1
|
Nakagawa A, Sepuru KM, Yip SJ, Seo H, Coffin CM, Hashimoto K, Li Z, Segawa Y, Iwasaki R, Kato H, Kurihara D, Aihara Y, Kim S, Kinoshita T, Itami K, Han SK, Murakami K, Torii KU. Chemical inhibition of stomatal differentiation by perturbation of the master-regulatory bHLH heterodimer via an ACT-Like domain. Nat Commun 2024; 15:8996. [PMID: 39443460 PMCID: PMC11500415 DOI: 10.1038/s41467-024-53214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
Selective perturbation of protein interactions with chemical compounds enables dissection and control of developmental processes. Differentiation of stomata, cellular valves vital for plant growth and survival, is specified by the basic-helix-loop-helix (bHLH) heterodimers. Harnessing a new amination reaction, we here report a synthesis, derivatization, target identification, and mode of action of an atypical doubly-sulfonylated imidazolone, Stomidazolone, which triggers stomatal stem cell arrest. Our forward chemical genetics followed by biophysical analyses elucidates that Stomidazolone directly binds to the C-terminal ACT-Like (ACTL) domain of MUTE, a master regulator of stomatal differentiation, and perturbs its heterodimerization with a partner bHLH, SCREAM in vitro and in plant cells. On the other hand, Stomidazolone analogs that are biologically inactive do not bind to MUTE or disrupt the SCREAM-MUTE heterodimers. Guided by structural docking modeling, we rationally design MUTE with reduced Stomidazolone binding. These engineered MUTE proteins are fully functional and confer Stomidazolone resistance in vivo. Our study identifies doubly-sulfonylated imidazolone as a direct inhibitor of the stomatal master regulator, further expanding the chemical space for perturbing bHLH-ACTL proteins to manipulate plant development.
Collapse
Affiliation(s)
- Ayami Nakagawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Krishna Mohan Sepuru
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Shu Jan Yip
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Hyemin Seo
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Calvin M Coffin
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Kota Hashimoto
- Department of Chemistry, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Zixuan Li
- Department of Chemistry, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Yasutomo Segawa
- Institute for Molecular Science and SOKENDAI, Myodaiji, Okazaki, Japan
| | - Rie Iwasaki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Hiroe Kato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, Aichi, Japan
| | - Yusuke Aihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- PRESTO, Japan Science and Technology Agency (JST), Chiyoda, Tokyo, Japan
| | - Stephanie Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Soon-Ki Han
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, Aichi, Japan
| | - Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan.
- Department of Chemistry, Kwansei Gakuin University, Sanda, Hyogo, Japan.
- PRESTO, Japan Science and Technology Agency (JST), Chiyoda, Tokyo, Japan.
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan.
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA.
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Chua LC, Lau OS. Stomatal development in the changing climate. Development 2024; 151:dev202681. [PMID: 39431330 PMCID: PMC11528219 DOI: 10.1242/dev.202681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Stomata, microscopic pores flanked by symmetrical guard cells, are vital regulators of gas exchange that link plant processes with environmental dynamics. The formation of stomata involves the multi-step progression of a specialized cell lineage. Remarkably, this process is heavily influenced by environmental factors, allowing plants to adjust stomatal production to local conditions. With global warming set to alter our climate at an unprecedented pace, understanding how environmental factors impact stomatal development and plant fitness is becoming increasingly important. In this Review, we focus on the effects of carbon dioxide, high temperature and drought - three environmental factors tightly linked to global warming - on stomatal development. We summarize the stomatal response of a variety of plant species and highlight the existence of species-specific adaptations. Using the model plant Arabidopsis, we also provide an update on the molecular mechanisms involved in mediating the plasticity of stomatal development. Finally, we explore how knowledge on stomatal development is being applied to generate crop varieties with optimized stomatal traits that enhance their resilience against climate change and maintain agricultural productivity.
Collapse
Affiliation(s)
- Li Cong Chua
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - On Sun Lau
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| |
Collapse
|
3
|
Chen L. Regulation of stomatal development by epidermal, subepidermal and long-distance signals. PLANT MOLECULAR BIOLOGY 2024; 114:80. [PMID: 38940934 DOI: 10.1007/s11103-024-01456-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/20/2024] [Indexed: 06/29/2024]
Abstract
Plant leaves consist of three layers, including epidermis, mesophyll and vascular tissues. Their development is meticulously orchestrated. Stomata are the specified structures on the epidermis for uptake of carbon dioxide (CO2) while release of water vapour and oxygen (O2), and thus play essential roles in regulation of plant photosynthesis and water use efficiency. To function efficiently, stomatal formation must coordinate with the development of other epidermal cell types, such as pavement cell and trichome, and tissues of other layers, such as mesophyll and leaf vein. This review summarizes the regulation of stomatal development in three dimensions (3D). In the epidermis, specific stomatal transcription factors determine cell fate transitions and also activate a ligand-receptor- MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) signaling for ensuring proper stomatal density and patterning. This forms the core regulation network of stomatal development, which integrates various environmental cues and phytohormone signals to modulate stomatal production. Under the epidermis, mesophyll, endodermis of hypocotyl and inflorescence stem, and veins in grasses secrete mobile signals to influence stomatal formation in the epidermis. In addition, long-distance signals which may include phytohormones, RNAs, peptides and proteins originated from other plant organs modulate stomatal development, enabling plants to systematically adapt to the ever changing environment.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
4
|
Doll Y, Koga H, Tsukaya H. Experimental validation of the mechanism of stomatal development diversification. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5667-5681. [PMID: 37555400 PMCID: PMC10540739 DOI: 10.1093/jxb/erad279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Stomata are the structures responsible for gas exchange in plants. The established framework for stomatal development is based on the model plant Arabidopsis, but diverse patterns of stomatal development have been observed in other plant lineages and species. The molecular mechanisms behind these diversified patterns are still poorly understood. We recently proposed a model for the molecular mechanisms of the diversification of stomatal development based on the genus Callitriche (Plantaginaceae), according to which a temporal shift in the expression of key stomatal transcription factors SPEECHLESS and MUTE leads to changes in the behavior of meristemoids (stomatal precursor cells). In the present study, we genetically manipulated Arabidopsis to test this model. By altering the timing of MUTE expression, we successfully generated Arabidopsis plants with early differentiation or prolonged divisions of meristemoids, as predicted by the model. The epidermal morphology of the generated lines resembled that of species with prolonged or no meristemoid divisions. Thus, the evolutionary process can be reproduced by varying the SPEECHLESS to MUTE transition. We also observed unexpected phenotypes, which indicated the participation of additional factors in the evolution of the patterns observed in nature. This study provides novel experimental insights into the diversification of meristemoid behaviors.
Collapse
Affiliation(s)
- Yuki Doll
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki Koga
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
5
|
Yu TY, Gao TY, Li WJ, Cui DL. "Single-pole dual-control" competing mode in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1149522. [PMID: 37457334 PMCID: PMC10348426 DOI: 10.3389/fpls.2023.1149522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Plant development and pattern formation depend on diffusible signals and location cues. These developmental signals and cues activate intracellular downstream components through cell surface receptors that direct cells to adopt specific fates for optimal function and establish biological fitness. There may be a single-pole dual-control competing mode in controlling plant development and microbial infection. In plant development, paracrine signaling molecules compete with autocrine signaling molecules to bind receptors or receptor complexes, turn on antagonistic molecular mechanisms, and precisely regulate developmental processes. In the process of microbial infection, two different signaling molecules, competing receptors or receptor complexes, form their respective signaling complexes, trigger opposite signaling pathways, establish symbiosis or immunity, and achieve biological adaptation. We reviewed several "single-pole dual-control" competing modes, focusing on analyzing the competitive commonality and characterization of "single-pole dual-control" molecular mechanisms. We suggest it might be an economical protective mechanism for plants' sequentially and iteratively programmed developmental events. This mechanism may also be a paradigm for reducing internal friction in the struggle and coexistence with microbes. It provides extraordinary insights into molecular recognition, cell-to-cell communication, and protein-protein interactions. A detailed understanding of the "single-pole dual-control" competing mode will contribute to the discovery of more receptors or antagonistic peptides, and lay the foundation for food, biofuel production, and crop improvement.
Collapse
|
6
|
Zuch DT, Herrmann A, Kim ED, Torii KU. Cell Cycle Dynamics during Stomatal Development: Window of MUTE Action and Ramification of Its Loss-of-Function on an Uncommitted Precursor. PLANT & CELL PHYSIOLOGY 2023; 64:325-335. [PMID: 36609867 PMCID: PMC10016323 DOI: 10.1093/pcp/pcad002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Plants develop in the absence of cell migration. As such, cell division and differentiation need to be coordinated for functional tissue formation. Cellular valves on the plant epidermis, stomata, are generated through a stereotypical sequence of cell division and differentiation events. In Arabidopsis, three master regulatory transcription factors, SPEECHLESS (SPCH), MUTE and FAMA, sequentially drive initiation, proliferation and differentiation of stomata. Among them, MUTE switches the cell cycle mode from proliferative asymmetric division to terminal symmetric division and orchestrates the execution of the single symmetric division event. However, it remains unclear to what extent MUTE regulates the expression of cell cycle genes through the symmetric division and whether MUTE accumulation itself is gated by the cell cycle. Here, we show that MUTE directly upregulates the expression of cell cycle components throughout the terminal cell cycle phases of a stomatal precursor, not only core cell cycle engines but also check-point regulators. Time-lapse live imaging using the multicolor Plant Cell Cycle Indicator revealed that MUTE accumulates up to the early G2 phase, whereas its successor and direct target, FAMA, accumulate at late G2 through terminal mitosis. In the absence of MUTE, meristemoids fail to differentiate and their G1 phase elongates as they reiterate asymmetric divisions. Together, our work provides the framework of cell cycle and master regulatory transcription factors to coordinate a single symmetric cell division and suggests a mechanism for the eventual cell cycle arrest of an uncommitted stem-cell-like precursor at the G1 phase.
Collapse
Affiliation(s)
| | | | - Eun-Deok Kim
- Department of Molecular Biosciences, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
- Howard Hughes Medical Institute, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | | |
Collapse
|
7
|
Ikematsu S, Umase T, Shiozaki M, Nakayama S, Noguchi F, Sakamoto T, Hou H, Gohari G, Kimura S, Torii KU. Rewiring of hormones and light response pathways underlies the inhibition of stomatal development in an amphibious plant Rorippa aquatica underwater. Curr Biol 2023; 33:543-556.e4. [PMID: 36696900 DOI: 10.1016/j.cub.2022.12.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/12/2022] [Accepted: 12/22/2022] [Indexed: 01/26/2023]
Abstract
Land plants have evolved the ability to cope with submergence. Amphibious plants are adapted to both aerial and aquatic environments through phenotypic plasticity in leaf form and function, known as heterophylly. In general, underwater leaves of amphibious plants are devoid of stomata, yet their molecular regulatory mechanisms remain elusive. Using the emerging model of the Brassicaceae amphibious species Rorippa aquatica, we lay the foundation for the molecular physiological basis of the submergence-triggered inhibition of stomatal development. A series of temperature shift experiments showed that submergence-induced inhibition of stomatal development is largely uncoupled from morphological heterophylly and likely regulated by independent pathways. Submergence-responsive transcriptome analysis revealed rapid reprogramming of gene expression, exemplified by the suppression of RaSPEECHLESS and RaMUTE within 1 h and the involvement of light and hormones in the developmental switch from terrestrial to submerged leaves. Further physiological studies place ethylene as a central regulator of the submergence-triggered inhibition of stomatal development. Surprisingly, red and blue light have opposing functions in this process: blue light promotes, whereas red light inhibits stomatal development, through influencing the ethylene pathway. Finally, jasmonic acid counteracts the inhibition of stomatal development, which can be attenuated by the red light. The actions and interactions of light and hormone pathways in regulating stomatal development in R. aquatica are different from those in the terrestrial species, Arabidopsis thaliana. Thus, our work suggests that extensive rewiring events of red light to ethylene signaling might underlie the evolutionary adaption to water environment in Brassicaceae.
Collapse
Affiliation(s)
- Shuka Ikematsu
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan; Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan; Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Tatsushi Umase
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Mako Shiozaki
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Sodai Nakayama
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Fuko Noguchi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Tomoaki Sakamoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan; Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh 83111-55181, East Azerbaijan, Iran
| | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan; Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan.
| | - Keiko U Torii
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan; Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
8
|
Okawa R, Hayashi Y, Yamashita Y, Matsubayashi Y, Ogawa-Ohnishi M. Arabinogalactan protein polysaccharide chains are required for normal biogenesis of plasmodesmata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:493-503. [PMID: 36511822 DOI: 10.1111/tpj.16061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Arabinogalactan proteins (AGPs) are a plant-specific family of extracellular proteoglycans characterized by large and complex galactose-rich polysaccharide chains. Functional elucidation of AGPs, however, has been hindered by the high degree of redundancy of AGP genes. To uncover as yet unexplored roles of AGPs in Arabidopsis, a mutant of Hyp O-galactosyltransferase (HPGT), a critical enzyme that catalyzes the common initial step of Hyp-linked arabinogalactan chain biosynthesis, was used. Here we show, using the hpgt1,2,3 triple mutant, that a reduction in functional AGPs leads to a stomatal patterning defect in which two or more stomata are clustered together. This defect is attributed to increased and dysregulated symplastic transport following changes in plasmodesmata structure, such that highly permeable complex branched plasmodesmata with cavities in branching parts increased in the mutant. We also found that the hpgt1,2,3 mutation causes a reduction of cellulose in the cell wall and accumulation of pectin, which controls cell wall porosity. Our results highlight the importance of AGPs in the correct biogenesis of plasmodesmata, possibly acting through the regulation of cell wall properties surrounding the plasmodesmata.
Collapse
Affiliation(s)
- Ryoya Okawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yoko Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuko Yamashita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Mari Ogawa-Ohnishi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
9
|
Cui Y, He M, Liu D, Liu J, Liu J, Yan D. Intercellular Communication during Stomatal Development with a Focus on the Role of Symplastic Connection. Int J Mol Sci 2023; 24:ijms24032593. [PMID: 36768915 PMCID: PMC9917297 DOI: 10.3390/ijms24032593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Stomata are microscopic pores on the plant epidermis that serve as a major passage for the gas and water exchange between a plant and the atmosphere. The formation of stomata requires a series of cell division and cell-fate transitions and some key regulators including transcription factors and peptides. Monocots have different stomatal patterning and a specific subsidiary cell formation process compared with dicots. Cell-to-cell symplastic trafficking mediated by plasmodesmata (PD) allows molecules including proteins, RNAs and hormones to function in neighboring cells by moving through the channels. During stomatal developmental process, the intercellular communication between stomata complex and adjacent epidermal cells are finely controlled at different stages. Thus, the stomata cells are isolated or connected with others to facilitate their formation or movement. In the review, we summarize the main regulation mechanism underlying stomata development in both dicots and monocots and especially the specific regulation of subsidiary cell formation in monocots. We aim to highlight the important role of symplastic connection modulation during stomata development, including the status of PD presence at different cell-cell interfaces and the function of relevant mobile factors in both dicots and monocots.
Collapse
Affiliation(s)
- Yongqi Cui
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Meiqing He
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Datong Liu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs/Lixiahe Institute of Agricultural Sciences of Jiangsu, Yangzhou 225007, China
| | - Jinxin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Dawei Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475001, China
- Correspondence:
| |
Collapse
|
10
|
Rosado-Souza L, Yokoyama R, Sonnewald U, Fernie AR. Understanding source-sink interactions: Progress in model plants and translational research to crops. MOLECULAR PLANT 2023; 16:96-121. [PMID: 36447435 DOI: 10.1016/j.molp.2022.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
Agriculture is facing a massive increase in demand per hectare as a result of an ever-expanding population and environmental deterioration. While we have learned much about how environmental conditions and diseases impact crop yield, until recently considerably less was known concerning endogenous factors, including within-plant nutrient allocation. In this review, we discuss studies of source-sink interactions covering both fundamental research in model systems under controlled growth conditions and how the findings are being translated to crop plants in the field. In this respect we detail efforts aimed at improving and/or combining C3, C4, and CAM modes of photosynthesis, altering the chloroplastic electron transport chain, modulating photorespiration, adopting bacterial/algal carbon-concentrating mechanisms, and enhancing nitrogen- and water-use efficiencies. Moreover, we discuss how modulating TCA cycle activities and primary metabolism can result in increased rates of photosynthesis and outline the opportunities that evaluating natural variation in photosynthesis may afford. Although source, transport, and sink functions are all covered in this review, we focus on discussing source functions because the majority of research has been conducted in this field. Nevertheless, considerable recent evidence, alongside the evidence from classical studies, demonstrates that both transport and sink functions are also incredibly important determinants of yield. We thus describe recent evidence supporting this notion and suggest that future strategies for yield improvement should focus on combining improvements in each of these steps to approach yield optimization.
Collapse
Affiliation(s)
- Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Ryo Yokoyama
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Uwe Sonnewald
- Department of Biochemistry, University of Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
11
|
Chen L. Emerging roles of protein phosphorylation in regulation of stomatal development. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153882. [PMID: 36493667 DOI: 10.1016/j.jplph.2022.153882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Stomata, tiny epidermal spores, control gas exchange between plants and their external environment, thereby playing essential roles in plant development and physiology. Stomatal development requires rapid regulation of components in signaling pathways to respond flexibly to numerous intrinsic and extrinsic signals. In support of this, reversible phosphorylation, which is particularly suitable for rapid signal transduction, has been implicated in this process. This review highlights the current understanding of the essential roles of reversible phosphorylation in the regulation of stomatal development, most of which comes from the dicot Arabidopsis thaliana. Protein phosphorylation tightly controls the activity of SPEECHLESS (SPCH)-SCREAM (SCRM), the stomatal lineage switch, and the activity of several mitogen-activated protein kinases and receptor kinases upstream of SPCH-SCRM, thereby regulating stomatal cell differentiation and patterning. In addition, protein phosphorylation is involved in the establishment of cell polarity during stomatal asymmetric cell division. Finally, cyclin-dependent kinase-mediated protein phosphorylation plays essential roles in cell cycle control during stomatal development.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
12
|
Saridis P, Georgiadou X, Shtein I, Pouris J, Panteris E, Rhizopoulou S, Constantinidis T, Giannoutsou E, Adamakis IDS. Stomata in Close Contact: The Case of Pancratium maritimum L. (Amaryllidaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:3377. [PMID: 36501416 PMCID: PMC9740904 DOI: 10.3390/plants11233377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
A special feature found in Amaryllidaceae is that some guard cells of the neighboring stomata form a "connection strand" between their dorsal cell walls. In the present work, this strand was studied in terms of both its composition and its effect on the morphology and function of the stomata in Pancratium maritimum L. leaves. The structure of stomata and their connection strand were studied by light and transmission electron microscopy. FM 4-64 and aniline blue staining and application of tannic acid were performed to detect cell membranes, callose, and pectins, respectively. A plasmolysis experiment was also performed. The composition of the connection strand was analyzed by fluorescence microscopy after immunostaining with several cell-wall-related antibodies, while pectinase treatment was applied to confirm the presence of pectins in the connection strand. To examine the effect of this connection on stomatal function, several morphological characteristics (width, length, size, pore aperture, stomatal distance, and cell size of the intermediate pavement cell) were studied. It is suggested that the connecting strand consists of cell wall material laid through the middle of the intermediate pavement cell adjoining the two stomata. These cell wall strands are mainly comprised of pectins, and crystalline cellulose and extensins were also present. Connected stomata do not open like the single stomata do, indicating that the connection strand could also affect stomatal function. This trait is common to other Amaryllidaceae representatives.
Collapse
Affiliation(s)
- Pavlos Saridis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Xenia Georgiadou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Section of Ecology and Systematics, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Ilana Shtein
- Eastern Region Resarch and Development Center, Milken Campus, Ariel 40700, Israel
| | - John Pouris
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sophia Rhizopoulou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Theophanis Constantinidis
- Section of Ecology and Systematics, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Eleni Giannoutsou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | | |
Collapse
|
13
|
Kim ED, Dorrity MW, Fitzgerald BA, Seo H, Sepuru KM, Queitsch C, Mitsuda N, Han SK, Torii KU. Dynamic chromatin accessibility deploys heterotypic cis/trans-acting factors driving stomatal cell-fate commitment. NATURE PLANTS 2022; 8:1453-1466. [PMID: 36522450 PMCID: PMC9788986 DOI: 10.1038/s41477-022-01304-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/28/2022] [Indexed: 05/12/2023]
Abstract
Chromatin architecture and transcription factor (TF) binding underpin cell-fate specification during development, but their mutual regulatory relationships remain unclear. Here we report an atlas of dynamic chromatin landscapes during stomatal cell-lineage progression, in which sequential cell-state transitions are governed by lineage-specific bHLH TFs. Major reprogramming of chromatin accessibility occurs at the proliferation-to-differentiation transition. We discover novel co-cis regulatory elements (CREs) signifying the early precursor stage, BBR/BPC (GAGA) and bHLH (E-box) motifs, where master-regulatory bHLH TFs, SPEECHLESS and MUTE, consecutively bind to initiate and terminate the proliferative state, respectively. BPC TFs complex with MUTE to repress SPEECHLESS expression through a local deposition of repressive histone marks. We elucidate the mechanism by which cell-state-specific heterotypic TF complexes facilitate cell-fate commitment by recruiting chromatin modifiers via key co-CREs.
Collapse
Affiliation(s)
- Eun-Deok Kim
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Michael W Dorrity
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Bridget A Fitzgerald
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Hyemin Seo
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Krishna Mohan Sepuru
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Soon-Ki Han
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Keiko U Torii
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
14
|
Kosová V, Latzel V, Hadincová V, Münzbergová Z. Effect of DNA methylation, modified by 5-azaC, on ecophysiological responses of a clonal plant to changing climate. Sci Rep 2022; 12:17262. [PMID: 36241768 PMCID: PMC9568541 DOI: 10.1038/s41598-022-22125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/10/2022] [Indexed: 01/06/2023] Open
Abstract
Epigenetic regulation of gene expression is expected to be an important mechanism behind phenotypic plasticity. Whether epigenetic regulation affects species ecophysiological adaptations to changing climate remains largely unexplored. We compared ecophysiological traits between individuals treated with 5-azaC, assumed to lead to DNA demethylation, with control individuals of a clonal grass originating from and grown under different climates, simulating different directions and magnitudes of climate change. We linked the ecophysiological data to proxies of fitness. Main effects of plant origin and cultivating conditions predicted variation in plant traits, but 5-azaC did not. Effects of 5-azaC interacted with conditions of cultivation and plant origin. The direction of the 5-azaC effects suggests that DNA methylation does not reflect species long-term adaptations to climate of origin and species likely epigenetically adjusted to the conditions experienced during experiment set-up. Ecophysiology translated to proxies of fitness, but the intensity and direction of the relationships were context dependent and affected by 5-azaC. The study suggests that effects of DNA methylation depend on conditions of plant origin and current climate. Direction of 5-azaC effects suggests limited role of epigenetic modifications in long-term adaptation of plants. It rather facilitates fast adaptations to temporal fluctuations of the environment.
Collapse
Affiliation(s)
- Veronika Kosová
- grid.4491.80000 0004 1937 116XDepartment of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vít Latzel
- grid.418095.10000 0001 1015 3316Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| | - Věroslava Hadincová
- grid.418095.10000 0001 1015 3316Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| | - Zuzana Münzbergová
- grid.4491.80000 0004 1937 116XDepartment of Botany, Faculty of Science, Charles University, Prague, Czech Republic ,grid.418095.10000 0001 1015 3316Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| |
Collapse
|
15
|
Yang X, Gavya S L, Zhou Z, Urano D, Lau OS. Abscisic acid regulates stomatal production by imprinting a SnRK2 kinase-mediated phosphocode on the master regulator SPEECHLESS. SCIENCE ADVANCES 2022; 8:eadd2063. [PMID: 36206348 PMCID: PMC9544323 DOI: 10.1126/sciadv.add2063] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/22/2022] [Indexed: 05/19/2023]
Abstract
Stomata, the epidermal pores for gas exchange between plants and the atmosphere, are the major sites of water loss. During water shortage, plants limit the formation of new stoma via the phytohormone abscisic acid (ABA) to conserve water. However, how ABA suppresses stomatal production is largely unknown. Here, we demonstrate that three core SnRK2 kinases of ABA signaling inhibit the initiation and proliferation of the stomatal precursors in Arabidopsis. We show that the SnRK2s function within the precursors and directly phosphorylate SPEECHLESS (SPCH), the master transcription factor for stomatal initiation. We identify specific SPCH residues targeted by the SnRK2s, which mediate the ABA/drought-induced suppression of SPCH and stomatal production. This SnRK2-specific SPCH phosphocode connects stomatal development with ABA/drought signals and enables the independent control of this key water conservation response. Our work also highlights how distinct signaling activities can be specifically encoded on a master regulator to modulate developmental plasticity.
Collapse
Affiliation(s)
- Xin Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - Lalitha Gavya S
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - Zimin Zhou
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - Daisuke Urano
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - On Sun Lau
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
- Corresponding author.
| |
Collapse
|
16
|
Pérez-Bueno ML, Illescas-Miranda J, Martín-Forero AF, de Marcos A, Barón M, Fenoll C, Mena M. An extremely low stomatal density mutant overcomes cooling limitations at supra-optimal temperature by adjusting stomatal size and leaf thickness. FRONTIERS IN PLANT SCIENCE 2022; 13:919299. [PMID: 35937324 PMCID: PMC9355609 DOI: 10.3389/fpls.2022.919299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/27/2022] [Indexed: 05/25/2023]
Abstract
The impact of global warming on transpiration and photosynthesis would compromise plant fitness, impacting on crop yields and ecosystem functioning. In this frame, we explored the performance of a set of Arabidopsis mutants carrying partial or total loss-of-function alleles of stomatal development genes and displaying distinct stomatal abundances. Using microscopy and non-invasive imaging techniques on this genotype collection, we examined anatomical leaf and stomatal traits, plant growth and development, and physiological performance at optimal (22°C) and supra-optimal (30°C) temperatures. All genotypes showed thermomorphogenetic responses but no signs of heat stress. Data analysis singled out an extremely low stomatal abundance mutant, spch-5. At 22°C, spch-5 had lower transpiration and warmer leaves than the wild type. However, at 30°C, this mutant developed larger stomata and thinner leaves, paralleled by a notable cooling capacity, similar to that of the wild type. Despite their low stomatal density (SD), spch-5 plants grown at 30°C showed no photosynthesis or growth penalties. The behavior of spch-5 at supra-optimal temperature exemplifies how the effect of very low stomatal numbers can be counteracted by a combination of larger stomata and thinner leaves. Furthermore, it provides a novel strategy for coping with high growth temperatures.
Collapse
Affiliation(s)
- María Luisa Pérez-Bueno
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
- Departamento de Fisiología Vegetal, Universidad de Granada, Granada, Spain
| | | | - Amanda F. Martín-Forero
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Alberto de Marcos
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Matilde Barón
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Montaña Mena
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
17
|
Han SK, Herrmann A, Yang J, Iwasaki R, Sakamoto T, Desvoyes B, Kimura S, Gutierrez C, Kim ED, Torii KU. Deceleration of the cell cycle underpins a switch from proliferative to terminal divisions in plant stomatal lineage. Dev Cell 2022; 57:569-582.e6. [PMID: 35148836 PMCID: PMC8926846 DOI: 10.1016/j.devcel.2022.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/19/2021] [Accepted: 01/19/2022] [Indexed: 12/25/2022]
Abstract
Differentiation of specialized cell types requires precise cell-cycle control. Plant stomata are generated through asymmetric divisions of a stem-cell-like precursor followed by a single symmetric division that creates paired guard cells surrounding a pore. The stomatal-lineage-specific transcription factor MUTE terminates the asymmetric divisions and commits to differentiation. However, the role of cell-cycle machineries in this transition remains unknown. We discover that the symmetric division is slower than the asymmetric division in Arabidopsis. We identify a plant-specific cyclin-dependent kinase inhibitor, SIAMESE-RELATED4 (SMR4), as a MUTE-induced molecular brake that decelerates the cell cycle. SMR4 physically and functionally associates with CYCD3;1 and extends the G1 phase of asymmetric divisions. By contrast, SMR4 fails to interact with CYCD5;1, a MUTE-induced G1 cyclin, and permits the symmetric division. Our work unravels a molecular framework of the proliferation-to-differentiation switch within the stomatal lineage and suggests that a timely proliferative cell cycle is critical for stomatal-lineage identity. During stomatal differentiation, asymmetric divisions are faster than terminal divisions Upon commitment to differentiation, MUTE induces the cell-cycle inhibitor SMR4 SMR4 decelerates the asymmetric cell division cycle via selective binding to cyclin D Regulating duration of the G1 phase is critical for epidermal cell fate specification
Collapse
Affiliation(s)
- Soon-Ki Han
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan; Institute for Advanced Research (IAR), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Arvid Herrmann
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jiyuan Yang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rie Iwasaki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Tomoaki Sakamoto
- Department of Industrial Life Sciences and Center for Plant Sciences, Kyoto Sangyo University, Kyoto-shi, Kyoto 603-8555, Japan
| | - Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Seisuke Kimura
- Department of Industrial Life Sciences and Center for Plant Sciences, Kyoto Sangyo University, Kyoto-shi, Kyoto 603-8555, Japan
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Eun-Deok Kim
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan; Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Sablowski R, Gutierrez C. Cycling in a crowd: Coordination of plant cell division, growth, and cell fate. THE PLANT CELL 2022; 34:193-208. [PMID: 34498091 PMCID: PMC8774096 DOI: 10.1093/plcell/koab222] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/31/2021] [Indexed: 05/25/2023]
Abstract
The reiterative organogenesis that drives plant growth relies on the constant production of new cells, which remain encased by interconnected cell walls. For these reasons, plant morphogenesis strictly depends on the rate and orientation of both cell division and cell growth. Important progress has been made in recent years in understanding how cell cycle progression and the orientation of cell divisions are coordinated with cell and organ growth and with the acquisition of specialized cell fates. We review basic concepts and players in plant cell cycle and division, and then focus on their links to growth-related cues, such as metabolic state, cell size, cell geometry, and cell mechanics, and on how cell cycle progression and cell division are linked to specific cell fates. The retinoblastoma pathway has emerged as a major player in the coordination of the cell cycle with both growth and cell identity, while microtubule dynamics are central in the coordination of oriented cell divisions. Future challenges include clarifying feedbacks between growth and cell cycle progression, revealing the molecular basis of cell division orientation in response to mechanical and chemical signals, and probing the links between cell fate changes and chromatin dynamics during the cell cycle.
Collapse
Affiliation(s)
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
19
|
Shirakawa M, Tanida M, Ito T. The Cell Differentiation of Idioblast Myrosin Cells: Similarities With Vascular and Guard Cells. FRONTIERS IN PLANT SCIENCE 2022; 12:829541. [PMID: 35082820 PMCID: PMC8784778 DOI: 10.3389/fpls.2021.829541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Idioblasts are defined by abnormal shapes, sizes, and contents that are different from neighboring cells. Myrosin cells are Brassicales-specific idioblasts and accumulate a large amount of thioglucoside glucohydrolases (TGGs, also known as myrosinases) in their vacuoles. Myrosinases convert their substrates, glucosinolates, into toxic compounds when herbivories and pests attack plants. In this review, we highlight the similarities and differences between myrosin cells and vascular cells/guard cells (GCs) because myrosin cells are distributed along vascular cells, especially the phloem parenchyma, and myrosin cells share the master transcription factor FAMA with GCs for their cell differentiation. In addition, we analyzed the overlap of cell type-specific genes between myrosin cells and GCs by using published single-cell transcriptomics (scRNA-seq) data, suggesting significant similarities in the gene expression patterns of these two specialized cells.
Collapse
|
20
|
Alejo-Vinogradova MT, Ornelas-Ayala D, Vega-León R, Garay-Arroyo A, García-Ponce B, R Álvarez-Buylla E, Sanchez MDLP. Unraveling the role of epigenetic regulation in asymmetric cell division during plant development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:38-49. [PMID: 34518884 DOI: 10.1093/jxb/erab421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Asymmetric cell divisions are essential to generate different cellular lineages. In plants, asymmetric cell divisions regulate the correct formation of the embryo, stomatal cells, apical and root meristems, and lateral roots. Current knowledge of regulation of asymmetric cell divisions suggests that, in addition to the function of key transcription factor networks, epigenetic mechanisms play crucial roles. Therefore, we highlight the importance of epigenetic regulation and chromatin dynamics for integration of signals and specification of cells that undergo asymmetric cell divisions, as well as for cell maintenance and cell fate establishment of both progenitor and daughter cells. We also discuss the polarization and segregation of cell components to ensure correct epigenetic memory or resetting of epigenetic marks during asymmetric cell divisions.
Collapse
Affiliation(s)
- M Teresa Alejo-Vinogradova
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Diego Ornelas-Ayala
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Rosario Vega-León
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Elena R Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - María de la Paz Sanchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| |
Collapse
|
21
|
Jia MZ, Liu LY, Geng C, Jiang J. Activation of 1-Aminocyclopropane-1-Carboxylic Acid Synthases Sets Stomatal Density and Clustered Ratio on Leaf Epidermis of Arabidopsis in Response to Drought. FRONTIERS IN PLANT SCIENCE 2021; 12:758785. [PMID: 34938306 PMCID: PMC8685546 DOI: 10.3389/fpls.2021.758785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
The adjustment of stomatal density and clustered ratio on the epidermis is the important strategy for plants to respond to drought, because the stoma-based water loss is directly related to plant growth and survival under drought conditions. But the relevant adjustment mechanism still needs to be explored. 1-Aminocyclopropane-1-carboxylate (ACC) is disclosed to promote stomatal development, while in vivo ACC levels depend on activation of ACC synthase (ACS) family members. Based on the findings of ACS expression involving in drought response and several ACS activity inhibitors reducing stomatal density and cluster in drought response, here we examined how ACS activation is involved in the establishment of stomatal density and cluster on the epidermis under drought conditions. Preliminary data indicated that activation of ACS2 and/or ACS6 (ACS2/6) increased stomatal density and clustered ratio on the Arabidopsis leaf epidermis by accumulating ACC under moderate drought, and raised the survival risk of seedlings under escalated drought. Further exploration indicated that, in Arabidopsis seedlings stressed by drought, the transcription factor SPEECHLESS (SPCH), the initiator of stomatal development, activates ACS2/6 expression and ACC production; and that ACC accumulation induces Ca2+ deficiency in stomatal lineage; this deficiency inactivates a subtilisin-like protease STOMATAL DENSITY AND DISTRIBUTION 1 (SDD1) by stabilizing the inhibition of the transcription factor GT-2 Like 1 (GTL1) on SDD1 expression, resulting in an increases of stomatal density and cluster ratio on the leaf epidermis. This work provides a novel evidence that ACS2/6 activation plays a key role in the establishment of stomatal density and cluster on the leaf epidermis of Arabidopsis in response to drought.
Collapse
|
22
|
Gong Y, Alassimone J, Muroyama A, Amador G, Varnau R, Liu A, Bergmann DC. The Arabidopsis stomatal polarity protein BASL mediates distinct processes before and after cell division to coordinate cell size and fate asymmetries. Development 2021; 148:dev199919. [PMID: 34463761 PMCID: PMC8512303 DOI: 10.1242/dev.199919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022]
Abstract
In many land plants, asymmetric cell divisions (ACDs) create and pattern differentiated cell types on the leaf surface. In the Arabidopsis stomatal lineage, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) regulates division plane placement and cell fate enforcement. Polarized subcellular localization of BASL is initiated before ACD and persists for many hours after the division in one of the two daughters. Untangling the respective contributions of polarized BASL before and after division is essential to gain a better understanding of its roles in regulating stomatal lineage ACDs. Here, we combine quantitative imaging and lineage tracking with genetic tools that provide temporally restricted BASL expression. We find that pre-division BASL is required for division orientation, whereas BASL polarity post-division ensures proper cell fate commitment. These genetic manipulations allowed us to uncouple daughter-cell size asymmetry from polarity crescent inheritance, revealing independent effects of these two asymmetries on subsequent cell behavior. Finally, we show that there is coordination between the division frequencies of sister cells produced by ACDs, and this coupling requires BASL as an effector of peptide signaling.
Collapse
Affiliation(s)
- Yan Gong
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | - Andrew Muroyama
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Gabriel Amador
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rachel Varnau
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Ao Liu
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Dominique C. Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
23
|
López-Cordova A, Ramírez-Medina H, Silva-Martinez GA, González-Cruz L, Bernardino-Nicanor A, Huanca-Mamani W, Montero-Tavera V, Tovar-Aguilar A, Ramírez-Pimentel JG, Durán-Figueroa NV, Acosta-García G. LEA13 and LEA30 Are Involved in Tolerance to Water Stress and Stomata Density in Arabidopsis thaliana. PLANTS 2021; 10:plants10081694. [PMID: 34451739 PMCID: PMC8400336 DOI: 10.3390/plants10081694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022]
Abstract
Late embryogenesis abundant (LEA) proteins are a large protein family that mainly function in protecting cells from abiotic stress, but these proteins are also involved in regulating plant growth and development. In this study, we performed a functional analysis of LEA13 and LEA30 from Arabidopsis thaliana. The results showed that the expression of both genes increased when plants were subjected to drought-stressed conditions. The insertional lines lea13 and lea30 were identified for each gene, and both had a T-DNA element in the regulatory region, which caused the genes to be downregulated. Moreover, lea13 and lea30 were more sensitive to drought stress due to their higher transpiration and stomatal spacing. Microarray analysis of the lea13 background showed that genes involved in hormone signaling, stomatal development, and abiotic stress responses were misregulated. Our results showed that LEA proteins are involved in drought tolerance and participate in stomatal density.
Collapse
Affiliation(s)
- Abigael López-Cordova
- Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.L.-C.); (H.R.-M.); (G.-A.S.-M.); (L.G.-C.); (A.B.-N.)
| | - Humberto Ramírez-Medina
- Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.L.-C.); (H.R.-M.); (G.-A.S.-M.); (L.G.-C.); (A.B.-N.)
| | - Guillermo-Antonio Silva-Martinez
- Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.L.-C.); (H.R.-M.); (G.-A.S.-M.); (L.G.-C.); (A.B.-N.)
| | - Leopoldo González-Cruz
- Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.L.-C.); (H.R.-M.); (G.-A.S.-M.); (L.G.-C.); (A.B.-N.)
| | - Aurea Bernardino-Nicanor
- Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.L.-C.); (H.R.-M.); (G.-A.S.-M.); (L.G.-C.); (A.B.-N.)
| | - Wilson Huanca-Mamani
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Arica 1000000, Chile;
| | - Víctor Montero-Tavera
- Biotechnology Department, National Institute for Forestry Agriculture and Livestock Research (INIFAP), Celaya 38110, Guanajuato, Mexico;
| | - Andrea Tovar-Aguilar
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto S/N., Col. Barrio La Laguna Ticomán, México City 07340, Mexico; (A.T.-A.); (N.-V.D.-F.)
| | | | - Noé-Valentín Durán-Figueroa
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto S/N., Col. Barrio La Laguna Ticomán, México City 07340, Mexico; (A.T.-A.); (N.-V.D.-F.)
| | - Gerardo Acosta-García
- Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.L.-C.); (H.R.-M.); (G.-A.S.-M.); (L.G.-C.); (A.B.-N.)
- Correspondence: ; Tel.: +52-4616117575 (ext. 5471)
| |
Collapse
|
24
|
Light regulates stomatal development by modulating paracrine signaling from inner tissues. Nat Commun 2021; 12:3403. [PMID: 34099707 PMCID: PMC8184810 DOI: 10.1038/s41467-021-23728-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/13/2021] [Indexed: 11/09/2022] Open
Abstract
Developmental outcomes are shaped by the interplay between intrinsic and external factors. The production of stomata—essential pores for gas exchange in plants—is extremely plastic and offers an excellent system to study this interplay at the cell lineage level. For plants, light is a key external cue, and it promotes stomatal development and the accumulation of the master stomatal regulator SPEECHLESS (SPCH). However, how light signals are relayed to influence SPCH remains unknown. Here, we show that the light-regulated transcription factor ELONGATED HYPOCOTYL 5 (HY5), a critical regulator for photomorphogenic growth, is present in inner mesophyll cells and directly binds and activates STOMAGEN. STOMAGEN, the mesophyll-derived secreted peptide, in turn stabilizes SPCH in the epidermis, leading to enhanced stomatal production. Our work identifies a molecular link between light signaling and stomatal development that spans two tissue layers and highlights how an environmental signaling factor may coordinate growth across tissue types. Light promotes stomatal development in plants. Here Wang et al. show that light stimulates stomatal development via the HY5 transcription factor which induces expression of STOMAGEN, a mesophyll-derived secreted peptide, that in turn leads to stabilization of a master regulator of stomatal development in the epidermis.
Collapse
|
25
|
Arellano-Villagómez FC, Guevara-Olvera L, Zuñiga-Mayo VM, E. Cerbantez-Bueno V, Verdugo-Perales M, R. Medina H, De Folter S, Acosta-García G. Arabidopsis cysteine-rich receptor-like protein kinase CRK33 affects stomatal density and drought tolerance. PLANT SIGNALING & BEHAVIOR 2021; 16:1905335. [PMID: 33769202 PMCID: PMC8143253 DOI: 10.1080/15592324.2021.1905335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 05/19/2023]
Abstract
Cysteine-rich receptor-like protein kinases (CRKs) are transmembrane proteins containing two domains of unknown function 26 (DUF26) RLKs in their ectodomain. Despite that CRKs control important aspects of plant development, only few proteins have functionally been characterized. In this work, we analyzed the function of CRK33 by characterizing two insertional lines. The stomatal density and stomatal index were decreased in crk33-2 and crk33-3 plants in comparison to wild-type plants, correlating with a decreased transpiration in transgenic plants and a higher drought tolerance. Furthermore, photosynthesis and stomatal conductance changed. Finally, all four stomata cell fate genes were upregulated, especially the expression of TMM and SPCH in the mutant background, suggesting a role for CRK33 in stomatal spacing.
Collapse
Affiliation(s)
| | - Lorenzo Guevara-Olvera
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
| | - Víctor M. Zuñiga-Mayo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro De Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, México
- Instituto de Fitosanidad, Colegio de Postgraduados, Campus Montecillo, Texcoco, Estado de México, México
| | - Vincent E. Cerbantez-Bueno
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro De Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, México
| | - Mercedes Verdugo-Perales
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
| | - Humberto R. Medina
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
| | - Stefan De Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro De Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, México
| | - Gerardo Acosta-García
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
- CONTACT Gerardo Acosta-García Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
| |
Collapse
|
26
|
Xu X, Smaczniak C, Muino JM, Kaufmann K. Cell identity specification in plants: lessons from flower development. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4202-4217. [PMID: 33865238 PMCID: PMC8163053 DOI: 10.1093/jxb/erab110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 05/15/2023]
Abstract
Multicellular organisms display a fascinating complexity of cellular identities and patterns of diversification. The concept of 'cell type' aims to describe and categorize this complexity. In this review, we discuss the traditional concept of cell types and highlight the impact of single-cell technologies and spatial omics on the understanding of cellular differentiation in plants. We summarize and compare position-based and lineage-based mechanisms of cell identity specification using flower development as a model system. More than understanding ontogenetic origins of differentiated cells, an important question in plant science is to understand their position- and developmental stage-specific heterogeneity. Combinatorial action and crosstalk of external and internal signals is the key to cellular heterogeneity, often converging on transcription factors that orchestrate gene expression programs.
Collapse
Affiliation(s)
- Xiaocai Xu
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cezary Smaczniak
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jose M Muino
- Systems Biology of Gene Regulation, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
27
|
Guo X, Park CH, Wang ZY, Nickels BE, Dong J. A spatiotemporal molecular switch governs plant asymmetric cell division. NATURE PLANTS 2021; 7:667-680. [PMID: 33941907 PMCID: PMC9115727 DOI: 10.1038/s41477-021-00906-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/25/2021] [Indexed: 05/18/2023]
Abstract
Asymmetric cell division (ACD) requires protein polarization in the mother cell to produce daughter cells with distinct identities (cell-fate asymmetry). Here, we define a previously undocumented mechanism for establishing cell-fate asymmetry in Arabidopsis stomatal stem cells. In particular, we show that polarization of the protein phosphatase BSL1 promotes stomatal ACD by establishing kinase-based signalling asymmetry in the two daughter cells. BSL1 polarization in the stomatal ACD mother cell is triggered at the onset of mitosis. Polarized BSL1 is inherited by the differentiating daughter cell, where it suppresses cell division and promotes cell-fate determination. Plants lacking BSL proteins exhibit stomatal overproliferation, which demonstrates that the BSL family plays an essential role in stomatal development. Our findings establish that BSL1 polarization provides a spatiotemporal molecular switch that enables cell-fate asymmetry in stomatal ACD daughter cells. We propose that BSL1 polarization is triggered by an ACD checkpoint in the mother cell that monitors the establishment of division-plane asymmetry.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Chan Ho Park
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Bryce E Nickels
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
28
|
Zhou Z, Lau OS. Dissecting the developmental roles of Pol II-associated proteins through the stomatal pores. THE NEW PHYTOLOGIST 2021; 230:11-13. [PMID: 33650186 DOI: 10.1111/nph.17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Zimin Zhou
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117557, Singapore
| | - On Sun Lau
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117557, Singapore
| |
Collapse
|
29
|
Chen L, Zhao M, Wu Z, Chen S, Rojo E, Luo J, Li P, Zhao L, Chen Y, Deng J, Cheng B, He K, Gou X, Li J, Hou S. RNA polymerase II associated proteins regulate stomatal development through direct interaction with stomatal transcription factors in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 230:171-189. [PMID: 33058210 DOI: 10.1111/nph.17004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/05/2020] [Indexed: 05/27/2023]
Abstract
RNA polymerase II (Pol II) associated proteins (RPAPs) have been ascribed diverse functions at the cellular level; however, their roles in developmental processes in yeasts, animals and plants are very poorly understood. Through screening for interactors of NRPB3, which encodes the third largest subunit of Pol II, we identified RIMA, the orthologue of mammalian RPAP2. A combination of genetic and biochemical assays revealed the role of RIMA and other RPAPs in stomatal development in Arabidopsis thaliana. We show that RIMA is involved in nuclear import of NRPB3 and other Pol II subunits, and is essential for restraining division and for establishing cell identity in the stomatal cell lineage. Moreover, plant RPAPs IYO/RPAP1 and QQT1/RPAP4, which interact with RIMA, are also crucial for stomatal development. Importantly, RIMA and QQT1 bind physically to stomatal transcription factors SPEECHLESS, MUTE, FAMA and SCREAMs. The RIMA-QQT1-IYO complex could work together with key stomatal transcription factors and Pol II to drive cell fate transitions in the stomatal cell lineage. Direct interactions with stomatal transcription factors provide a novel mechanism by which RPAP proteins may control differentiation of cell types and tissues in eukaryotes.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingfeng Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhongliang Wu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Sicheng Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Enrique Rojo
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, Madrid, E-28049, Spain
| | - Jiangwei Luo
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ping Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lulu Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yan Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianming Deng
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Cheng
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kai He
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoping Gou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jia Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suiwen Hou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
30
|
Han SK, Kwak JM, Qi X. Stomatal Lineage Control by Developmental Program and Environmental Cues. FRONTIERS IN PLANT SCIENCE 2021; 12:751852. [PMID: 34707632 PMCID: PMC8542704 DOI: 10.3389/fpls.2021.751852] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/10/2021] [Indexed: 05/15/2023]
Abstract
Stomata are micropores that allow plants to breathe and play a critical role in photosynthesis and nutrient uptake by regulating gas exchange and transpiration. Stomatal development, therefore, is optimized for survival and growth of the plant despite variable environmental conditions. Signaling cascades and transcriptional networks that determine the birth, proliferation, and differentiation of a stomate have been identified. These networks ensure proper stomatal patterning, density, and polarity. Environmental cues also influence stomatal development. In this review, we highlight recent findings regarding the developmental program governing cell fate and dynamics of stomatal lineage cells at the cell state- or single-cell level. We also overview the control of stomatal development by environmental cues as well as developmental plasticity associated with stomatal function and physiology. Recent advances in our understanding of stomatal development will provide a route to improving photosynthesis and water-stress resilience of crop plants in the climate change we currently face.
Collapse
Affiliation(s)
- Soon-Ki Han
- Department of New Biology, DGIST, Daegu, South Korea
- *Correspondence: Soon-Ki Han,
| | - June M. Kwak
- Department of New Biology, DGIST, Daegu, South Korea
| | - Xingyun Qi
- Department of Biology, Rutgers University, Camden, NJ, United States
- Xingyun Qi,
| |
Collapse
|
31
|
Desvoyes B, Gutierrez C. Roles of plant retinoblastoma protein: cell cycle and beyond. EMBO J 2020; 39:e105802. [PMID: 32865261 PMCID: PMC7527812 DOI: 10.15252/embj.2020105802] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
The human retinoblastoma (RB1) protein is a tumor suppressor that negatively regulates cell cycle progression through its interaction with members of the E2F/DP family of transcription factors. However, RB-related (RBR) proteins are an early acquisition during eukaryote evolution present in plant lineages, including unicellular algae, ancient plants (ferns, lycophytes, liverworts, mosses), gymnosperms, and angiosperms. The main RBR protein domains and interactions with E2Fs are conserved in all eukaryotes and not only regulate the G1/S transition but also the G2/M transition, as part of DREAM complexes. RBR proteins are also important for asymmetric cell division, stem cell maintenance, and the DNA damage response (DDR). RBR proteins play crucial roles at every developmental phase transition, in association with chromatin factors, as well as during the reproductive phase during female and male gametes production and embryo development. Here, we review the processes where plant RBR proteins play a role and discuss possible avenues of research to obtain a full picture of the multifunctional roles of RBR for plant life.
Collapse
|
32
|
Liu Z, Zhou Y, Guo J, Li J, Tian Z, Zhu Z, Wang J, Wu R, Zhang B, Hu Y, Sun Y, Shangguan Y, Li W, Li T, Hu Y, Guo C, Rochaix JD, Miao Y, Sun X. Global Dynamic Molecular Profiling of Stomatal Lineage Cell Development by Single-Cell RNA Sequencing. MOLECULAR PLANT 2020; 13:1178-1193. [PMID: 32592820 DOI: 10.1016/j.molp.2020.06.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/26/2020] [Accepted: 06/22/2020] [Indexed: 05/05/2023]
Abstract
The regulation of stomatal lineage cell development has been extensively investigated. However, a comprehensive characterization of this biological process based on single-cell transcriptome analysis has not yet been reported. In this study, we performed RNA sequencing on 12 844 individual cells from the cotyledons of 5-day-old Arabidopsis seedlings. We identified 11 cell clusters corresponding mostly to cells at specific stomatal developmental stages using a series of marker genes. Comparative analysis of genes with the highest variable expression among these cell clusters revealed transcriptional networks that regulate development from meristemoid mother cells to guard mother cells. Examination of the developmental dynamics of marker genes via pseudo-time analysis revealed potential interactions between these genes. Collectively, our study opens the door for understanding how the identified novel marker genes participate in the regulation of stomatal lineage cell development.
Collapse
Affiliation(s)
- Zhixin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yaping Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jinggong Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jiaoai Li
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Zixia Tian
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Zhinan Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jiajing Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Rui Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Bo Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yongjian Hu
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Yijing Sun
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Yan Shangguan
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Weiqiang Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Tao Li
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Yunhe Hu
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Chenxi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, Geneva, 1211, Switzerland
| | - Yuchen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xuwu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China.
| |
Collapse
|
33
|
Caine RS, Chater CCC, Fleming AJ, Gray JE. Stomata and Sporophytes of the Model Moss Physcomitrium patens. FRONTIERS IN PLANT SCIENCE 2020; 11:643. [PMID: 32523599 PMCID: PMC7261847 DOI: 10.3389/fpls.2020.00643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/27/2020] [Indexed: 05/04/2023]
Abstract
Mosses are an ancient land plant lineage and are therefore important in studying the evolution of plant developmental processes. Here, we describe stomatal development in the model moss species Physcomitrium patens (previously known as Physcomitrella patens) over the duration of sporophyte development. We dissect the molecular mechanisms guiding cell division and fate and highlight how stomatal function might vary under different environmental conditions. In contrast to the asymmetric entry divisions described in Arabidopsis thaliana, moss protodermal cells can enter the stomatal lineage directly by expanding into an oval shaped guard mother cell (GMC). We observed that when two early stage P. patens GMCs form adjacently, a spacing division can occur, leading to separation of the GMCs by an intervening epidermal spacer cell. We investigated whether orthologs of Arabidopsis stomatal development regulators are required for this spacing division. Our results indicated that bHLH transcription factors PpSMF1 and PpSCRM1 are required for GMC formation. Moreover, the ligand and receptor components PpEPF1 and PpTMM are also required for orientating cell divisions and preventing single or clustered early GMCs from developing adjacent to one another. The identification of GMC spacing divisions in P. patens raises the possibility that the ability to space stomatal lineage cells could have evolved before mosses diverged from the ancestral lineage. This would have enabled plants to integrate stomatal development with sporophyte growth and could underpin the adoption of multiple bHLH transcription factors and EPF ligands to more precisely control stomatal patterning in later diverging plant lineages. We also observed that when P. patens sporophyte capsules mature in wet conditions, stomata are typically plugged whereas under drier conditions this is not the case; instead, mucilage drying leads to hollow sub-stomatal cavities. This appears to aid capsule drying and provides further evidence for early land plant stomata contributing to capsule rupture and spore release.
Collapse
Affiliation(s)
- Robert S. Caine
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Caspar C. C. Chater
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Andrew J. Fleming
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Julie E. Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
34
|
Wang Y, Chen ZH. Does Molecular and Structural Evolution Shape the Speedy Grass Stomata? FRONTIERS IN PLANT SCIENCE 2020; 11:333. [PMID: 32373136 PMCID: PMC7186404 DOI: 10.3389/fpls.2020.00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/05/2020] [Indexed: 05/03/2023]
Abstract
It has been increasingly important for breeding programs to be aimed at crops that are capable of coping with a changing climate, especially with regards to higher frequency and intensity of drought events. Grass stomatal complex has been proposed as an important factor that may enable grasses to adapt to water stress and variable climate conditions. There are many studies focusing on the stomatal morphology and development in the eudicot model plant Arabidopsis and monocot model plant Brachypodium. However, the comprehensive understanding of the distinction of stomatal structure and development between monocots and eudicots, especially between grasses and eudicots, are still less known at evolutionary and comparative genetic levels. Therefore, we employed the newly released version of the One Thousand Plant Transcriptome (OneKP) database and existing databases of green plant genome assemblies to explore the evolution of gene families that contributed to the formation of the unique structure and development of grass stomata. This review emphasizes the differential stomatal morphology, developmental mechanisms, and guard cell signaling in monocots and eudicots. We provide a summary of useful molecular evidences for the high water use efficiency of grass stomata that may offer new horizons for future success in breeding climate resilient crops.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
35
|
Harris BJ, Harrison CJ, Hetherington AM, Williams TA. Phylogenomic Evidence for the Monophyly of Bryophytes and the Reductive Evolution of Stomata. Curr Biol 2020; 30:2001-2012.e2. [PMID: 32302587 DOI: 10.1016/j.cub.2020.03.048] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
The origin of land plants was accompanied by new adaptations to life on land, including the evolution of stomata-pores on the surface of plants that regulate gas exchange. The genes that underpin the development and function of stomata have been extensively studied in model angiosperms, such as Arabidopsis. However, little is known about stomata in bryophytes, and their evolutionary origins and ancestral function remain poorly understood. Here, we resolve the position of bryophytes in the land plant tree and investigate the evolutionary origins of genes that specify stomatal development and function. Our analyses recover bryophyte monophyly and demonstrate that the guard cell toolkit is more ancient than has been appreciated previously. We show that a range of core guard cell genes, including SPCH/MUTE, SMF, and FAMA, map back to the common ancestor of embryophytes or even earlier. These analyses suggest that the first embryophytes possessed stomata that were more sophisticated than previously envisioned and that the stomata of bryophytes have undergone reductive evolution, including their complete loss from liverworts.
Collapse
Affiliation(s)
- Brogan J Harris
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
36
|
Roy Choudhury S, Li M, Lee V, Nandety RS, Mysore KS, Pandey S. Flexible functional interactions between G-protein subunits contribute to the specificity of plant responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:207-221. [PMID: 32034949 DOI: 10.1111/tpj.14714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Plants being sessile integrate information from a variety of endogenous and external cues simultaneously to optimize growth and development. This necessitates the signaling networks in plants to be highly dynamic and flexible. One such network involves heterotrimeric G-proteins comprised of Gα, Gβ, and Gγ subunits, which influence many aspects of growth, development, and stress response pathways. In plants such as Arabidopsis, a relatively simple repertoire of G-proteins comprised of one canonical and three extra-large Gα, one Gβ and three Gγ subunits exists. Because the Gβ and Gγ proteins form obligate dimers, the phenotypes of plants lacking the sole Gβ or all Gγ genes are similar, as expected. However, Gα proteins can exist either as monomers or in a complex with Gβγ, and the details of combinatorial genetic and physiological interactions of different Gα proteins with the sole Gβ remain unexplored. To evaluate such flexible, signal-dependent interactions and their contribution toward eliciting a specific response, we have generated Arabidopsis mutants lacking specific combinations of Gα and Gβ genes, performed extensive phenotypic analysis, and evaluated the results in the context of subunit usage and interaction specificity. Our data show that multiple mechanistic modes, and in some cases complex epistatic relationships, exist depending on the signal-dependent interactions between the Gα and Gβ proteins. This suggests that, despite their limited numbers, the inherent flexibility of plant G-protein networks provides for the adaptability needed to survive under continuously changing environments.
Collapse
Affiliation(s)
| | - Mao Li
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Veronica Lee
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | | | | | - Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| |
Collapse
|
37
|
Yamada S, Flesch KN, Murakami K, Itami K. Rapid Access to Kinase Inhibitor Pharmacophores by Regioselective C–H Arylation of Thieno[2,3-d]pyrimidine. Org Lett 2020; 22:1547-1551. [DOI: 10.1021/acs.orglett.0c00143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shuya Yamada
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kaylin Nicole Flesch
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
38
|
Baillie AL, Fleming AJ. The developmental relationship between stomata and mesophyll airspace. THE NEW PHYTOLOGIST 2020; 225:1120-1126. [PMID: 31774175 DOI: 10.1111/nph.16341] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/09/2019] [Indexed: 05/08/2023]
Abstract
The quantitative and spatial coordination of stomatal pores in the epidermis and airspaces in the underlying mesophyll tissue is vital for efficient gas exchange in the leaf. The mechanisms that determine the distribution of stomata in the epidermis have been studied extensively, but how this relates to the regulation of mesophyll airspace configuration is poorly understood. Recent studies have investigated how development is coordinated between these tissue layers. The evidence suggests that multiple mechanisms are likely to work concurrently to coordinate stomatal and mesophyll development for optimal leaf gas exchange, and that both genetic and physiological factors contribute to this regulation. Such advances in our understanding of leaf development have important implications for potential improvement of crop water use efficiency.
Collapse
Affiliation(s)
- Alice L Baillie
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Andrew J Fleming
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
39
|
Sara HC, René GH, Rosa UC, Angela KG, Clelia DLP. Agave angustifolia albino plantlets lose stomatal physiology function by changing the development of the stomatal complex due to a molecular disruption. Mol Genet Genomics 2020; 295:787-805. [PMID: 31925511 DOI: 10.1007/s00438-019-01643-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022]
Abstract
Stomatal development is regulated by signaling pathways that function in multiple cellular programs, including cell fate and cell division. However, recent studies suggest that molecular signals are affected by CO2 concentration, light intensity, and water pressure deficit, thereby modifying distribution patterns and stomatic density and likely other foliar features as well. Here, we show that in addition to lacking chloroplasts, the albino somaclonal variants of Agave angustifolia Haw present an irregular epidermal development and morphological abnormalities of the stomatal complex, affecting the link between the stomatal conductance, transpiration and photosynthesis, as well as the development of the stoma in the upper part of the leaves. In addition, we show that changes in the transcriptional levels of SPEECHLESS (SPCH), TOO MANY MOUTHS (TMM), MITOGEN-ACTIVATED PROTEIN KINASE 4 and 6 (MAPK4 and MAPK6) and FOUR LIPS (FLP), all from the meristematic tissue and leaf, differentially modulate the stomatal function between the green, variegated and albino in vitro plantlets of A. angustifolia. Likewise, we highlight the conservation of microRNAs miR166 and miR824 as part of the regulation of AGAMOUS-LIKE16 (AGL16), recently associated with the control of cell divisions that regulate the development of the stomatal complex. We propose that molecular alterations happening in albino cells formed from the meristematic base can lead to different anomalies during the transition and specification of the stomatal cell state in leaf development of albino plantlets. We conclude that the molecular alterations in the meristematic cells in albino plants might be the main variable associated with stoma distribution in this phenotype.
Collapse
Affiliation(s)
- Hernández-Castellano Sara
- Centro de Investigación Científica de Yucatán A.C., Unidad de Biotecnología, Calle 43 N°130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Garruña-Hernández René
- CONACYT-Instituto Tecnológico de Conkal, Avenida Tecnológico s/n Conkal, 97345, Mérida, Yucatán, Mexico
| | - Us-Camas Rosa
- Centro de Investigación Científica de Yucatán A.C., Unidad de Biotecnología, Calle 43 N°130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Kú-Gonzalez Angela
- Centro de Investigación Científica de Yucatán A.C., Unidad de Bioquímica y Biología Molecular de Plantas, Calle 43 N° 130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - De-la-Peña Clelia
- Centro de Investigación Científica de Yucatán A.C., Unidad de Biotecnología, Calle 43 N°130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
40
|
Ortega A, de Marcos A, Illescas-Miranda J, Mena M, Fenoll C. The Tomato Genome Encodes SPCH, MUTE, and FAMA Candidates That Can Replace the Endogenous Functions of Their Arabidopsis Orthologs. FRONTIERS IN PLANT SCIENCE 2019; 10:1300. [PMID: 31736989 PMCID: PMC6828996 DOI: 10.3389/fpls.2019.01300] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/18/2019] [Indexed: 05/22/2023]
Abstract
Stomatal abundance determines the maximum potential for gas exchange between the plant and the atmosphere. In Arabidopsis, it is set during organ development through complex genetic networks linking epidermal differentiation programs with environmental response circuits. Three related bHLH transcription factors, SPCH, MUTE, and FAMA, act as positive drivers of stomata differentiation. Mutant alleles of some of these genes sustain different stomatal numbers in the mature organs and have potential to modify plant performance under different environmental conditions. However, knowledge about stomatal genes in dicotyledoneous crops is scarce. In this work, we identified the Solanum lycopersicum putative orthologs of these three master regulators and assessed their functional orthology by their ability to complement Arabidopsis loss-of-function mutants, the epidermal phenotypes elicited by their conditional overexpression, and the expression patterns of their promoter regions in Arabidopsis. Our results indicate that the tomato proteins are functionally equivalent to their Arabidopsis counterparts and that the tomato putative promoter regions display temporal and spatial expression domains similar to those reported for the Arabidopsis genes. In vivo tracking of tomato stomatal lineages in developing cotyledons revealed cell division and differentiation histories similar to those of Arabidopsis. Interestingly, the S. lycopersicum genome harbors a FAMA-like gene, expressed in leaves but functionally distinct from the true FAMA orthologue. Thus, the basic program for stomatal development in S. lycopersicum uses key conserved genetic determinants. This opens the possibility of modifying stomatal abundance in tomato through previously tested Arabidopsis alleles conferring altered stomata abundance phenotypes that correlate with physiological traits related to water status, leaf cooling, or photosynthesis.
Collapse
Affiliation(s)
| | | | | | - Montaña Mena
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-la Mancha, Toledo, Spain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-la Mancha, Toledo, Spain
| |
Collapse
|
41
|
Dutton C, Hõrak H, Hepworth C, Mitchell A, Ton J, Hunt L, Gray JE. Bacterial infection systemically suppresses stomatal density. PLANT, CELL & ENVIRONMENT 2019; 42:2411-2421. [PMID: 31042812 PMCID: PMC6771828 DOI: 10.1111/pce.13570] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/08/2019] [Accepted: 04/27/2019] [Indexed: 05/20/2023]
Abstract
Many plant pathogens gain entry to their host via stomata. On sensing attack, plants close these pores to restrict pathogen entry. Here, we show that plants exhibit a second longer term stomatal response to pathogens. Following infection, the subsequent development of leaves is altered via a systemic signal. This reduces the density of stomata formed, thus providing fewer entry points for pathogens on new leaves. Arabidopsis thaliana leaves produced after infection by a bacterial pathogen that infects through the stomata (Pseudomonas syringae) developed larger epidermal pavement cells and stomata and consequently had up to 20% reductions in stomatal density. The bacterial peptide flg22 or the phytohormone salicylic acid induced similar systemic reductions in stomatal density suggesting that they might mediate this effect. In addition, flagellin receptors, salicylic acid accumulation, and the lipid transfer protein AZI1 were all required for this developmental response. Furthermore, manipulation of stomatal density affected the level of bacterial colonization, and plants with reduced stomatal density showed slower disease progression. We propose that following infection, development of new leaves is altered by a signalling pathway with some commonalities to systemic acquired resistance. This acts to reduce the potential for future infection by providing fewer stomatal openings.
Collapse
Affiliation(s)
- Christian Dutton
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldS10 2TNUK
- Grantham Centre for Sustainable FuturesUniversity of SheffieldSheffieldS10 2TNUK
| | - Hanna Hõrak
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldS10 2TNUK
| | - Christopher Hepworth
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldS10 2TNUK
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Alice Mitchell
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldS10 2TNUK
| | - Jurriaan Ton
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Lee Hunt
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldS10 2TNUK
| | - Julie E. Gray
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldS10 2TNUK
| |
Collapse
|
42
|
Wang H, Guo S, Qiao X, Guo J, Li Z, Zhou Y, Bai S, Gao Z, Wang D, Wang P, Galbraith DW, Song CP. BZU2/ZmMUTE controls symmetrical division of guard mother cell and specifies neighbor cell fate in maize. PLoS Genet 2019; 15:e1008377. [PMID: 31465456 PMCID: PMC6738654 DOI: 10.1371/journal.pgen.1008377] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/11/2019] [Accepted: 08/19/2019] [Indexed: 12/02/2022] Open
Abstract
Intercellular communication in adjacent cell layers determines cell fate and polarity, thus orchestrating tissue specification and differentiation. Here we use the maize stomatal apparatus as a model to investigate cell fate determination. Mutations in ZmBZU2 (bizui2, bzu2) confer a complete absence of subsidiary cells (SCs) and normal guard cells (GCs), leading to failure of formation of mature stomatal complexes. Nuclear polarization and actin accumulation at the interface between subsidiary mother cells (SMCs) and guard mother cells (GMCs), an essential pre-requisite for asymmetric cell division, did not occur in Zmbzu2 mutants. ZmBZU2 encodes a basic helix-loop-helix (bHLH) transcription factor, which is an ortholog of AtMUTE in Arabidopsis (BZU2/ZmMUTE). We found that a number of genes implicated in stomatal development are transcriptionally regulated by BZU2/ZmMUTE. In particular, BZU2/ZmMUTE directly binds to the promoters of PAN1 and PAN2, two early regulators of protodermal cell fate and SMC polarization, consistent with the low levels of transcription of these genes observed in bzu2-1 mutants. BZU2/ZmMUTE has the cell-to-cell mobility characteristic similar to that of BdMUTE in Brachypodium distachyon. Unexpectedly, BZU2/ZmMUTE is expressed in GMC from the asymmetric division stage to the GMC division stage, and especially in the SMC establishment stage. Taken together, these data imply that BZU2/ZmMUTE is required for early events in SMC polarization and differentiation as well as for the last symmetrical division of GMCs to produce the two GCs, and is a master determinant of the cell fate of its neighbors through cell-to-cell communication.
Collapse
Affiliation(s)
- Hongliang Wang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Siyi Guo
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xin Qiao
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Jianfei Guo
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zuliang Li
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yusen Zhou
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Shenglong Bai
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhiyong Gao
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Daojie Wang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Pengcheng Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - David W. Galbraith
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- School of Plant Sciences, the University of Arizona, Tucson, Arizona, United States of America
| | - Chun-Peng Song
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
43
|
Allen J, Guo K, Zhang D, Ince M, Jammes F. ABA-glucose ester hydrolyzing enzyme ATBG1 and PHYB antagonistically regulate stomatal development. PLoS One 2019; 14:e0218605. [PMID: 31233537 PMCID: PMC6590796 DOI: 10.1371/journal.pone.0218605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/05/2019] [Indexed: 11/19/2022] Open
Abstract
The integration of conflicting signals in response to environmental constraints is essential to efficient plant growth and development. The light-dependent and the stress hormone abscisic acid (ABA)-dependent signaling pathways play opposite roles in many aspects of plant development. While these pathways have been extensively studied, the complex nature of their molecular dialogue is still obscure. When mobilized by the Arabidopsis thaliana β-glucosidase 1 (AtBG1), the glucose ester-conjugated inactive form of ABA has proven to be a source of the active hormone that is essential for the adaptation of the plant to water deficit, as evidenced by the impaired stomatal closure of atbg1 mutants in response to water stress. In a suppressor screen designed to identify the molecular components of AtBG1-associated physiological and developmental mechanisms, we identified the mutation variant of AtBG1 traits (vat1), a new mutant allele of the red light/far-red light photoreceptor PHYTOCHROME B (PHYB). Our study reveals that atbg1 plants harbor increased stomatal density in addition to impaired stomatal closure. We also provide evidence that the vat1/phyb mutation can restore the apparent transpiration of the atbg1 mutant by decreasing stomatal aperture and restoring a stomatal density similar to wild-type plants. Expression of key regulators of stomatal development showed a crosstalk between AtBG1-mediated ABA signaling and PHYB-mediated stomatal development. We conclude that the AtBG1-dependent regulation of ABA homeostasis and the PHYB-mediated light signaling pathways act antagonistically in the control of stomatal development.
Collapse
Affiliation(s)
- Jeffrey Allen
- Department of Biology and Program in Molecular Biology, Pomona College, Claremont, California, United States of America
| | - Konnie Guo
- Department of Biology and Program in Molecular Biology, Pomona College, Claremont, California, United States of America
| | - Dongxiu Zhang
- USDA-ARS, Systematic Mycology and Microbiology Laboratory, Beltsville, Maryland, United States of America
| | - Michaela Ince
- Department of Biology and Program in Molecular Biology, Pomona College, Claremont, California, United States of America
| | - Fabien Jammes
- Department of Biology and Program in Molecular Biology, Pomona College, Claremont, California, United States of America
| |
Collapse
|
44
|
Tateda C, Obara K, Abe Y, Sekine R, Nekoduka S, Hikage T, Nishihara M, Sekine KT, Fujisaki K. The Host Stomatal Density Determines Resistance to Septoria gentianae in Japanese Gentian. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:428-436. [PMID: 30295581 DOI: 10.1094/mpmi-05-18-0114-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant stomata represent the main battlefield for host plants and the pathogens that enter plant tissues via stomata. Septoria spp., a group of ascomycete fungi, use host plant stomata for invasion and cause serious damage to agricultural plants. There is no evidence, however, showing the involvement of stomata in defense systems against Septoria infection. In this study, we isolated Septoria gentianae 20-35 (Sg20-35) from Gentiana triflora showing gentian leaf blight disease symptoms in the field. Establishment of an infection system using gentian plants cultured in vitro enabled us to observe the Sg20-35 infection process and estimate its virulence in several gentian cultivars or lines. Sg20-35 also entered gentian tissues via stomata and showed increased virulence in G. triflora compared with G. scabra and their interspecific hybrid. Notably, the susceptibility of gentian cultivars to Sg20-35 was associated with their stomatal density on the adaxial but not abaxial leaf surface. Treatment of EPIDERMAL PATTERNING FACTOR-LIKE 9 (EPFL9/STOMAGEN) peptides, a small secreted peptide controlling stomatal density in Arabidopsis thaliana, increased stomatal density on the adaxial side of gentian leaves as well. Consequently, treated plants showed enhanced susceptibility to Sg20-35. These results indicate that stomatal density on the adaxial leaf surface is one of the major factors determining the susceptibility of gentian cultivars to S. gentianae and suggest that stomatal density control may represent an effective strategy to confer Septoria resistance.
Collapse
Affiliation(s)
- Chika Tateda
- 1 Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Kazue Obara
- 1 Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Yoshiko Abe
- 1 Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Reiko Sekine
- 2 Iwate Plant Protection Office, 20-1 Narita, Kitakami, Iwate 024-0003, Japan
| | - Syuuichi Nekoduka
- 3 University of the Ryukyus, Faculty of Agriculture, Nakagami, Okinawa 903-0213, Japan; and
| | - Takashi Hikage
- 4 Hachimantai City Floricultural Research and Development Center, Kamasuda 70, Hachimantai, Iwate 028-7533, Japan
| | - Masahiro Nishihara
- 1 Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Ken-Taro Sekine
- 2 Iwate Plant Protection Office, 20-1 Narita, Kitakami, Iwate 024-0003, Japan
| | - Koki Fujisaki
- 1 Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| |
Collapse
|
45
|
Brazel AJ, Ó'Maoiléidigh DS. Photosynthetic activity of reproductive organs. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1737-1754. [PMID: 30824936 DOI: 10.1093/jxb/erz033] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/07/2019] [Indexed: 05/06/2023]
Abstract
During seed development, carbon is reallocated from maternal tissues to support germination and subsequent growth. As this pool of resources is depleted post-germination, the plant begins autotrophic growth through leaf photosynthesis. Photoassimilates derived from the leaf are used to sustain the plant and form new organs, including other vegetative leaves, stems, bracts, flowers, fruits, and seeds. In contrast to the view that reproductive tissues act only as resource sinks, many studies demonstrate that flowers, fruits, and seeds are photosynthetically active. The photosynthetic contribution to development is variable between these reproductive organs and between species. In addition, our understanding of the developmental control of photosynthetic activity in reproductive organs is vastly incomplete. A further complication is that reproductive organ photosynthesis (ROP) appears to be particularly important under suboptimal growth conditions. Therefore, the topic of ROP presents the community with a challenge to integrate the fields of photosynthesis, development, and stress responses. Here, we attempt to summarize our understanding of the contribution of ROP to development and the molecular mechanisms underlying its control.
Collapse
Affiliation(s)
- Ailbhe J Brazel
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | |
Collapse
|
46
|
Conklin PA, Strable J, Li S, Scanlon MJ. On the mechanisms of development in monocot and eudicot leaves. THE NEW PHYTOLOGIST 2019; 221:706-724. [PMID: 30106472 DOI: 10.1111/nph.15371] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 05/22/2023]
Abstract
Contents Summary 706 I. Introduction 707 II. Leaf zones in monocot and eudicot leaves 707 III. Monocot and eudicot leaf initiation: differences in degree and timing, but not kind 710 IV. Reticulate and parallel venation: extending the model? 711 V. Flat laminar growth: patterning and coordination of adaxial-abaxial and mediolateral axes 713 VI. Stipules and ligules: ontogeny of primordial elaborations 715 VII. Leaf architecture 716 VIII. Stomatal development: shared and diverged mechanisms for making epidermal pores 717 IX. Conclusion 719 Acknowledgements 720 References 720 SUMMARY: Comparisons of concepts in monocot and eudicot leaf development are presented, with attention to the morphologies and mechanisms separating these angiosperm lineages. Monocot and eudicot leaves are distinguished by the differential elaborations of upper and lower leaf zones, the formation of sheathing/nonsheathing leaf bases and vasculature patterning. We propose that monocot and eudicot leaves undergo expansion of mediolateral domains at different times in ontogeny, directly impacting features such as venation and leaf bases. Furthermore, lineage-specific mechanisms in compound leaf development are discussed. Although models for the homologies of enigmatic tissues, such as ligules and stipules, are proposed, tests of these hypotheses are rare. Likewise, comparisons of stomatal development are limited to Arabidopsis and a few grasses. Future studies may investigate correlations in the ontogenies of parallel venation and linear stomatal files in monocots, and the reticulate patterning of veins and dispersed stoma in eudicots. Although many fundamental mechanisms of leaf development are shared in eudicots and monocots, variations in the timing, degree and duration of these ontogenetic events may contribute to key differences in morphology. We anticipate that the incorporation of an ever-expanding number of sequenced genomes will enrich our understanding of the developmental mechanisms generating eudicot and monocot leaves.
Collapse
Affiliation(s)
- Phillip A Conklin
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Josh Strable
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Shujie Li
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Michael J Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
47
|
Wei D, Liu M, Chen H, Zheng Y, Liu Y, Wang X, Yang S, Zhou M, Lin J. INDUCER OF CBF EXPRESSION 1 is a male fertility regulator impacting anther dehydration in Arabidopsis. PLoS Genet 2018; 14:e1007695. [PMID: 30286083 PMCID: PMC6191155 DOI: 10.1371/journal.pgen.1007695] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/16/2018] [Accepted: 09/13/2018] [Indexed: 11/23/2022] Open
Abstract
INDUCER OF CBF EXPRESSION 1 (ICE1) encodes a MYC-like basic helix-loop-helix (bHLH) transcription factor playing a critical role in plant responses to chilling and freezing stresses and leaf stomata development. However, no information connecting ICE1 and reproductive development has been reported. In this study, we show that ICE1 controls plant male fertility via impacting anther dehydration. The loss-of-function mutation in ICE1 gene in Arabidopsis caused anther indehiscence and decreased pollen viability as well as germination rate. Further analysis revealed that the anthers in the mutant of ICE1 (ice1-2) had the structure of stomium, though the epidermis did not shrink to dehisce. The anther indehiscence and influenced pollen viability as well as germination in ice1-2 were due to abnormal anther dehydration, for most of anthers dehisced with drought treatment and pollen grains from those dehydrated anthers had similar viability and germination rates compared with wild type. Accordingly, the sterility of ice1-2 could be rescued by ambient dehydration treatments. Likewise, the stomatal differentiation of ice1-2 anther epidermis was disrupted in a different manner compared with that in leaves. ICE1 specifically bound to MYC-recognition elements in the promoter of FAMA, a key regulator of guard cell differentiation, to activate FAMA expression. Transcriptome profiling in the anther tissues further exhibited ICE1-modulated genes associated with water transport and ion exchange in the anther. Together, this work reveals the key role of ICE1 in male fertility control and establishes a regulatory network mediated by ICE1 for stomata development and water movement in the anther.
Collapse
Affiliation(s)
- Donghui Wei
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Mingjia Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hu Chen
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ye Zheng
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuxiao Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mingqi Zhou
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Juan Lin
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Maugarny-Calès A, Laufs P. Getting leaves into shape: a molecular, cellular, environmental and evolutionary view. Development 2018; 145:145/13/dev161646. [PMID: 29991476 DOI: 10.1242/dev.161646] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Leaves arise from groups of undifferentiated cells as small primordia that go through overlapping phases of morphogenesis, growth and differentiation. These phases are genetically controlled and modulated by environmental cues to generate a stereotyped, yet plastic, mature organ. Over the past couple of decades, studies have revealed that hormonal signals, transcription factors and miRNAs play major roles during leaf development, and more recent findings have highlighted the contribution of mechanical signals to leaf growth. In this Review, we discuss how modulating the activity of some of these regulators can generate diverse leaf shapes during development, in response to a varying environment, or between species during evolution.
Collapse
Affiliation(s)
- Aude Maugarny-Calès
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.,Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Patrick Laufs
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
49
|
Shirakawa M, Hara-Nishimura I. Specialized Vacuoles of Myrosin Cells: Chemical Defense Strategy in Brassicales Plants. PLANT & CELL PHYSIOLOGY 2018; 59:1309-1316. [PMID: 29897512 DOI: 10.1093/pcp/pcy082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/13/2018] [Indexed: 05/20/2023]
Abstract
Plant vacuoles display many versatile functions. Vacuoles in vegetative tissues are generally involved in protein degradation, and are called lytic vacuoles. However, vegetative vacuoles in specialized cells can accumulate large concentrations of proteins, such as those in idioblast myrosin cells along veins in the order Brassicales, which store large amounts of myrosinases (thioglucoside glucohydrolase and thioglucoside glucohydrolase). Myrosinases cleave the bond between sulfur and glucose in sulfur-rich compounds (glucosinolates) to produce toxic compounds (isothiocyanates) when plants are damaged by pests. This defense strategy is called the myrosinase-glucosinolate system. Recent studies identified atypical myrosinases, PENETRATION 2 (PEN2) and PYK10, along with key components for development of myrosin cells. In this review, we discuss three topics in the myrosinase-glucosinolate system. First, we summarize the complexity and importance of the myrosinase-glucosinolate system, including classical myrosinases, atypical myrosinases and the system that counteracts the myrosinase-glucosinolate system. Secondly, we describe molecular machineries underlying myrosin cell development, including specific reporters, cell lineage, cell differentiation and cell fate determination. The master regulators for myrosin cell differentiation, FAMA and SCREAM, are key transcription factors involved in guard cell differentiation. This indicates that myrosin cells and guard cells share similar transcriptional networks. Finally, we hypothesize that the myrosinase-glucosinolate system may have originated in stomata of ancestral Brassicales plants and, after that, plants co-opted this defense strategy into idioblasts near veins at inner tissue layers.
Collapse
Affiliation(s)
- Makoto Shirakawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | | |
Collapse
|
50
|
Han SK, Qi X, Sugihara K, Dang JH, Endo TA, Miller KL, Kim ED, Miura T, Torii KU. MUTE Directly Orchestrates Cell-State Switch and the Single Symmetric Division to Create Stomata. Dev Cell 2018; 45:303-315.e5. [PMID: 29738710 DOI: 10.1016/j.devcel.2018.04.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Precise cell division control is critical for developmental patterning. For the differentiation of a functional stoma, a cellular valve for efficient gas exchange, the single symmetric division of an immediate precursor is absolutely essential. Yet, the mechanism governing this event remains unclear. Here we report comprehensive inventories of gene expression by the Arabidopsis bHLH protein MUTE, a potent inducer of stomatal differentiation. MUTE switches the gene expression program initiated by SPEECHLESS. MUTE directly induces a suite of cell-cycle genes, including CYCD5;1, in which introduced expression triggers the symmetric divisions of arrested precursor cells in mute, and their transcriptional repressors, FAMA and FOUR LIPS. The regulatory network initiated by MUTE represents an incoherent type 1 feed-forward loop. Our mathematical modeling and experimental perturbations support a notion that MUTE orchestrates a transcriptional cascade leading to a tightly restricted pulse of cell-cycle gene expression, thereby ensuring the single cell division to create functional stomata.
Collapse
Affiliation(s)
- Soon-Ki Han
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Xingyun Qi
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kei Sugihara
- Department of Anatomy and Cell Biology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Jonathan H Dang
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Kristen L Miller
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Eun-Deok Kim
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Keiko U Torii
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|