of Human Molecular Genetics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Marina V. Zytsar
- Novosibirsk State University, Novosibirsk, Russian Federation
- Laboratory of Human Molecular Genetics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alexander A. Bondar
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Olga L. Posukh
- Novosibirsk State University, Novosibirsk, Russian Federation
- Laboratory of Human Molecular Genetics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- * E-mail:
| |
Collapse
|
13
|
Basch ML, Brown RM, Jen H, Groves AK. Where hearing starts: the development of the mammalian cochlea. J Anat 2016; 228:233-54. [PMID: 26052920 PMCID: PMC4718162 DOI: 10.1111/joa.12314] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2015] [Indexed: 12/11/2022] Open
Abstract
The mammalian cochlea is a remarkable sensory organ, capable of perceiving sound over a range of 10(12) in pressure, and discriminating both infrasonic and ultrasonic frequencies in different species. The sensory hair cells of the mammalian cochlea are exquisitely sensitive, responding to atomic-level deflections at speeds on the order of tens of microseconds. The number and placement of hair cells are precisely determined during inner ear development, and a large number of developmental processes sculpt the shape, size and morphology of these cells along the length of the cochlear duct to make them optimally responsive to different sound frequencies. In this review, we briefly discuss the evolutionary origins of the mammalian cochlea, and then describe the successive developmental processes that lead to its induction, cell cycle exit, cellular patterning and the establishment of topologically distinct frequency responses along its length.
Collapse
Affiliation(s)
- Martin L. Basch
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
| | - Rogers M. Brown
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
| | - Hsin‐I Jen
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
| | - Andrew K. Groves
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
14
|
Costa A, Sanchez-Guardado L, Juniat S, Gale JE, Daudet N, Henrique D. Generation of sensory hair cells by genetic programming with a combination of transcription factors. Development 2015; 142:1948-59. [PMID: 26015538 DOI: 10.1242/dev.119149] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mechanosensory hair cells (HCs) are the primary receptors of our senses of hearing and balance. Elucidation of the transcriptional networks regulating HC fate determination and differentiation is crucial not only to understand inner ear development but also to improve cell replacement therapies for hearing disorders. Here, we show that combined expression of the transcription factors Gfi1, Pou4f3 and Atoh1 can induce direct programming towards HC fate, both during in vitro mouse embryonic stem cell differentiation and following ectopic expression in chick embryonic otic epithelium. Induced HCs (iHCs) express numerous HC-specific markers and exhibit polarized membrane protrusions reminiscent of stereociliary bundles. Transcriptome profiling confirms the progressive establishment of a HC-specific gene signature during in vitro iHC programming. Overall, this work provides a novel approach to achieve robust and highly efficient HC production in vitro, which could be used as a model to study HC development and to drive inner ear HC regeneration.
Collapse
Affiliation(s)
- Aida Costa
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Luis Sanchez-Guardado
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028, Portugal Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasilia, Lisboa 1400-038, Portugal
| | - Stephanie Juniat
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Jonathan E Gale
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Nicolas Daudet
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Domingos Henrique
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028, Portugal Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasilia, Lisboa 1400-038, Portugal
| |
Collapse
|
15
|
Li BI, Matteson PG, Ababon MF, Nato AQ, Lin Y, Nanda V, Matise TC, Millonig JH. The orphan GPCR, Gpr161, regulates the retinoic acid and canonical Wnt pathways during neurulation. Dev Biol 2015; 402:17-31. [PMID: 25753732 DOI: 10.1016/j.ydbio.2015.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 02/03/2015] [Accepted: 02/11/2015] [Indexed: 10/23/2022]
Abstract
The vacuolated lens (vl) mouse mutation arose on the C3H/HeSnJ background and results in lethality, neural tube defects (NTDs) and cataracts. The vl phenotypes are due to a deletion/frameshift mutation in the orphan GPCR, Gpr161. A recent study using a null allele demonstrated that Gpr161 functions in primary cilia and represses the Shh pathway. We show the hypomorphic Gpr161(vl) allele does not severely affect the Shh pathway. To identify additional pathways regulated by Gpr161 during neurulation, we took advantage of naturally occurring genetic variation in the mouse. Previously Gpr161(vl-C3H) was crossed to different inbred backgrounds including MOLF/EiJ and the Gpr161(vl) mutant phenotypes were rescued. Five modifiers were mapped (Modvl: Modifier of vl) including Modvl5(MOLF). In this study we demonstrate the Modvl5(MOLF) congenic rescues the Gpr161(vl)-associated lethality and NTDs but not cataracts. Bioinformatics determined the transcription factor, Cdx1, is the only annotated gene within the Modvl5 95% CI co-expressed with Gpr161 during neurulation and not expressed in the eye. Using Cdx1 as an entry point, we identified the retinoid acid (RA) and canonical Wnt pathways as downstream targets of Gpr161. QRT-PCR, ISH and IHC determined that expression of RA and Wnt genes are down-regulated in Gpr161(vl/vl) but rescued by the Modvl5(MOLF) congenic during neurulation. Intraperitoneal RA injection restores expression of canonical Wnt markers and rescues Gpr161(vl/vl) NTDs. These results establish the RA and canonical Wnt as pathways downstream of Gpr161 during neurulation, and suggest that Modvl5(MOLF) bypasses the Gpr161(vl) mutation by restoring the activity of these pathways.
Collapse
Affiliation(s)
- Bo I Li
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States; Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States.
| | - Paul G Matteson
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States; Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Myka F Ababon
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States; Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Alejandro Q Nato
- Department of Genetics; Rutgers University, Piscataway, NJ, United States
| | - Yong Lin
- Division of Biometrics, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States; Department of Biochemistry, Rutgers University, Piscataway, NJ, United States; Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Tara C Matise
- Department of Genetics; Rutgers University, Piscataway, NJ, United States
| | - James H Millonig
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States; Department of Neuroscience and Cell Biology, Rutgers University, Piscataway, NJ, United States; Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States; Department of Genetics; Rutgers University, Piscataway, NJ, United States.
| |
Collapse
|
16
|
Abstract
Aging is marked by changes that affect organs and resident stem cell function. Shorting of telomeres, DNA damage, oxidative stress, deregulation of genes and proteins, impaired cell-cell communication, and an altered systemic environment cause the eventual demise of cells. At the same time, reparative activities also decline. It is intriguing to correlate aging with the decline of regenerative abilities. Animal models with strong regenerative capabilities imply that aging processes might not be affecting regeneration. In this review, we selectively present age-dependent changes in stem/progenitor cells that are vital for tissue homeostasis and repair. In addition, the aging effect on regeneration following injury in organs such as lung, skeletal muscle, heart, nervous system, cochlear hair, lens, and liver are discussed. These tissues are also known for diseases such as heart attack, stroke, cognitive impairment, cataract, and hearing loss that occur mostly during aging in humans. Conclusively, vertebrate regeneration declines with age with the loss of stem/progenitor cell function. Future studies on improving the function of stem cells, along with studies in fish and amphibians where regeneration does not decline with age, will undoubtedly provide insights into both processes.
Collapse
Affiliation(s)
- Konstantinos Sousounis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, Ohio, USA
| | - Joelle A Baddour
- Department of Chemical and Materials Engineering and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, Ohio, USA
| | - Panagiotis A Tsonis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, Ohio, USA.
| |
Collapse
|
17
|
Thiede BR, Mann ZF, Chang W, Ku YC, Son YK, Lovett M, Kelley MW, Corwin JT. Retinoic acid signalling regulates the development of tonotopically patterned hair cells in the chicken cochlea. Nat Commun 2014; 5:3840. [PMID: 24845860 DOI: 10.1038/ncomms4840] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 04/08/2014] [Indexed: 01/07/2023] Open
Abstract
Precise frequency discrimination is a hallmark of auditory function in birds and mammals and is required for distinguishing similar sounding words, like 'bat,' 'cat' and 'hat.' In the cochlea, tuning and spectral separation result from longitudinal differences in basilar membrane stiffness and numerous individual gradations in sensory hair cell phenotypes, but it is unknown what patterns the phenotypes. Here we used RNA-seq to compare transcriptomes from proximal, middle and distal regions of the embryonic chicken cochlea, and found opposing longitudinal gradients of expression for retinoic acid (RA)-synthesizing and degrading enzymes. In vitro experiments showed that RA is necessary and sufficient to induce the development of distal-like hair cell phenotypes and promotes expression of the actin-crosslinking proteins, Espin and Fscn2. These and other findings highlight a role for RA signalling in patterning the development of a longitudinal gradient of frequency-tuned hair cell phenotypes in the cochlea.
Collapse
Affiliation(s)
- Benjamin R Thiede
- Department of Neuroscience, University of Virginia School of Medicine, 409 Lane Road, Charlottesville, Virginia 22908, USA
| | - Zoë F Mann
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 35A Convent Drive, Bethesda, Maryland 20892-3729, USA
| | - Weise Chang
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 35A Convent Drive, Bethesda, Maryland 20892-3729, USA
| | - Yuan-Chieh Ku
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Yena K Son
- Department of Neuroscience, University of Virginia School of Medicine, 409 Lane Road, Charlottesville, Virginia 22908, USA
| | - Michael Lovett
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 35A Convent Drive, Bethesda, Maryland 20892-3729, USA
| | - Jeffrey T Corwin
- 1] Department of Neuroscience, University of Virginia School of Medicine, 409 Lane Road, Charlottesville, Virginia 22908, USA [2] Department of Cell Biology, University of Virginia School of Medicine, 409 Lane Road, Charlottesville, Virginia 22908, USA
| |
Collapse
|
18
|
Uribe PM, Asuncion JD, Matsui JI. Ethanol affects the development of sensory hair cells in larval zebrafish (Danio rerio). PLoS One 2013; 8:e83039. [PMID: 24324841 PMCID: PMC3855788 DOI: 10.1371/journal.pone.0083039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/30/2013] [Indexed: 12/20/2022] Open
Abstract
Children born to mothers with substantial alcohol consumption during pregnancy can present a number of morphological, cognitive, and sensory abnormalities, including hearing deficits, collectively known as fetal alcohol syndrome (FAS). The goal of this study was to determine if the zebrafish lateral line could be used to study sensory hair cell abnormalities caused by exposure to ethanol during embryogenesis. Some lateral line sensory hair cells are present at 2 days post-fertilization (dpf) and are functional by 5 dpf. Zebrafish embryos were raised in fish water supplemented with varying concentrations of ethanol (0.75%-1.75% by volume) from 2 dpf through 5 dpf. Ethanol treatment during development resulted in many physical abnormalities characteristic of FAS in humans. Also, the number of sensory hair cells decreased as the concentration of ethanol increased in a dose-dependent manner. The dye FM 1-43FX was used to detect the presence of functional mechanotransduction channels. The percentage of FM 1-43-labeled hair cells decreased as the concentration of ethanol increased. Methanol treatment did not affect the development of hair cells. The cell cycle markers proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine (BrdU) demonstrated that ethanol reduced the number of sensory hair cells, as a consequence of decreased cellular proliferation. There was also a significant increase in the rate of apoptosis, as determined by TUNEL-labeling, in neuromasts following ethanol treatment during larval development. Therefore, zebrafish are a useful animal model to study the effects of hair cell developmental disorders associated with FAS.
Collapse
Affiliation(s)
- Phillip M. Uribe
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - James D. Asuncion
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Jonathan I. Matsui
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Otolaryngology and Communication Enhancement, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration. Hear Res 2012; 297:68-83. [PMID: 23164734 DOI: 10.1016/j.heares.2012.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/22/2012] [Accepted: 11/07/2012] [Indexed: 12/23/2022]
Abstract
The organ of Corti in the mammalian inner ear is comprised of mechanosensory hair cells (HCs) and nonsensory supporting cells (SCs), both of which are believed to be terminally post-mitotic beyond late embryonic ages. Consequently, regeneration of HCs and SCs does not occur naturally in the adult mammalian cochlea, though recent evidence suggests that these cells may not be completely or irreversibly quiescent at earlier postnatal ages. Furthermore, regenerative processes can be induced by genetic and pharmacological manipulations, but, more and more reports suggest that regenerative potential declines as the organ of Corti continues to age. In numerous mammalian systems, such effects of aging on regenerative potential are well established. However, in the cochlea, the problem of regeneration has not been traditionally viewed as one of aging. This is an important consideration as current models are unable to elicit widespread regeneration or full recovery of function at adult ages yet regenerative therapies will need to be developed specifically for adult populations. Still, the advent of gene targeting and other genetic manipulations has established mice as critically important models for the study of cochlear development and HC regeneration and suggests that auditory HC regeneration in adult mammals may indeed be possible. Thus, this review will focus on the pursuit of regeneration in the postnatal and adult mouse cochlea and highlight processes that occur during postnatal development, maturation, and aging that could contribute to an age-related decline in regenerative potential. Second, we will draw upon the wealth of knowledge pertaining to age related senescence in tissues outside of the ear to synthesize new insights and potentially guide future research aimed at promoting HC regeneration in the adult cochlea.
Collapse
|
20
|
Cadot S, Frenz D, Maconochie M. A novel method for retinoic acid administration reveals differential and dose-dependent downregulation of Fgf3 in the developing inner ear and anterior CNS. Dev Dyn 2012; 241:741-58. [DOI: 10.1002/dvdy.23748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2012] [Indexed: 12/23/2022] Open
|
21
|
Parker MA. Biotechnology in the treatment of sensorineural hearing loss: foundations and future of hair cell regeneration. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2011; 54:1709-1731. [PMID: 21386039 PMCID: PMC3163053 DOI: 10.1044/1092-4388(2011/10-0149)] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PURPOSE To provide an overview of the methodologies involved in the field of hair cell regeneration. First, the author provides a tutorial on the biotechnological foundations of this field to assist the reader in the comprehension and interpretation of the research involved in hair cell regeneration. Next, the author presents a review of stem cell and gene therapy and provides a critical appraisal of their application to hair cell regeneration. The methodologies used in these approaches are highlighted. METHOD The author conducted a narrative review of the fields of cellular, molecular, and developmental biology, tissue engineering, and stem cell and gene therapy using the PubMed database. RESULTS The use of biotechnological approaches to the treatment of hearing loss--approaches such as stem cell and gene therapy-has led to new methods of regenerating cochlear hair cells in mammals. CONCLUSIONS Incredible strides have been made in assembling important pieces of the puzzle that comprise hair cell regeneration. However, mammalian hair cell regeneration using stem cell and gene therapy are years--if not decades--away from being clinically feasible. If the goals of the biological approaches are met, these therapies may represent future treatments for hearing loss.
Collapse
|
22
|
Gross J, Stute K, Fuchs J, Angerstein M, Amarjargal N, Mazurek B. Effects of retinoic acid and butyric acid on the expression of prestin and Gata-3 in organotypic cultures of the organ of corti of newborn rats. Dev Neurobiol 2011; 71:650-61. [PMID: 21344672 DOI: 10.1002/dneu.20881] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prestin is the motor protein of the outer hair cells of the organ of Corti and a key factor in ensuring a high level of sensitivity of mammalian hearing. The factors that influence prestin expression are still largely unknown. We studied the effects of the application of retinoic acid, a ligand of a nuclear receptor, and of butyric acid, an inhibitor of histone deacetylase activity, on the expression of mRNA of prestin and Gata-3 in the organotypic culture of the organ of Corti of newborn rats using RT-PCR. Application of retinoic acid at concentrations of 1-50 μM results in a dose-dependent expression decrease after two days in culture. Treatment with sodium butyrate (0.5-2 mM) elevated the expression of prestin and Gata-3. Statistically significant correlations between Gata-3 and prestin mRNA levels were observed under all conditions. The data indicate that retinoid nuclear transcription factors, GATA-3 and histone acetylation/deacetylation processes may have a regulatory role to play in prestin expression.
Collapse
Affiliation(s)
- Johann Gross
- Department of Otorhinolaryngology, Molecular Biology Research Laboratory, Charité-Universitätsmedizin Berlin, 10117 Berlin, Charitéplatz 1, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Di Domenico M, Ricciardi C, Martone T, Mazzarella N, Cassandro C, Chiarella G, D'Angelo L, Cassandro E. Towards gene therapy for deafness. J Cell Physiol 2011; 226:2494-9. [PMID: 21792906 DOI: 10.1002/jcp.22617] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Many hearing disorders are associated with the damage or loss of sensory hair cells (HC) which can produce a profound and irreversible deafness. Apoptosis pathway is reported to play an important role leading to rapid expansion of the HC lesion after exposure to intense noise. Furthermore, progress made over the last year in understanding molecular mechanisms involved in the proliferative and regenerative capacity of sensory cells in the mammalian inner ear has raised the possibility that targeted therapies might prevent the loss of these cells and preserve the patient's hearing. A first step towards the successful therapeutic exploitation is a better understanding of the different pathways that control survival and proliferation of sensory cells. In this review, we provide an overview of recent findings concerning the possibility to prevent apoptosis in auditory cells. We also show the current knowledge on the molecular mechanisms involved in the potential regenerative behavior of these cells and the progress of gene therapy to prevent deafness noise-induced.
Collapse
Affiliation(s)
- Marina Di Domenico
- Department of General Pathology, Second University of Naples, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Collado MS, Burns JC, Meyers JR, Corwin JT. Variations in shape-sensitive restriction points mirror differences in the regeneration capacities of avian and mammalian ears. PLoS One 2011; 6:e23861. [PMID: 21909368 PMCID: PMC3166124 DOI: 10.1371/journal.pone.0023861] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 07/26/2011] [Indexed: 01/05/2023] Open
Abstract
When inner ear hair cells die, humans and other mammals experience permanent hearing and balance deficits, but non-mammalian vertebrates quickly recover these senses after epithelial supporting cells give rise to replacement hair cells. A postnatal decline in cellular plasticity appears to limit regeneration in mammalian balance organs, where declining proliferation responses are correlated with decreased spreading of supporting cells on artificial and native substrates. By culturing balance epithelia on substrates that differed in flexibility, we assessed spreading effects independent of age, showing a strong correlation between shape change and supporting cell proliferation. Then we made excision wounds in utricles cultured from young and old chickens and mice and compared quantified levels of spreading and proliferation. In utricles from young mice, and both young and old chickens, wounds re-epithelialized in <24 hours, while those in utricles from mature mice took three times longer. More cells changed shape in the fastest healing wounds, which accounted for some differences in the levels of proliferation, but inter-species and age-related differences in shape-sensitive restriction points, i.e., the cellular thresholds for shape changes that promote S-phase, were evident and may be particularly influential in the responses to hair cell losses in vivo.
Collapse
Affiliation(s)
- Maria Sol Collado
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America.
| | | | | | | |
Collapse
|
25
|
Huang M, Sage C, Tang Y, Lee SG, Petrillo M, Hinds PW, Chen ZY. Overlapping and distinct pRb pathways in the mammalian auditory and vestibular organs. Cell Cycle 2011; 10:337-51. [PMID: 21239885 DOI: 10.4161/cc.10.2.14640] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Retinoblastoma gene (Rb1) is required for proper cell cycle exit in the developing mouse inner ear and its deletion in the embryo leads to proliferation of sensory progenitor cells that differentiate into hair cells and supporting cells. In a conditional hair cell Rb1 knockout mouse, Pou4f3-Cre-pRb(-/-), pRb(-/-) utricular hair cells differentiate and survive into adulthood whereas differentiation and survival of pRb(-/-) cochlear hair cells are impaired. To comprehensively survey the pRb pathway in the mammalian inner ear, we performed microarray analysis of (pRb(-/-) cochlea and utricle. The comparative analysis shows that the core pathway shared between pRb(-/-) cochlea and utricle is centered on E2F, the key pathway that mediates pRb function. A majority of differentially expressed genes and enriched pathways are not shared but uniquely associated with pRb(-/-) cochlea or utricle. In pRb(-/-) cochlea, pathways involved in early inner ear development such as Wnt/β-catenin and Notch were enriched, whereas pathways involving in proliferation and survival are enriched in pRb(-/-) utricle. Clustering analysis showed that the pRb(-/-) inner ear has characteristics of a younger control inner ear, an indication of delayed differentiation. We created a transgenic mouse model (ER-Cre-pRb(flox/flox)) in which Rb1 can be acutely deleted postnatally. Acute Rb1 deletion in the adult mouse fails to induce proliferation or cell death in inner ear, strongly indicating that Rb1 loss in these postmitotic tissues can be effectively compensated for, or that pRb-mediated changes in the postmitotic compartment result in events that are functionally irreversible once enacted. This study thus supports the concept that pRb-regulated pathways relevant to hair cell development, encompassing proliferation, differentiation and survival, act predominantly during early development.
Collapse
Affiliation(s)
- Mingqian Huang
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Perinatal cisplatin exposure induces cochlear apoptosis in newborn guinea pigs. Arch Toxicol 2010; 85:19-25. [PMID: 20396870 DOI: 10.1007/s00204-010-0543-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
Abstract
The objective of this study was to evaluate the role of apoptosis in the development of the newborn cochlear structures and hearing loss caused by prenatal cis-diaminedichloroplatinum (cisplatin) exposure. Pregnant albino guinea pigs were intraperitoneally injected with 1.5 mg/kg body weight cisplatin once a day for seven consecutive days at gestational day (GD) 51 to GD 57. At postnatal day (PND) 14, pups were examined in the distortion product otoacoustic emission (DPOAE) task. The temporal bones were then removed and immunohistochemically stained for caspase 3, using the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method. Cisplatin used during pregnancy could induce hearing loss in newborn and cochlear hair cell apoptosis. In conclusion, apoptosis may play an important role in the development of hearing impairment, caused by perinatal cisplatin exposure.
Collapse
|
27
|
Taura A, Taura K, Choung YH, Masuda M, Pak K, Chavez E, Ryan AF. Histone deacetylase inhibition enhances adenoviral vector transduction in inner ear tissue. Neuroscience 2010; 166:1185-93. [PMID: 20060033 DOI: 10.1016/j.neuroscience.2009.12.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 12/16/2009] [Accepted: 12/23/2009] [Indexed: 10/20/2022]
Abstract
Adenovirus vectors (AdVs) are efficient tools for gene therapy in many tissues. Several studies have demonstrated successful transgene transduction with AdVs in the inner ear of rodents [Kawamoto K, Ishimoto SI, Minoda R, Brough DE, Raphael Y (2003) J Neurosci 23:4395-4400]. However, toxicity of AdVs [Morral N, O'Neal WK, Rice K, Leland MM, Piedra PA, Aguilar-Cordova E, Carey KD, Beaudet AL, Langston C (2002) Hum Gene Ther 13:143-154.] or lack of tropism to important cell types such as hair cells [Shou J, Zheng JL, Gao WQ (2003) Mol Cell Neurosci 23:169-179] appears to limit their experimental and potential clinical utility. Histone deacetylase inhibitors (HDIs) are known to enhance AdV-mediated transgene expression in various organs [Dion LD, Goldsmith KT, Tang DC, Engler JA, Yoshida M, Garver RI Jr (1997) Virology 231:201-209], but their effects in the inner ear have not been documented. We investigated the ability of one HDI, trichostatin A (TSA), to enhance AdV-mediated transgene expression in inner ear tissue. We cultured neonatal rat macular and cochlear explants, and transduced them with an AdV encoding green fluorescent protein (Ad-GFP) under the control of a constitutive promoter for 24 h. In the absence of TSA, GFP expression was limited, and very few hair cells were transduced. TSA did not enhance transduction when applied at the onset of Ad-GFP transduction. However, administration of TSA during or just after Ad-GFP application increased GFP expression in supporting cells approximately fourfold. Moreover, vestibular hair cell transduction was enhanced approximately sixfold, and that of inner hair cells by more than 17-fold. These results suggest that TSA increases AdV-mediated transgene expression in the inner ear, including the successful transduction of hair cells. HDIs, some of which are currently under clinical trials (Sandor et al., 2002), could be useful tools in overcoming current limitations of gene therapy in the inner ear using Ad-GFP.
Collapse
Affiliation(s)
- A Taura
- Division of Otolaryngology, Departments of Surgery, UCSD School of Medicine, San Diego, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
British Society of Audiology Short Papers Meeting on Experimental Studies of Hearing and Deafness: Abstracts. Int J Audiol 2009. [DOI: 10.3109/14992020309101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Sánchez-Guardado LÓ, Ferran JL, Mijares J, Puelles L, Rodríguez-Gallardo L, Hidalgo-Sánchez M. Raldh3gene expression pattern in the developing chicken inner ear. J Comp Neurol 2009; 514:49-65. [DOI: 10.1002/cne.21984] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Yu H, Seah A, Herman MA, Ferguson EL, Horvitz HR, Sternberg PW. Wnt and EGF pathways act together to induce C. elegans male hook development. Dev Biol 2008; 327:419-32. [PMID: 19154732 PMCID: PMC2695933 DOI: 10.1016/j.ydbio.2008.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 11/26/2008] [Accepted: 12/19/2008] [Indexed: 01/08/2023]
Abstract
Comparative studies of vulva development between Caenorhabditis elegans and other nematode species have provided some insight into the evolution of patterning networks. However, molecular genetic details are available only in C. elegans and Pristionchus pacificus. To extend our knowledge on the evolution of patterning networks, we studied the C. elegans male hook competence group (HCG), an equivalence group that has similar developmental origins to the vulval precursor cells (VPCs), which generate the vulva in the hermaphrodite. Similar to VPC fate specification, each HCG cell adopts one of three fates (1 degree, 2 degrees, 3 degrees), and 2 degrees HCG fate specification is mediated by LIN-12/Notch. We show that 2 degrees HCG specification depends on the presence of a cell with the 1 degree fate. We also provide evidence that Wnt signaling via the Frizzled-like Wnt receptor LIN-17 acts to specify the 1 degree and 2 degrees HCG fate. A requirement for EGF signaling during 1 degree fate specification is seen only when LIN-17 activity is compromised. In addition, activation of the EGF pathway decreases dependence on LIN-17 and causes ectopic hook development. Our results suggest that WNT plays a more significant role than EGF signaling in specifying HCG fates, whereas in VPC specification EGF signaling is the major inductive signal. Nonetheless, the overall logic is similar in the VPCs and the HCG: EGF and/or WNT induce a 1 degree lineage, and LIN-12/NOTCH induces a 2 degrees lineage. Wnt signaling is also required for execution of the 1 degree and 2 degrees HCG lineages. lin-17 and bar-1/beta-catenin are preferentially expressed in the presumptive 1 degree cell P11.p. The dynamic subcellular localization of BAR-1-GFP in P11.p is concordant with the timing of HCG fate determination.
Collapse
Affiliation(s)
- Hui Yu
- HHMI and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
31
|
Burns JC, Burns J, Christophel JJ, Collado MS, Magnus C, Carfrae M, Corwin JT. Reinforcement of cell junctions correlates with the absence of hair cell regeneration in mammals and its occurrence in birds. J Comp Neurol 2008; 511:396-414. [PMID: 18803241 DOI: 10.1002/cne.21849] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Debilitating hearing and balance deficits often arise through damage to the inner ear's hair cells. For humans and other mammals, such deficits are permanent, but nonmammalian vertebrates can quickly recover hearing and balance through their innate capacity to regenerate hair cells. The biological basis for this difference has remained unknown, but recent investigations in wounded balance epithelia have shown that proliferation follows cellular spreading at sites of injury. As mammalian ears mature during the first weeks after birth, the capacity for spreading and proliferation declines sharply. In seeking the basis for those declines, we investigated the circumferential bands of F-actin that bracket the apical junctions between supporting cells in the gravity-sensitive utricle. We found that those bands grow much thicker as mice and humans mature postnatally, whereas their counterparts in chickens remain thin from hatching through adulthood. When we cultured utricular epithelia from chickens, we found that cellular spreading and proliferation both continued at high levels, even in the epithelia from adults. In contrast, the substantial reinforcement of the circumferential F-actin bands in mammals coincides with the steep declines in cell spreading and production established in earlier experiments. We propose that the presence of thin F-actin bands at the junctions between avian supporting cells may contribute to the lifelong persistence of their capacity for shape change, cell proliferation, and hair cell replacement and that the postnatal reinforcement of the F-actin bands in maturing humans and other mammals may have an important role in limiting hair cell regeneration.
Collapse
Affiliation(s)
- Joseph C Burns
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Science, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Cotanche DA. Genetic and pharmacological intervention for treatment/prevention of hearing loss. JOURNAL OF COMMUNICATION DISORDERS 2008; 41:421-443. [PMID: 18455177 PMCID: PMC2574670 DOI: 10.1016/j.jcomdis.2008.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 03/12/2008] [Indexed: 05/26/2023]
Abstract
UNLABELLED Twenty years ago it was first demonstrated that birds could regenerate their cochlear hair cells following noise damage or aminoglycoside treatment. An understanding of how this structural and functional regeneration occurred might lead to the development of therapies for treatment of sensorineural hearing loss in humans. Recent experiments have demonstrated that noise exposure and aminoglycoside treatment lead to apoptosis of the hair cells. In birds, this programmed cell death induces the adjacent supporting cells to undergo regeneration to replace the lost hair cells. Although hair cells in the mammalian cochlea undergo apoptosis in response to noise damage and ototoxic drug treatment, the supporting cells do not possess the ability to undergo regeneration. However, current experiments on genetic manipulation, gene therapy, and stem cell transplantation suggest that regeneration in the mammalian cochlea may eventually be possible and may 1 day provide a therapeutic tool for hearing loss in humans. LEARNING OUTCOMES The reader should be able to: (1) Describe the anatomy of the avian and mammalian cochlea, identify the individual cell types in the organ of Corti, and distinguish major features that participate in hearing function, (2) Demonstrate a knowledge of how sound damage and aminoglycoside poisoning induce apoptosis of hair cells in the cochlea, (3) Define how hair cell loss in the avian cochlea leads to regeneration of new hair cells and distinguish this from the mammalian cochlea where there is no regeneration following damage, and (4) Interpret the potential for new approaches, such as genetic manipulation, gene therapy and stem cell transplantation, could provide a therapeutic approach to hair cell loss in the mammalian cochlea.
Collapse
MESH Headings
- Aminoglycosides/toxicity
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Apoptosis/physiology
- Birds
- Cell Proliferation/drug effects
- Genetic Therapy
- Guinea Pigs
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/pathology
- Hair Cells, Auditory/physiology
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Hearing Loss, Noise-Induced/therapy
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/physiopathology
- Hearing Loss, Sensorineural/therapy
- Humans
- Mice
- Mice, Knockout
- Microscopy, Confocal
- Nerve Regeneration/drug effects
- Nerve Regeneration/genetics
- Nerve Regeneration/physiology
- Organ of Corti/drug effects
- Organ of Corti/pathology
- Organ of Corti/physiopathology
- Stem Cell Transplantation
Collapse
Affiliation(s)
- Douglas A Cotanche
- Laboratory of Cellular and Molecular Hearing Research, Department of Otolaryngology, Children's Hospital Boston, Boston, MA, USA.
| |
Collapse
|
33
|
Löwenheim H, Waldhaus J, Hirt B, Sandke S, Müller M. [Regenerative medicine in the treatment of sensorineural hearing loss]. HNO 2008; 56:288-300. [PMID: 18288464 DOI: 10.1007/s00106-008-1689-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Regenerative medicine offers the prospect of causal treatment of sensorineural hearing loss. In humans, the loss of sensory hair cells is irreversible and results in chronic hearing loss. Other vertebrates, particularly birds, have the capability to spontaneously regenerate lost sensory hair cells and restore hearing. In the bird model, regeneration of hair cells is based on the proliferation of supporting cells. In mammals, supporting cells have lost their proliferative capacity and are terminally differentiated. To gain an understanding about regeneration of hair cells in mammals, cell division of supporting cells has to be controlled. Gene disruption of the cell cycle inhibitor p27(Kip1) allows supporting cell proliferation in the organ of Corti in vivo. Furthermore, in vitro studies indicate that newly generated cells may differentiate into hair cells after p27(Kip1) disruption. Other current methods to induce hair cell regeneration include the gene transfer of Math1 and transplantation of stem cells to the inner ear.
Collapse
Affiliation(s)
- H Löwenheim
- Klinik für Hals-Nasen-Ohren-Heilkunde, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Deutschland.
| | | | | | | | | |
Collapse
|
34
|
Whole organ culture of the postnatal sensory inner ear in simulated microgravity. J Neurosci Methods 2008; 171:60-71. [PMID: 18440073 DOI: 10.1016/j.jneumeth.2008.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 01/16/2008] [Accepted: 02/04/2008] [Indexed: 11/23/2022]
Abstract
Among the three major biological in vitro models, cell culture, tissue culture, and organ culture, the latter provides the closest approximation to the in vivo situation, but also requires the most demanding culture conditions. Due to its small size and complex tissue architecture, the mammalian inner ear provides a particular challenge to the development of whole organ culture. Using a rotating bioreactor system with simulated microgravity conditions, the entire mouse inner ear organ can be maintained in culture for up to seven days with preservation of sensory organ morphology and robust marker protein expression in sensory hair cells. Controlled sensory cell lesions can be induced by the ototoxic agent, neomycin sulphate, as a toxicologic model of hair cell degeneration and hair cell loss. The results demonstrate that simulated microgravity organ culture of the inner ear affords an in vitro model for the investigation of developmental, regulatory, and differentiation processes, as well as toxicological, biotechnological, and pharmaceutical screening applications within the normal and pathologic sensory hearing organ.
Collapse
|
35
|
Rapid cell-cycle reentry and cell death after acute inactivation of the retinoblastoma gene product in postnatal cochlear hair cells. Proc Natl Acad Sci U S A 2008; 105:781-5. [PMID: 18178626 DOI: 10.1073/pnas.0708061105] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Unlike lower vertebrates, mammals are unable to replace damaged mechanosensory hair cells (HCs) in the cochlea. Recently, ablation of the retinoblastoma protein (Rb) in undifferentiated mouse HC precursors was shown to cause cochlear HC proliferation and the generation of new HCs, raising the hope that inactivation of Rb in postmitotic HCs could trigger cell division and regenerate functional HCs postnatally. Here, we acutely inactivated Rb in nearly all cochlear HCs of newborn mice, using a newly developed HC-specific inducible Cre mouse line. Beginning 48 h after Rb deletion, approximately 40% of HCs were in the S and M phases of the cell cycle, demonstrating an overriding role for Rb in maintaining the quiescent state of postnatal HCs. Unlike Rb-null HC precursors, such HCs failed to undergo cell division and died rapidly. HC clusters were restricted to the less differentiated cochlear regions, consistent with differentiation-dependent roles of Rb. Moreover, outer HCs expressed the maturation marker prestin, suggesting an embryonic time window for Rb-dependent HC specification. We conclude that Rb plays essential and age-dependent roles during HC proliferation and differentiation, and, in contrast to previous hypotheses, cell death after forced cell-cycle reentry presents a major challenge for mammalian HC regeneration from residual postnatal HCs.
Collapse
|
36
|
Corwin JT, Warchol ME, Saffer LD, Finley JE, Gu R, Lamber PR. Growth factors as potential drugs for the sensory epithelia of the ear. CIBA FOUNDATION SYMPOSIUM 2007; 196:167-82; discussion 182-7. [PMID: 8866134 DOI: 10.1002/9780470514863.ch12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The highly ordered structures of the hearing and balance organs of vertebrate ears go through a coordinated sequence of cellular and morphogenetic events. It is to be expected that protein growth factors and other extracellular signals will regulate many events during embryonic development of the ear, including the induction of the ear, the specific induction of sensory epithelia, the proliferation of the cells that form the sensory epithelia, the differentiation of the sensory and supporting cells, and the attraction and maintenance of innervation. After embryonic development, growth factors will support cell survival and innervation of new sensory cells. In damaged sensory epithelia, supplementation of the normal growth factors in these tissues has the potential to influence cellular responses to trauma, to reduce cell death and to promote the replacement of dead cells through renewed proliferation and differentiation, so as to improve hearing and balance health via preventive and restorative treatments. Assessment of the influences of specific growth factors on the sensory epithelia of vertebrate ears is at an early stage: this paper provides a brief account of what we know from studies of normal and experimentally manipulated epithelia, discusses the current questions and suggests directions for future studies.
Collapse
Affiliation(s)
- J T Corwin
- Department of Otolaryngology, Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | | | | | | | | | |
Collapse
|
37
|
Takebayashi S, Yamamoto N, Yabe D, Fukuda H, Kojima K, Ito J, Honjo T. Multiple roles of Notch signaling in cochlear development. Dev Biol 2007; 307:165-78. [PMID: 17531970 DOI: 10.1016/j.ydbio.2007.04.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 03/27/2007] [Accepted: 04/26/2007] [Indexed: 11/28/2022]
Abstract
Notch signaling inhibits hair cell differentiation, based on studies on mice deficient in Notch signaling-related genes and its downstream genes. However, the precise mechanisms of this inhibition are unknown because it is difficult to control the timing and duration of the suppression of Notch signaling. Here, we developed a novel in vitro culture and analysis method for mouse fetal cochleae and examined the roles of Notch signaling by its reversible inhibition through the use of Notch signaling inhibitors of gamma-secretase and TNF-alpha-converting enzyme. Notch inhibition with Notch signaling inhibitor treatment increases the number of cochlear hair cells, as observed in gene deletion experiments. We elucidated that this increase is regulated by the dichotomy between hair cells and supporting cells from common progenitors. We also propose other roles of Notch signaling in cochlear development. First, Notch signaling arrests the cell cycle of the cochlear epithelium containing putative hair cells and supporting cell progenitors because Notch inhibition with inhibitor treatment increases the number of 5-bromo-2'-deoxyuridine (BrdU)-positive cells that can differentiate into hair cells or supporting cells. Second, Notch signaling is required for the induction of Prox1-positive supporting cells. Third, Notch signaling is required for the maintenance of supporting cells.
Collapse
Affiliation(s)
- Shinji Takebayashi
- Department of Otolaryngology-Head and Neck surgery, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Helyer R, Cacciabue-Rivolta D, Davies D, Rivolta MN, Kros CJ, Holley MC. A model for mammalian cochlear hair cell differentiation in vitro: effects of retinoic acid on cytoskeletal proteins and potassium conductances. Eur J Neurosci 2007; 25:957-73. [PMID: 17331193 DOI: 10.1111/j.1460-9568.2007.05338.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have established a model for the in-vitro differentiation of mouse cochlear hair cells and have used it to explore the influence of retinoic acid on proliferation, cytoskeletal proteins and voltage-gated potassium conductances. The model is based on the conditionally immortal cell line University of Sheffield/ventral otocyst-epithelial cell line clone 36 (US/VOT-E36), derived from ventral otic epithelial cells of the mouse at embryonic day 10.5 and transfected with a reporter for myosin VIIa. Retinoic acid did not increase cell proliferation but led to up-regulation of myosin VIIa and formation of prominent actin rings that gave rise to numerous large, linear actin bundles. Cells expressing myosin VIIa had larger potassium conductances and did not express the cyclin-dependent kinase inhibitor p27(kip1). US/VOT-E36 endogenously expressed the voltage-gated potassium channel alpha-subunits Kv1.3 and Kv2.1, which we subsequently identified in embryonic and neonatal hair cells in both auditory and vestibular sensory epithelia in vivo. These subunits could underlie the embryonic and neonatal delayed-rectifiers recorded in nascent hair cells in vivo. Kv2.1 was particularly prominent on the basolateral membrane of cochlear inner hair cells. Kv1.3 was distributed throughout all hair cells but tended to be localized to the cuticular plates. US/VOT-E36 recapitulates a coherent pattern of cell differentiation under the influence of retinoic acid and will provide a convenient model for screening the effects of other extrinsic factors on the differentiation of cochlear epithelial cell types in vitro.
Collapse
Affiliation(s)
- R Helyer
- Department of Biomedical Science, Addison Building, Western Bank, Sheffield, UK
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The inner ear originates from an embryonic ectodermal placode and rapidly develops into a three-dimensional structure (the otocyst) through complex molecular and cellular interactions. Many genes and their products are involved in inner ear induction, organogenesis, and cell differentiation. Retinoic acid (RA) is an endogenous signaling molecule that may play a role during different phases of inner ear development, as shown from pathological observations. To gain insight into the function of RA during inner ear development, we have investigated the spatio-temporal expression patterns of major components of RA signaling pathway, including cellular retinoic acid binding proteins (CRABPs), cellular retinoid binding proteins (CRBPs), retinaldehyde dehydrogenases (RALDHs), catabolic enzymes (CYP26s), and nuclear receptors (RARs). Although the CrbpI, CrabpI, and -II genes are specifically expressed in the inner ear throughout development, loss-of-function studies have revealed that these proteins are dispensable for inner development and function. Several Raldh and Cyp26 gene transcripts are expressed at embryological day (E) 9.0-9.5 in the otocyst and show mainly complementary distributions in the otic epithelium and mesenchyme during following stages. From Western blot, RT-PCR, and in situ hybridization analysis, there is a low expression of Raldhs in the early otocyst at E9, while Cyp26s are strongly expressed. During the following days, there is an up-regulation of Raldhs and a down-regulation for Cyp26s. Specific RA receptor (Rar and Rxr) genes are expressed in the otocyst and during further development of the inner ear. At the otocyst stage, most of the components of the retinoid pathway are present, suggesting that the embryonic inner ear might act as an autocrine system, which is able to synthesize and metabolize RA necessary for its development. We propose a model in which two RA-dependent pathways may control inner ear ontogenesis: one indirect with RA from somitic mesoderm acting to regulate gene expression within the hindbrain neuroepithelium, and another with RA acting directly on the otocyst. Current evidence suggests that RA may regulate several genes involved in mesenchyme-epithelial interactions, thereby controlling inner ear morphogenesis. Our investigations suggest that RA signaling is a critical component not only of embryonic development, but also of postnatal maintenance of the inner ear.
Collapse
Affiliation(s)
- Raymond Romand
- Institut Clinique de la Souris and Institut de Génétique et de Biologie Moléculaire et cellulaire, B.P. 10142, 67404 Illkirch Cedex, France.
| | | | | |
Collapse
|
40
|
Silverstein RS, Tempel BL. Atp2b2, encoding plasma membrane Ca2+-ATPase type 2, (PMCA2) exhibits tissue-specific first exon usage in hair cells, neurons, and mammary glands of mice. Neuroscience 2006; 141:245-57. [PMID: 16675132 DOI: 10.1016/j.neuroscience.2006.03.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 03/17/2006] [Accepted: 03/22/2006] [Indexed: 11/29/2022]
Abstract
Atp2b2 encodes the plasma membrane Ca(2+)-ATPase type 2 (PMCA2) expressed in various tissues, including stereocilia of cochlear and vestibular hair cells, cerebellar Purkinje cells, and lactating mammary epithelia. Mutations of the gene lead to deafness, ataxia, and reduced Ca(2+) levels in milk. Heterozygous mutants also have abnormal hearing, suggesting that precise regulation of Atp2b2 is required for normal function. In this study, we describe Atp2b2 5'-untranslated region genomic structure and transcript usage in mice. Using 5'-rapid amplification of cDNA ends, we observed four transcripts: types alpha, beta, mu and delta, each splicing into a common ATG-containing exon. Types alpha and beta correspond to previously published mammalian cDNA sequences. Types mu and delta constitute novel 5'-untranslated region sequences, and were observed at high levels only in lactating mammary gland. Using real-time reverse transcriptase polymerase chain reaction, we quantified relative transcript usage across several tissues. We show that alpha and beta are abundant throughout the CNS, as well as the cochlea. When we microdissected the cochlea into hair cell and spiral ganglion containing fractions, we found that cochlear hair cell expression is mediated through the type alpha transcript. In situ hybridization studies in cerebellum using exon-specific probes revealed that alpha dominates in Purkinje neurons, while beta is enriched in cerebellar granule neurons. We compared 5'-untranslated region sequence across multiple species, and found high conservation around the first exons for alpha and beta in mammals, but not other species. The regions around the mu and delta first exons are highly conserved between rat and mouse, but less so with other species. Our results show that expression of Atp2b2 is highly regulated, using four different transcriptional start regions, two of which are differentially expressed in neuronal tissue. This suggests that unique regulatory mechanisms are used to control Atp2b2 expression in different types of cells.
Collapse
Affiliation(s)
- R S Silverstein
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS, Neurobiology and Behavior Program, University of Washington, Seattle, WA 98195-7923, USA
| | | |
Collapse
|
41
|
Holley MC. Keynote review: The auditory system, hearing loss and potential targets for drug development. Drug Discov Today 2005; 10:1269-82. [PMID: 16214671 DOI: 10.1016/s1359-6446(05)03595-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a huge potential market for the treatment of hearing loss. Drugs are already available to ameliorate predictable, damaging effects of excessive noise and ototoxic drugs. The biggest challenge now is to develop drug-based treatments for regeneration of sensory cells following noise-induced and age-related hearing loss. This requires careful consideration of the physiological mechanisms of hearing loss and identification of key cellular and molecular targets. There are many molecular cues for the discovery of suitable drug targets and a full range of experimental resources are available for initial screening through to functional analysis in vivo. There is now an unparalleled opportunity for translational research.
Collapse
Affiliation(s)
- Matthew C Holley
- Department of Biomedical Sciences, Addison Building, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
42
|
Matsui JI, Parker MA, Ryals BM, Cotanche DA. Regeneration and replacement in the vertebrate inner ear. Drug Discov Today 2005; 10:1307-12. [PMID: 16214675 DOI: 10.1016/s1359-6446(05)03577-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Deafness affects more than 40 million people in the UK and the USA, and many more world-wide. The primary cause of hearing loss is damage to or death of the sensory receptor cells in the inner ear, the hair cells. Birds can readily regenerate their cochlear hair cells but the mammalian cochlea has shown no ability to regenerate after damage. Current research efforts are focusing on gene manipulation, gene therapy and stem cell transplantation for repairing or replacing damaged mammalian cochlear hair cells, which could lead to therapies for treating deafness in humans.
Collapse
Affiliation(s)
- Jonathan I Matsui
- Laboratory for Cellular and Molecular Hearing Research, Department of Otolaryngology, Children's Hospital, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
43
|
Wang J, Mark S, Zhang X, Qian D, Yoo SJ, Radde-Gallwitz K, Zhang Y, Lin X, Collazo A, Wynshaw-Boris A, Chen P. Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway. Nat Genet 2005; 37:980-5. [PMID: 16116426 PMCID: PMC1413588 DOI: 10.1038/ng1622] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 06/20/2005] [Indexed: 11/09/2022]
Abstract
The mammalian auditory sensory organ, the organ of Corti, consists of sensory hair cells with uniformly oriented stereocilia on the apical surfaces and has a distinct planar cell polarity (PCP) parallel to the sensory epithelium. It is not certain how this polarity is achieved during differentiation. Here we show that the organ of Corti is formed from a thicker and shorter postmitotic primordium through unidirectional extension, characteristic of cellular intercalation known as convergent extension. Mutations in the PCP pathway interfere with this extension, resulting a shorter and wider cochlea as well as misorientation of stereocilia. Furthermore, parallel to the homologous pathway in Drosophila melanogaster, a mammalian PCP component Dishevelled2 shows PCP-dependent polarized subcellular localization across the organ of Corti. Taken together, these data suggest that there is a conserved molecular mechanism for PCP pathways in invertebrates and vertebrates and indicate that the mammalian PCP pathway might directly couple cellular intercalations to PCP establishment in the cochlea.
Collapse
Affiliation(s)
- Jianbo Wang
- Department of Pediatrics and Medicine, University of California San Diego School of Medicine, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Van Laer L, Pfister M, Thys S, Vrijens K, Mueller M, Umans L, Serneels L, Van Nassauw L, Kooy F, Smith RJH, Timmermans JP, Van Leuven F, Van Camp G. Mice lacking Dfna5 show a diverging number of cochlear fourth row outer hair cells. Neurobiol Dis 2005; 19:386-99. [PMID: 16023581 DOI: 10.1016/j.nbd.2005.01.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 01/12/2005] [Indexed: 10/25/2022] Open
Abstract
A complex mutation in DFNA5, resulting in exon 8 skipping, causes autosomal dominant hearing impairment, which starts in the high frequencies between 5 and 15 years of age and progressively affects all frequencies. To study its function in vivo, Dfna5 knockout mice were generated through the deletion of exon 8, simultaneously mimicking the human mutation. To test the hearing impairment, frequency-specific Auditory Brainstem Response (ABR) measurements were performed at different ages in two genetic backgrounds (C57Bl/6J and CBA/Ca), but no differences between Dfna5-/- and Dfna5+/+ mice could be demonstrated. Morphological studies demonstrated significant differences in the number of fourth row outer hair cells between Dfna5-/- mice and their wild-type littermates. These results were obtained in both genetic backgrounds, albeit with opposite effects. In contrast to the results obtained in Dfna5-/- zebrafish, we did not observe different UDP-glucose dehydrogenase and hyaluronic acid levels in Dfna5-/- mice when compared to Dfna5+/+ mice.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cochlea/ultrastructure
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem/physiology
- Genotype
- Hair Cells, Auditory, Outer/ultrastructure
- Hearing Loss/congenital
- Hearing Loss/pathology
- Hyaluronic Acid/metabolism
- Mice
- Mice, Knockout
- Microscopy, Electron, Scanning
- Receptors, Estrogen/deficiency
- Reverse Transcriptase Polymerase Chain Reaction
- Uridine Diphosphate Glucose Dehydrogenase/metabolism
Collapse
Affiliation(s)
- Lut Van Laer
- Department of Medical Genetics, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Maeda Y, Fukushima K, Kakiuchi M, Orita Y, Nishizaki K, Smith RJH. RT-PCR analysis of Tecta, Coch, Eya4 and Strc in mouse cochlear explants. Neuroreport 2005; 16:361-5. [PMID: 15729138 DOI: 10.1097/00001756-200503150-00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tecta, Coch, Eya4 and Strc are mouse orthologs of four human deafness-associated genes. Their expression is markedly restricted to specific cell types in cochleae. Cochleae were dissected on embryonic day 15 and cultured in vitro. Relative messenger RNA abundance of each gene was quantified by RT-PCR and compared in-vivo cochleae of equivalent embryonic age. After 48 h in culture, in-vivo and explant Strc expression levels were equivalent, Eya4 level reduced in explanted tissues, and expression of Tecta and Coch did not show the expected temporal rise. Expression of these genes was detectable even after 96 h. These results suggest that it is feasible to test the expression of inner ear specific genes in explanted cochleae.
Collapse
Affiliation(s)
- Yukihide Maeda
- Molecular Otolaryngology Research Laboratory, Department of Otolaryngology, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
46
|
Rhodes CR, Hertzano R, Fuchs H, Bell RE, de Angelis MH, Steel KP, Avraham KB. A Myo7a mutation cosegregates with stereocilia defects and low-frequency hearing impairment. Mamm Genome 2005; 15:686-97. [PMID: 15389316 DOI: 10.1007/s00335-004-2344-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
Abstract
A phenotype-driven approach was adopted in the mouse to identify molecules involved in ear development and function. Mutant mice were obtained using N-ethyl- N-nitrosourea (ENU) mutagenesis and were screened for dominant mutations that affect hearing and/or balance. Heterozygote headbanger ( Hdb/+) mutants display classic behavior indicative of vestibular dysfunction including hyperactivity and head bobbing, and they show a Preyer reflex in response to sound but have raised cochlear thresholds especially at low frequencies. Scanning electron microscopy of the surface of the organ of Corti revealed abnormal stereocilia bundle development from an early age that was more severe in the apex than the base. Utricular stereocilia were long, thin, and wispy. Homozygotes showed a similar but more severe phenotype. The headbanger mutation has been mapped to a 1.5-cM region on mouse Chromosome 7 in the region of the unconventional myosin gene Myo7a, and mutation screening revealed an A>T transversion that is predicted to cause an isoleucine-to-phenylalanine amino acid substitution (I178F) in a conserved region in the motor-encoding domain of the gene. Protein analysis revealed reduced levels of myosin VIIa expression in inner ears of headbanger mice. Headbanger represents a novel inner ear phenotype and provides a potential model for low-frequency-type human hearing loss.
Collapse
Affiliation(s)
- Charlotte R Rhodes
- MRC Institute of Hearing Research, University Park, NG7 2RD, Nottingham, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Woods C, Montcouquiol M, Kelley MW. Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nat Neurosci 2004; 7:1310-8. [PMID: 15543141 DOI: 10.1038/nn1349] [Citation(s) in RCA: 317] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 08/23/2004] [Indexed: 11/09/2022]
Abstract
The transcription factor Math1 (encoded by the gene Atoh1, also called Math1) is required for the formation of mechanosensory hair cells in the inner ear; however, its specific molecular role is unknown. Here we show that absence of Math1 in mice results in a complete disruption of formation of the sensory epithelium of the cochlea, including the development of both hair cells and associated supporting cells. In addition, ectopic expression of Math1 in nonsensory regions of the cochlea is sufficient to induce the formation of sensory clusters that contain both hair cells and supporting cells. The formation of these clusters is dependent on inhibitory interactions mediated, most probably, through the Notch pathway, and on inductive interactions that recruit cells to develop as supporting cells through a pathway independent of Math1. These results show that Math1 functions in the developing cochlea to initiate both inductive and inhibitory signals that regulate the overall formation of the sensory epithelia.
Collapse
Affiliation(s)
- Chad Woods
- Section on Developmental Neuroscience, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Building 35, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
48
|
Hearing Organ Evolution and Specialization: Early and Later Mammals. EVOLUTION OF THE VERTEBRATE AUDITORY SYSTEM 2004. [DOI: 10.1007/978-1-4419-8957-4_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
49
|
Kelley MW, Lanford PJ, Jones I, Amma L, Ng L, Forrest D. Analysis of nuclear receptor function in the mouse auditory system. Methods Enzymol 2003; 364:426-48. [PMID: 14631859 DOI: 10.1016/s0076-6879(03)64024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Matthew W Kelley
- Section on Developmental Neuroscience, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 5 Research Court, Rockville, Maryland 20850, USA
| | | | | | | | | | | |
Collapse
|
50
|
Malgrange B, Knockaert M, Belachew S, Nguyen L, Moonen G, Meijer L, Lefebvre PP. The inhibition of cyclin-dependent kinases induces differentiation of supernumerary hair cells and Deiters' cells in the developing organ of Corti. FASEB J 2003; 17:2136-8. [PMID: 12958157 DOI: 10.1096/fj.03-0035fje] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the embryonic day 19 organs of Corti, we showed that roscovitine, a chemical inhibitor of cyclin-dependent kinases (CDKs), significantly increased the number of hair cells (HCs) and corresponding supporting cells (SCs) by triggering differentiation of precursor cells without interacting with cell proliferation. The effect of roscovitine was mimicked by other CDK1, 2, 5, and 7 inhibitors but not by CDK4/6 and mitogen-activated protein kinase pathway antagonists. Immunohistochemical analysis indicated that roscovitine-specific intracellular targets, CDK1, 2, 5, and 7, were expressed in the organ of Corti and especially in Hensen's cells. Affinity chromatography studies showed a tight correlation between the protein levels of CDK1/2 and 5 and the rate of roscovitine-induced supernumerary cells in the organ of Corti. In addition, we demonstrated that basal CDK activity was higher and more roscovitine-sensitive at developmental stages that are selectively permissive for the emergence of supernumerary cells. These results suggest that CDKs are involved in the normal development of the organ of Corti and that, at least in E19 embryos, inhibition of CDKs is sufficient to trigger the differentiation of HCs and corresponding SCs, presumably from the Hensen's cell progenitors and/or from progenitors located in the greater epithelial ridge area.
Collapse
Affiliation(s)
- Brigitte Malgrange
- Center for Cellular and Molecular Neurobiology, University of Liège, 17 Place Delcour, B-4020 Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|