1
|
Glover HJ, Holliday H, Shparberg RA, Winkler D, Day M, Morris MB. Signalling pathway crosstalk stimulated by L-proline drives mouse embryonic stem cells to primitive-ectoderm-like cells. Development 2023; 150:dev201704. [PMID: 37823343 PMCID: PMC10652046 DOI: 10.1242/dev.201704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The amino acid L-proline exhibits growth factor-like properties during development - from improving blastocyst development to driving neurogenesis in vitro. Addition of 400 μM L-proline to self-renewal medium drives naïve mouse embryonic stem cells (ESCs) to early primitive ectoderm-like (EPL) cells - a transcriptionally distinct primed or partially primed pluripotent state. EPL cells retain expression of pluripotency genes, upregulate primitive ectoderm markers, undergo a morphological change and have increased cell number. These changes are facilitated by a complex signalling network hinging on the Mapk, Fgfr, Pi3k and mTor pathways. Here, we use a factorial experimental design coupled with statistical modelling to understand which signalling pathways are involved in the transition between ESCs and EPL cells, and how they underpin changes in morphology, cell number, apoptosis, proliferation and gene expression. This approach reveals pathways which work antagonistically or synergistically. Most properties were affected by more than one inhibitor, and each inhibitor blocked specific aspects of the naïve-to-primed transition. These mechanisms underpin progression of stem cells across the in vitro pluripotency continuum and serve as a model for pre-, peri- and post-implantation embryogenesis.
Collapse
Affiliation(s)
- Hannah J. Glover
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Holly Holliday
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | | | - David Winkler
- Department of Biochemistry and Chemistry, Latrobe Institute for Molecular Science, Latrobe University, Bundoora 3083, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Margot Day
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | - Michael B. Morris
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
2
|
Glover HJ, Shparberg RA, Morris MB. L-Proline Supplementation Drives Self-Renewing Mouse Embryonic Stem Cells to a Partially Primed Pluripotent State: The Early Primitive Ectoderm-Like Cell. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2490:11-24. [PMID: 35486235 DOI: 10.1007/978-1-0716-2281-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mouse embryonic stem cells (mESCs) can be grown under a variety of culture conditions as discrete cell states along the pluripotency continuum, ranging from the least mature "ground state" to being "primed" to differentiate. Cells along this continuum are demarcated by differences in gene expression, X chromosome inactivation, ability to form chimeras and epigenetic marks. We have developed a protocol to differentiate "naïve" mESCs to a "partially primed" state by adding the amino acid L-proline to self-renewal medium. These cells express the primitive ectoderm markers Dnmt3b and Fgf5, and are thus called early primitive ectoderm-like (EPL) cells. In addition to changes in gene expression, these cells undergo a morphological change to flattened, dispersed colonies, have an increased proliferation rate, and a predisposition to neural fate. EPL cells can be used to study the cell states along the pluripotency continuum, peri-implantation embryogenesis, and as a starting point for efficient neuronal differentiation.
Collapse
Affiliation(s)
- Hannah J Glover
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| | - Rachel A Shparberg
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Michael B Morris
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
3
|
Fan W, Christian KM, Song H, Ming GL. Applications of Brain Organoids for Infectious Diseases. J Mol Biol 2022; 434:167243. [PMID: 34536442 PMCID: PMC8810605 DOI: 10.1016/j.jmb.2021.167243] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022]
Abstract
Brain organoids are self-organized three-dimensional aggregates generated from pluripotent stem cells. They exhibit complex cell diversities and organized architectures that resemble human brain development ranging from neural tube formation, neuroepithelium differentiation, neurogenesis and gliogenesis, to neural circuit formation. Rapid advancements in brain organoid culture technologies have allowed researchers to generate more accurate models of human brain development and neurological diseases. These models also allow for direct investigation of pathological processes associated with infectious diseases affecting the nervous system. In this review, we first briefly summarize recent advancements in brain organoid methodologies and neurodevelopmental processes that can be effectively modeled by brain organoids. We then focus on applications of brain organoids to investigate the pathogenesis of neurotropic viral infection. Finally, we discuss limitations of the current brain organoid methodologies as well as applications of other organ specific organoids in the infectious disease research.
Collapse
Affiliation(s)
- Wenqiang Fan
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Developmental and Cell Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Epigenetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. https://twitter.com/UPenn_SongMing
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Developmental and Cell Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Shparberg RA, Glover HJ, Morris MB. Modeling Mammalian Commitment to the Neural Lineage Using Embryos and Embryonic Stem Cells. Front Physiol 2019; 10:705. [PMID: 31354503 PMCID: PMC6637848 DOI: 10.3389/fphys.2019.00705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Early mammalian embryogenesis relies on a large range of cellular and molecular mechanisms to guide cell fate. In this highly complex interacting system, molecular circuitry tightly controls emergent properties, including cell differentiation, proliferation, morphology, migration, and communication. These molecular circuits include those responsible for the control of gene and protein expression, as well as metabolism and epigenetics. Due to the complexity of this circuitry and the relative inaccessibility of the mammalian embryo in utero, mammalian neural commitment remains one of the most challenging and poorly understood areas of developmental biology. In order to generate the nervous system, the embryo first produces two pluripotent populations, the inner cell mass and then the primitive ectoderm. The latter is the cellular substrate for gastrulation from which the three multipotent germ layers form. The germ layer definitive ectoderm, in turn, is the substrate for multipotent neurectoderm (neural plate and neural tube) formation, representing the first morphological signs of nervous system development. Subsequent patterning of the neural tube is then responsible for the formation of most of the central and peripheral nervous systems. While a large number of studies have assessed how a competent neurectoderm produces mature neural cells, less is known about the molecular signatures of definitive ectoderm and neurectoderm and the key molecular mechanisms driving their formation. Using pluripotent stem cells as a model, we will discuss the current understanding of how the pluripotent inner cell mass transitions to pluripotent primitive ectoderm and sequentially to the multipotent definitive ectoderm and neurectoderm. We will focus on the integration of cell signaling, gene activation, and epigenetic control that govern these developmental steps, and provide insight into the novel growth factor-like role that specific amino acids, such as L-proline, play in this process.
Collapse
Affiliation(s)
| | | | - Michael B. Morris
- Embryonic Stem Cell Laboratory, Discipline of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Gao Q, Zhang W, Ma L, Li X, Wang H, Li Y, Freimann R, Yu Y, Shuai L, Wutz A. Derivation of Haploid Neural Stem Cell Lines by Selection for a Pax6-GFP Reporter. Stem Cells Dev 2019; 27:479-487. [PMID: 29471728 DOI: 10.1089/scd.2017.0193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Haploid cells facilitate genetic screening of recessive mutations for a single set of chromosomes. Haploid embryonic stem cells (haESCs) have been achieved in several species and widely utilized in genetic screens. The fact that haESCs undergo substantial diploidization during differentiation has limited the screening to other haploid cell types. In this study, we report a method to establish haploid neural stem cells (haNSCs) by selection for a Pax6 reporter. We inserted a green fluorescence protein (GFP) marker gene by homologous recombination into the Pax6 locus of an haESC line. GFP-positive haploid cells could be sorted and further cultured in the NSC medium for more than 30 passages. The established haNSCs expressed neural lineage markers and could differentiate into neurons, oligodendroglia, and astrocytes. Our study shows the feasibility of deriving haploid proliferative somatic cell lines using a genetically encoded reporter that suggest a system for genetic screening of neural and retinal development.
Collapse
Affiliation(s)
- Qian Gao
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China .,2 Reproductive Medical Center, Department of Gynecology and Obstetrics, Peking University Third Hospital , Beijing, China
| | - Wenhao Zhang
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China
| | - Lifang Ma
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China
| | - Xu Li
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China
| | - Haisong Wang
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China
| | - Yanni Li
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China
| | - Remo Freimann
- 3 Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich , Zurich, Switzerland
| | - Yang Yu
- 2 Reproductive Medical Center, Department of Gynecology and Obstetrics, Peking University Third Hospital , Beijing, China
| | - Ling Shuai
- 1 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University , Tianjin, China
| | - Anton Wutz
- 3 Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich , Zurich, Switzerland
| |
Collapse
|
6
|
Shparberg RA, Glover HJ, Morris MB. Embryoid Body Differentiation of Mouse Embryonic Stem Cells into Neurectoderm and Neural Progenitors. Methods Mol Biol 2019; 2029:273-285. [PMID: 31273749 DOI: 10.1007/978-1-4939-9631-5_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mouse embryonic stem cells (mESCs) are pluripotent cells capable of differentiating in vitro to form the ~200 types of cells of the developing embryo and adult, including cells of the nervous system. This makes mESCs a useful tool for studying the molecular mechanisms of mammalian embryonic development. Many protocols involving the use of growth factors and small molecules to differentiate mESCs into neural progenitors and neurons currently exist. However, there is a paucity of protocols available that recapitulate the developmental process. Our laboratory has developed a protocol to recapitulate mammalian neural lineage development by differentiating mESCs to mature neurons via intermediate cell populations observed during in vivo embryo development. This protocol uses the amino acid L-proline to direct the differentiation of mESCs, grown as embryoid bodies, into Sox1+ neurectoderm, followed by differentiation to form Nestin+, BLBP+, and NeuN+ neural cell types.
Collapse
Affiliation(s)
- Rachel A Shparberg
- Embryonic Stem Cell Lab, Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Hannah J Glover
- Embryonic Stem Cell Lab, Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Michael B Morris
- Embryonic Stem Cell Lab, Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Zhong C, Chen Z, Luo X, Wang C, Jiang H, Shao J, Guan M, Huang L, Huang X, Wang J. Barhl 1 is required for the differentiation of inner ear hair cell-like cells from mouse embryonic stem cells. Int J Biochem Cell Biol 2018; 96:79-89. [DOI: 10.1016/j.biocel.2018.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
|
8
|
Smith A. Formative pluripotency: the executive phase in a developmental continuum. Development 2017; 144:365-373. [PMID: 28143843 PMCID: PMC5430734 DOI: 10.1242/dev.142679] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The regulative capability of single cells to give rise to all primary embryonic lineages is termed pluripotency. Observations of fluctuating gene expression and phenotypic heterogeneity in vitro have fostered a conception of pluripotency as an intrinsically metastable and precarious state. However, in the embryo and in defined culture environments the properties of pluripotent cells change in an orderly sequence. Two phases of pluripotency, called naïve and primed, have previously been described. In this Hypothesis article, a third phase, called formative pluripotency, is proposed to exist as part of a developmental continuum between the naïve and primed phases. The formative phase is hypothesised to be enabling for the execution of pluripotency, entailing remodelling of transcriptional, epigenetic, signalling and metabolic networks to constitute multi-lineage competence and responsiveness to specification cues. Summary: This Hypothesis article poses that a third state of pluripotency, called formative pluripotency, exists between the naïve and primed states, and is enabling for the execution of pluripotency.
Collapse
Affiliation(s)
- Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
9
|
Meyer K, Kaspar BK. Glia-neuron interactions in neurological diseases: Testing non-cell autonomy in a dish. Brain Res 2017; 1656:27-39. [PMID: 26778174 PMCID: PMC4939136 DOI: 10.1016/j.brainres.2015.12.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/30/2022]
Abstract
For the past century, research on neurological disorders has largely focused on the most prominently affected cell types - the neurons. However, with increasing knowledge of the diverse physiological functions of glial cells, their impact on these diseases has become more evident. Thus, many conditions appear to have more complex origins than initially thought. Since neurological pathologies are often sporadic with unknown etiology, animal models are difficult to create and might only reflect a small portion of patients in which a mutation in a gene has been identified. Therefore, reliable in vitro systems to studying these disorders are urgently needed. They might be a pre-requisite for improving our understanding of the disease mechanisms as well as for the development of potential new therapies. In this review, we will briefly summarize the function of different glial cell types in the healthy central nervous system (CNS) and outline their implication in the development or progression of neurological conditions. We will then describe different types of culture systems to model non-cell autonomous interactions in vitro and evaluate advantages and disadvantages. This article is part of a Special Issue entitled SI: Exploiting human neurons.
Collapse
Affiliation(s)
- Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Brian K Kaspar
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Tan BSN, Kwek J, Wong CKE, Saner NJ, Yap C, Felquer F, Morris MB, Gardner DK, Rathjen PD, Rathjen J. Src Family Kinases and p38 Mitogen-Activated Protein Kinases Regulate Pluripotent Cell Differentiation in Culture. PLoS One 2016; 11:e0163244. [PMID: 27723793 PMCID: PMC5056717 DOI: 10.1371/journal.pone.0163244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 09/05/2016] [Indexed: 02/04/2023] Open
Abstract
Multiple pluripotent cell populations, which together comprise the pluripotent cell lineage, have been identified. The mechanisms that control the progression between these populations are still poorly understood. The formation of early primitive ectoderm-like (EPL) cells from mouse embryonic stem (mES) cells provides a model to understand how one such transition is regulated. EPL cells form from mES cells in response to l-proline uptake through the transporter Slc38a2. Using inhibitors of cell signaling we have shown that Src family kinases, p38 MAPK, ERK1/2 and GSK3β are required for the transition between mES and EPL cells. ERK1/2, c-Src and GSK3β are likely to be enforcing a receptive, primed state in mES cells, while Src family kinases and p38 MAPK are involved in the establishment of EPL cells. Inhibition of these pathways prevented the acquisition of most, but not all, features of EPL cells, suggesting that other pathways are required. L-proline activation of differentiation is mediated through metabolism and changes to intracellular metabolite levels, specifically reactive oxygen species. The implication of multiple signaling pathways in the process suggests a model in which the context of Src family kinase activation determines the outcomes of pluripotent cell differentiation.
Collapse
Affiliation(s)
- Boon Siang Nicholas Tan
- School of BioSciences, University of Melbourne, Parkville, Australia
- Stem Cells Australia, The University of Melbourne, Parkville, Australia
| | - Joly Kwek
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Stem Cell Centre, Monash University, Clayton, Australia
| | - Chong Kum Edwin Wong
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Stem Cell Centre, Monash University, Clayton, Australia
| | - Nicholas J. Saner
- Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia
| | - Charlotte Yap
- School of BioSciences, University of Melbourne, Parkville, Australia
| | - Fernando Felquer
- Stem Cells Australia, The University of Melbourne, Parkville, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Michael B. Morris
- Australian Stem Cell Centre, Monash University, Clayton, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - David K. Gardner
- School of BioSciences, University of Melbourne, Parkville, Australia
- Stem Cells Australia, The University of Melbourne, Parkville, Australia
| | - Peter D. Rathjen
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Stem Cell Centre, Monash University, Clayton, Australia
- Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Joy Rathjen
- School of BioSciences, University of Melbourne, Parkville, Australia
- Stem Cells Australia, The University of Melbourne, Parkville, Australia
- Australian Stem Cell Centre, Monash University, Clayton, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
- School of Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
11
|
Differentiation of Spermatogonia Stem Cells into Functional Mature Neurons Characterized with Differential Gene Expression. Mol Neurobiol 2016; 54:5676-5682. [PMID: 27644129 DOI: 10.1007/s12035-016-0097-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 09/01/2016] [Indexed: 01/02/2023]
Abstract
Transplantation of embryonic stem cells (ESCs) is a promising therapeutic approach for the treatment of neurodegenerative diseases. However, ESCs are not usable clinically due to immunological and ethical limitations. The identification of an alternative safe cell source opens novel options via autologous transplantation in neuro-regeneration circumventing these problems. Here, we examined the neurogenic capacity of embryonic stem-like cells (ES-like cells) derived from the testis using neural growth factor inducers and utilized them to generate functional mature neurons. The neuronal differentiation of ES-like cells is induced in three stages. Stage 1 is related to embryoid body (EB) formation. To induce neuroprogenitor cells, EBs were cultured in the presence of retinoic acid, N2 supplement and fibroblast growth factor followed by culturing in a neurobasal medium containing B27, N2 supplements for additional 10 days, to allow the maturation and development of neuronal progenitor cells. The neurogenic differentiation was confirmed by immunostaining for markers of mature neurons. The differentiated neurons were positive for Tuj1 and Tau1. Real-time PCR dates indicated the expression of Nestin and Neuro D (neuroprogenitor markers) in induced cells at the second stage of the differentiation protocol. The differentiated mature neurons exhibited the specific neuron markers Map2 and β-tubulin. The functional maturity of neurons was confirmed by an electrophysiological analysis of passive and active neural membrane properties. These findings indicated a differentiation capacity of ES-like cells derived from the testis to functionally mature neurons, which proposes them as a novel cell source for neuroregenerative medicine.
Collapse
|
12
|
Lindborg BA, Brekke JH, Vegoe AL, Ulrich CB, Haider KT, Subramaniam S, Venhuizen SL, Eide CR, Orchard PJ, Chen W, Wang Q, Pelaez F, Scott CM, Kokkoli E, Keirstead SA, Dutton JR, Tolar J, O'Brien TD. Rapid Induction of Cerebral Organoids From Human Induced Pluripotent Stem Cells Using a Chemically Defined Hydrogel and Defined Cell Culture Medium. Stem Cells Transl Med 2016; 5:970-9. [PMID: 27177577 DOI: 10.5966/sctm.2015-0305] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/23/2016] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Tissue organoids are a promising technology that may accelerate development of the societal and NIH mandate for precision medicine. Here we describe a robust and simple method for generating cerebral organoids (cOrgs) from human pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. By using no additional neural induction components, cOrgs appeared on the hydrogel surface within 10-14 days, and under static culture conditions, they attained sizes up to 3 mm in greatest dimension by day 28. Histologically, the organoids showed neural rosette and neural tube-like structures and evidence of early corticogenesis. Immunostaining and quantitative reverse-transcription polymerase chain reaction demonstrated protein and gene expression representative of forebrain, midbrain, and hindbrain development. Physiologic studies showed responses to glutamate and depolarization in many cells, consistent with neural behavior. The method of cerebral organoid generation described here facilitates access to this technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. SIGNIFICANCE Tissue organoids are a promising technology with many potential applications, such as pharmaceutical screens and development of in vitro disease models, particularly for human polygenic conditions where animal models are insufficient. This work describes a robust and simple method for generating cerebral organoids from human induced pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. This method, by virtue of its simplicity and use of defined materials, greatly facilitates access to cerebral organoid technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable.
Collapse
Affiliation(s)
- Beth A Lindborg
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Bioactive Regenerative Therapeutics, Inc., Two Harbors, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - John H Brekke
- Bioactive Regenerative Therapeutics, Inc., Two Harbors, Minnesota, USA
| | - Amanda L Vegoe
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Connor B Ulrich
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Kerri T Haider
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Sandhya Subramaniam
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Scott L Venhuizen
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Cindy R Eide
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul J Orchard
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Weili Chen
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Qi Wang
- Biostatistical Design and Analysis Center, Clinical and Translational Science Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Francisco Pelaez
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Carolyn M Scott
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Efrosini Kokkoli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan A Keirstead
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jakub Tolar
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Timothy D O'Brien
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
13
|
Use of engineered Schwann cells in peripheral neuropathy: Hopes and hazards. Brain Res 2016; 1638:97-104. [DOI: 10.1016/j.brainres.2015.10.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/23/2015] [Indexed: 01/16/2023]
|
14
|
Abstract
Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by recapitulating the various stages of in vivo neural crest formation and SC differentiation. In this review, we survey the cellular and molecular mechanisms underlying these in vivo processes. We then focus on the current in vitro strategies for generating SCs from two sources of pluripotent stem cells, namely embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Different methods for SC engineering from ESCs and iPSCs are reviewed and suggestions are proposed for optimizing the existing protocols. Potential safety issues regarding the clinical application of iPSC-derived SCs are discussed as well. Lastly, we will address future aspects of SC engineering.
Collapse
|
15
|
Reid KJ, Lang K, Froscio S, Humpage AJ, Young FM. Undifferentiated murine embryonic stem cells used to model the effects of the blue-green algal toxin cylindrospermopsin on preimplantation embryonic cell proliferation. Toxicon 2015; 106:79-88. [PMID: 26403865 DOI: 10.1016/j.toxicon.2015.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022]
Abstract
Undifferentiated mouse embryonic stem cell (mES) proliferation in vitro resembles aspects of in vivo pre-implantation embryonic development. mES were used to assess the embryo-toxicity of cylindrospermopsin (CYN), a water contaminant with an Australian Drinking Water Guideline (ADWG) of 1 μg/L. mES exposed to 0-1 μg/mL CYN for 24-168 h were subjected to an optimised crystal violet viability assay. mES exposed to retinoic acid ± 1 μg/L CYN differentiated into neural-like cells confirmed by morphological examination and RT-PCR for Oct4, Brachyury and Nestin. The CYN No Observed Effect Concentration (OEC) was 0.5 μg/mL, the Lowest OEC was 1 μg/mL (p < 0.001, n = 3), and the IC50 was 0.86 μg/mL after 24 h. The ADWG 1 μg/L CYN did not affect differentiation or proliferation after 72 h, but decreased proliferation after 168 h (p < 0.05). We conclude that higher algal bloom-associated CYN concentrations have the potential to impair in vivo pre-implantation development, and the mES crystal violet assay has broad application to screening environmental toxins.
Collapse
Affiliation(s)
- Katherine J Reid
- Department of Medical Biotechnology, School of Medicine, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia; Australian Water Quality Centre, SA Water, 250 Victoria Square, Adelaide, South Australia 5001, Australia
| | - Kenneth Lang
- Department of Medical Biotechnology, School of Medicine, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia; South Australian Department of Health, Government of South Australia, Adelaide 5000, Australia
| | - Suzanne Froscio
- South Australian Department of Health, Government of South Australia, Adelaide 5000, Australia
| | - Andrew J Humpage
- Australian Water Quality Centre, SA Water, 250 Victoria Square, Adelaide, South Australia 5001, Australia
| | - Fiona M Young
- Department of Medical Biotechnology, School of Medicine, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia; Flinders Fertility, Flinders Medical Centre, Bedford Park, Adelaide, South Australia 5042, Australia.
| |
Collapse
|
16
|
Fauzi I, Panoskaltsis N, Mantalaris A. In Vitro Differentiation of Embryonic Stem Cells into Hematopoietic Lineage: Towards Erythroid Progenitor's Production. Methods Mol Biol 2015; 1341:217-34. [PMID: 26160454 DOI: 10.1007/7651_2015_218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Embryonic stem cells (ESCs) differentiation via embryoid body (EB) formation is an established method that generates the three germ layers. However, EB differentiation poses several problems including formation of heterogeneous cell populations. Herein, we described a differentiation protocol on enhancing mesoderm derivation from murine ESCs (mESCs) using conditioned medium (CM) from HepG2 cells. We used this technique to direct hematopoiesis by generating "embryoid-like" colonies (ELCs) from murine (m) ESCs without following standard formation of EBs. Our CM-mESCs group yielded an almost fivefold increase in ELC formation (p ≤ 0.05) and higher expression of mesoderm genes;-Brachyury-T, Goosecoid, and Flk-1 compared with control mESCs group. Hematopoietic colony formation from CM-mESCs was also enhanced by twofold at days 7 and 14 with earlier colony commitment compared to control mESCs (p ≤ 0.05). This early clonogenic capacity was confirmed morphologically by the presence of nucleated erythrocytes and macrophages as early as day 7 in culture using standard 14-day colony-forming assay. Early expression of hematopoietic primitive (ζ-globin) and definitive (β-globin) erythroid genes and proteins was also observed by day 7 in the CM-treated culture. These data indicate that hematopoietic cells more quickly differentiate from CM-treated, compared with those using standard EB approaches, and provide an efficient bioprocess platform for erythroid-specific differentiation of ESCs.
Collapse
Affiliation(s)
- Iliana Fauzi
- Biological Systems Engineering Laboratory, Department of Chemical Engineering and Chemical Technology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Nicki Panoskaltsis
- Biological Systems Engineering Laboratory, Department of Chemical Engineering and Chemical Technology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.,Department of Hematology, Imperial College London, Northwick Park & St. Mark's campus, London, HA1 3UJ, UK
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory, Department of Chemical Engineering and Chemical Technology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
17
|
Goh HN, Rathjen PD, Familari M, Rathjen J. Endoderm complexity in the mouse gastrula is revealed through the expression of spink3. Biores Open Access 2014; 3:98-109. [PMID: 24940561 PMCID: PMC4048981 DOI: 10.1089/biores.2014.0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endoderm formation in the mammalian embryo occurs first in the blastocyst, when the primitive endoderm and pluripotent cells resolve into separate lineages, and again during gastrulation, when the definitive endoderm progenitor population emerges from the primitive streak. The formation of the definitive endoderm can be modeled using pluripotent cell differentiation in culture. The differentiation of early primitive ectoderm-like (EPL) cells, a pluripotent cell population formed from embryonic stem (ES) cells, was used to identify and characterize definitive endoderm formation. Expression of serine peptidase inhibitor, Kazal type 3 (Spink3) was detected in EPL cell–derived endoderm, and in a band of endoderm immediately distal to the embryonic–extra-embryonic boundary in pregastrula and gastrulating embryos. Later expression marked a region of endoderm separating the yolk sac from the developing gut. In the embryo, Spink3 expression marked a region of endoderm comprising the distal visceral endoderm, as determined by an endocytosis assay, and the proximal region of the definitive endoderm. This region was distinct from the more distal definitive endoderm population, marked by thyrotropin-releasing hormone (Trh). Endoderm expressing either Spink3 or Trh could be formed during EPL cell differentiation, and the prevalence of these populations could be influenced by culture medium and growth factor addition. Moreover, further differentiation suggested that the potential of these populations differed. These approaches have revealed an unexpected complexity in the definitive endoderm lineage, a complexity that will need to be accommodated in differentiation protocols to ensure the formation of the appropriate definitive endoderm progenitor in the future.
Collapse
Affiliation(s)
- Hwee Ngee Goh
- Department of Zoology, University of Melbourne , Victoria, Australia
| | - Peter D Rathjen
- The Menzies Research Institute Tasmania, University of Tasmania , Tasmania, Australia
| | - Mary Familari
- Department of Zoology, University of Melbourne , Victoria, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne , Victoria, Australia . ; The Menzies Research Institute Tasmania, University of Tasmania , Tasmania, Australia
| |
Collapse
|
18
|
Karus M, Blaess S, Brüstle O. Self-organization of neural tissue architectures from pluripotent stem cells. J Comp Neurol 2014; 522:2831-44. [PMID: 24737617 DOI: 10.1002/cne.23608] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 12/23/2022]
Abstract
Despite being a subject of intensive research, the mechanisms underlying the formation of neural tissue architectures during development of the central nervous system remain largely enigmatic. So far, studies into neural pattern formation have been restricted mainly to animal experiments. With the advent of pluripotent stem cells it has become possible to explore early steps of nervous system development in vitro. These studies have unraveled a remarkable propensity of primitive neural cells to self-organize into primitive patterns such as neural tube-like rosettes in vitro. Data from more advanced 3D culture systems indicate that this intrinsic propensity for self-organization can even extend to the formation of complex architectures such as a multilayered cortical neuroepithelium or an entire optic cup. These novel experimental paradigms not only demonstrate the enormous self-organization capacity of neural stem cells, they also provide exciting prospects for studying the earliest steps of human neural tissue development and the pathogenesis of brain malformations in reductionist in vitro paradigms.
Collapse
Affiliation(s)
- Michael Karus
- Institute of Reconstructive Neurobiology, University of Bonn LIFE&BRAIN Center, and LIFE&BRAIN GmbH, 53127, Bonn, Germany
| | | | | |
Collapse
|
19
|
The States of Pluripotency: Pluripotent Lineage Development in the Embryo and in the Dish. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/208067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pluripotent cell lineage of the embryo comprises a series of temporally and functionally distinct intermediary cell states, the epiblast precursor cell of the newly formed blastocyst, the epiblast population of the inner cell mass, and the early and late epiblast of the postimplantation embryo, referred to here as early and late primitive ectoderm. Pluripotent cell populations representative of the embryonic populations can be formed in culture. Although multiple pluripotent cell states are now recognised, little is known about the signals and pathways that progress cells from the epiblast precursor cell to the late primitive ectoderm in the embryo or in culture. The characterisation of cell states is most advanced in mouse where conditions for culturing distinct pluripotent cell states are well established and embryonic material is accessible. This review will focus on the pluripotent cell states present during embryonic development in the mouse and what is known of the mechanisms that regulate the progression of the lineage from the epiblast precursor cell and the ground state of pluripotency to the late primitive ectoderm present immediately prior to cell differentiation.
Collapse
|
20
|
Hughes JN, Wong CKE, Lau KX, Rathjen PD, Rathjen J. Regulation of pluripotent cell differentiation by a small molecule, staurosporine. Differentiation 2014; 87:101-10. [PMID: 24582574 DOI: 10.1016/j.diff.2014.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 12/16/2013] [Accepted: 01/07/2014] [Indexed: 12/25/2022]
Abstract
Research in the embryo and in culture has resulted in a sophisticated understanding of many regulators of pluripotent cell differentiation. As a consequence, protocols for the differentiation of pluripotent cells generally rely on a combination of exogenous growth factors and endogenous signalling. Little consideration has been given to manipulating other pathways to achieve pluripotent cell differentiation. The integrity of cell:cell contacts has been shown to influence lineage choice during pluripotent cell differentiation, with disruption of cell:cell contacts promoting mesendoderm formation and maintenance of cell:cell contacts resulting in the preferential formation of neurectoderm. Staurosporine is a broad spectrum inhibitor of serine/threonine kinases which has several effects on cell function, including interruption of cell:cell contacts, decreasing focal contact size, inducing epithelial to mesenchyme transition (EMT) and promoting cell differentiation. The possibility that staurosporine could influence lineage choice from pluripotent cells in culture was investigated. The addition of staurosporine to differentiating mouse EPL resulted in preferential formation of mesendoderm and mesoderm populations, and inhibited the formation of neurectoderm. Addition of staurosporine to human ES cells similarly induced primitive streak marker gene expression. These data demonstrate the ability of staurosporine to influence lineage choice during pluripotent cell differentiation and to mimic the effect of disrupting cell:cell contacts. Staurosporine induced mesendoderm in the absence of known inducers of formation, such as serum and BMP4. Staurosporine induced the expression of mesendoderm markers, including markers that were not induced by BMP4, suggesting it acted as a broad spectrum inducer of molecular gastrulation. This approach has identified a small molecule regulator of lineage choice with potential applications in the commercial development of ES cell derivatives, specifically as a method for forming mesendoderm progenitors or as a culture adjunct to prevent the formation of ectoderm progenitors during pluripotent cell differentiation.
Collapse
Affiliation(s)
- James Nicholas Hughes
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Chong Kum Edwin Wong
- Department of Zoology, University of Melbourne, Parkville, Victoria 3010 Australia; Australian Stem Cell Centre, Monash University, Clayton, 3800 Victoria, Australia
| | - Kevin Xiuwen Lau
- Department of Zoology, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Peter David Rathjen
- Department of Zoology, University of Melbourne, Parkville, Victoria 3010 Australia; The Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia.
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Parkville, Victoria 3010 Australia; The Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia.
| |
Collapse
|
21
|
Yap C, Goh HN, Familari M, Rathjen PD, Rathjen J. The formation of proximal and distal definitive endoderm populations in culture requires p38 MAPK activity. J Cell Sci 2014; 127:2204-16. [PMID: 24481813 DOI: 10.1242/jcs.134502] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Endoderm formation in the mammal is a complex process with two lineages forming during the first weeks of development, the primitive (or extraembryonic) endoderm, which is specified in the blastocyst, and the definitive endoderm that forms later, at gastrulation, as one of the germ layers of the embryo proper. Fate mapping evidence suggests that the definitive endoderm arises as two waves, which potentially reflect two distinct cell populations. Early primitive ectoderm-like (EPL) cell differentiation has been used successfully to identify and characterise mechanisms regulating molecular gastrulation and lineage choice during differentiation. The roles of the p38 MAPK family in the formation of definitive endoderm were investigated using EPL cells and chemical inhibitors of p38 MAPK activity. These approaches define a role for p38 MAPK activity in the formation of the primitive streak and a second role in the formation of the definitive endoderm. Characterisation of the definitive endoderm populations formed from EPL cells demonstrates the formation of two distinct populations, defined by gene expression and ontogeny, that were analogous to the proximal and distal definitive endoderm populations of the embryo. Formation of the proximal definitive endoderm was found to require p38 MAPK activity and is correlated with molecular gastrulation, defined by the expression of brachyury (T). Distal definitive endoderm formation also requires p38 MAPK activity but can form when T expression is inhibited. Understanding lineage complexity will be a prerequisite for the generation of endoderm derivatives for commercial and clinical use.
Collapse
Affiliation(s)
- Charlotte Yap
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Hwee Ngee Goh
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Mary Familari
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Peter David Rathjen
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia The Menzies Research Institute Tasmania, University of Tasmania, Tasmania, 7000, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia The Menzies Research Institute Tasmania, University of Tasmania, Tasmania, 7000, Australia
| |
Collapse
|
22
|
Jung JH, Wang XD, Loeken MR. Mouse embryonic stem cells established in physiological-glucose media express the high KM Glut2 glucose transporter expressed by normal embryos. Stem Cells Transl Med 2013; 2:929-34. [PMID: 24167319 DOI: 10.5966/sctm.2013-0093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Glut2 is one of the facilitative glucose transporters expressed by preimplantation and early postimplantation embryos. Glut2 is important for survival before embryonic day 10.5. The Glut2 KM (∼16 mmol/liter) is significantly higher than physiologic glucose concentrations (∼5.5 mmol/liter), suggesting that Glut2 normally performs some essential function other than glucose transport. Nevertheless, Glut2 efficiently transports glucose when extracellular glucose concentrations are above the Glut2 KM. Media containing 25 mmol/liter glucose are widely used to establish and propagate embryonic stem cells (ESCs). Glut2-mediated glucose uptake by embryos induces oxidative stress and can cause embryo cell death. Here we tested the hypothesis that low-glucose embryonic stem cells (LG-ESCs) isolated in physiological-glucose (5.5 mmol/liter) media express a functional Glut2 glucose transporter. LG-ESCs were compared with conventional D3 ESCs that had been cultured only in high-glucose media. LG-ESCs expressed Glut2 mRNA and protein at much higher levels than D3 ESCs, and 2-deoxyglucose transport by LG-ESCs, but not D3 ESCs, exhibited high Michaelis-Menten kinetics. Glucose at 25 mmol/liter induced oxidative stress in LG-ESCs and inhibited expression of Pax3, an embryo gene that is inhibited by hyperglycemia, in neuronal precursors derived from LG-ESCs. These effects were not observed in D3 ESCs. These findings demonstrate that ESCs isolated in physiological-glucose media retain a functional Glut2 transporter that is expressed by embryos. These cells are better suited to the study of metabolic regulation characteristic of the early embryo and may be advantageous for therapeutic applications.
Collapse
Affiliation(s)
- Jin Hyuk Jung
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
23
|
Saxena S, Wahl J, Huber-Lang MS, Stadel D, Braubach P, Debatin KM, Beltinger C. Generation of murine sympathoadrenergic progenitor-like cells from embryonic stem cells and postnatal adrenal glands. PLoS One 2013; 8:e64454. [PMID: 23675538 PMCID: PMC3651195 DOI: 10.1371/journal.pone.0064454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 04/15/2013] [Indexed: 11/18/2022] Open
Abstract
Sympathoadrenergic progenitor cells (SAPs) of the peripheral nervous system (PNS) are important for normal development of the sympathetic PNS and for the genesis of neuroblastoma, the most common and often lethal extracranial solid tumor in childhood. However, it remains difficult to isolate sufficient numbers of SAPs for investigations. We therefore set out to improve generation of SAPs by using two complementary approaches, differentiation from murine embryonic stem cells (ESCs) and isolation from postnatal murine adrenal glands. We provide evidence that selecting for GD2 expression enriches for ESC-derived SAP-like cells and that proliferating SAP-like cells can be isolated from postnatal adrenal glands of mice. These advances may facilitate investigations about the development and malignant transformation of the sympathetic PNS.
Collapse
Affiliation(s)
- Shobhit Saxena
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Joachim Wahl
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Markus S. Huber-Lang
- Institute of Traumatology, Hand- and Reconstructive Surgery, Ulm University, Ulm, Germany
| | - Dominic Stadel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Peter Braubach
- Division of Neurophysiology, Ulm University, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christian Beltinger
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
24
|
Ojala M, Rajala K, Pekkanen-Mattila M, Miettinen M, Huhtala H, Aalto-Setälä K. Culture conditions affect cardiac differentiation potential of human pluripotent stem cells. PLoS One 2012; 7:e48659. [PMID: 23119085 PMCID: PMC3485380 DOI: 10.1371/journal.pone.0048659] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 09/28/2012] [Indexed: 12/21/2022] Open
Abstract
Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), are capable of differentiating into any cell type in the human body and thus can be used in studies of early human development, as cell models for different diseases and eventually also in regenerative medicine applications. Since the first derivation of hESCs in 1998, a variety of culture conditions have been described for the undifferentiated growth of hPSCs. In this study, we cultured both hESCs and hiPSCs in three different culture conditions: on mouse embryonic fibroblast (MEF) and SNL feeder cell layers together with conventional stem cell culture medium containing knockout serum replacement and basic fibroblast growth factor (bFGF), as well as on a Matrigel matrix in mTeSR1 medium. hPSC lines were subjected to cardiac differentiation in mouse visceral endodermal-like (END-2) co-cultures and the cardiac differentiation efficiency was determined by counting both the beating areas and Troponin T positive cells, as well as studying the expression of OCT-3/4, mesodermal Brachyury T and NKX2.5 and endodermal SOX-17 at various time points during END-2 differentiation by q-RT-PCR analysis. The most efficient cardiac differentiation was observed with hPSCs cultured on MEF or SNL feeder cell layers in stem cell culture medium and the least efficient cardiac differentiation was observed on a Matrigel matrix in mTeSR1 medium. Further, hPSCs cultured on a Matrigel matrix in mTeSR1 medium were found to be more committed to neural lineage than hPSCs cultured on MEF or SNL feeder cell layers. In conclusion, culture conditions have a major impact on the propensity of the hPSCs to differentiate into a cardiac lineage.
Collapse
Affiliation(s)
- Marisa Ojala
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
- BioMediTech, University of Tampere, Tampere, Finland
| | - Kristiina Rajala
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
- BioMediTech, University of Tampere, Tampere, Finland
| | - Mari Pekkanen-Mattila
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
- BioMediTech, University of Tampere, Tampere, Finland
| | - Marinka Miettinen
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
- BioMediTech, University of Tampere, Tampere, Finland
| | - Heini Huhtala
- School of Health Sciences, University of Tampere, Tampere, Finland
| | - Katriina Aalto-Setälä
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
- BioMediTech, University of Tampere, Tampere, Finland
- Heart Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
25
|
Abstract
In vivo gene knockout studies in mice have revealed essential roles of the mitogen-activated protein kinases (MAPKs) in embryogenesis, but due to early lethality of the knockout embryos, the underlying mechanisms and specific developmental programs regulated by the MAPK pathways have remained largely unknown. In vitro differentiation of mouse embryonic stem cells (ESCs) have opened new possibilities for understanding lineage segregation and gene function in the developmental stages that are not normally accessible in vivo. Building on this technology, in combination with gene knockout cells, we investigated the roles of MKK4 and MKK7, two upstream kinases of the MAPKs, in early lineage specification. Our results show that MKK4 and MKK7 differentially regulate the JNK and p38 MAPKs and make distinct contributions to differentiation programs. In vitro ESC differentiation is a valuable system to investigate the molecular and signaling mechanisms of early embryogenesis.
Collapse
Affiliation(s)
- Jingcai Wang
- Department of Environmental Health; College of Medicine; University of Cincinnati; Cincinnati, OH USA
| | | |
Collapse
|
26
|
Fauzi I, Panoskaltsis N, Mantalaris A. Enhanced hematopoietic differentiation toward erythrocytes from murine embryonic stem cells with HepG2-conditioned medium. Stem Cells Dev 2012; 21:3152-61. [PMID: 22587789 DOI: 10.1089/scd.2012.0030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Embryonic stem cell (ESC) differentiation via embryoid body (EB) formation is an established method that generates the 3 germ layers. However, EB differentiation poses several problems including formation of heterogeneous cell populations. Previously, we have enhanced mesoderm derivation from murine ESCs (mESCs) using conditioned medium (CM) from HepG2 cells. We used this technique to direct hematopoiesis by generating "embryoid-like" colonies (ELCs) from mESCs without standard formation of EBs. Two predifferentiation conditions were tested: (1) mESCs cultured 3 days in standard predifferentiation medium (control) and (2) mESCs cultured 3 days in HepG2 CM (CM-mESCs). Both groups were then exposed to primary differentiation for 8 days (ELC-formation period) and 14 days of hematopoietic differentiation. Enhanced mesoderm formation was observed in the CM-mESC group with an almost 5-fold increase in ELC formation (P ≤ 0.05) and higher expression of mesoderm genes-Brachyury-T, Goosecoid, and Flk-1-compared with those of control mESCs. Hematopoietic colony formation by CM-mESCs was also enhanced by 2-fold at days 7 and 14 with earlier colony commitment compared with those of control mESCs (P ≤ 0.05). This early clonogenic capacity was confirmed morphologically by the presence of nucleated erythrocytes and macrophages as early as day 7 in CM-mESC culture using standard 14-day colony-forming assay. Early expression of hematopoietic primitive (ζ-globin) and definitive (β-globin) erythroid genes and proteins was also observed by day 7 in CM-mESC cultures. These data indicate that hematopoietic cells more quickly differentiate from CM-mESCs, compared with those using standard EB approaches, and provide an efficient bioprocess platform for erythroid-specific differentiation of ESCs.
Collapse
Affiliation(s)
- Iliana Fauzi
- Biological Systems Engineering Laboratory, Department of Chemical Engineering and Chemical Technology, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
27
|
Pal R, Mamidi MK, Das AK, Gupta PK, Bhonde R. A simple and economical route to generate functional hepatocyte-like cells from hESCs and their application in evaluating alcohol induced liver damage. J Cell Biochem 2012; 113:19-30. [PMID: 21956183 DOI: 10.1002/jcb.23391] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The in vitro derived hepatocytes from human embryonic stem cells (hESC) is a promising tool to acquire improved knowledge of the cellular and molecular events underlying early human liver development under physiological and pathological conditions. Here we report a simple two-step protocol employing conditioned medium (CM) from human hepatocellular carcinoma cell line, HepG2 to generate functional hepatocyte-like cells from hESC. Immunocytochemistry, flow cytometry, quantitative RT-PCR, and biochemical analyses revealed that the endodermal progenitors appeared as pockets in culture, and the cascade of genes associated with the formation of definitive endoderm (HNF-3β, SOX-17, DLX-5, CXCR4) was consistent and in concurrence with the up-regulation of the markers for hepatic progenitors [alpha-feto protein (AFP), HNF-4α, CK-19, albumin, alpha-1-antitrypsin (AAT)], followed by maturation into functional hepatocytes [tyrosine transferase (TAT), tryptophan-2, 3-dioxygenase (TDO), glucose 6-phosphate (G6P), CYP3A4, CYP7A1]. We witnessed that the gene expression profile during this differentiation process recapitulated in vivo liver development demonstrating a gradual down-regulation of extra embryonic endodermal markers (SOX-7, HNF-1β, SNAIL-1, LAMININ-1, CDX2), and the generated hepatic cells performed multiple liver functions. Since prenatal alcohol exposure is known to provoke irreversible abnormalities in the fetal cells and developing tissues, we exposed in vitro generated hepatocytes to ethanol (EtOH) and found that EtOH treatment not only impairs the survival and proliferation, but also induces apoptosis and perturbs differentiation of progenitor cells into hepatocytes. This disruption was accompanied by alterations in the expression of genes and proteins involved in hepatogenesis. Our results provide new insights into the wider range of destruction caused by alcohol on the dynamic process of liver organogenesis.
Collapse
Affiliation(s)
- Rajarshi Pal
- Manipal Institute of Regenerative Medicine, Manipal University Branch Campus, Domlur Layout, Bangalore 560071, India
| | | | | | | | | |
Collapse
|
28
|
Vassilieva S, Goh HN, Lau KX, Hughes JN, Familari M, Rathjen PD, Rathjen J. A system to enrich for primitive streak-derivatives, definitive endoderm and mesoderm, from pluripotent cells in culture. PLoS One 2012; 7:e38645. [PMID: 22701686 PMCID: PMC3372479 DOI: 10.1371/journal.pone.0038645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/13/2012] [Indexed: 01/08/2023] Open
Abstract
Two lineages of endoderm develop during mammalian embryogenesis, the primitive endoderm in the pre-implantation blastocyst and the definitive endoderm at gastrulation. This complexity of endoderm cell populations is mirrored during pluripotent cell differentiation in vitro and has hindered the identification and purification of the definitive endoderm for use as a substrate for further differentiation. The aggregation and differentiation of early primitive ectoderm-like (EPL) cells, resulting in the formation of EPL-cell derived embryoid bodies (EPLEBs), is a model of gastrulation that progresses through the sequential formation of primitive streak-like intermediates to nascent mesoderm and more differentiated mesoderm populations. EPL cell-derived EBs have been further analysed for the formation of definitive endoderm by detailed morphological studies, gene expression and a protein uptake assay. In comparison to embryoid bodies derived from ES cells, which form primitive and definitive endoderm, the endoderm compartment of embryoid bodies formed from EPL cells was comprised almost exclusively of definitive endoderm. Definitive endoderm was defined as a population of squamous cells that expressed Sox17, CXCR4 and Trh, which formed without the prior formation of primitive endoderm and was unable to endocytose horseradish peroxidase from the medium. Definitive endoderm formed in EPLEBs provides a substrate for further differentiation into specific endoderm lineages; these lineages can be used as research tools for understanding the mechanisms controlling lineage establishment and the nature of the transient intermediates formed. The similarity between mouse EPL cells and human ES cells suggests EPLEBs can be used as a model system for the development of technologies to enrich for the formation of human ES cell-derived definitive endoderm in the future.
Collapse
Affiliation(s)
- Svetlana Vassilieva
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Hwee Ngee Goh
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
| | - Kevin X. Lau
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
| | - James N. Hughes
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Mary Familari
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter D. Rathjen
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
- The Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
- The Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| |
Collapse
|
29
|
Achilleos A, Trainor PA. Neural crest stem cells: discovery, properties and potential for therapy. Cell Res 2012; 22:288-304. [PMID: 22231630 DOI: 10.1038/cr.2012.11] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neural crest (NC) cells are a migratory cell population synonymous with vertebrate evolution. They generate a wide variety of cell and tissue types during embryonic and adult development including cartilage and bone, connective tissue, pigment and endocrine cells as well as neurons and glia amongst many others. Such incredible lineage potential combined with a limited capacity for self-renewal, which persists even into adult life, demonstrates that NC cells bear the key hallmarks of stem and progenitor cells. In this review, we describe the identification, characterization and isolation of NC stem and progenitor cells from different tissues in both embryo and adult organisms. We discuss their specific properties and their potential application in cell-based tissue and disease-specific repair.
Collapse
Affiliation(s)
- Annita Achilleos
- Stowers Institute for Medical Research, 1000 East 50th Street Kansas City, MO 64110, USA
| | | |
Collapse
|
30
|
|
31
|
Tan BSN, Lonic A, Morris MB, Rathjen PD, Rathjen J. The amino acid transporter SNAT2 mediates l-proline-induced differentiation of ES cells. Am J Physiol Cell Physiol 2011; 300:C1270-9. [DOI: 10.1152/ajpcell.00235.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is an increasing appreciation that amino acids can act as signaling molecules in the regulation of cellular processes through modulation of intracellular cell signaling pathways. In culture, embryonic stem (ES) cells can be differentiated to a second, pluripotent cell population, early primitive ectoderm-like cells in response to biological activities within the conditioned medium MEDII. The amino acid l-proline has been identified as a component of MEDII required for ES cell differentiation. Here, we define the primary l-proline transporter on ES and early primitive ectoderm-like cells as sodium-coupled neutral amino acid transporter 2 (SNAT2). SNAT2 uptake of l-proline can be inhibited by the addition of millimolar concentrations of other substrates. The addition of excess amino acids was used to regulate the uptake of l-proline by ES cells, and the effect on differentiation was analyzed. The ability of SNAT2 substrates, but not other amino acids, to prevent changes in morphology, gene expression, and differentiation kinetics suggested that l-proline uptake through SNAT2 was required for ES cell differentiation. These data reveal an unexpected role for amino acid uptake and the amino acid transporter SNAT2 in regulation of pluripotent cells in culture and provides a number of specific, inexpensive, and nontoxic culture additives with the potential to improve the quality of ES cell culture.
Collapse
Affiliation(s)
| | - Ana Lonic
- School of Molecular and Biomedical Science, University of Adelaide, South Australia; and
- Australian Stem Cell Centre, Monash University, Clayton, Victoria, Australia
| | - Michael B. Morris
- School of Molecular and Biomedical Science, University of Adelaide, South Australia; and
- Australian Stem Cell Centre, Monash University, Clayton, Victoria, Australia
| | - Peter D. Rathjen
- Department of Zoology, University of Melbourne, Melbourne, Victoria
- School of Molecular and Biomedical Science, University of Adelaide, South Australia; and
- Australian Stem Cell Centre, Monash University, Clayton, Victoria, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Melbourne, Victoria
| |
Collapse
|
32
|
Park KD, Seong SK, Park YM, Choi Y, Park JH, Lee SH, Baek DH, Kang JW, Choi KS, Park SN, Kim DS, Kim SH, Kim HS. Telomerase reverse transcriptase related with telomerase activity regulates tumorigenic potential of mouse embryonic stem cells. Stem Cells Dev 2010; 20:149-57. [PMID: 20486780 DOI: 10.1089/scd.2009.0523] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Embryonic stem cell (ESC) research gave rise to the possibility that stem cell therapy could be used in the treatment of incurable diseases such as neurodegenerative disorders. However, problems related to the tumorigenicity of undifferentiated ESCs must be resolved before such cells can be used in the application of cell replacement therapies. In the present study, we attempted to determine biomarkers that predicted tumor formation of undifferentiated ESCs in vivo. We differentiated mouse ESCs (R1 cell line) into neural lineage using a 5-step method, and evaluated the expression of oncogenes (p53, Bax, c-myc, Bcl2, K-ras), telomerase-related genes (TERT, TRF), and telomerase activity and telomere length during differentiation of ESCs. The expression of oncogenes did not show a significant change during differentiation steps, but the expression of telomerase reverse transcriptase (TERT) and telomerase activity correlated with mouse ESCs differentiation. To investigate the possibility of mouse TERT (mTERT) as a biomarker of tumorigenicity of undifferentiated ESCs, we established mTERT knockdown ESCs using the shRNA lentivirus vector and evaluated its tumorigenicity in vivo using nude mice. Tumor volumes significantly decreased, and appearances of tumor formation in mice were delayed in the TERT-knockdown ESC treated group compared with the undifferentiated ESC treated group. Altogether, these results suggested that mTERT might be potentially beneficial as a biomarker, rather than oncogenes of somatic cells, for the assessment of ESCs tumorigenicity.
Collapse
Affiliation(s)
- Ki Dae Park
- Department of Pharmaceutical and Medical Device Research, National Institute of Food and Drug Safety Evaluation, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zheng Z, de Iongh RU, Rathjen PD, Rathjen J. A requirement for FGF signalling in the formation of primitive streak-like intermediates from primitive ectoderm in culture. PLoS One 2010; 5:e12555. [PMID: 20838439 PMCID: PMC2933233 DOI: 10.1371/journal.pone.0012555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 08/06/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Embryonic stem (ES) cells hold considerable promise as a source of cells with therapeutic potential, including cells that can be used for drug screening and in cell replacement therapies. Differentiation of ES cells into the somatic lineages is a regulated process; before the promise of these cells can be realised robust and rational methods for directing differentiation into normal, functional and safe cells need to be developed. Previous in vivo studies have implicated fibroblast growth factor (FGF) signalling in lineage specification from pluripotent cells. Although FGF signalling has been suggested as essential for specification of mesoderm and endoderm in vivo and in culture, the exact role of this pathway remains unclear. METHODOLOGY/PRINCIPAL FINDINGS Using a culture model based on early primitive ectoderm-like (EPL) cells we have investigated the role of FGF signalling in the specification of mesoderm. We were unable to demonstrate any mesoderm inductive capability associated with FGF1, 4 or 8 signalling, even when the factors were present at high concentrations, nor any enhancement in mesoderm formation induced by exogenous BMP4. Furthermore, there was no evidence of alteration of mesoderm sub-type formed with addition of FGF1, 4 or 8. Inhibition of endogenous FGF signalling, however, prevented mesoderm and favoured neural differentiation, suggesting FGF signalling was required but not sufficient for the differentiation of primitive ectoderm into primitive streak-like intermediates. The maintenance of ES cell/early epiblast pluripotent marker expression was also observed in cultures when FGF signalling was inhibited. CONCLUSIONS/SIGNIFICANCE FGF signalling has been shown to be required for the differentiation of primitive ectoderm to neurectoderm. This, coupled with our observations, suggest FGF signalling is required for differentiation of the primitive ectoderm into the germ lineages at gastrulation.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Department of Zoology, University of Melbourne, Parkville, Australia
| | - Robb U. de Iongh
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| | - Peter D. Rathjen
- Department of Zoology, University of Melbourne, Parkville, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Parkville, Australia
| |
Collapse
|
34
|
Chimge NO, Bayarsaihan D. Generation of neural crest progenitors from human embryonic stem cells. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:95-103. [PMID: 19780036 DOI: 10.1002/jez.b.21321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The neural crest (NC) is a transient population of multipotent progenitors arising at the lateral edge of the neural plate in vertebrate embryos, which then migrate throughout the body to generate diverse array of tissues such as the peripheral nervous system, skin melanocytes, and craniofacial cartilage, bone and teeth. The transient nature of neural crest stem cells make extremely challenging to study the biology of these important cells. In humans induction and differentiation of embryonic NC occurs very early, within a few weeks of fertilization giving rise to technical and ethical issues surrounding isolation of early embryonic tissues and therefore severely limiting the study of human NC cells. For that reason our current knowledge of the biology of NC mostly derives from the studies of lower organisms. Recent progress in human embryonic stem cell research provides a unique opportunity for generation of a useful source of cells for basic developmental studies. The development of cost-effective, time and labor efficient improved differentiation protocols for the production of human NC cells is a critical step toward a better understanding of NC biology.
Collapse
Affiliation(s)
- Nyam-Osor Chimge
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | |
Collapse
|
35
|
Harvey NT, Hughes JN, Lonic A, Yap C, Long C, Rathjen PD, Rathjen J. Response to BMP4 signalling during ES cell differentiation defines intermediates of the ectoderm lineage. J Cell Sci 2010; 123:1796-804. [PMID: 20427322 DOI: 10.1242/jcs.047530] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The formation and differentiation of multipotent precursors underlies the generation of cell diversity during mammalian development. Recognition and analysis of these transient cell populations has been hampered by technical difficulties in accessing them in vivo. In vitro model systems, based on the differentiation of embryonic stem (ES) cells, provide an alternative means of identifying and characterizing these populations. Using a previously established mouse ES-cell-based system that recapitulates the development of the ectoderm lineage we have identified a transient population that is consistent with definitive ectoderm. This previously unidentified progenitor occurs as a temporally discrete population during ES cell differentiation, and differs from the preceding and succeeding populations in gene expression and differentiation potential, with the unique ability to form surface ectoderm in response to BMP4 signalling.
Collapse
Affiliation(s)
- Nathan T Harvey
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, 5005, Australia
| | | | | | | | | | | | | |
Collapse
|
36
|
Robinson AJ, Zhao G, Rathjen J, Rathjen PD, Hutchinson RG, Eyre HJ, Hemsley KM, Hopwood JJ. Embryonic stem cell-derived glial precursors as a vehicle for sulfamidase production in the MPS-IIIA mouse brain. Cell Transplant 2010; 19:985-98. [PMID: 20350350 DOI: 10.3727/096368910x498944] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pluripotent stem cells, including human embryonic stem cells and induced pluripotent stem cells, have generated much excitement about their prospects for use in cell transplantation therapies. This is largely attributable to their virtually unlimited growth potential, their ability to be precisely genetically altered in culture, and their utility for forming differentiated cell populations with potential clinical applications. Lysosomal storage diseases such as Sanfilippo syndrome (MPS-IIIA) represent ideal candidate diseases for the evaluation of cell therapies in the central nervous system (CNS). These diseases exhibit widespread pathology yet result from a single gene deficiency, in the case of Sanfilippo syndrome the lysosomal enzyme sulfamidase. The aim of this study was to investigate mouse embryonic stem (ES) cell-derived glial precursor cells as a vehicle for sulfamidase delivery in the MPS-IIIA mouse brain. In this study we have created a mouse ES cell line genetically modified to stably express and secrete high levels of human sulfamidase and a protocol for the in vitro derivation of large numbers glial precursors from ES cells. Differentiation of sulfamidase-expressing ES cells resulted in cell populations with sustained secretion of high levels of sulfamidase, comprised primarily of glial precursor cells with minor contaminants of other neural cell phenotypes but not residual pluripotent cells. CNS implantation studies demonstrated that ES cell-derived glial precursor cells formed using this differentiation method were able to engraft and survive for at least 12 weeks following implantation. The percentage of engraftment was quantified in different regions of the brain in 2-, 4-, and 8-week-old normal and MPS-IIIA mice. No teratomas were observed in any of the cell-transplanted animals. The results of this study support the further investigation of sulfamidase-expressing glial precursor cells as a vehicle for delivery of deficient enzyme into the CNS of MPS-IIIA mice.
Collapse
Affiliation(s)
- Aaron J Robinson
- Lysosomal Diseases Research Unit, SA Pathology at the Women's and Children's Hospital, North Adelaide, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hughes JN, Dodge N, Rathjen PD, Rathjen J. A novel role for gamma-secretase in the formation of primitive streak-like intermediates from ES cells in culture. Stem Cells 2010; 27:2941-51. [PMID: 19750540 DOI: 10.1002/stem.218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
gamma-Secretase is a membrane-associated protease with multiple intracellular targets, a number of which have been shown to influence embryonic development and embryonic stem (ES) cell differentiation. This paper describes the use of the gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) to evaluate the role of gamma-secretase in the differentiation of pluripotent stem cells to the germ lineages. The addition of DAPT did not prevent the formation of primitive ectoderm-like cells from ES cells in culture. In contrast, the addition of DAPT during primitive ectoderm-like cell differentiation interfered with the ability of both serum and BMP4 to induce a primitive streak-like intermediate and resulted in the preferential formation of neurectoderm. Similarly, DAPT reduced the formation of primitive streak-like intermediates from differentiating human ES cells; the culture conditions used resulted in a population enriched in human surface ectoderm. These data suggest that gamma-secretase may form part of the general pathway by which mesoderm is specified within the primitive streak. The addition of an E-cadherin neutralizing antibody was able to partially reverse the effect of DAPT, suggesting that DAPT may be preventing the formation of primitive streak-like intermediates and promoting neurectoderm differentiation by stabilizing E-cadherin and preventing its proteolysis.
Collapse
Affiliation(s)
- James N Hughes
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | | | |
Collapse
|
38
|
Hotta R, Pepdjonovic L, Anderson RB, Zhang D, Bergner AJ, Leung J, Pébay A, Young HM, Newgreen DF, Dottori M. Small-molecule induction of neural crest-like cells derived from human neural progenitors. Stem Cells 2010; 27:2896-905. [PMID: 19711454 DOI: 10.1002/stem.208] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neural crest (NC) cells are stem cells that are specified within the embryonic neuroectodermal epithelium and migrate to stereotyped peripheral sites for differentiation into many cell types. Several neurocristopathies involve a deficit of NC-derived cells, raising the possibility of stem cell therapy. In Hirschsprung's disease the distal bowel lacks an enteric nervous system caused by a failure of colonization by NC-derived cells. We have developed a robust method of producing migrating NC-like cells from human embryonic stem cell-derived neural progenitors using a coculture system of mouse embryonic fibroblasts. Significantly, subsequent exposure to Y27632, a small-molecule inhibitor of the Rho effectors ROCKI/II, dramatically increased the efficiency of differentiation into NC-like cells, identified by marker expression in vitro. NC-like cells derived by this method were able to migrate along NC pathways in avian embryos in ovo and within explants of murine bowel, and to differentiate into cells with neuronal and glial markers. This is the first study to report the use of a small molecule to induce cells with NC characteristics from embryonic stem cells that can migrate and generate neurons and support cells in complex tissue. Furthermore, this study demonstrates that small-molecule regulators of ROCKI/II signaling may be valuable tools for stem cell research aimed at treatment of neurocristopathies.
Collapse
Affiliation(s)
- Ryo Hotta
- Department of Anatomy & Cell Biology,, The University of Melbourne, Parkville, Victoria, Australia 3010
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pistollato F, Persano L, Rampazzo E, Basso G. L-Proline as a modulator of ectodermal differentiation in ES cells. Focus on "L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. Am J Physiol Cell Physiol 2010; 298:C979-81. [PMID: 20219949 DOI: 10.1152/ajpcell.00072.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Washington JM, Rathjen J, Felquer F, Lonic A, Bettess MD, Hamra N, Semendric L, Tan BSN, Lake JA, Keough RA, Morris MB, Rathjen PD. L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. Am J Physiol Cell Physiol 2010; 298:C982-92. [PMID: 20164384 DOI: 10.1152/ajpcell.00498.2009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of cell therapeutics from embryonic stem (ES) cells will require technologies that direct cell differentiation to specific somatic cell lineages in response to defined factors. The initial step in formation of the somatic lineages from ES cells, differentiation to an intermediate, pluripotent primitive ectoderm-like cell, can be achieved in vitro by formation of early primitive ectoderm-like (EPL) cells in response to a biological activity contained within the conditioned medium MEDII. Fractionation of MEDII has identified two activities required for EPL cell formation, an activity with a molecular mass of <3 kDa and a second, much larger species. Here, we have identified the low-molecular-weight activity as l-proline. An inhibitor of l-proline uptake, glycine, prevented the differentiation of ES cells in response to MEDII. Supplementation of the culture medium of ES cells with >100 M l-proline and some l-proline-containing peptides resulted in changes in colony morphology, cell proliferation, gene expression, and differentiation kinetics consistent with differentiation toward a primitive ectoderm-like cell. This activity appeared to be associated with l-proline since other amino acids and analogs of proline did not exhibit an equivalent activity. Activation of the mammalian target of rapamycin (mTOR) signaling pathway was found to be necessary but not sufficient for l-proline activity; addition of other activators of the mTOR signaling pathway failed to alter the ES cell phenotype. This is the first report describing a role for amino acids in the regulation of pluripotency and cell differentiation and identifies a novel role for the imino acid l-proline.
Collapse
|
41
|
Hiratani I, Ryba T, Itoh M, Rathjen J, Kulik M, Papp B, Fussner E, Bazett-Jones DP, Plath K, Dalton S, Rathjen PD, Gilbert DM. Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res 2009; 20:155-69. [PMID: 19952138 DOI: 10.1101/gr.099796.109] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Differentiation of mouse embryonic stem cells (mESCs) is accompanied by changes in replication timing. To explore the relationship between replication timing and cell fate transitions, we constructed genome-wide replication-timing profiles of 22 independent mouse cell lines representing 10 stages of early mouse development, and transcription profiles for seven of these stages. Replication profiles were cell-type specific, with 45% of the genome exhibiting significant changes at some point during development that were generally coordinated with changes in transcription. Comparison of early and late epiblast cell culture models revealed a set of early-to-late replication switches completed at a stage equivalent to the post-implantation epiblast, prior to germ layer specification and down-regulation of key pluripotency transcription factors [POU5F1 (also known as OCT4)/NANOG/SOX2] and coinciding with the emergence of compact chromatin near the nuclear periphery. These changes were maintained in all subsequent lineages (lineage-independent) and involved a group of irreversibly down-regulated genes, at least some of which were repositioned closer to the nuclear periphery. Importantly, many genomic regions of partially reprogrammed induced pluripotent stem cells (piPSCs) failed to re-establish ESC-specific replication-timing and transcription programs. These regions were enriched for lineage-independent early-to-late changes, which in female cells included the inactive X chromosome. Together, these results constitute a comprehensive "fate map" of replication-timing changes during early mouse development. Moreover, they support a model in which a distinct set of replication domains undergoes a form of "autosomal Lyonization" in the epiblast that is difficult to reprogram and coincides with an epigenetic commitment to differentiation prior to germ layer specification.
Collapse
Affiliation(s)
- Ichiro Hiratani
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Prabhakaran MP, Venugopal JR, Ramakrishna S. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 2009; 30:4996-5003. [DOI: 10.1016/j.biomaterials.2009.05.057] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/21/2009] [Indexed: 12/21/2022]
|
43
|
Axell MZ, Zlateva S, Curtis M. A method for rapid derivation and propagation of neural progenitors from human embryonic stem cells. J Neurosci Methods 2009; 184:275-84. [PMID: 19715727 DOI: 10.1016/j.jneumeth.2009.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 12/17/2022]
Abstract
Neuronal loss is a common feature of many neurological disorders, including stroke, Parkinson's disease, Alzheimer's disease and traumatic brain injury. Human embryonic stem cell (hESC)-derived neural progenitors (NPs) may provide new ways of treatment for several diseases and injuries in the brain, as well as enhance our understanding of early human development. Here we report a method for rapid generation of proliferating NPs from feeder free cultures of undifferentiated hESCs. In this rapid and simple protocol, NPs are derived by seeding undifferentiated hESC on adherent surfaces of laminin or gelatine with normal hESC culturing medium and with the addition of basic fibroblast growth factor. After the first passage, adherent monolayer progenitors are derived that express early neuroectodermal and progenitor markers, such as Nestin, Sox1, Sox2, Sox3, Internexin, Musashi-1, NCAM, and Pax6. This novel protocol renders hESCs suitable for large scale progenitor production and long-term propagation, and the progenitors have the capacity to differentiate in vitro into all three neural lineages (neurons, astrocytes and oligodendrocytes). This method allows rapid, cost-efficient production of expandable progenitors that may be a source of cells for the restoration of cellular and functional loss after neurodegeneration and/or provide a useful source of progenitor cells for studying early brain development.
Collapse
|
44
|
Enhanced generation of hematopoietic cells from human hepatocarcinoma cell−stimulated human embryonic and induced pluripotent stem cells. Exp Hematol 2009; 37:924-36. [DOI: 10.1016/j.exphem.2009.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 11/22/2022]
|
45
|
Ghosh D, Yan X, Tian Q. Gene regulatory networks in embryonic stem cells and brain development. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2009; 87:182-91. [PMID: 19530135 DOI: 10.1002/bdrc.20149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Embryonic stem cells (ESCs) are endowed with the ability to generate multiple cell lineages and carry great therapeutic potentials in regenerative medicine. Future application of ESCs in human health and diseases will embark on the delineation of molecular mechanisms that define the biology of ESCs. Here, we discuss how the finite ESC components mediate the intriguing task of brain development and exhibit biomedical potentials to cure diverse neurological disorders.
Collapse
|
46
|
Hughes JN, Washington JM, Zheng Z, Lau XK, Yap C, Rathjen PD, Rathjen J. Manipulation of cell:cell contacts and mesoderm suppressing activity direct lineage choice from pluripotent primitive ectoderm-like cells in culture. PLoS One 2009; 4:e5579. [PMID: 19440553 PMCID: PMC2679147 DOI: 10.1371/journal.pone.0005579] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 04/15/2009] [Indexed: 01/21/2023] Open
Abstract
In the mammal, the pluripotent cells of embryo differentiate and commit to either the mesoderm/endoderm lineages or the ectoderm lineage during gastrulation. In culture, the ability to direct lineage choice from pluripotent cells into the mesoderm/endoderm or ectoderm lineages will enable the development of technologies for the formation of highly enriched or homogenous populations of cells. Here we show that manipulation of cell:cell contact and a mesoderm suppressing activity in culture affects the outcome of pluripotent cell differentiation and when both variables are manipulated appropriately they can direct differentiation to either the mesoderm or ectoderm lineage. The disruption of cell:cell contacts and removal of a mesoderm suppressor activity results in the differentiation of pluripotent, primitive ectoderm-like cells to the mesoderm lineage, while maintenance of cell:cell contacts and inclusion, within the culture medium, of a mesoderm suppressing activity results in the formation of near homogenous populations of ectoderm. Understanding the contribution of these variables in lineage choice provides a framework for the development of directed differentiation protocols that result in the formation of specific cell populations from pluripotent cells in culture.
Collapse
Affiliation(s)
- James N. Hughes
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
- The Australian Stem Cell Centre Monash University, Clayton, Victoria, Australia
| | - Jennifer M. Washington
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
- The Australian Stem Cell Centre Monash University, Clayton, Victoria, Australia
| | - Zhiqiang Zheng
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
| | - Xiuwen K. Lau
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
| | - Charlotte Yap
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter D. Rathjen
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
- The Australian Stem Cell Centre Monash University, Clayton, Victoria, Australia
- The Australian Research Council Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
| | - Joy Rathjen
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
- The Australian Stem Cell Centre Monash University, Clayton, Victoria, Australia
- The Australian Research Council Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
47
|
Inanç B, Elçin AE, Elçin YM. Human embryonic stem cell differentiation on tissue engineering scaffolds: effects of NGF and retinoic acid induction. Tissue Eng Part A 2009. [PMID: 19230122 DOI: 10.1089/tea.2007.0213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The indefinite proliferative capacity and ability to differentiate into all somatic cell types can make human embryonic stem cells (hESCs) useful in experimental and applied studies in embryonic development, tissue engineering, genetic engineering, pharmacokinetics, and the like. Cellular differentiation dynamics can be studied in monolayer cell cultures; however, it proceeds in three-dimensional (3D) organization in vivo. The aim of this study was to assess the effects of retinoic acid (RA) and nerve growth factor (NGF) on the differentiation patterns of hESCs in 3D culture environment and to compare it with the monolayer culture. Expanded hESCs (HUES-9) were differentiated in two experimental groups for 21 days: (i) two-dimensional (2D) monolayer cultures of hESC colonies, and (ii) 3D culture of hES single cells in poly(DL-lactic-co-glycolic acid) scaffolds. The media used were embryonic stem cell expansion medium (ES-EM), embryonic stem cell differentiation medium containing fetal calf serum (ES-DM), ES-EM containing either 10 ng/mL NGF or 10(-6) M RA, and their combination. Fixed specimens were analyzed with scanning electron microscopy, and expression of nestin, pan-cytokeratin, troponin, and alpha-fetoprotein at days 7, 14, and 21 was evaluated by immunohistomorphometry and reverse transcriptase--polymerase chain reaction. Results indicate different patterns of ectodermal, mesodermal, and endodermal marker expressions between groups, where NGF and RA preferentially favors the differentiation toward ectodermal and mesodermal lineages. While troponin and nestin expression is significantly elevated in 3D culture environment, pan-cytokeratin expression is favored by 2D culture instead. The effects of 3D scaffold culture imply the usefulness of testing in vitro differentiation properties of hESCs in various culture settings designed as models in prospective tissue engineering applications.
Collapse
Affiliation(s)
- Bülend Inanç
- Tissue Engineering and Biomaterials Laboratory, Faculty of Science and Biotechnology Institute, Ankara University, Ankara, Turkey
| | | | | |
Collapse
|
48
|
Wang J, Jiao F, Pan XH, Xie SY, Li ZL, Niu XH, Du LX. Directed differentiation of chick embryonic germ cells into neural cells using retinoic acid induction in vitro. J Neurosci Methods 2009; 177:168-76. [DOI: 10.1016/j.jneumeth.2008.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/06/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
|
49
|
Kang Y, Nagy JM, Polak JM, Mantalaris A. Proteomic Characterization of the Conditioned Media Produced by the Visceral Endoderm-Like Cell Lines HepG2 and END2: Toward a Defined Medium for the Osteogenic/Chondrogenic Differentiation of Embryonic Stem Cells. Stem Cells Dev 2009; 18:77-91. [DOI: 10.1089/scd.2008.0026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yunyi Kang
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Tissue Engineering & Regenerative Medicine Centre, Imperial College London, London, United Kingdom
| | - Judit M. Nagy
- Institute of Biomedical Engineering, Tissue Engineering & Regenerative Medicine Centre, Imperial College London, London, United Kingdom
| | - Julia M. Polak
- Department of Chemical Engineering, Tissue Engineering & Regenerative Medicine Centre, Imperial College London, London, United Kingdom
| | - Anthanasios Mantalaris
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Tissue Engineering & Regenerative Medicine Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
50
|
Weddington N, Stuy A, Hiratani I, Ryba T, Yokochi T, Gilbert DM. ReplicationDomain: a visualization tool and comparative database for genome-wide replication timing data. BMC Bioinformatics 2008; 9:530. [PMID: 19077204 PMCID: PMC2636809 DOI: 10.1186/1471-2105-9-530] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 12/10/2008] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Eukaryotic DNA replication is regulated at the level of large chromosomal domains (0.5-5 megabases in mammals) within which replicons are activated relatively synchronously. These domains replicate in a specific temporal order during S-phase and our genome-wide analyses of replication timing have demonstrated that this temporal order of domain replication is a stable property of specific cell types. RESULTS We have developed ReplicationDomain http://www.replicationdomain.org as a web-based database for analysis of genome-wide replication timing maps (replication profiles) from various cell lines and species. This database also provides comparative information of transcriptional expression and is configured to display any genome-wide property (for instance, ChIP-Chip or ChIP-Seq data) via an interactive web interface. Our published microarray data sets are publicly available. Users may graphically display these data sets for a selected genomic region and download the data displayed as text files, or alternatively, download complete genome-wide data sets. Furthermore, we have implemented a user registration system that allows registered users to upload their own data sets. Upon uploading, registered users may choose to: (1) view their data sets privately without sharing; (2) share with other registered users; or (3) make their published or "in press" data sets publicly available, which can fulfill journal and funding agencies' requirements for data sharing. CONCLUSION ReplicationDomain is a novel and powerful tool to facilitate the comparative visualization of replication timing in various cell types as well as other genome-wide chromatin features and is considerably faster and more convenient than existing browsers when viewing multi-megabase segments of chromosomes. Furthermore, the data upload function with the option of private viewing or sharing of data sets between registered users should be a valuable resource for the scientific community.
Collapse
Affiliation(s)
- Nodin Weddington
- Department of Biological Sciences, Florida State University, Tallahassee, Florida 32306, USA.
| | | | | | | | | | | |
Collapse
|