1
|
Miao Y, Pourquié O. Cellular and molecular control of vertebrate somitogenesis. Nat Rev Mol Cell Biol 2024; 25:517-533. [PMID: 38418851 DOI: 10.1038/s41580-024-00709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Segmentation is a fundamental feature of the vertebrate body plan. This metameric organization is first implemented by somitogenesis in the early embryo, when paired epithelial blocks called somites are rhythmically formed to flank the neural tube. Recent advances in in vitro models have offered new opportunities to elucidate the mechanisms that underlie somitogenesis. Notably, models derived from human pluripotent stem cells introduced an efficient proxy for studying this process during human development. In this Review, we summarize the current understanding of somitogenesis gained from both in vivo studies and in vitro studies. We deconstruct the spatiotemporal dynamics of somitogenesis into four distinct modules: dynamic events in the presomitic mesoderm, segmental determination, somite anteroposterior polarity patterning, and epithelial morphogenesis. We first focus on the segmentation clock, as well as signalling and metabolic gradients along the tissue, before discussing the clock and wavefront and other models that account for segmental determination. We then detail the molecular and cellular mechanisms of anteroposterior polarity patterning and somite epithelialization.
Collapse
Affiliation(s)
- Yuchuan Miao
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Uh K, Monarch K, Reese ED, Rodriguez K, Yoon J, Spate LD, Samuel MS, Koh S, Chen PR, Jarome TJ, Allen TA, Prather RS, Lee K. Impaired Skeletal Development by Disruption of Presenilin-1 in Pigs and Generation of Novel Pig Models for Alzheimer's Disease. J Alzheimers Dis 2024; 101:445-461. [PMID: 39177593 PMCID: PMC11492100 DOI: 10.3233/jad-231297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 08/24/2024]
Abstract
Background Presenilin 1 (PSEN1) is one of the genes linked to the prevalence of early onset Alzheimer's disease. In mice, inactivation of Psen1 leads to developmental defects, including vertebral malformation and neural development. However, little is known about the role of PSEN1 during the development in other species. Objective To investigate the role of PSEN1 in vertebral development and the pathogenic mechanism of neurodegeneration using a pig model. Methods CRISPR/Cas9 system was used to generate pigs with different mutations flanking exon 9 of PSEN1, including those with a deleted exon 9 (Δexon9). Vertebral malformations in PSEN1 mutant pigs were examined by X-ray, micro-CT and micro-MRI. Neuronal cells from the brains of PSEN1 mutant pigs were analyzed by immunoflourescence, followed by image analysis including morphometric evaluation via image J and 3D reconstruction. Results Pigs with a PSEN1 null mutation (Δexon9-12) died shortly after birth and had significant axial skeletal defects, whereas pigs carrying at least one Δexon9 allele developed normally and remained healthy. Effects of the null mutation on abnormal skeletal development were also observed in fetuses at day 40 of gestation. Abnormal distribution of astrocytes and microglia in the brain was detected in two PSEN1 mutant pigs examined compared to age-matched control pigs. The founder pigs were bred to establish and age PSEN1ΔE9/+ pigs to study their relevance to clinical Alzheimer's diseases. Conclusions PSEN1 has a critical role for normal vertebral development and PSEN1 mutant pigs serves as novel resources to study Alzheimer's disease.
Collapse
Affiliation(s)
- Kyungjun Uh
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do, Republic of Korea
| | - Kaylynn Monarch
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Emily D. Reese
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | | | - Junchul Yoon
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Lee D. Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Melissa S. Samuel
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Sehwon Koh
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
| | - Paula R. Chen
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, Columbia, MO, USA
| | - Timothy J. Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Timothy A. Allen
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, USA
- Department of Environmental & Occupational Health, Robert Stempel College of Public Health, Florida International University, Miami, FL, USA
| | - Randall S. Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Kiho Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Fast Explainable Recommendation Model by Combining Fine-Grained Sentiment in Review Data. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:4940401. [DOI: 10.1155/2022/4940401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/05/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
With the rapid development of e-commerce, recommendation system has become one of the main tools that assists users in decision-making, enhances user’s experience, and creates economic value. Since it is difficult to explain the implicit features generated by matrix factorization, explainable recommendation system has attracted more and more attention recently. In this paper, we propose an explainable fast recommendation model by combining fine-grained sentiment in review data (FSER, (Fast) Fine-grained Sentiment for Explainable Recommendation). We innovatively construct user-rating matrix, user-aspect sentiment matrix, and item aspect-descriptive word frequency matrix from the review-based data. And the three matrices are reconstructed by matrix factorization method. The reconstructed results of user-aspect sentiment matrix and item aspect-descriptive word frequency matrix can provide explanation for the final recommendation results. Experiments in the Yelp and Public Comment datasets demonstrate that, compared with several classical models, the proposed FSER model is in the optimal recommendation accuracy range and has lower sparseness and higher training efficiency than tensor models or neural network models; furthermore, it can generate explanatory texts and diagrams that have high interpretation quality.
Collapse
|
4
|
Understanding paraxial mesoderm development and sclerotome specification for skeletal repair. Exp Mol Med 2020; 52:1166-1177. [PMID: 32788657 PMCID: PMC8080658 DOI: 10.1038/s12276-020-0482-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022] Open
Abstract
Pluripotent stem cells (PSCs) are attractive regenerative therapy tools for skeletal tissues. However, a deep understanding of skeletal development is required in order to model this development with PSCs, and for the application of PSCs in clinical settings. Skeletal tissues originate from three types of cell populations: the paraxial mesoderm, lateral plate mesoderm, and neural crest. The paraxial mesoderm gives rise to the sclerotome mainly through somitogenesis. In this process, key developmental processes, including initiation of the segmentation clock, formation of the determination front, and the mesenchymal–epithelial transition, are sequentially coordinated. The sclerotome further forms vertebral columns and contributes to various other tissues, such as tendons, vessels (including the dorsal aorta), and even meninges. To understand the molecular mechanisms underlying these developmental processes, extensive studies have been conducted. These studies have demonstrated that a gradient of activities involving multiple signaling pathways specify the embryonic axis and induce cell-type-specific master transcription factors in a spatiotemporal manner. Moreover, applying the knowledge of mesoderm development, researchers have attempted to recapitulate the in vivo development processes in in vitro settings, using mouse and human PSCs. In this review, we summarize the state-of-the-art understanding of mesoderm development and in vitro modeling of mesoderm development using PSCs. We also discuss future perspectives on the use of PSCs to generate skeletal tissues for basic research and clinical applications. A deeper understanding of skeletal tissue development and improvements in tissue engineering will help pluripotent stem cell (PSC) therapies to reach their full potential for skeletal repair. The paraxial mesoderm, an embryonic germ layer, is crucial to the formation of healthy axial skeleton. Shoichiro Tani at the University of Tokyo, Japan, and co-workers reviewed current understanding of paraxial mesoderm development and studies involving in vitro PSC skeletal modeling. The formation of the paraxial mesoderm and associated connective tissues comprises multiple stages, and studies in vertebrate embryos have uncovered critical signaling pathways and cellular components important to PSC modeling. Although many individual cellular components can now be modeled, it remains challenging to recreate three-dimensional skeletal tissues. Such an achievement would facilitate a functioning model of bone metabolism, the next step in achieving skeletal regeneration.
Collapse
|
5
|
McLellan AS, Langlands K, Kealey T. Exhaustive identification of human class II basic helix-loop-helix proteins by virtual library screening. Mech Dev 2016; 119 Suppl 1:S285-91. [PMID: 14516699 DOI: 10.1016/s0925-4773(03)00130-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cellular proliferation, specification and differentiation in developing tissues are tightly coordinated by groups of transcription factors in response to extrinsic and intrinsic signals. Furthermore, renewable pools of stem cells in adult tissues are subject to similar regulation. Basic helix-loop-helix (bHLH) proteins are a group of transcription factors that exert such a determinative influence on a variety of developmental pathways from C. elegans to humans, and we wished to exclusively identify novel members from within the whole human bHLH family. We have, therefore, developed an 'empirical custom fingerprint', to define the class II bHLH domain and exclusively identify these proteins in silico. We have identified nine previously uncharacterised human class II proteins, four of which were novel, by interrogating conceptual translations of the GenBank HTGS database. RT-PCR and mammalian 2-hybrid analysis of a subset of the factors demonstrated that they were indeed expressed, and were able to interact with an appropriate binding partner in vitro. Thus, we are now approaching an almost complete listing of human class II bHLH factors.
Collapse
Affiliation(s)
- Andrew S McLellan
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QR, UK.
| | | | | |
Collapse
|
6
|
Abstract
Notch controls skeletogenesis, but its role in the remodeling of adult bone remains conflicting. In mature mice, the skeleton can become osteopenic or osteosclerotic depending on the time point at which Notch is activated or inactivated. Using adult EGFP reporter mice, we find that Notch expression is localized to osteocytes embedded within bone matrix. Conditional activation of Notch signaling in osteocytes triggers profound bone formation, mainly due to increased mineralization, which rescues both age-associated and ovariectomy-induced bone loss and promotes bone healing following osteotomy. In parallel, mice rendered haploinsufficient in γ-secretase presenilin-1 (Psen1), which inhibits downstream Notch activation, display almost-absent terminal osteoblast differentiation. Consistent with this finding, pharmacologic or genetic disruption of Notch or its ligand Jagged1 inhibits mineralization. We suggest that stimulation of Notch signaling in osteocytes initiates a profound, therapeutically relevant, anabolic response.
Collapse
|
7
|
The many roles of Notch signaling during vertebrate somitogenesis. Semin Cell Dev Biol 2016; 49:68-75. [DOI: 10.1016/j.semcdb.2014.11.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023]
|
8
|
Akiyama K, Katayama K, Tsuji T, Kunieda T. Characterization of the skeletal fusion with sterility (sks) mouse showing axial skeleton abnormalities caused by defects of embryonic skeletal development. Exp Anim 2014; 63:11-9. [PMID: 24521859 PMCID: PMC4160934 DOI: 10.1538/expanim.63.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The development of the axial skeleton is a complex process, consisting of segmentation
and differentiation of somites and ossification of the vertebrae. The autosomal recessive
skeletal fusion with sterility (sks) mutation of the mouse causes
skeletal malformations due to fusion of the vertebrae and ribs, but the underlying defects
of vertebral formation during embryonic development have not yet been elucidated. For the
present study, we examined the skeletal phenotypes of
sks/sks mice during embryonic development and the
chromosomal localization of the sks locus. Multiple defects of the axial
skeleton, including fusion of vertebrae and fusion and bifurcation of ribs, were observed
in adult and neonatal sks/sks mice. In addition, we also
found polydactyly and delayed skull ossification in the
sks/sks mice. Morphological defects, including
disorganized vertebral arches and fusions and bifurcations of the axial skeletal elements,
were observed during embryonic development at embryonic day 12.5 (E12.5) and E14.5.
However, no morphological abnormality was observed at E11.5, indicating that defects of
the axial skeleton are caused by malformation of the cartilaginous vertebra and ribs at an
early developmental stage after formation and segmentation of the somites. By linkage
analysis, the sks locus was mapped to an 8-Mb region of chromosome 4
between D4Mit331 and D4Mit199. Since no gene has already
been identified as a cause of malformation of the vertebra and ribs in this region, the
gene responsible for sks is suggested to be a novel gene essential for
the cartilaginous vertebra and ribs.
Collapse
Affiliation(s)
- Kouyou Akiyama
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | |
Collapse
|
9
|
Lfng regulates the synchronized oscillation of the mouse segmentation clock via trans-repression of Notch signalling. Nat Commun 2013; 3:1141. [PMID: 23072809 DOI: 10.1038/ncomms2133] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/13/2012] [Indexed: 12/21/2022] Open
Abstract
The synchronized oscillation of segmentation clock is required to generate a sharp somite boundary during somitogenesis. However, the molecular mechanism underlying this synchronization in the mouse embryos is not clarified yet. We used both experimental and theoretical approaches to address this key question. Here we show, using chimeric embryos composed of wild-type cells and Delta like 1 (Dll1)-null cells, that Dll1-mediated Notch signalling is responsible for the synchronization mechanism. By analysing Lunatic fringe (Lfng) chimeric embryos and Notch signal reporter assays using a co-culture system, we further find that Lfng represses Notch activity in neighbouring cells by modulating Dll1 function. Finally, numerical simulations confirm that the repressive effect of Lfng against Notch activities in neighbouring cells can sufficiently explain the synchronization in vivo. Collectively, we provide a new model in which Lfng has a crucial role in intercellular coupling of the segmentation clock through a trans-repression mechanism.
Collapse
|
10
|
Tiedemann HB, Schneltzer E, Zeiser S, Hoesel B, Beckers J, Przemeck GKH, de Angelis MH. From dynamic expression patterns to boundary formation in the presomitic mesoderm. PLoS Comput Biol 2012; 8:e1002586. [PMID: 22761566 PMCID: PMC3386180 DOI: 10.1371/journal.pcbi.1002586] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 04/24/2012] [Indexed: 11/19/2022] Open
Abstract
The segmentation of the vertebrate body is laid down during early embryogenesis. The formation of signaling gradients, the periodic expression of genes of the Notch-, Fgf- and Wnt-pathways and their interplay in the unsegmented presomitic mesoderm (PSM) precedes the rhythmic budding of nascent somites at its anterior end, which later develops into epithelialized structures, the somites. Although many in silico models describing partial aspects of somitogenesis already exist, simulations of a complete causal chain from gene expression in the growth zone via the interaction of multiple cells to segmentation are rare. Here, we present an enhanced gene regulatory network (GRN) for mice in a simulation program that models the growing PSM by many virtual cells and integrates WNT3A and FGF8 gradient formation, periodic gene expression and Delta/Notch signaling. Assuming Hes7 as core of the somitogenesis clock and LFNG as modulator, we postulate a negative feedback of HES7 on Dll1 leading to an oscillating Dll1 expression as seen in vivo. Furthermore, we are able to simulate the experimentally observed wave of activated NOTCH (NICD) as a result of the interactions in the GRN. We esteem our model as robust for a wide range of parameter values with the Hes7 mRNA and protein decays exerting a strong influence on the core oscillator. Moreover, our model predicts interference between Hes1 and HES7 oscillators when their intrinsic frequencies differ. In conclusion, we have built a comprehensive model of somitogenesis with HES7 as core oscillator that is able to reproduce many experimentally observed data in mice.
Collapse
Affiliation(s)
- Hendrik B. Tiedemann
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Elida Schneltzer
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Bastian Hoesel
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universitaet Muenchen, Center of Life and Food Sciences Weihenstephan, Chair of Experimental Genetics, Freising, Germany
| | - Gerhard K. H. Przemeck
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universitaet Muenchen, Center of Life and Food Sciences Weihenstephan, Chair of Experimental Genetics, Freising, Germany
- * E-mail:
| |
Collapse
|
11
|
Saga Y. The mechanism of somite formation in mice. Curr Opin Genet Dev 2012; 22:331-8. [PMID: 22742849 DOI: 10.1016/j.gde.2012.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/30/2012] [Accepted: 05/15/2012] [Indexed: 12/11/2022]
Abstract
Somitogenesis is a series of dynamic morphogenetic events that involve cyclical signaling. The periodicity of somitogenesis is controlled by segmentation clock operating in the presomitic mesoderm (PSM), the precursor of somites. Notch signaling plays important roles not only in the segmentation clock mechanism but also as an output signal of the clock to induce Mesp2 transcription that controls somite formation. In the present review, recent advances in the understanding of the molecular mechanisms underlying the translation of clock information into the spatial patterning of segmental somites in mice are discussed. Particular attention is paid to the interplay between two the distinct signaling pathways of Notch and FGF and the Mesp2 transcription factor acting as an effector molecule during mouse somitogenesis.
Collapse
Affiliation(s)
- Yumiko Saga
- Division of Mammalian Development, National institute of Genetics and Department of Genetics, SOKENDAI, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
12
|
Eckalbar WL, Fisher RE, Rawls A, Kusumi K. Scoliosis and segmentation defects of the vertebrae. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:401-23. [PMID: 23801490 DOI: 10.1002/wdev.34] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vertebral column derives from somites, which are transient paired segments of mesoderm that surround the neural tube in the early embryo. Somites are formed by a genetic mechanism that is regulated by cyclical expression of genes in the Notch, Wnt, and fibroblast growth factor (FGF) signaling pathways. These oscillators together with signaling gradients within the presomitic mesoderm help to set somitic boundaries and rostral-caudal polarity that are essential for the precise patterning of the vertebral column. Disruption of this mechanism has been identified as the cause of severe segmentation defects of the vertebrae in humans. These segmentation defects are part of a spectrum of spinal disorders affecting the skeletal elements and musculature of the spine, resulting in curvatures such as scoliosis, kyphosis, and lordosis. While the etiology of most disorders with spinal curvatures is still unknown, genetic and developmental studies of somitogenesis and patterning of the axial skeleton and musculature are yielding insights into the causes of these diseases.
Collapse
|
13
|
Patten SA, Jacobs-McDaniels NL, Zaouter C, Drapeau P, Albertson RC, Moldovan F. Role of Chd7 in zebrafish: a model for CHARGE syndrome. PLoS One 2012; 7:e31650. [PMID: 22363697 PMCID: PMC3282775 DOI: 10.1371/journal.pone.0031650] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 01/10/2012] [Indexed: 11/19/2022] Open
Abstract
CHARGE syndrome is caused by mutations in the CHD7 gene. Several organ systems including the retina, cranial nerves, inner ear and heart are affected in CHARGE syndrome. However, the mechanistic link between mutations in CHD7 and many of the organ systems dysfunction remains elusive. Here, we show that Chd7 is required for the organization of the neural retina in zebrafish. We observe an abnormal expression or a complete absence of molecular markers for the retinal ganglion cells and photoreceptors, indicating that Chd7 regulates the differentiation of retinal cells and plays an essential role in retinal cell development. In addition, zebrafish with reduced Chd7 display an abnormal organization and clustering of cranial motor neurons. We also note a pronounced reduction in the facial branchiomotor neurons and the vagal motor neurons display aberrant positioning. Further, these fish exhibit a severe loss of the facial nerves. Knock-down of Chd7 results in a curvature of the long body axis and these fish develop irregular shaped vertebrae and have a reduction in bone mineralization. Chd7 knockdown also results in a loss of proper segment polarity illustrated by flawed efnb2a and ttna expression, which is associated with later vascular segmentation defects. These critical roles for Chd7 in retinal and vertebral development were previously unrecognized and our results provide new insights into the role of Chd7 during development and in CHARGE syndrome pathogenesis.
Collapse
Affiliation(s)
- Shunmoogum A. Patten
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
- Faculty of Dentistry, University of Montreal, Montreal, Quebec, Canada
| | | | | | - Pierre Drapeau
- Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - R. Craig Albertson
- Department of Biology, Syracuse University, Syracuse, New York, USA
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Florina Moldovan
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
- Faculty of Dentistry, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
14
|
Mead TJ, Yutzey KE. Notch signaling and the developing skeleton. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:114-30. [PMID: 22399343 DOI: 10.1007/978-1-4614-0899-4_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Notch signaling is an important regulator of skeletogenesis at multiple developmental stages. The Notch signaling pathway is involved in the promotion of somite segmentation, patterning and differentiation into sclerotome pre-chondrogenic cells to allow for appropriate axial skeleton development. In addition, studies performed in vitro and in vivo demonstrate that Notch signaling suppresses chondrogenic and osteoblastic differentiation and negatively regulates osteoclast formation and proliferation. Through the use of in vitro and in vivo approaches, Notch signaling has been shown to regulate somitogenesis, chondrogenesis, osteoblastogenesis and osteoclastogenesis that ultimately affect skeletogenesis. Dysregulation of Notch signaling results in congenital skeletal malformations that could reveal therapeutic potential.
Collapse
Affiliation(s)
- Timothy J Mead
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | |
Collapse
|
15
|
The mouse notches up another success: understanding the causes of human vertebral malformation. Mamm Genome 2011; 22:362-76. [DOI: 10.1007/s00335-011-9335-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/23/2011] [Indexed: 11/27/2022]
|
16
|
Nakajima M, Matsuda K, Miyauchi N, Fukunaga Y, Watanabe S, Okuyama S, Pérez J, Fernández-Llebrez P, Shen J, Furukawa Y. Hydrocephalus and abnormal subcommissural organ in mice lacking presenilin-1 in Wnt1 cell lineages. Brain Res 2011; 1382:275-81. [PMID: 21262207 PMCID: PMC3418702 DOI: 10.1016/j.brainres.2011.01.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/14/2011] [Accepted: 01/14/2011] [Indexed: 01/09/2023]
Abstract
Presenilin-1 (PS1) is a transmembrane protein that is in many cases responsible for the development of familial Alzheimer's disease. PS1 is widely expressed in embryogenesis and is essential for neurogenesis, somitogenesis, angiogenesis, and cardiac morphogenesis. To further investigate the role of PS1 in the brain, we inactivated the PS1 gene in Wnt1 cell lineages using the Cre-loxP recombination system. Here we show that conditional inactivation of PS1 in Wnt1 cell lineages results in congenital hydrocephalus and subcommissural organ abnormalities, suggesting a possible role of PS1 in the regulation of cerebrospinal fluid homeostasis.
Collapse
Affiliation(s)
- Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, School of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chen Y, Li H, Zhou B, Peng Y, Zheng Q, Rao L. Presenilin-1 polymorphisms are not relevant in susceptibility to ventricular septal defect: a case-control study. DNA Cell Biol 2011; 30:565-8. [PMID: 21323574 DOI: 10.1089/dna.2010.1148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although many studies have demonstrated that presenilin-1 plays a vital role in cardiovascular system development, no data are available concerning association of polymorphisms of presenilin-1 with ventricular septal defect (VSD) in the Chinese population. The aim of this study was to evaluate the association between two single-nucleotide polymorphisms (rs1800844 and rs177415) of presenilin-1 and VSD. A total of 151 isolated VSD patients and 296 controls were included in the study. The genotype of the polymorphisms was determined by polymerase chain reaction-restriction fragment length polymorphism. Our study showed no statistically significant differences in genotype and allele frequencies between VSD and controls with any of the presenilin-1 genetic variants. These data may provide evidence that the presenilin-1 gene is not a genetic marker for VSD susceptibility in the Han Chinese population.
Collapse
Affiliation(s)
- Yu Chen
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, PR China
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
van Tijn P, Kamphuis W, Marlatt MW, Hol EM, Lucassen PJ. Presenilin mouse and zebrafish models for dementia: focus on neurogenesis. Prog Neurobiol 2010; 93:149-64. [PMID: 21056616 DOI: 10.1016/j.pneurobio.2010.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/27/2010] [Accepted: 10/31/2010] [Indexed: 01/18/2023]
Abstract
Autosomal dominant mutations in the presenilin gene PSEN cause familial Alzheimer's disease (AD), a neurological disorder pathologically characterized by intraneuronal accumulation and extracellular deposition of amyloid-β in plaques and intraneuronal, hyperphosphorylated tau aggregation in neurofibrillary tangles. Presenilins (PS/PSENs) are part of the proteolytic γ-secretase complex, which cleaves substrate proteins within the membrane. Cleavage of the amyloid precursor protein (APP) by γ-secretase releases amyloid-β peptides. Besides its role in the processing of APP and other transmembrane proteins, presenilin plays an important role in neural progenitor cell maintenance and neurogenesis. In this review, we discuss the role of presenilin in relation to neurogenesis and neurodegeneration and review the currently available presenilin animal models. In addition to established mouse models, zebrafish are emerging as an attractive vertebrate model organism to study the role of presenilin during the development of the nervous system and in neurodegenerative disorders involving presenilin. Zebrafish is a suitable model organism for large-scale drug screening, making this a valuable model to identify novel therapeutic targets for AD.
Collapse
Affiliation(s)
- Paula van Tijn
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
20
|
González A, Kageyama R. Automatic reconstruction of the mouse segmentation network from an experimental evidence database. Biosystems 2010; 102:16-21. [PMID: 20682331 DOI: 10.1016/j.biosystems.2010.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 07/15/2010] [Indexed: 12/11/2022]
Abstract
Mammalian vertebrae, ribs, body wall musculature and back skin develop from repetitive embryonic tissues called somites. The development of somites depends on the molecular oscillations of the products of so-called cyclic genes. The underlying network involves the Wnt, Fgf/Mapk, Notch signaling pathways and the T-box genes. The discovery of this network is based on genetic interactions. Because of regulatory feedbacks and cross-regulation between pathways, it is often difficult to intuitively identify direct molecular interactions underlying genetic interactions. To address this problem, we developed a method based on a database and graph theory algorithms. We first encoded genetic and non-genetic experiments in a relational database. Next, we built a reference network with the data from non-genetic experiments and the KEGG pathway database. Then, we computed the shortest path between the nodes for each genetic interaction in the reference network to propose direct molecular interactions. The resulting network is the largest computational representation of the mammalian segmentation network to date with 36 nodes and 57 interactions. In some instances, a number of genetic interactions could be explained by adding a single link to the reference network, which leads to experimentally testable hypotheses. Two examples of such predictions are the direct transcriptional regulation of Dll3 and Fgf8 genes by the Rbpj and Ctnnb1 products, respectively. Furthermore, the computed shortest paths suggest that cross-talks from the Wnt to the Fgf/Mapk and Notch pathways might be mediated by the Dvl genes. This method can be applied in any system where gene expression changes are observed as a response to some gene perturbation, for instance in cancer cells.
Collapse
Affiliation(s)
- Aitor González
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan.
| | | |
Collapse
|
21
|
Takahashi J, Ohbayashi A, Oginuma M, Saito D, Mochizuki A, Saga Y, Takada S. Analysis of Ripply1/2-deficient mouse embryos reveals a mechanism underlying the rostro-caudal patterning within a somite. Dev Biol 2010; 342:134-45. [PMID: 20346937 DOI: 10.1016/j.ydbio.2010.03.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 12/22/2022]
Abstract
The rostro-caudal patterning within a somite is periodically established in the presomitic mesoderm (PSM). In the mouse, Mesp2 is required for the rostral property whereas Notch signaling and Ripply2, a Mesp2-induced protein that suppresses Mesp2 transcription, are required for the caudal property. Here, we examined the mechanism behind rostro-caudal patterning by comparing the spatial movement of Notch activity with Mesp2 protein localization in wild-type embryos and those defective in Ripply1 and 2, both of which are expressed in the PSM. Mesp2 protein appears first as a thin band in the middle of the traveling Notch active domain in both wild-type and Ripply1/2-deficient embryos. In wild-type embryos, the Mesp2 band expands anteriorly to the expression front of Tbx6, an activator of Mesp2 transcription. Notch activity becomes localized further anteriorly to this Mesp2 domain, but does not pass over the anterior Mesp2 domain generated in the previous segmentation cycle. As a result, the Notch active domain appears to be restricted between these two Mesp2 domains. In Ripply1/2-deficient embryos, the Mesp2 band becomes more expanded and the Notch domain is finally diminished. Interestingly, Ripply1/2-deficient embryos exhibit anterior expansion of the Tbx6 protein domain, suggesting that Ripply1/2 regulates Mesp2 expression by modulating elimination of Tbx6 proteins. We propose that the rostro-caudal pattern is established by dynamic interaction of Notch activity with two Mesp2 domains, which are defined in successive segmentation cycles by Notch, Tbx6 and Ripply1/2.
Collapse
Affiliation(s)
- Jun Takahashi
- Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Nakajima M, Watanabe S, Okuyama S, Shen J, Furukawa Y. Restricted growth and insulin-like growth factor-1 deficiency in mice lacking presenilin-1 in the neural crest cell lineage. Int J Dev Neurosci 2009; 27:837-43. [PMID: 19665542 PMCID: PMC3425391 DOI: 10.1016/j.ijdevneu.2009.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 07/16/2009] [Accepted: 08/03/2009] [Indexed: 11/26/2022] Open
Abstract
Presenilin-1 (PS1) is a transmembrane protein that is in many cases responsible for the development of early-onset familial Alzheimer's disease. PS1 is essential for neurogenesis, somitogenesis, angiogenesis, and cardiac morphogenesis. We report here that PS1 is also required for maturation and/or maintenance of the pituitary gland. We generated PS1-conditional knockout (PS1-cKO) mice by crossing floxed PS1 and Wnt1-cre mice, in which PS1 was lacking in the neural crest-derived cell lineage. Although the PS1-cKO mice exhibited no obvious phenotypic abnormalities for several days after birth, reduced body weight in the mutant was evident by the age of 3-5 weeks. Pituitary weight and serum insulin-like growth factor (IGF)-1 level were also reduced in the mutant. Histologic analysis revealed severe atrophy of the cytosol in the anterior and intermediate pituitary lobes of the mutant. Immunohistochemistry did not reveal clear differences in the expression levels of thyroid-stimulating hormone, adrenocorticotropic hormone, or prolactin in the mutant pituitary. In contrast, growth hormone expression levels were reduced in the anterior lobe of the mutant. PS1 was defective in the posterior lobe, but not the anterior or intermediate lobes, in the mutant pituitary. These findings suggest that PS1 indirectly mediates the development and/or maintenance of the anterior and intermediate lobes in the pituitary gland via actions in other regions, such as the posterior lobe.
Collapse
Affiliation(s)
- Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, School of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan.
| | - Sono Watanabe
- Department of Pharmaceutical Pharmacology, School of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama 790-8578, Japan
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, School of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama 790-8578, Japan
| | - Jie Shen
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, School of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama 790-8578, Japan
| |
Collapse
|
23
|
González A, Kageyama R. Hopf bifurcation in the presomitic mesoderm during the mouse segmentation. J Theor Biol 2009; 259:176-89. [DOI: 10.1016/j.jtbi.2009.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 01/13/2023]
|
24
|
Mutations in the MESP2 gene cause spondylothoracic dysostosis/Jarcho-Levin syndrome. Am J Hum Genet 2008; 82:1334-41. [PMID: 18485326 DOI: 10.1016/j.ajhg.2008.04.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 04/04/2008] [Accepted: 04/24/2008] [Indexed: 02/03/2023] Open
Abstract
Spondylothoracic dysostosis (STD), also known as Jarcho-Levin syndrome (JLS), is an autosomal-recessive disorder characterized by abnormal vertebral segmentation and defects affecting spine formation, with complete bilateral fusion of the ribs at the costovertebral junction producing a "crab-like" configuration of the thorax. The shortened spine and trunk can severely affect respiratory function during early childhood. The condition is prevalent in the Puerto Rican population, although it is a panethnic disorder. By sequencing a set of candidate genes involved in mouse segmentation, we identified a recessive E103X nonsense mutation in the mesoderm posterior 2 homolog (MESP2) gene in a patient, of Puerto Rican origin and from the Boston area, who had been diagnosed with STD/JLS. We then analyzed 12 Puerto Rican families with STD probands for the MESP2 E103X mutation. Ten patients were homozygous for the E103X mutation, three patients were compound heterozygous for a second nonsense mutation, E230X, or a missense mutation, L125V, which affects a conserved leucine residue within the bHLH region. Thus, all affected probands harbored the E103X mutation. Our findings suggest a founder-effect mutation in the MESP2 gene as a major cause of the classical Puerto Rican form of STD/JLS.
Collapse
|
25
|
Shifley ET, Cole SE. The vertebrate segmentation clock and its role in skeletal birth defects. ACTA ACUST UNITED AC 2007; 81:121-33. [PMID: 17600784 DOI: 10.1002/bdrc.20090] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The segmental structure of the vertebrate body plan is most evident in the axial skeleton. The regulated generation of somites, a process called somitogenesis, underlies the vertebrate body plan and is crucial for proper skeletal development. A genetic clock regulates this process, controlling the timing of somite development. Molecular evidence for the existence of the segmentation clock was first described in the expression of Notch signaling pathway members, several of which are expressed in a cyclic fashion in the presomitic mesoderm (PSM). The Wnt and fibroblast growth factor (FGF) pathways have also recently been linked to the segmentation clock, suggesting that a complex, interconnected network of three signaling pathways regulates the timing of somitogenesis. Mutations in genes that have been linked to the clock frequently cause abnormal segmentation in model organisms. Additionally, at least two human disorders, spondylocostal dysostosis (SCDO) and Alagille syndrome (AGS), are caused by mutations in Notch pathway genes and exhibit vertebral column defects, suggesting that mutations that disrupt segmentation clock function in humans can cause congenital skeletal defects. Thus, it is clear that the correct, cyclic function of the Notch pathway within the vertebrate segmentation clock is essential for proper somitogenesis. In the future, with a large number of additional cyclic genes recently identified, the complex interactions between the various signaling pathways making up the segmentation clock will be elucidated and refined.
Collapse
Affiliation(s)
- Emily T Shifley
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
26
|
Chan T, Kondow A, Hosoya A, Hitachi K, Yukita A, Okabayashi K, Nakamura H, Ozawa H, Kiyonari H, Michiue T, Ito Y, Asashima M. Ripply2is essential for precise somite formation during mouse early development. FEBS Lett 2007; 581:2691-6. [PMID: 17531978 DOI: 10.1016/j.febslet.2007.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/26/2007] [Accepted: 05/10/2007] [Indexed: 12/19/2022]
Abstract
The regions of expression of Ripply1 and Ripply2, presumptive transcriptional corepressors, overlap at the presomitic mesoderm during somitogenesis in mouse and zebrafish. Ripply1 is required for somite segmentation in zebrafish, but the developmental role of Ripply2 remains unclear in both species. Here, we generated Ripply2 knock-out mice to investigate the role of Ripply2. Defects in segmentation of the axial skeleton were observed in the homozygous mutant mice. Moreover, somite segmentation and expression of Notch2 and Uncx4.1 were disrupted. These findings indicate that Ripply2 is involved in somite segmentation and establishment of rostrocaudal polarity.
Collapse
Affiliation(s)
- Techuan Chan
- ICORP Organ Regeneration Project, Japan Science and Technology Agency, 3-8-1 Komaba, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Takahashi Y, Yasuhiko Y, Kitajima S, Kanno J, Saga Y. Appropriate suppression of Notch signaling by Mesp factors is essential for stripe pattern formation leading to segment boundary formation. Dev Biol 2007; 304:593-603. [PMID: 17306789 DOI: 10.1016/j.ydbio.2007.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 12/12/2006] [Accepted: 01/04/2007] [Indexed: 12/30/2022]
Abstract
Mesp1 and Mesp2 are homologous transcription factors that are co-expressed in the anterior presomitic mesoderm (PSM) during mouse somitogenesis. The loss of Mesp2 alone in our conventional Mesp2-null mice results in the complete disruption of somitogenesis, including segment border formation, rostro-caudal patterning and epithelialization of somitic mesoderm. This has led us to interpret that Mesp2 is solely responsible for somitogenesis. Our novel Mesp2 knock-in alleles, however, exhibit a remarkable upregulation of Mesp1. Removal of the pgk-neo cassette from the new allele leads to localization of Mesp1 and several gene expression, and somite formation in the tail region. Moreover, a reduction in the gene dosage of Mesp1 by one copy disrupts somite formation, confirming the involvement of Mesp1 in the rescue events. Furthermore, we find that activated Notch1 knock-in significantly upregulates Mesp1 expression, even in the absence of a Notch signal mediator, Psen1. This indicates that the Psen1-independent effects of activated Notch1 are mostly attributable to the induction of Mesp1. However, we have also confirmed that Mesp2 enhances the expression of the Notch1 receptor in the anterior PSM. The activation and subsequent suppression of Notch signaling might thus be a crucial event for both stripe pattern formation and boundary formation.
Collapse
Affiliation(s)
- Yu Takahashi
- Cellular and Molecular Toxicology Division, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagayaku, Tokyo 158-8501, Japan.
| | | | | | | | | |
Collapse
|
28
|
Sewell W, Kusumi K. Genetic analysis of molecular oscillators in mammalian somitogenesis: Clues for studies of human vertebral disorders. ACTA ACUST UNITED AC 2007; 81:111-20. [PMID: 17600783 DOI: 10.1002/bdrc.20091] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The repeating pattern of the human vertebral column is shaped early in development, by a process called somitogenesis. In this embryonic process, pairs of mesodermal segments called somites are serially laid down along the developing neural tube. Somitogenesis is an iterative process, repeating at regular time intervals until the last somite is formed. This process lays down the vertebrate body axis from head to tail, making for a progression of developmental steps along the rostral-caudal axis. In this review, the roles of the Notch, Wnt, fibroblast growth factor, retinoic acid and other pathways are described during the following key steps in somitogenesis: formation of the presomitic mesoderm (PSM) and establishment of molecular gradients; prepatterning of the PSM by molecular oscillators; patterning of rostral-caudal polarity within the somite; formation of somite borders; and maturation and resegmentation of somites to form musculoskeletal tissues. Disruption of somitogenesis can lead to severe vertebral birth defects such as spondylocostal dysostosis (SCD). Genetic studies in the mouse have been instrumental in finding mutations in this disorder, and ongoing mouse studies should provide functional insights and additional candidate genes to help in efforts to identify genes causing human spinal birth defects.
Collapse
Affiliation(s)
- William Sewell
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
| | | |
Collapse
|
29
|
Zhu H, Dhar PK. Transient block of receptor may be a mechanism controlling unidirectional propagation of signaling. IEEE Trans Nanobioscience 2006; 5:193-203. [PMID: 16999245 DOI: 10.1109/tnb.2006.880832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In tissue development, juxtacrine signaling often propagates across cells, carrying and delivering temporal and spatial information for cells to make correct patterning. Observed complex and accurate tissue patterning indicates that signaling propagation via ligand-receptor interactions is precisely controlled. It is important and interesting to reveal the possible control mechanisms. The directionality of signaling in cells, which is a common issue for all intercellular signaling pathways, is a critical aspect. To understand the propagation of Notch signaling in presomitic mesoderm cells in the mouse, a novel method is used to build a multicellular model to simulate Notch signaling. Simulation reveals that the transient block of Notch by Notch induced Lfng and the delayed removal of the block by another Notch induced protein Hes7 may explain the observed unidirectional propagation of Notch signaling in these cells. Both mutation in and overexpression of lfng cause the same signaling profile in the tissue, due to the inappropriate timing of Notch signaling block by Lfng. The reverse Notch/Delta signaling quickly develops into reciprocating signaling among cells, causing irregular expression of cyclic genes. Irregular Notch signaling in cells would change their response to the positional information provided by the Fgf8 gradient, resulting in disordered and irregular somite segmentation. As Notch signaling is highly conserved, we hypothesize that the mechanism of controlling unidirectional propagation of signaling in cells by transient receptor block may exist in other tissues and in other vertebrates. Our simulation results also suggest that segmentation clock and unidirectional propagation may be inherently coupled in Notch signaling.
Collapse
Affiliation(s)
- Hao Zhu
- Bioinformatics Institute of Singapore, Biopolis Street, 138671, Singapore.
| | | |
Collapse
|
30
|
Echeverri K, Oates AC. Coordination of symmetric cyclic gene expression during somitogenesis by Suppressor of Hairless involves regulation of retinoic acid catabolism. Dev Biol 2006; 301:388-403. [PMID: 17098223 DOI: 10.1016/j.ydbio.2006.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 09/29/2006] [Accepted: 10/05/2006] [Indexed: 01/25/2023]
Abstract
Vertebrate embryos faithfully produce bilaterally symmetric somites that give rise to repetitive body structures such as vertebrae and skeletal muscle. Body segmentation is regulated by a cyclic gene expression system, containing the Delta-Notch pathway and targets, which generates bilaterally symmetric oscillations across the Pre-Somitic Mesoderm (PSM). The position of the forming somite boundary is controlled by interaction of this oscillator with a determination front comprised of opposing gradients of FGF and retinoic acid (RA) signalling. Disruption of RA production leads to asymmetries in cyclic gene expression, but the link between RA and the oscillator is unknown. In somitogenesis, Notch signalling activates target genes through the transcription factor Suppressor of Hairless (Su(H)). Here, we report that two Su(H) genes coordinate bilaterally symmetric positioning of somite boundaries in the zebrafish embryo. Combined Su(H) gene knockdown caused defects in visceral left/right asymmetry, neurogenic lateral inhibition, and symmetrical failure of the segmentation oscillator. However, by selectively down-regulating Su(H)2 or Su(H)1 function using specific antisense morpholinos, we observed asymmetric defects in anterior or posterior somite boundaries, respectively. These morphological abnormalities were reflected by underlying asymmetric cyclic gene expression waves in the presomitic mesoderm, indicating a key role for Su(H) in coordinating the left-right symmetry of this process. Strikingly, expression of the RA-degrading enzyme cyp26a1 in the tailbud was controlled by Su(H) activity, and morpholino knockdown of cyp26a1 alone caused asymmetric cyclic dlc expression, suggesting that excess RA in the tailbud may contribute to the cyclic asymmetries. Indeed, exogenous RA was sufficient to generate asymmetric expression of all cyclic genes. Our observations indicate that one element of the Notch signalling pathway, Su(H), is required for control of RA metabolism in the tailbud and that this regulation is involved in bilateral symmetry of cyclic gene expression and somitogenesis.
Collapse
Affiliation(s)
- Karen Echeverri
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 01307 Dresden, Germany
| | | |
Collapse
|
31
|
Nakajima M, Ogawa M, Shimoda Y, Koseki H, Shirasawa T, Furukawa K. Accelerated acquisition of permeability barrier function in the skin of presenilin-1-deficient embryos. Arch Dermatol Res 2006; 298:339-45. [PMID: 16969656 DOI: 10.1007/s00403-006-0696-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Revised: 07/15/2006] [Accepted: 08/15/2006] [Indexed: 11/26/2022]
Abstract
Presenilin-1 (PS1) is a transmembrane protein and is responsible for the development of early-onset familial Alzheimer's disease. PS1 is essential for neurogenesis, somitogenesis, angiogenesis and cardiac morphogenesis. We report here that PS1 is involved in the development of skin barrier function. PS1-deficient embryos showed an accelerated acquisition of permeability barrier function at embryonic day 17.5 as manifested by the exclusion of a dye solution. While the expression of beta-catenin and epidermal differentiation markers such as keratin 1 and loricrin was not substantially altered, an increased accumulation of E-cadherin was observed immunohistochemically in the mutant skin. These results suggest that PS1 regulates the acquisition of permeability barrier function in the skin.
Collapse
Affiliation(s)
- Mitsunari Nakajima
- Department of Biosignal Research, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Mizuguchi R, Kriks S, Cordes R, Gossler A, Ma Q, Goulding M. Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons. Nat Neurosci 2006; 9:770-8. [PMID: 16715081 DOI: 10.1038/nn1706] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 04/25/2006] [Indexed: 11/09/2022]
Abstract
Sensory information from the periphery is integrated and transduced by excitatory and inhibitory interneurons in the dorsal spinal cord. Recent studies have identified a number of postmitotic factors that control the generation of these sensory interneurons. We show that Gsh1/2 and Ascl1 (Mash1), which are expressed in sensory interneuron progenitors, control the choice between excitatory and inhibitory cell fates in the developing mouse spinal cord. During the early phase of neurogenesis, Gsh1/2 and Ascl1 coordinately regulate the expression of Tlx3, which is a critical postmitotic determinant for dorsal glutamatergic sensory interneurons. However, at later developmental times, Ascl1 controls the expression of Ptf1a in dIL(A) progenitors to promote inhibitory neuron differentiation while at the same time upregulating Notch signaling to ensure the proper generation of dIL(B) excitatory neurons. We propose that this switch in Ascl1 function enables the cogeneration of inhibitory and excitatory sensory interneurons from a common pool of dorsal progenitors.
Collapse
Affiliation(s)
- Rumiko Mizuguchi
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
33
|
Yasuhiko Y, Haraguchi S, Kitajima S, Takahashi Y, Kanno J, Saga Y. Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression. Proc Natl Acad Sci U S A 2006; 103:3651-6. [PMID: 16505380 PMCID: PMC1450137 DOI: 10.1073/pnas.0508238103] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mesp2 is a transcription factor that plays fundamental roles in somitogenesis, and its expression is strictly restricted to the anterior presomitic mesoderm just before segment border formation. The transcriptional on-off cycle is linked to the segmentation clock. In our current study, we show that a T-box transcription factor, Tbx6, is essential for Mesp2 expression. Tbx6 directly binds to the Mesp2 gene upstream region and mediates Notch signaling, and subsequent Mesp2 transcription, in the anterior presomitic mesoderm. Our data therefore reveal that a mechanism, via Tbx6-dependent Notch signaling, acts on the transcriptional regulation of Mesp2. This finding uncovers an additional component of the interacting network of various signaling pathways that are involved in somitogenesis.
Collapse
Affiliation(s)
- Yukuto Yasuhiko
- *Cellular and Molecular Toxicology Division, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501, Japan
| | - Seiki Haraguchi
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; and
| | - Satoshi Kitajima
- *Cellular and Molecular Toxicology Division, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501, Japan
| | - Yu Takahashi
- *Cellular and Molecular Toxicology Division, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501, Japan
| | - Jun Kanno
- *Cellular and Molecular Toxicology Division, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501, Japan
| | - Yumiko Saga
- Division of Mammalian Development, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Fujimaki R, Toyama Y, Hozumi N, Tezuka KI. Involvement of Notch signaling in initiation of prechondrogenic condensation and nodule formation in limb bud micromass cultures. J Bone Miner Metab 2006; 24:191-8. [PMID: 16622731 DOI: 10.1007/s00774-005-0671-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 11/21/2005] [Indexed: 11/29/2022]
Abstract
Notch signaling is an evolutionarily conserved mechanism that plays a critical role in the determination of multiple cellular differentiation pathways and morphogenesis during embryogenesis. The limb bud high-density culture is an established model that recapitulates mesenchymal condensation and chondrocyte differentiation. Reverse transcription-polymerase chain reaction (RT-PCR) showed that Notch and its related genes were expressed in such cultures on day 1 and reached a peak between day 3 and day 5, when cell condensation and nodule formation were initiated. Immunohistochemical experiments revealed that the expression of Notch1 was initially localized within the nodules and shifted to their peripheral region as the cell differentiation progressed. We disrupted Notch signaling by using a gamma-secretase inhibitor, N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT), to analyze the function of Notch signaling in the culture system. The blocking of Notch signaling by DAPT apparently promoted the initiation of prechondrogenic condensation and fusion of the nodules, and such an effect was reversed by exogenous expression of the Notch cytoplasmic domain. DAPT treatment also induced chondrogenic markers and bone morphogenetic protein (BMP)-related molecules, including type II collagen, Sox9, GDF5, and Id1. These observations imply that the Notch signal may have an important role in chondrogenic differentiation by negatively regulating the initiation of prechondrogenic condensation and nodule formation.
Collapse
Affiliation(s)
- Ryoji Fujimaki
- Research Institute for Biological Sciences, Tokyo University of Science, Rikadai, Chiba, Japan
| | | | | | | |
Collapse
|
35
|
Henry CA, McNulty IM, Durst WA, Munchel SE, Amacher SL. Interactions between muscle fibers and segment boundaries in zebrafish. Dev Biol 2005; 287:346-60. [PMID: 16225858 DOI: 10.1016/j.ydbio.2005.08.049] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 08/28/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
Abstract
The most obvious segmental structures in the vertebrate embryo are somites: transient structures that give rise to vertebrae and much of the musculature. In zebrafish, most somitic cells give rise to long muscle fibers that are anchored to intersegmental boundaries. Therefore, this boundary is analogous to the mammalian tendon in that it transduces muscle-generated force to the skeletal system. We have investigated interactions between somite boundaries and muscle fibers. We define three stages of segment boundary formation. The first stage is the formation of the initial epithelial somite boundary. The second "transition" stage involves both the elongation of initially round muscle precursor cells and somite boundary maturation. The third stage is myotome boundary formation, where the boundary becomes rich in extracellular matrix and all muscle precursor cells have elongated to form long muscle fibers. It is known that formation of the initial epithelial somite boundary requires Notch signaling; vertebrate Notch pathway mutants show severe defects in somitogenesis. However, many zebrafish Notch pathway mutants are homozygous viable suggesting that segmentation of their larval and adult body plans at least partially recovers. We show that epithelial somite boundary formation and slow-twitch muscle morphogenesis are initially disrupted in after eight (aei) mutant embryos (which lack function of the Notch ligand, DeltaD); however, myotome boundaries form later ("recover") in a Hedgehog-dependent fashion. Inhibition of Hedgehog-induced slow muscle induction in aei/deltaD and deadly seven (des)/notch1a mutant embryos suggests that slow muscle is necessary for myotome boundary recovery in the absence of initial epithelial somite boundary formation. Because we have previously demonstrated that slow muscle migration triggers fast muscle cell elongation in zebrafish, we hypothesize that migrating slow muscle facilitates myotome boundary formation in aei/deltaD mutant embryos by patterning coordinated fast muscle cell elongation. In addition, we utilized genetic mosaic analysis to show that somite boundaries also function to limit the extent to which fast muscle cells can elongate. Combined, our results indicate that multiple interactions between somite boundaries and muscle fibers mediate zebrafish segmentation.
Collapse
Affiliation(s)
- Clarissa A Henry
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA.
| | | | | | | | | |
Collapse
|
36
|
Oates AC, Mueller C, Ho RK. Cooperative function of deltaC and her7 in anterior segment formation. Dev Biol 2005; 280:133-49. [PMID: 15766754 PMCID: PMC2801430 DOI: 10.1016/j.ydbio.2005.01.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 01/12/2005] [Accepted: 01/12/2005] [Indexed: 11/25/2022]
Abstract
Segmentation of paraxial mesoderm in vertebrates is regulated by a genetic oscillator that manifests as a series of wavelike or cyclic gene expression domains in the embryo. In zebrafish, this oscillator involves members of the Delta/Notch intercellular signaling pathway, and its down-stream targets, the Her family of transcriptional repressors. Loss of function of any one of the genes of this system, such as her7, gives rise to segmentation defects in the posterior trunk and tail, concomitant with a disruption of cyclic expression domains, indicating that the oscillator is required for posterior segmentation. Control of segmentation in the anterior trunk, and its relationship to that of the posterior is, however, not yet well understood. A combined loss of the cyclic Her genes her1 and her7 disrupts segmentation of both anterior and posterior paraxial mesoderm, indicating that her genes function redundantly in anterior segmentation. To test whether this anterior redundancy is specific to the her gene family, or alternatively is a more global feature of the segmentation oscillator, we looked at anterior segmentation after morpholino knock down of the cyclic cell-surface Notch ligand deltaC (dlc), either alone or in combination with her7, or other Delta/Notch pathway genes. We find that dlc is required for coherence of wavelike expression domains of cyclic genes her1 and her7 and maintenance of their expression levels, as well as for cyclic transcription of dlc itself, confirming that dlc is a component of the segmentation oscillator. Dose dependent, posteriorly-restricted segmentation defects were seen in the dlc knock down, and in combination with the deltaD or notch1a mutants. However, combined reduction of function of dlc and her7 results in defective segmentation of both anterior and posterior paraxial mesoderm, and a failure of cyclic expression domains to initiate, similar to loss of both her genes. Thus, anterior segmentation requires the functions of both her and delta family members in a parallel manner, suggesting that the segmentation oscillator operates in paraxial mesoderm along the entire vertebrate axis.
Collapse
Affiliation(s)
- Andrew C Oates
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | | | |
Collapse
|
37
|
Huppert SS, Ilagan MXG, De Strooper B, Kopan R. Analysis of Notch Function in Presomitic Mesoderm Suggests a γ-Secretase-Independent Role for Presenilins in Somite Differentiation. Dev Cell 2005; 8:677-88. [PMID: 15866159 DOI: 10.1016/j.devcel.2005.02.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 12/23/2004] [Accepted: 02/17/2005] [Indexed: 10/25/2022]
Abstract
The role of Notch signaling in general and presenilin in particular was analyzed during mouse somitogenesis. We visualize cyclical production of activated Notch (NICD) and establish that somitogenesis requires less NICD than any other tissue in early mouse embryos. Indeed, formation of cervical somites proceeds in Notch1; Notch2-deficient embryos. This is in contrast to mice lacking all presenilin alleles, which have no somites. Since Nicastrin-, Pen-2-, and APH-1a-deficient embryos have anterior somites without gamma-secretase, presenilin may have a gamma-secretase-independent role in somitogenesis. Embryos triple homozygous for both presenilin null alleles and a Notch allele that is a poor substrate for presenilin (N1(V-->G)) experience fortuitous cleavage of N1(V-->G) by another protease. This restores NICD, anterior segmentation, and bilateral symmetry but does not rescue rostral/caudal identities. These data clarify multiple roles for Notch signaling during segmentation and suggest that the earliest stages of somitogenesis are regulated by both Notch-dependent and Notch-independent functions of presenilin.
Collapse
MESH Headings
- Amyloid Precursor Protein Secretases
- Animals
- Aspartic Acid Endopeptidases
- Body Patterning/genetics
- Body Patterning/physiology
- Cell Differentiation
- Endopeptidases/metabolism
- In Situ Hybridization
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Microscopy, Electron, Scanning
- Phenotype
- Presenilin-1
- Presenilin-2
- Receptor, Notch1
- Receptor, Notch2
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Somites/cytology
- Somites/metabolism
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Stacey S Huppert
- Department of Molecular Biology and Pharmacology, Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
38
|
Kuan CYK, Tannahill D, Cook GMW, Keynes RJ. Somite polarity and segmental patterning of the peripheral nervous system. Mech Dev 2004; 121:1055-68. [PMID: 15296971 DOI: 10.1016/j.mod.2004.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 04/29/2004] [Accepted: 05/03/2004] [Indexed: 10/26/2022]
Abstract
The analysis of the outgrowth pattern of spinal axons in the chick embryo has shown that somites are polarized into anterior and posterior halves. This polarity dictates the segmental development of the peripheral nervous system: migrating neural crest cells and outgrowing spinal axons traverse exclusively the anterior halves of the somite-derived sclerotomes, ensuring a proper register between spinal axons, their ganglia and the segmented vertebral column. Much progress has been made recently in understanding the molecular basis for somite polarization, and its linkage with Notch/Delta, Wnt and Fgf signalling. Contact-repulsive molecules expressed by posterior half-sclerotome cells provide critical guidance cues for axons and neural crest cells along the anterior-posterior axis. Diffusible repellents from surrounding tissues, particularly the dermomyotome and notochord, orient outgrowing spinal axons in the dorso-ventral axis ('surround repulsion'). Repulsive forces therefore guide axons in three dimensions. Although several molecular systems have been identified that may guide neural crest cells and axons in the sclerotome, it remains unclear whether these operate together with considerable overall redundancy, or whether any one system predominates in vivo.
Collapse
Affiliation(s)
- C-Y Kelly Kuan
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | | | | |
Collapse
|
39
|
Shinkai Y, Tsuji T, Kawamoto Y, Kunieda T. New mutant mouse with skeletal deformities caused by mutation in delta like 3 (Dll3) gene. Exp Anim 2004; 53:129-36. [PMID: 15153675 DOI: 10.1538/expanim.53.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We have established a new mouse strain with vertebral deformities caused by an autosomal single recessive mutation (oma). The mutant mice showed short trunk and short and kinky tail. The skeletal preparations of newborn and prenatal mice showed disorganized vertebrae and numerous vertebral and rib fusions which are thought to be caused by patterning defects at the stage of somitegenesis. Linkage analysis localized the oma locus on the proximal region of mouse chromosome 7 close to Dll3 gene. Dll3 is the gene involved in the Notch signaling pathway and null-mutation of the gene has been reported to cause vertebral deformities. The phenotypic similarity between oma and Dll3 null-mutant mice suggests that the causative gene for the oma mutant is the Dll3 gene. We, therefore, investigated the nucleotide sequence of the Dll3 gene of the oma mouse and found a single nucleotide substitution of G to T which causes missense mutation of glycine to cysteine at codon 409. Since the amino acid substitution is a nonconservative amino acid substitution at the conserved portion of the Dll3 protein, and the substitution is specific to the mutant mice, we concluded that the nucleotide substitution of the Dll3 gene is responsible for the skeletal deformities of the oma mouse.
Collapse
Affiliation(s)
- Yusuke Shinkai
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Japan
| | | | | | | |
Collapse
|
40
|
Nakajima M, Moriizumi E, Koseki H, Shirasawa T. Presenilin 1 is essential for cardiac morphogenesis. Dev Dyn 2004; 230:795-9. [PMID: 15254914 DOI: 10.1002/dvdy.20098] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Presenilin 1 (PS1) is the gene responsible for the development of early-onset familial Alzheimer's disease. PS1-deficient mice have been reported to show defects in neurogenesis, somitogenesis and angiogenesis. Here, we report cardiac anomaly in PS1-deficient mice: the mutant hearts exhibited ventricular septal defect, double outlet right ventricle, and stenosis in the pulmonary artery. Immunohistochemistry using anti-PS1 antibody revealed the prominent expression of PS1 in mesenchymal cells at the septal area of the wild-type heart. These results suggest that PS1 may play an essential role in heart development.
Collapse
Affiliation(s)
- Mitsunari Nakajima
- Department of Molecular Gerontology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
41
|
Nakajima M, Shirasawa T. Presenilin-1-deficient neurons are nitric oxide-dependently killed by hydrogen peroxide in vitro. Neuroscience 2004; 125:563-8. [PMID: 15099670 DOI: 10.1016/j.neuroscience.2004.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2004] [Indexed: 01/01/2023]
Abstract
Presenilin-1 (PS1) is the gene responsible for the development of early-onset familial Alzheimer's disease. To probe the functions of PS1 on neuronal resistance to oxidative stress, we pharmacologically examined the death signals in PS1-deficient neurons induced by oxidative stress. Because the death of primarily cultured neurons lacking PS1 is caused by hydrogen peroxide in calcium-dependent manners in vitro [J Neurochem 78 (2001) 807], we tested the neuronal survival-promoting ability of inhibitors against calcium-dependent/cell death-related signaling molecules, such as ERKs, JNK, p38 MAP kinase, calcineurin, calpain, and nitric oxide synthase (NOS). All inhibitors tested failed to rescue the PS1-deficient neurons from the death with the exception of an inhibitor of NOS, N(G)-nitro-l-arginine methyl ester. Hemoglobin, a nitric oxide (NO) scavenger, also prevented the death of the mutant neurons. NADPH-diaphorase staining, which accounts for NOS activity, was enhanced in the mutant neurons. These results suggest that PS1 has a role for NOS activation in neurons and confers oxidative stress-resistance on neurons in calcium/NO-dependent manners.
Collapse
Affiliation(s)
- M Nakajima
- Department of Molecular Gerontology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | | |
Collapse
|
42
|
Nakajima M, Yuasa S, Ueno M, Takakura N, Koseki H, Shirasawa T. Abnormal blood vessel development in mice lacking presenilin-1. Mech Dev 2003; 120:657-67. [PMID: 12834865 DOI: 10.1016/s0925-4773(03)00064-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presenilin-1 (PS1) is a gene responsible for the development of early-onset familial Alzheimer's disease. To explore the potential roles of PS1 in vascular development, we examined the vascular system of mouse embryos lacking PS1. PS1-deficient embryos exhibited cerebral hemorrhages and subcutaneous edema by mid gestation. Immunohistochemical analysis revealed vascular remodeling failure in the stomach and trunk dorsal median region of the skin and insufficient formation of the perineural plexus around the spinal cord of the PS1 mutant embryos. The number of capillary sprouting sites reduced and the capillary diameter increased in the mutant brains, especially at the amygdaloid and striatal regions. Endothelial cells in the sprouting capillaries of the mutant mice showed abnormal morphologies such as multiplication, apoptotic and necrotic images, in contrast to pericytes showing a normal appearance. An in vitro assay using para-aortic splanchnopleural mesoderm (P-Sp) revealed aberrant angiogenesis in the explant culture from the mutant. These findings suggest the essential roles of PS1 in angiogenesis.
Collapse
Affiliation(s)
- Mitsunari Nakajima
- Department of Molecular Genetics, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, 173-0015 Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 2003; 194:237-55. [PMID: 12548545 DOI: 10.1002/jcp.10208] [Citation(s) in RCA: 946] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling dictates cell fate and critically influences cell proliferation, differentiation, and apoptosis in metazoans. Multiple factors at each step-ligands, receptors, signal transducers and effectors-play critical roles in executing the pleiotropic effects of Notch signaling. Ligand-binding results in proteolytic cleavage of Notch receptors to release the signal-transducing Notch intracellular domain (NICD). NICD migrates into the nucleus and associates with the nuclear proteins of the RBP-Jkappa family (also known as CSL or CBF1/Su(H)/Lag-1). RBP-Jkappa, when complexed with NICD, acts as a transcriptional activator, and the RBP-Jkappa-NICD complex activates expression of primary target genes of Notch signaling such as the HES and enhancer of split [E(spl)] families. HES/E(spl) is a basic helix-loop-helix (bHLH) type of transcriptional repressor, and suppresses expression of downstream target genes such as tissue-specific transcriptional activators. Thus, HES/E(spl) directly affects cell fate decisions as a primary Notch effector. HES/E(spl) had been the only known effector of Notch signaling until a recent discovery of a related but distinct bHLH protein family, termed HERP (HES-related repressor protein, also called Hey/Hesr/HRT/CHF/gridlock). In this review, we summarize the recent data supporting the idea of HERP being a new Notch effector, and provide an overview of the similarities and differences between HES and HERP in their biochemical properties as well as their tissue distribution. One key observation derived from identification of HERP is that HES and HERP form a heterodimer and cooperate for transcriptional repression. The identification of the HERP family as a Notch effector that cooperates with HES/E(spl) family has opened a new avenue to our understanding of the Notch signaling pathway.
Collapse
Affiliation(s)
- Tatsuya Iso
- Institute for Genetic Medicine, Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90089, USA
| | | | | |
Collapse
|
44
|
Rhee J, Takahashi Y, Saga Y, Wilson-Rawls J, Rawls A. The protocadherin papc is involved in the organization of the epithelium along the segmental border during mouse somitogenesis. Dev Biol 2003; 254:248-61. [PMID: 12591245 DOI: 10.1016/s0012-1606(02)00085-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The anterior and posterior halves of individual somites adopt distinct fates during somitogenesis, which is crucial for establishing the metameric pattern of axial tissues such as the vertebral column and peripheral nerves. Genetic analyses have demonstrated that the specification of cells to an anterior or posterior fate is intimately related to the process of segmentation. Inactivation of the transcription factor Mesp2, or components of the Notch signaling pathway, led to defects in segmentation and a loss of anterior/posterior polarity. Target genes in mice that could mediate the morphological events associated with segmentation or polarity have not been identified. Studies in Xenopus and zebrafish have demonstrated that the protocadherin, papc, is expressed in an anterior-specific manner in the presumptive somites of the presomitic mesoderm and is required for normal somitogenesis. Here, we examine the role of papc in directing segmentation in the mouse. We demonstrate that papc is expressed in a dynamic pattern within the first two presumptive somites (0 and -1) at the anterior end of the presomitic mesoderm. The domain of papc transcription in somite 0 starts broad and becomes progressively restricted to the anterior edge. Transcription in somite -1 over the same time remains broad. Analysis of targeted null mutations revealed that transcription of papc is dependent on Mesp2. The dynamic nature of papc transcription in somite 0 requires the expression of lunatic fringe, which modifies the activation of the Notch signaling pathway and is required for proper segmentation of somites. Treatment of embryonic mouse tails in a hanging drop culture with a putative dominant-negative mutation of papc disrupted the epithelial organization of cells at the segmental borders between somites. Together, these data indicate that papc is an important regulator of somite epithelialization associated with segmentation.
Collapse
Affiliation(s)
- Jerry Rhee
- Department of Biology, Arizona State University, Tempe, AZ 85287-1501, USA
| | | | | | | | | |
Collapse
|
45
|
Eimer S, Donhauser R, Baumeister R. The Caenorhabditis elegans presenilin sel-12 is required for mesodermal patterning and muscle function. Dev Biol 2002; 251:178-92. [PMID: 12413907 DOI: 10.1006/dbio.2002.0782] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in presenilin genes impair Notch signalling and, in humans, have been implicated in the development of familial Alzheimer's disease. We show here that a reduction of the activity of the Caenorhabditis elegans presenilin sel-12 results in a late defect during sex muscle development. The morphological abnormalities and functional deficits in the sex muscles contribute to the egg-laying defects seen in sel-12 hermaphrodites and to the severely reduced mating efficiency of sel-12 males. Both defects can be rescued by expressing sel-12 from the hlh-8 promoter that is active during the development of the sex muscle-specific M lineage, but not by expressing sel-12 from late muscle-specific promoters. Both weak and strong sel-12 mutations cause defects in the sex muscles that resemble the defects we found in lin-12 hypomorphic alleles, suggesting a previously uncharacterised LIN-12 signalling event late in postembryonic mesoderm development. Together with a previous study indicating a role of lin-12 and sel-12 during the specification of the pi cell lineage required for proper vulva-uterine connection, our data suggest that the failure of sel-12 animals to lay eggs properly is caused by defects in at least two independent signalling events in different tissues during development.
Collapse
Affiliation(s)
- Stefan Eimer
- ABI, Department of Biochemistry, Laboratory of Molecular Neurogenetics, Ludwig-Maximilians-Universitaet Munich, Schillerstrasse 44, Munich D-80336, Germany
| | | | | |
Collapse
|
46
|
Cole SE, Levorse JM, Tilghman SM, Vogt TF. Clock regulatory elements control cyclic expression of Lunatic fringe during somitogenesis. Dev Cell 2002; 3:75-84. [PMID: 12110169 DOI: 10.1016/s1534-5807(02)00212-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Somitogenesis requires a segmentation clock and Notch signaling. Lunatic fringe (Lfng) expression in the presomitic mesoderm (PSM) cycles in the posterior PSM, is refined in the segmenting somite to the rostral compartment, and is required for segmentation. We identify distinct cis-acting regulatory elements for each aspect of Lfng expression. Fringe clock element 1 (FCE1) represents a conserved 110 bp region that is necessary to direct cyclic Lfng RNA expression in the posterior PSM. Mutational analysis of E boxes within FCE1 indicates a potential interplay of positive and negative transcriptional regulation by cyclically expressed bHLH proteins. A separable Lfng regulatory region directs expression to the prospective rostral aspect of the condensing somite. These independent Lfng regulatory cassettes advance a molecular framework for deciphering somite segmentation.
Collapse
Affiliation(s)
- Susan E Cole
- Department of Molecular Biology and Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
47
|
Zhang N, Norton CR, Gridley T. Segmentation defects of Notch pathway mutants and absence of a synergistic phenotype in lunatic fringe/radical fringe double mutant mice. Genesis 2002; 33:21-8. [PMID: 12001066 DOI: 10.1002/gene.10081] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Notch signaling pathway is important in regulating formation and anterior-posterior patterning of somites in vertebrate embryos. Here we show that distinct segmentation defects are displayed in embryos mutant for the Notch pathway genes Notch1, Lunatic fringe (Lfng), Delta-like 1 (Dll1), and Delta-like 3 (Dll3). Lfng-deficient mice and Dll3-deficient mice exhibit very similar defects, and marker analysis suggests that progression of the segmentation clock is disrupted in Dll3 mutants. We also show that Radical fringe (Rfng)-deficient mice exhibit no obvious phenotypic defects. To assess whether the absence of a phenotype in Rfng-deficient mice was the result of functional redundancy with the Lfng gene, we generated Lfng/Rfng double homozygous mutant mice. These mice exhibit the skeletal defects normally observed in Lfng-deficient mice, but we detected no obvious synergistic or additive effects in the double mutant animals.
Collapse
Affiliation(s)
- Nian Zhang
- Van Andel Research Institute, Grand Rapids, Michigan, USA
| | | | | |
Collapse
|
48
|
Abstract
The reiterated structures of the vertebrate axial skeleton, spinal nervous system and body muscle are based on the metameric structure of somites, which are formed in a dynamic morphogenetic process. Somite segmentation requires the activity of a biochemical oscillator known as the somite-segmentation clock. Although the molecular identity of the clock remains unknown, genetic and experimental evidence has accumulated that indicates how the periodicity of somite formation is generated, how the positions of segment borders are determined, and how the rostrocaudal polarity within somite primordia is generated.
Collapse
Affiliation(s)
- Y Saga
- Division of Mammalian Development, National Institute of Genetics, Yata 1111, Mishima 411-8540, Japan.
| | | |
Collapse
|
49
|
Bessho Y, Sakata R, Komatsu S, Shiota K, Yamada S, Kageyama R. Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev 2001; 15:2642-7. [PMID: 11641270 PMCID: PMC312810 DOI: 10.1101/gad.930601] [Citation(s) in RCA: 296] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The basic helix-loop-helix (bHLH) gene Hes7, a putative Notch effector, encodes a transcriptional repressor. Here, we found that Hes7 expression oscillates in 2-h cycles in the presomitic mesoderm (PSM). In Hes7-null mice, somites are not properly segmented and their anterior-posterior polarity is disrupted. As a result, the somite derivatives such as vertebrae and ribs are severely disorganized. Although expression of Notch and its ligands is not affected significantly, the oscillator and Notch modulator lunatic fringe is expressed continuously throughout the mutant PSM. These results indicate that Hes7 controls the cyclic expression of lunatic fringe and is essential for coordinated somite segmentation.
Collapse
Affiliation(s)
- Y Bessho
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Haraguchi S, Kitajima S, Takagi A, Takeda H, Inoue T, Saga Y. Transcriptional regulation of Mesp1 and Mesp2 genes: differential usage of enhancers during development. Mech Dev 2001; 108:59-69. [PMID: 11578861 DOI: 10.1016/s0925-4773(01)00478-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mesp1 and Mesp2 encode bHLH-type transcription factors, Mesp1 and Mesp2, respectively. The expression of both genes is observed in the nascent mesoderm, and subsequently in the rostral presomitic mesoderm. To determine the regulatory mechanism for gene expression, we attempted to identify enhancer elements by transient transgenic analysis. At least two enhancers, which are responsible for the expression of the two genes in the early mesoderm (early mesodermal enhancer, EME) and the presomitic mesoderm (PSM enhancer, PSME), and one suppressor, which is responsible for the rostrally restricted expression in the presomitic mesoderm, were identified. Deletion studies of these enhancer elements indicate that either gene may use the same enhancer for early mesoderm development, whereas both genes may utilize separate enhancers to regulate their expression in the presomitic mesoderm.
Collapse
Affiliation(s)
- S Haraguchi
- Cellular & Molecular Toxicology Division, National Institute of Health Sciences, 1-18-1 Kamiyohga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | |
Collapse
|