1
|
Asim M, Qianqian G, Waris A, Wang H, Lai Y, Chen X. Unraveling the role of cholecystokinin in epilepsy: Mechanistic insight into neuroplasticity. Neurochem Int 2024; 180:105870. [PMID: 39343303 DOI: 10.1016/j.neuint.2024.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Epilepsy is a disorder characterized by an imbalance between excitability and inhibition, leading to uncontrolled hyperexcitability of neurons in the central nervous system. Despite the prevalence of epileptic seizures, the underlying mechanisms driving this hyperexcitability remain poorly understood. This review article aims to enhance our understanding of the mechanisms of epilepsy, with a specific focus on the role of cholecystokinin (CCK) in this debilitating disease. We will begin with an introduction to the topic, followed by an examination of the role of GABAergic neurons and the synaptic plasticity mechanisms associated with seizures. As we delve deeper, we will elucidate how CCK and its receptors contribute to seizure behavior. Finally, we will discuss the CCK-dependent synaptic plasticity mechanisms and highlight their potential implications in seizure activity. Through a comprehensive examination of these aspects, this review provides valuable insights into the involvement of CCK and its receptors in epilepsy. By improving our understanding of the mechanisms underlying this condition, particularly the role of CCK, we aim to contribute to the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong.
| | - Gao Qianqian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Abdul Waris
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Huajie Wang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Yuanying Lai
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong
| |
Collapse
|
2
|
Xu L, Ding H, Wu S, Xiong N, Hong Y, Zhu W, Chen X, Han X, Tao M, Wang Y, Wang D, Xu M, Huo D, Gu Z, Liu Y. Artificial Meshed Vessel-Induced Dimensional Breaking Growth of Human Brain Organoids and Multiregional Assembloids. ACS NANO 2024; 18. [PMID: 39270300 PMCID: PMC11440649 DOI: 10.1021/acsnano.4c07844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Brain organoids are widely used to model brain development and diseases. However, a major challenge in their application is the insufficient supply of oxygen and nutrients to the core region, restricting the size and maturation of the organoids. In order to vascularize brain organoids and enhance the nutritional supply to their core areas, two-photon polymerization (TPP) 3D printing is employed to fabricate high-resolution meshed vessels in this study. These vessels made of photoresist with densely distributed micropores with a diameter of 20 μm on the sidewall, are cocultured with brain organoids to facilitate the diffusion of culture medium into the organoids. The vascularized organoids exhibit dimensional breaking growth and enhanced proliferation, reduced hypoxia and apoptosis, suggesting that the 3D-printed meshed vessels partially mimic vascular function to promote the culture of organoids. Furthermore, cortical, striatal and medial ganglionic eminence (MGE) organoids are respectively differentiated to generate Cortico-Striatal-MGE assembloids by 3D-printed vessels. The enhanced migration, projection and excitatory signaling transduction are observed between different brain regional organoids in the assembloids. This study presents an approach using TPP 3D printing to construct vascularized brain organoids and assembloids for enhancing the development and assembly, offering a research model and platform for neurological diseases.
Collapse
Affiliation(s)
- Lei Xu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Haibo Ding
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Shanshan Wu
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Nankun Xiong
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yuan Hong
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Wanying Zhu
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xingyi Chen
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Han
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Mengdan Tao
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yuanhao Wang
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Da Wang
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Min Xu
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Da Huo
- Key
Laboratory of Cardiovascular and Cerebrovascular Medicine, Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, Nanjing 211166, China
| | - Zhongze Gu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yan Liu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
3
|
Machold R, Rudy B. Genetic approaches to elucidating cortical and hippocampal GABAergic interneuron diversity. Front Cell Neurosci 2024; 18:1414955. [PMID: 39113758 PMCID: PMC11303334 DOI: 10.3389/fncel.2024.1414955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
GABAergic interneurons (INs) in the mammalian forebrain represent a diverse population of cells that provide specialized forms of local inhibition to regulate neural circuit activity. Over the last few decades, the development of a palette of genetic tools along with the generation of single-cell transcriptomic data has begun to reveal the molecular basis of IN diversity, thereby providing deep insights into how different IN subtypes function in the forebrain. In this review, we outline the emerging picture of cortical and hippocampal IN speciation as defined by transcriptomics and developmental origin and summarize the genetic strategies that have been utilized to target specific IN subtypes, along with the technical considerations inherent to each approach. Collectively, these methods have greatly facilitated our understanding of how IN subtypes regulate forebrain circuitry via cell type and compartment-specific inhibition and thus have illuminated a path toward potential therapeutic interventions for a variety of neurocognitive disorders.
Collapse
Affiliation(s)
- Robert Machold
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Bernardo Rudy
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Yang Z. The Principle of Cortical Development and Evolution. Neurosci Bull 2024:10.1007/s12264-024-01259-2. [PMID: 39023844 DOI: 10.1007/s12264-024-01259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Human's robust cognitive abilities, including creativity and language, are made possible, at least in large part, by evolutionary changes made to the cerebral cortex. This paper reviews the biology and evolution of mammalian cortical radial glial cells (primary neural stem cells) and introduces the concept that a genetically step wise process, based on a core molecular pathway already in use, is the evolutionary process that has molded cortical neurogenesis. The core mechanism, which has been identified in our recent studies, is the extracellular signal-regulated kinase (ERK)-bone morphogenic protein 7 (BMP7)-GLI3 repressor form (GLI3R)-sonic hedgehog (SHH) positive feedback loop. Additionally, I propose that the molecular basis for cortical evolutionary dwarfism, exemplified by the lissencephalic mouse which originated from a larger gyrencephalic ancestor, is an increase in SHH signaling in radial glia, that antagonizes ERK-BMP7 signaling. Finally, I propose that: (1) SHH signaling is not a key regulator of primate cortical expansion and folding; (2) human cortical radial glial cells do not generate neocortical interneurons; (3) human-specific genes may not be essential for most cortical expansion. I hope this review assists colleagues in the field, guiding research to address gaps in our understanding of cortical development and evolution.
Collapse
Affiliation(s)
- Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Hamad MIK, Daoud S, Petrova P, Rabaya O, Jbara A, Al Houqani S, BaniYas S, Alblooshi M, Almheiri A, Nakhal MM, Ali BR, Shehab S, Allouh MZ, Emerald BS, Schneider-Lódi M, Bataineh MF, Herz J, Förster E. Reelin differentially shapes dendrite morphology of medial entorhinal cortical ocean and island cells. Development 2024; 151:dev202449. [PMID: 38856043 PMCID: PMC11234379 DOI: 10.1242/dev.202449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The function of medial entorhinal cortex layer II (MECII) excitatory neurons has been recently explored. MECII dysfunction underlies deficits in spatial navigation and working memory. MECII neurons comprise two major excitatory neuronal populations, pyramidal island and stellate ocean cells, in addition to the inhibitory interneurons. Ocean cells express reelin and surround clusters of island cells that lack reelin expression. The influence of reelin expression by ocean cells and interneurons on their own morphological differentiation and that of MECII island cells has remained unknown. To address this, we used a conditional reelin knockout (RelncKO) mouse to induce reelin deficiency postnatally in vitro and in vivo. Reelin deficiency caused dendritic hypertrophy of ocean cells, interneurons and only proximal dendritic compartments of island cells. Ca2+ recording showed that both cell types exhibited an elevation of calcium frequencies in RelncKO, indicating that the hypertrophic effect is related to excessive Ca2+ signalling. Moreover, pharmacological receptor blockade in RelncKO mouse revealed malfunctioning of GABAB, NMDA and AMPA receptors. Collectively, this study emphasizes the significance of reelin in neuronal growth, and its absence results in dendrite hypertrophy of MECII neurons.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Solieman Daoud
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Petya Petrova
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Obada Rabaya
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Abdalrahim Jbara
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Shaikha Al Houqani
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Shamsa BaniYas
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Meera Alblooshi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Ayesha Almheiri
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Mohammed Z. Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Mária Schneider-Lódi
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Mo'ath F. Bataineh
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics; Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| |
Collapse
|
6
|
van Velthoven CTJ, Gao Y, Kunst M, Lee C, McMillen D, Chakka AB, Casper T, Clark M, Chakrabarty R, Daniel S, Dolbeare T, Ferrer R, Gloe J, Goldy J, Guzman J, Halterman C, Ho W, Huang M, James K, Nguy B, Pham T, Ronellenfitch K, Thomas ED, Torkelson A, Pagan CM, Kruse L, Dee N, Ng L, Waters J, Smith KA, Tasic B, Yao Z, Zeng H. The transcriptomic and spatial organization of telencephalic GABAergic neuronal types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599583. [PMID: 38948843 PMCID: PMC11212977 DOI: 10.1101/2024.06.18.599583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The telencephalon of the mammalian brain comprises multiple regions and circuit pathways that play adaptive and integrative roles in a variety of brain functions. There is a wide array of GABAergic neurons in the telencephalon; they play a multitude of circuit functions, and dysfunction of these neurons has been implicated in diverse brain disorders. In this study, we conducted a systematic and in-depth analysis of the transcriptomic and spatial organization of GABAergic neuronal types in all regions of the mouse telencephalon and their developmental origins. This was accomplished by utilizing 611,423 single-cell transcriptomes from the comprehensive and high-resolution transcriptomic and spatial cell type atlas for the adult whole mouse brain we have generated, supplemented with an additional single-cell RNA-sequencing dataset containing 99,438 high-quality single-cell transcriptomes collected from the pre- and postnatal developing mouse brain. We present a hierarchically organized adult telencephalic GABAergic neuronal cell type taxonomy of 7 classes, 52 subclasses, 284 supertypes, and 1,051 clusters, as well as a corresponding developmental taxonomy of 450 clusters across different ages. Detailed charting efforts reveal extraordinary complexity where relationships among cell types reflect both spatial locations and developmental origins. Transcriptomically and developmentally related cell types can often be found in distant and diverse brain regions indicating that long-distance migration and dispersion is a common characteristic of nearly all classes of telencephalic GABAergic neurons. Additionally, we find various spatial dimensions of both discrete and continuous variations among related cell types that are correlated with gene expression gradients. Lastly, we find that cortical, striatal and some pallidal GABAergic neurons undergo extensive postnatal diversification, whereas septal and most pallidal GABAergic neuronal types emerge simultaneously during the embryonic stage with limited postnatal diversification. Overall, the telencephalic GABAergic cell type taxonomy can serve as a foundational reference for molecular, structural and functional studies of cell types and circuits by the entire community.
Collapse
Affiliation(s)
| | - Yuan Gao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Scott Daniel
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Mike Huang
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Beagan Nguy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Lauren Kruse
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| |
Collapse
|
7
|
Lim Y, Akula SK, Myers AK, Chen C, Rafael KA, Walsh CA, Golden JA, Cho G. ARX regulates cortical interneuron differentiation and migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578282. [PMID: 38895467 PMCID: PMC11185560 DOI: 10.1101/2024.01.31.578282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mutations in aristaless-related homeobox ( ARX ) are associated with neurodevelopmental disorders including developmental epilepsies, intellectual disabilities, and autism spectrum disorders, with or without brain malformations. Aspects of these disorders have been linked to abnormal cortical interneuron (cIN) development and function. To further understand ARX's role in cIN development, multiple Arx mutant mouse lines were interrogated. We found that ARX is critical for controlling cIN numbers and distribution, especially, in the developing marginal zone (MZ). Single cell transcriptomics and ChIP-seq, combined with functional studies, revealed ARX directly or indirectly regulates genes involved in proliferation and the cell cycle (e.g., Bub3 , Cspr3 ), fate specification (e.g., Nkx2.1 , Maf , Mef2c ), and migration (e.g., Nkx2.1 , Lmo1 , Cxcr4 , Nrg1 , ErbB4 ). Our data suggest that the MZ stream defects primarily result from disordered cell-cell communication. Together our findings provide new insights into the mechanisms underlying cIN development and migration and how they are disrupted in several disorders.
Collapse
|
8
|
Sagner A. Temporal patterning of the vertebrate developing neural tube. Curr Opin Genet Dev 2024; 86:102179. [PMID: 38490162 DOI: 10.1016/j.gde.2024.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/29/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
The chronologically ordered generation of distinct cell types is essential for the establishment of neuronal diversity and the formation of neuronal circuits. Recently, single-cell transcriptomic analyses of various areas of the developing vertebrate nervous system have provided evidence for the existence of a shared temporal patterning program that partitions neurons based on the timing of neurogenesis. In this review, I summarize the findings that lead to the proposal of this shared temporal program before focusing on the developing spinal cord to discuss how temporal patterning in general and this program specifically contributes to the ordered formation of neuronal circuits.
Collapse
Affiliation(s)
- Andreas Sagner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstraße 17, 91054 Erlangen, Germany.
| |
Collapse
|
9
|
Elam HB, Perez SM, Donegan JJ, Eassa NE, Lodge DJ. Knockdown of Lhx6 during embryonic development results in neurophysiological alterations and behavioral deficits analogous to schizophrenia in adult rats. Schizophr Res 2024; 267:113-121. [PMID: 38531158 DOI: 10.1016/j.schres.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 12/15/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
A decreased expression of specific interneuron subtypes, containing either the calcium binding protein parvalbumin (PV) or the neurotransmitter somatostatin (SST), are observed in the cortex and hippocampus of both patients with schizophrenia and rodent models used to study the disorder. Moreover, preclinical studies suggest that this loss of inhibitory function is a key pathological mechanism underlying the symptoms of schizophrenia. Interestingly, decreased expression of Lhx6, a key transcriptional regulator specific to the development and migration of PV and SST interneurons, is seen in human postmortem studies and following multiple developmental disruptions used to model schizophrenia preclinically. These results suggest that disruptions in interneuron development in utero may contribute to the pathology of the disorder. To recapitulate decreased Lhx6 expression during development, we used in utero electroporation to introduce an Lhx6 shRNA plasmid and knockdown Lhx6 expression in the brains of rats on gestational day 17. We then examined schizophrenia-like neurophysiological and behavioral alterations in the offspring once they reached adulthood. In utero Lhx6 knockdown resulted in increased ventral tegmental area (VTA) dopamine neuron population activity and a sex-specific increase in locomotor response to a psychotomimetic, consistent with positive symptomology of schizophrenia. However, Lhx6 knockdown had no effect on social interaction or spatial working memory, suggesting behaviors associated with negative and cognitive symptom domains were unaffected. These results suggest that knockdown of Lhx6 during development results in neurophysiological and behavioral alterations consistent with the positive symptom domain of schizophrenia in adult rats.
Collapse
Affiliation(s)
- Hannah B Elam
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Stephanie M Perez
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Jennifer J Donegan
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Psychiatry and Behavioral Sciences, Dell Medical School at UT Austin, Austin, TX, USA
| | - Nicole E Eassa
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229, USA; South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, USA
| |
Collapse
|
10
|
Chen J, Li Z, Wang Y, Chen L. GABAergic Interneuron Cell Therapy for Drug-Resistant Epilepsy. Neurosci Bull 2024; 40:680-682. [PMID: 38491232 PMCID: PMC11127856 DOI: 10.1007/s12264-024-01195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 03/18/2024] Open
Affiliation(s)
- Junzi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, First Affiliated Hospital and School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhongxia Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, First Affiliated Hospital and School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, First Affiliated Hospital and School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Liying Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
11
|
Matsumoto Y, Miwa H, Katayama KI, Watanabe A, Yamada K, Ito T, Nakagawa S, Aruga J. Slitrk4 is required for the development of inhibitory neurons in the fear memory circuit of the lateral amygdala. Front Mol Neurosci 2024; 17:1386924. [PMID: 38736483 PMCID: PMC11082273 DOI: 10.3389/fnmol.2024.1386924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
The Slitrk family consists of six synaptic adhesion molecules, some of which are associated with neuropsychiatric disorders. In this study, we aimed to investigate the physiological role of Slitrk4 by analyzing Slitrk4 knockout (KO) mice. The Slitrk4 protein was widely detected in the brain and was abundant in the olfactory bulb and amygdala. In a systematic behavioral analysis, male Slitrk4 KO mice exhibited an enhanced fear memory acquisition in a cued test for classical fear conditioning, and social behavior deficits in reciprocal social interaction tests. In an electrophysiological analysis using amygdala slices, Slitrk4 KO mice showed enhanced long-term potentiation in the thalamo-amygdala afferents and reduced feedback inhibition. In the molecular marker analysis of Slitrk4 KO brains, the number of calretinin (CR)-positive interneurons was decreased in the anterior part of the lateral amygdala nuclei at the adult stage. In in vitro experiments for neuronal differentiation, Slitrk4-deficient embryonic stem cells were defective in inducing GABAergic interneurons with an altered response to sonic hedgehog signaling activation that was involved in the generation of GABAergic interneuron subsets. These results indicate that Slitrk4 function is related to the development of inhibitory neurons in the fear memory circuit and would contribute to a better understanding of osttraumatic stress disorder, in which an altered expression of Slitrk4 has been reported.
Collapse
Affiliation(s)
- Yoshifumi Matsumoto
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-shi, Japan
| | - Hideki Miwa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kei-ichi Katayama
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-shi, Japan
| | - Arata Watanabe
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Kazuyuki Yamada
- Support Unit for Animal Experiments, RIKEN Brain Science Institute, Wako-shi, Japan
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Jun Aruga
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-shi, Japan
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
12
|
Miyoshi G, Ueta Y, Yagasaki Y, Kishi Y, Fishell G, Machold RP, Miyata M. Developmental trajectories of GABAergic cortical interneurons are sequentially modulated by dynamic FoxG1 expression levels. Proc Natl Acad Sci U S A 2024; 121:e2317783121. [PMID: 38588430 PMCID: PMC11032493 DOI: 10.1073/pnas.2317783121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.
Collapse
Affiliation(s)
- Goichi Miyoshi
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi city, Gunma371-8511, Japan
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
| | - Yoshifumi Ueta
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| | - Yuki Yagasaki
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, University of Tokyo, Bunkyo, Tokyo113-0032, Japan
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo, Tokyo113-0033, Japan
| | - Gord Fishell
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Stanley Center at the Broad Institute, Cambridge, MA02142
| | - Robert P. Machold
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
| | - Mariko Miyata
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| |
Collapse
|
13
|
Rodríguez-Pérez LM, López-de-San-Sebastián J, de Diego I, Smith A, Roales-Buján R, Jiménez AJ, Paez-Gonzalez P. A selective defect in the glial wedge as part of the neuroepithelium disruption in hydrocephalus development in the mouse hyh model is associated with complete corpus callosum dysgenesis. Front Cell Neurosci 2024; 18:1330412. [PMID: 38450283 PMCID: PMC10915275 DOI: 10.3389/fncel.2024.1330412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Dysgenesis of the corpus callosum is present in neurodevelopmental disorders and coexists with hydrocephalus in several human congenital syndromes. The mechanisms that underlie the etiology of congenital hydrocephalus and agenesis of the corpus callosum when they coappear during neurodevelopment persist unclear. In this work, the mechanistic relationship between both disorders is investigated in the hyh mouse model for congenital hydrocephalus, which also develops agenesis of the corpus callosum. In this model, hydrocephalus is generated by a defective program in the development of neuroepithelium during its differentiation into radial glial cells. Methods In this work, the populations implicated in the development of the corpus callosum (callosal neurons, pioneering axons, glial wedge cells, subcallosal sling and indusium griseum glial cells) were studied in wild-type and hyh mutant mice. Immunohistochemistry, mRNA in situ hybridization, axonal tracing experiments, and organotypic cultures from normal and hyh mouse embryos were used. Results Our results show that the defective program in the neuroepithelium/radial glial cell development in the hyh mutant mouse selectively affects the glial wedge cells. The glial wedge cells are necessary to guide the pioneering axons as they approach the corticoseptal boundary. Our results show that the pioneering callosal axons arising from neurons in the cingulate cortex can extend projections to the interhemispheric midline in normal and hyh mice. However, pioneering axons in the hyh mutant mouse, when approaching the area corresponding to the damaged glial wedge cell population, turned toward the ipsilateral lateral ventricle. This defect occurred before the appearance of ventriculomegaly. Discussion In conclusion, the abnormal development of the ventricular zone, which appears to be inherent to the etiology of several forms of congenital hydrocephalus, can explain, in some cases, the common association between hydrocephalus and corpus callosum dysgenesis. These results imply that further studies may be needed to understand the corpus callosum dysgenesis etiology when it concurs with hydrocephalus.
Collapse
Affiliation(s)
- Luis-Manuel Rodríguez-Pérez
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Universidad de Málaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | | | - Isabel de Diego
- Departamento de Anatomía y Medicina Legal e Historia de la Ciencia, Universidad de Málaga, Malaga, Spain
| | - Aníbal Smith
- Departamento de Anatomía y Medicina Legal e Historia de la Ciencia, Universidad de Málaga, Malaga, Spain
| | - Ruth Roales-Buján
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Malaga, Spain
| | - Antonio J. Jiménez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Malaga, Spain
| | - Patricia Paez-Gonzalez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Malaga, Spain
| |
Collapse
|
14
|
Fisher J, Verhagen M, Long Z, Moissidis M, Yan Y, He C, Wang J, Micoli E, Alastruey CM, Moors R, Marín O, Mi D, Lim L. Cortical somatostatin long-range projection neurons and interneurons exhibit divergent developmental trajectories. Neuron 2024; 112:558-573.e8. [PMID: 38086373 DOI: 10.1016/j.neuron.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/22/2023] [Accepted: 11/10/2023] [Indexed: 02/24/2024]
Abstract
The mammalian cerebral cortex contains an extraordinary diversity of cell types that emerge by implementing different developmental programs. Delineating when and how cellular diversification occurs is particularly challenging for cortical inhibitory neurons because they represent a small proportion of all cortical cells and have a protracted development. Here, we combine single-cell RNA sequencing and spatial transcriptomics to characterize the emergence of neuronal diversity among somatostatin-expressing (SST+) cells in mice. We found that SST+ inhibitory neurons segregate during embryonic stages into long-range projection (LRP) neurons and two types of interneurons, Martinotti cells and non-Martinotti cells, following distinct developmental trajectories. Two main subtypes of LRP neurons and several subtypes of interneurons are readily distinguishable in the embryo, although interneuron diversity is likely refined during early postnatal life. Our results suggest that the timing for cellular diversification is unique for different subtypes of SST+ neurons and particularly divergent for LRP neurons and interneurons.
Collapse
Affiliation(s)
- Josephine Fisher
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE1 1UL London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, SE1 1UL, London, UK
| | - Marieke Verhagen
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Zhen Long
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Monika Moissidis
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE1 1UL London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, SE1 1UL, London, UK
| | - Yiming Yan
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chenyi He
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingyu Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Elia Micoli
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Clara Milían Alastruey
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Rani Moors
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE1 1UL London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, SE1 1UL, London, UK.
| | - Da Mi
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Lynette Lim
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
15
|
Rhodes CT, Asokumar D, Sohn M, Naskar S, Elisha L, Stevenson P, Lee DR, Zhang Y, Rocha PP, Dale RK, Lee S, Petros TJ. Loss of Ezh2 in the medial ganglionic eminence alters interneuron fate, cell morphology and gene expression profiles. Front Cell Neurosci 2024; 18:1334244. [PMID: 38419656 PMCID: PMC10899338 DOI: 10.3389/fncel.2024.1334244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Enhancer of zeste homolog 2 (Ezh2) is responsible for trimethylation of histone 3 at lysine 27 (H3K27me3), resulting in repression of gene expression. Here, we explore the role of Ezh2 in forebrain GABAergic interneuron development. Methods We removed Ezh2 in the MGE by generating Nkx2-1Cre;Ezh2 conditional knockout mice. We then characterized changes in MGE-derived interneuron fate and electrophysiological properties in juvenile mice, as well as alterations in gene expression, chromatin accessibility and histone modifications in the MGE. Results Loss of Ezh2 increases somatostatin-expressing (SST+) and decreases parvalbumin-expressing (PV+) interneurons in the forebrain. We observe fewer MGE-derived interneurons in the first postnatal week, indicating reduced interneuron production. Intrinsic electrophysiological properties in SST+ and PV+ interneurons are normal, but PV+ interneurons display increased axonal complexity in Ezh2 mutant mice. Single nuclei multiome analysis revealed differential gene expression patterns in the embryonic MGE that are predictive of these cell fate changes. Lastly, CUT&Tag analysis revealed that some genomic loci are particularly resistant or susceptible to shifts in H3K27me3 levels in the absence of Ezh2, indicating differential selectivity to epigenetic perturbation. Discussion Thus, loss of Ezh2 in the MGE alters interneuron fate, morphology, and gene expression and regulation. These findings have important implications for both normal development and potentially in disease etiologies.
Collapse
Affiliation(s)
- Christopher T Rhodes
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Dhanya Asokumar
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Mira Sohn
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Shovan Naskar
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Lielle Elisha
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Parker Stevenson
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Dongjin R Lee
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
- National Cancer Institute (NCI), NIH, Bethesda, MD, United States
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Soohyun Lee
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| |
Collapse
|
16
|
Hu JS, Malik R, Sohal VS, Rubenstein JL, Vogt D. Tsc1 Loss in VIP-Lineage Cortical Interneurons Results in More VIP+ Interneurons and Enhanced Excitability. Cells 2023; 13:52. [PMID: 38201256 PMCID: PMC10777938 DOI: 10.3390/cells13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway is a powerful regulator of cell proliferation, growth, synapse maintenance and cell fate. While intensely studied for its role in cancer, the role of mTOR signaling is just beginning to be uncovered in specific cell types that are implicated in neurodevelopmental disorders. Previously, loss of the Tsc1 gene, which results in hyperactive mTOR, was shown to affect the function and molecular properties of GABAergic cortical interneurons (CINs) derived from the medial ganglionic eminence. To assess if other important classes of CINs could be impacted by mTOR dysfunction, we deleted Tsc1 in a caudal ganglionic eminence-derived interneuron group, the vasoactive intestinal peptide (VIP)+ subtype, whose activity disinhibits local circuits. Tsc1 mutant VIP+ CINs reduced their pattern of apoptosis from postnatal days 15-20, resulting in increased VIP+ CINs. The mutant CINs exhibited synaptic and electrophysiological properties that could contribute to the high rate of seizure activity in humans that harbor Tsc1 mutations.
Collapse
Affiliation(s)
- Jia Sheng Hu
- Department of Psychiatry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ruchi Malik
- Department of Psychiatry, University of California San Francisco, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 1550 4th St., San Francisco, CA 94158, USA
- Sloan-Swartz Center for Theoretical Neurobiology, University of California San Francisco, 1550 4th St., San Francisco, CA 94158, USA
| | - Vikaas S. Sohal
- Department of Psychiatry, University of California San Francisco, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 1550 4th St., San Francisco, CA 94158, USA
- Sloan-Swartz Center for Theoretical Neurobiology, University of California San Francisco, 1550 4th St., San Francisco, CA 94158, USA
| | - John L. Rubenstein
- Department of Psychiatry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daniel Vogt
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
17
|
Hamad MIK, Emerald BS, Kumar KK, Ibrahim MF, Ali BR, Bataineh MF. Extracellular molecular signals shaping dendrite architecture during brain development. Front Cell Dev Biol 2023; 11:1254589. [PMID: 38155836 PMCID: PMC10754048 DOI: 10.3389/fcell.2023.1254589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Proper growth and branching of dendrites are crucial for adequate central nervous system (CNS) functioning. The neuronal dendritic geometry determines the mode and quality of information processing. Any defects in dendrite development will disrupt neuronal circuit formation, affecting brain function. Besides cell-intrinsic programmes, extrinsic factors regulate various aspects of dendritic development. Among these extrinsic factors are extracellular molecular signals which can shape the dendrite architecture during early development. This review will focus on extrinsic factors regulating dendritic growth during early neuronal development, including neurotransmitters, neurotrophins, extracellular matrix proteins, contact-mediated ligands, and secreted and diffusible cues. How these extracellular molecular signals contribute to dendritic growth has been investigated in developing nervous systems using different species, different areas within the CNS, and different neuronal types. The response of the dendritic tree to these extracellular molecular signals can result in growth-promoting or growth-limiting effects, and it depends on the receptor subtype, receptor quantity, receptor efficiency, the animal model used, the developmental time windows, and finally, the targeted signal cascade. This article reviews our current understanding of the role of various extracellular signals in the establishment of the architecture of the dendrites.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kukkala K. Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Marwa F. Ibrahim
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mo’ath F. Bataineh
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
Munguba H, Nikouei K, Hochgerner H, Oberst P, Kouznetsova A, Ryge J, Muñoz-Manchado AB, Close J, Batista-Brito R, Linnarsson S, Hjerling-Leffler J. Transcriptional maintenance of cortical somatostatin interneuron subtype identity during migration. Neuron 2023; 111:3590-3603.e5. [PMID: 37625400 DOI: 10.1016/j.neuron.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/08/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Although cardinal cortical interneuron identity is established upon cell-cycle exit, it remains unclear whether specific interneuron subtypes are pre-established, and if so, how their identity is maintained prior to circuit integration. We conditionally removed Sox6 (Sox6-cKO) in migrating somatostatin (Sst+) interneurons and assessed the effects on their mature identity. In adolescent mice, five of eight molecular Sst+ subtypes were nearly absent in the Sox6-cKO cortex without a reduction in cell number. Sox6-cKO cells displayed electrophysiological maturity and expressed genes enriched within the broad class of Sst+ interneurons. Furthermore, we could infer subtype identity prior to cortical integration (embryonic day 18.5), suggesting that the loss in subtype was due to disrupted subtype maintenance. Conversely, Sox6 removal at postnatal day 7 did not disrupt marker expression in the mature cortex. Therefore, Sox6 is necessary during migration for maintenance of Sst+ subtype identity, indicating that subtype maintenance requires active transcriptional programs.
Collapse
Affiliation(s)
- Hermany Munguba
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kasra Nikouei
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Hochgerner
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Polina Oberst
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Kouznetsova
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Ryge
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ana Belén Muñoz-Manchado
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Departamento de Anatomía Patológica, Biología Celular, Histología, Historia de la Ciencia, Medicina Legal y Forense y Toxicología, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Jennie Close
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Renata Batista-Brito
- Einstein College of Medicine, Dominick Purpura Department of Neuroscience, 1300 Morris Park Ave, The Bronx, NY 10461, USA; Einstein College of Medicine, Department of Psychiatry and Behavioral Sciences, 1300 Morris Park Ave, The Bronx, NY 10461, USA; Einstein College of Medicine, Department of Genetics, 1300 Morris Park Ave, The Bronx, NY 10461, USA
| | - Sten Linnarsson
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
19
|
Bershteyn M, Bröer S, Parekh M, Maury Y, Havlicek S, Kriks S, Fuentealba L, Lee S, Zhou R, Subramanyam G, Sezan M, Sevilla ES, Blankenberger W, Spatazza J, Zhou L, Nethercott H, Traver D, Hampel P, Kim H, Watson M, Salter N, Nesterova A, Au W, Kriegstein A, Alvarez-Buylla A, Rubenstein J, Banik G, Bulfone A, Priest C, Nicholas CR. Human pallial MGE-type GABAergic interneuron cell therapy for chronic focal epilepsy. Cell Stem Cell 2023; 30:1331-1350.e11. [PMID: 37802038 PMCID: PMC10993865 DOI: 10.1016/j.stem.2023.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 03/17/2023] [Accepted: 08/25/2023] [Indexed: 10/08/2023]
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy. One-third of patients have drug-refractory seizures and are left with suboptimal therapeutic options such as brain tissue-destructive surgery. Here, we report the development and characterization of a cell therapy alternative for drug-resistant MTLE, which is derived from a human embryonic stem cell line and comprises cryopreserved, post-mitotic, medial ganglionic eminence (MGE) pallial-type GABAergic interneurons. Single-dose intrahippocampal delivery of the interneurons in a mouse model of chronic MTLE resulted in consistent mesiotemporal seizure suppression, with most animals becoming seizure-free and surviving longer. The grafted interneurons dispersed locally, functionally integrated, persisted long term, and significantly reduced dentate granule cell dispersion, a pathological hallmark of MTLE. These disease-modifying effects were dose-dependent, with a broad therapeutic range. No adverse effects were observed. These findings support an ongoing phase 1/2 clinical trial (NCT05135091) for drug-resistant MTLE.
Collapse
Affiliation(s)
| | - Sonja Bröer
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Mansi Parekh
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Yves Maury
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Steven Havlicek
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Sonja Kriks
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Luis Fuentealba
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Seonok Lee
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Robin Zhou
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | | | - Meliz Sezan
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | | | | | - Julien Spatazza
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Li Zhou
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - David Traver
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Philip Hampel
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Hannah Kim
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Michael Watson
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Naomi Salter
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | | | - Wai Au
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Arnold Kriegstein
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arturo Alvarez-Buylla
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John Rubenstein
- Department of Psychiatry, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gautam Banik
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | | | | | - Cory R Nicholas
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
20
|
Toudji I, Toumi A, Chamberland É, Rossignol E. Interneuron odyssey: molecular mechanisms of tangential migration. Front Neural Circuits 2023; 17:1256455. [PMID: 37779671 PMCID: PMC10538647 DOI: 10.3389/fncir.2023.1256455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Cortical GABAergic interneurons are critical components of neural networks. They provide local and long-range inhibition and help coordinate network activities involved in various brain functions, including signal processing, learning, memory and adaptative responses. Disruption of cortical GABAergic interneuron migration thus induces profound deficits in neural network organization and function, and results in a variety of neurodevelopmental and neuropsychiatric disorders including epilepsy, intellectual disability, autism spectrum disorders and schizophrenia. It is thus of paramount importance to elucidate the specific mechanisms that govern the migration of interneurons to clarify some of the underlying disease mechanisms. GABAergic interneurons destined to populate the cortex arise from multipotent ventral progenitor cells located in the ganglionic eminences and pre-optic area. Post-mitotic interneurons exit their place of origin in the ventral forebrain and migrate dorsally using defined migratory streams to reach the cortical plate, which they enter through radial migration before dispersing to settle in their final laminar allocation. While migrating, cortical interneurons constantly change their morphology through the dynamic remodeling of actomyosin and microtubule cytoskeleton as they detect and integrate extracellular guidance cues generated by neuronal and non-neuronal sources distributed along their migratory routes. These processes ensure proper distribution of GABAergic interneurons across cortical areas and lamina, supporting the development of adequate network connectivity and brain function. This short review summarizes current knowledge on the cellular and molecular mechanisms controlling cortical GABAergic interneuron migration, with a focus on tangential migration, and addresses potential avenues for cell-based interneuron progenitor transplants in the treatment of neurodevelopmental disorders and epilepsy.
Collapse
Affiliation(s)
- Ikram Toudji
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Asmaa Toumi
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Émile Chamberland
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Elsa Rossignol
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
21
|
Machold R, Dellal S, Valero M, Zurita H, Kruglikov I, Meng JH, Hanson JL, Hashikawa Y, Schuman B, Buzsáki G, Rudy B. Id2 GABAergic interneurons comprise a neglected fourth major group of cortical inhibitory cells. eLife 2023; 12:e85893. [PMID: 37665123 PMCID: PMC10581691 DOI: 10.7554/elife.85893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Cortical GABAergic interneurons (INs) represent a diverse population of mainly locally projecting cells that provide specialized forms of inhibition to pyramidal neurons and other INs. Most recent work on INs has focused on subtypes distinguished by expression of Parvalbumin (PV), Somatostatin (SST), or Vasoactive Intestinal Peptide (VIP). However, a fourth group that includes neurogliaform cells (NGFCs) has been less well characterized due to a lack of genetic tools. Here, we show that these INs can be accessed experimentally using intersectional genetics with the gene Id2. We find that outside of layer 1 (L1), the majority of Id2 INs are NGFCs that express high levels of neuropeptide Y (NPY) and exhibit a late-spiking firing pattern, with extensive local connectivity. While much sparser, non-NGFC Id2 INs had more variable properties, with most cells corresponding to a diverse group of INs that strongly expresses the neuropeptide CCK. In vivo, using silicon probe recordings, we observed several distinguishing aspects of NGFC activity, including a strong rebound in activity immediately following the cortical down state during NREM sleep. Our study provides insights into IN diversity and NGFC distribution and properties, and outlines an intersectional genetics approach for further study of this underappreciated group of INs.
Collapse
Affiliation(s)
- Robert Machold
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Shlomo Dellal
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Manuel Valero
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Hector Zurita
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Ilya Kruglikov
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - John Hongyu Meng
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Jessica L Hanson
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Yoshiko Hashikawa
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Benjamin Schuman
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - György Buzsáki
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
| | - Bernardo Rudy
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
22
|
Bollmann Y, Modol L, Tressard T, Vorobyev A, Dard R, Brustlein S, Sims R, Bendifallah I, Leprince E, de Sars V, Ronzitti E, Baude A, Adesnik H, Picardo MA, Platel JC, Emiliani V, Angulo-Garcia D, Cossart R. Prominent in vivo influence of single interneurons in the developing barrel cortex. Nat Neurosci 2023; 26:1555-1565. [PMID: 37653166 DOI: 10.1038/s41593-023-01405-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/13/2023] [Indexed: 09/02/2023]
Abstract
Spontaneous synchronous activity is a hallmark of developing brain circuits and promotes their formation. Ex vivo, synchronous activity was shown to be orchestrated by a sparse population of highly connected GABAergic 'hub' neurons. The recent development of all-optical methods to record and manipulate neuronal activity in vivo now offers the unprecedented opportunity to probe the existence and function of hub cells in vivo. Using calcium imaging, connectivity analysis and holographic optical stimulation, we show that single GABAergic, but not glutamatergic, neurons influence population dynamics in the barrel cortex of non-anaesthetized mouse pups. Single GABAergic cells mainly exert an inhibitory influence on both spontaneous and sensory-evoked population bursts. Their network influence scales with their functional connectivity, with highly connected hub neurons displaying the strongest impact. We propose that hub neurons function in tailoring intrinsic cortical dynamics to external sensory inputs.
Collapse
Affiliation(s)
- Yannick Bollmann
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Laura Modol
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Thomas Tressard
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Artem Vorobyev
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Robin Dard
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Sophie Brustlein
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Ruth Sims
- Wavefront-Engineering Microscopy Group, Photonics Department, Vision Institute, Sorbonne University, INSERM, CNRS, Paris, France
| | - Imane Bendifallah
- Wavefront-Engineering Microscopy Group, Photonics Department, Vision Institute, Sorbonne University, INSERM, CNRS, Paris, France
| | - Erwan Leprince
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Vincent de Sars
- Wavefront-Engineering Microscopy Group, Photonics Department, Vision Institute, Sorbonne University, INSERM, CNRS, Paris, France
| | - Emiliano Ronzitti
- Wavefront-Engineering Microscopy Group, Photonics Department, Vision Institute, Sorbonne University, INSERM, CNRS, Paris, France
| | - Agnès Baude
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Hillel Adesnik
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Michel Aimé Picardo
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Jean-Claude Platel
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Valentina Emiliani
- Wavefront-Engineering Microscopy Group, Photonics Department, Vision Institute, Sorbonne University, INSERM, CNRS, Paris, France
| | - David Angulo-Garcia
- Departamento de Matemáticas y Estadística, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales, Colombia
| | - Rosa Cossart
- Aix Marseille Univ, Inserm, INMED, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
23
|
Zhang XH, Anderson KM, Dong HM, Chopra S, Dhamala E, Emani PS, Margulies D, Holmes AJ. The Cellular Underpinnings of the Human Cortical Connectome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547828. [PMID: 37461642 PMCID: PMC10349999 DOI: 10.1101/2023.07.05.547828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The functional properties of the human brain arise, in part, from the vast assortment of cell types that pattern the cortex. The cortical sheet can be broadly divided into distinct networks, which are further embedded into processing streams, or gradients, that extend from unimodal systems through higher-order association territories. Here, using transcriptional data from the Allen Human Brain Atlas, we demonstrate that imputed cell type distributions are spatially coupled to the functional organization of cortex, as estimated through fMRI. Cortical cellular profiles follow the macro-scale organization of the functional gradients as well as the associated large-scale networks. Distinct cellular fingerprints were evident across networks, and a classifier trained on post-mortem cell-type distributions was able to predict the functional network allegiance of cortical tissue samples. These data indicate that the in vivo organization of the cortical sheet is reflected in the spatial variability of its cellular composition.
Collapse
Affiliation(s)
- Xi-Han Zhang
- Department of Psychology, Yale University, New Haven, CT, USA
| | | | - Hao-Ming Dong
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Elvisha Dhamala
- Department of Psychology, Yale University, New Haven, CT, USA
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Prashant S. Emani
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Daniel Margulies
- CNRS, Integrative Neuroscience and Cognition Center (UMR 8002), Université de Paris, Paris, France
| | - Avram J. Holmes
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
24
|
Faraji J, Metz GAS. Toward reframing brain-social dynamics: current assumptions and future challenges. Front Psychiatry 2023; 14:1211442. [PMID: 37484686 PMCID: PMC10359502 DOI: 10.3389/fpsyt.2023.1211442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Evolutionary analyses suggest that the human social brain and sociality appeared together. The two fundamental tools that accelerated the concurrent emergence of the social brain and sociality include learning and plasticity. The prevailing core idea is that the primate brain and the cortex in particular became reorganised over the course of evolution to facilitate dynamic adaptation to ongoing changes in physical and social environments. Encouraged by computational or survival demands or even by instinctual drives for living in social groups, the brain eventually learned how to learn from social experience via its massive plastic capacity. A fundamental framework for modeling these orchestrated dynamic responses is that social plasticity relies upon neuroplasticity. In the present article, we first provide a glimpse into the concepts of plasticity, experience, with emphasis on social experience. We then acknowledge and integrate the current theoretical concepts to highlight five key intertwined assumptions within social neuroscience that underlie empirical approaches for explaining the brain-social dynamics. We suggest that this epistemological view provides key insights into the ontology of current conceptual frameworks driving future research to successfully deal with new challenges and possible caveats in favour of the formulation of novel assumptions. In the light of contemporary societal challenges, such as global pandemics, natural disasters, violent conflict, and other human tragedies, discovering the mechanisms of social brain plasticity will provide new approaches to support adaptive brain plasticity and social resilience.
Collapse
|
25
|
Keefe F, Monzón-Sandoval J, Rosser AE, Webber C, Li M. Single-Cell Transcriptomics Reveals Conserved Regulatory Networks in Human and Mouse Interneuron Development. Int J Mol Sci 2023; 24:8122. [PMID: 37175835 PMCID: PMC10179417 DOI: 10.3390/ijms24098122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Inhibitory GABAergic interneurons originate in the embryonic medial ganglionic eminence (MGE) and control network activity in the neocortex. Dysfunction of these cells is believed to lead to runaway excitation underlying seizure-based neurological disorders such as epilepsy, autism, and schizophrenia. Despite their importance in heath and disease, our knowledge about the development of this diverse neuronal population remains incomplete. Here we conducted single-cell RNA sequencing (scRNA-seq) of human foetal MGE from 10 to 15 weeks post conception. These MGE tissues are composed of largely cycling progenitors and immature post-mitotic interneurons with characteristic regional marker expression. Analysis of integrated human and mouse MGE data revealed species-conserved transcriptomic profiles and regulatory programs. Moreover, we identified novel candidate transcription regulators for human interneuron differentiation. These findings provide a framework for in vitro modelling of interneuron development and a strategy for potentially enhancing interneuron production from human pluripotent stem cells.
Collapse
Affiliation(s)
- Francesca Keefe
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | | | - Anne E. Rosser
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
- Division of Neuroscience, School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| | - Caleb Webber
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Meng Li
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
- Division of Neuroscience, School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
26
|
Ren J, Flamant F. Thyroid hormone as a temporal switch in mouse development. Eur Thyroid J 2023; 12:e220225. [PMID: 36715693 PMCID: PMC10083660 DOI: 10.1530/etj-22-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023] Open
Abstract
Thyroid hormones are known to trigger metamorphosis in an amphibian. This review discusses the hypothesis according to which they act in a similar manner to synchronize the post-natal development of mice, using brain, brown adipose tissue, and heart as examples.
Collapse
Affiliation(s)
- Juan Ren
- ENS de Lyon, INRAE, CNRS, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| | - Frédéric Flamant
- ENS de Lyon, INRAE, CNRS, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| |
Collapse
|
27
|
Cortical interneuron specification and diversification in the era of big data. Curr Opin Neurobiol 2023; 80:102703. [PMID: 36933450 DOI: 10.1016/j.conb.2023.102703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 03/18/2023]
Abstract
Inhibition in the mammalian cerebral cortex is mediated by a small population of highly diverse GABAergic interneurons. These largely local neurons are interspersed among excitatory projection neurons and exert pivotal regulation on the formation and function of cortical circuits. We are beginning to understand the extent of GABAergic neuron diversity and how this is generated and shaped during brain development in mice and humans. In this review, we summarise recent findings and discuss how new technologies are being used to further advance our knowledge. Understanding how inhibitory neurons are generated in the embryo is an essential pre-requisite of stem cell therapy, an evolving area of research, aimed at correcting human disorders that result in inhibitory dysfunction.
Collapse
|
28
|
Pai ELL, Stafford AM, Vogt D. Cellular signaling impacts upon GABAergic cortical interneuron development. Front Neurosci 2023; 17:1138653. [PMID: 36998738 PMCID: PMC10043199 DOI: 10.3389/fnins.2023.1138653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The development and maturation of cortical GABAergic interneurons has been extensively studied, with much focus on nuclear regulation via transcription factors. While these seminal events are critical for the establishment of interneuron developmental milestones, recent studies on cellular signaling cascades have begun to elucidate some potential contributions of cell signaling during development. Here, we review studies underlying three broad signaling families, mTOR, MAPK, and Wnt/beta-catenin in cortical interneuron development. Notably, each pathway harbors signaling factors that regulate a breadth of interneuron developmental milestones and properties. Together, these events may work in conjunction with transcriptional mechanisms and other events to direct the complex diversity that emerges during cortical interneuron development and maturation.
Collapse
Affiliation(s)
- Emily Ling-Lin Pai
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - April M. Stafford
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, United States
| | - Daniel Vogt
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, United States
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
- *Correspondence: Daniel Vogt,
| |
Collapse
|
29
|
Xue B, Meng X, Kao JPY, Kanold PO. Age-related changes in excitatory and inhibitory intra-cortical circuits in auditory cortex of C57Bl/6 mice. Hear Res 2023; 429:108685. [PMID: 36701895 PMCID: PMC9928889 DOI: 10.1016/j.heares.2022.108685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
A common impairment in aging is age-related hearing loss (presbycusis), which manifests as impaired spectrotemporal processing. Aging is accompanied by alteration in normal inhibitory (GABA) neurotransmission, and changes in excitatory (NMDA and AMPA) synapses in the auditory cortex (ACtx). However, the circuits affected by these synaptic changes remain unknown. Mice of the C57Bl/6J strain show premature age-related hearing loss and changes in functional responses in ACtx. We thus investigated how auditory cortical microcircuits change with age by comparing young (∼ 6 weeks) and aged (>1 year old) C57Bl/6J mice. We performed laser scanning photostimulation (LSPS) combined with whole-cell patch clamp recordings from Layer (L) 2/3 cells in primary auditory cortex (A1) of young adult and aged C57Bl/6J mice. We found that L2/3 cells in aged C57Bl/6J mice display functional hypoconnectivity of both excitatory and inhibitory circuits. Compared to cells from young C57Bl/6 mice, cells from aged C57Bl/6J mice have fewer excitatory connections with weaker connection strength. Whereas young adult and aged C57Bl/6J mice have similar amounts of inhibitory connections, the strength of local inhibition is weaker in the aged group. We confirmed these results by recording miniature excitatory (mEPSCs) and inhibitory synaptic currents (mIPSCs). Our results suggest a specific reduction in excitatory and inhibitory intralaminar cortical circuits in aged C57Bl/6J mice compared with young adult animals. We speculate that these unbalanced changes in cortical circuits contribute to the functional manifestations of age-related hearing loss.
Collapse
Affiliation(s)
- Binghan Xue
- Department of Biology, University of Maryland, College Park, MD 20742, United States
| | - Xiangying Meng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Biology, University of Maryland, College Park, MD 20742, United States
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Biology, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
30
|
Cheng B, Sharma DR, Kumar A, Sheth H, Agyemang A, Aschner M, Zhang X, Ballabh P. Shh activation restores interneurons and cognitive function in newborns with intraventricular haemorrhage. Brain 2023; 146:629-644. [PMID: 35867870 PMCID: PMC10169407 DOI: 10.1093/brain/awac271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
Premature infants with germinal matrix haemorrhage-intraventricular haemorrhage (GMH-IVH) suffer from neurobehavioural deficits as they enter childhood and adolescence. Yet the underlying mechanisms remain unclear. Impaired development and function of interneurons contribute to neuropsychiatric disorders. Therefore, we hypothesized that the occurrence of IVH would reduce interneuron neurogenesis in the medial ganglionic eminence and diminish the population of parvalbumin+ and somatostatin+ cortical interneurons. Because Sonic Hedgehog promotes the production of cortical interneurons, we also postulated that the activation of Sonic Hedgehog signalling might restore neurogenesis, cortical interneuron population, and neurobehavioural function in premature newborns with IVH. These hypotheses were tested in a preterm rabbit model of IVH and autopsy samples from human preterm infants. We compared premature newborns with and without IVH for intraneuronal progenitors, cortical interneurons, transcription factors regulating neurogenesis, single-cell transcriptome of medial ganglionic eminence and neurobehavioural functions. We treated premature rabbit kits with adenovirus expressing Sonic Hedgehog (Ad-Shh) or green fluorescence protein gene to determine the effect of Sonic Hedgehog activation on the interneuron production, cortical interneuron population and neurobehaviour. We discovered that IVH reduced the number of Nkx2.1+ and Dlx2+ progenitors in the medial ganglionic eminence of both humans and rabbits by attenuating their proliferation and inducing apoptosis. Moreover, IVH decreased the population of parvalbumin+ and somatostatin+ neurons in the frontal cortex of both preterm infants and kits relative to controls. Sonic Hedgehog expression and the downstream transcription factors, including Nkx2.1, Mash1, Lhx6 and Sox6, were also reduced in kits with IVH. Consistent with these findings, single-cell transcriptomic analyses of medial ganglionic eminence identified a distinct subpopulation of cells exhibiting perturbation in genes regulating neurogenesis, ciliogenesis, mitochondrial function and MAPK signalling in rabbits with IVH. More importantly, restoration of Sonic Hedgehog level by Ad-Shh treatment ameliorated neurogenesis, cortical interneuron population and neurobehavioural function in kits with IVH. Additionally, Sonic Hedgehog activation alleviated IVH-induced inflammation and several transcriptomic changes in the medial ganglionic eminence. Taken together, IVH reduced intraneuronal production and cortical interneuron population by downregulating Sonic Hedgehog signalling in both preterm rabbits and humans. Notably, activation of Sonic Hedgehog signalling restored interneuron neurogenesis, cortical interneurons and cognitive function in rabbit kits with IVH. These findings highlight disruption in cortical interneurons in IVH and identify a novel therapeutic strategy to restore cortical interneurons and cognitive function in infants with IVH. These studies can accelerate the development of new therapies to enhance the neurodevelopmental outcome of survivors with IVH.
Collapse
Affiliation(s)
- Bokun Cheng
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deep R Sharma
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ajeet Kumar
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hardik Sheth
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alex Agyemang
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Aschner
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xusheng Zhang
- Computational Genomics Core, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Praveen Ballabh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
31
|
Zong F, Min X, Zhang Y, Li Y, Zhang X, Liu Y, He K. Circadian time- and sleep-dependent modulation of cortical parvalbumin-positive inhibitory neurons. EMBO J 2023; 42:e111304. [PMID: 36477886 PMCID: PMC9890233 DOI: 10.15252/embj.2022111304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Parvalbumin-positive neurons (PVs) are the main class of inhibitory neurons in the mammalian central nervous system. By examining diurnal changes in synaptic and neuronal activity of PVs in the supragranular layer of the mouse primary visual cortex (V1), we found that both PV input and output are modulated in a time- and sleep-dependent manner throughout the 24-h day. We first show that PV-evoked inhibition is stronger by the end of the light cycle (ZT12) relative to the end of the dark cycle (ZT0), which is in line with the lower inhibitory input of PV neurons at ZT12 than at ZT0. Interestingly, PV inhibitory and excitatory synaptic transmission slowly oscillate in opposite directions during the light/dark cycle. Although excitatory synapses are predominantly regulated by experience, inhibitory synapses are regulated by sleep, via acetylcholine activating M1 receptors. Consistent with synaptic regulation of PVs, we further show in vivo that spontaneous PV activity displays daily rhythm mainly determined by visual experience, which negatively correlates with the activity cycle of surrounding pyramidal neurons and the dorsal lateral geniculate nucleus-evoked responses in V1. These findings underscore the physiological significance of PV's daily modulation.
Collapse
Affiliation(s)
- Fang‐Jiao Zong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Present address:
Qingdao University School of PharmacyQingdaoChina
| | - Xia Min
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yan Zhang
- Shanghai Open UniversityShanghaiChina
| | - Yu‐Ke Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xue‐Ting Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kai‐Wen He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
32
|
Nunnelly LF, Campbell M, Lee DI, Dummer P, Gu G, Menon V, Au E. St18 specifies globus pallidus projection neuron identity in MGE lineage. Nat Commun 2022; 13:7735. [PMID: 36517477 PMCID: PMC9751150 DOI: 10.1038/s41467-022-35518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The medial ganglionic eminence (MGE) produces both locally-projecting interneurons, which migrate long distances to structures such as the cortex as well as projection neurons that occupy subcortical nuclei. Little is known about what regulates the migratory behavior and axonal projections of these two broad classes of neurons. We find that St18 regulates the migration and morphology of MGE neurons in vitro. Further, genetic loss-of-function of St18 in mice reveals a reduction in projection neurons of the globus pallidus pars externa. St18 functions by influencing cell fate in MGE lineages as we observe a large expansion of nascent cortical interneurons at the expense of putative GPe neurons in St18 null embryos. Downstream of St18, we identified Cbx7, a component of Polycomb repressor complex 1, and find that it is essential for projection neuron-like migration but not morphology. Thus, we identify St18 as a key regulator of projection neuron vs. interneuron identity.
Collapse
Affiliation(s)
- Luke F Nunnelly
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Melissa Campbell
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dylan I Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Patrick Dummer
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Edmund Au
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Columbia Translational Neuroscience Initiative Scholar, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
33
|
Herring CA, Simmons RK, Freytag S, Poppe D, Moffet JJD, Pflueger J, Buckberry S, Vargas-Landin DB, Clément O, Echeverría EG, Sutton GJ, Alvarez-Franco A, Hou R, Pflueger C, McDonald K, Polo JM, Forrest ARR, Nowak AK, Voineagu I, Martelotto L, Lister R. Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution. Cell 2022; 185:4428-4447.e28. [PMID: 36318921 DOI: 10.1016/j.cell.2022.09.039] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/19/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Human brain development is underpinned by cellular and molecular reconfigurations continuing into the third decade of life. To reveal cell dynamics orchestrating neural maturation, we profiled human prefrontal cortex gene expression and chromatin accessibility at single-cell resolution from gestation to adulthood. Integrative analyses define the dynamic trajectories of each cell type, revealing major gene expression reconfiguration at the prenatal-to-postnatal transition in all cell types followed by continuous reconfiguration into adulthood and identifying regulatory networks guiding cellular developmental programs, states, and functions. We uncover links between expression dynamics and developmental milestones, characterize the diverse timing of when cells acquire adult-like states, and identify molecular convergence from distinct developmental origins. We further reveal cellular dynamics and their regulators implicated in neurological disorders. Finally, using this reference, we benchmark cell identities and maturation states in organoid models. Together, this captures the dynamic regulatory landscape of human cortical development.
Collapse
Affiliation(s)
- Charles A Herring
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Rebecca K Simmons
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Saskia Freytag
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Daniel Poppe
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Joel J D Moffet
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Jahnvi Pflueger
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Sam Buckberry
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Dulce B Vargas-Landin
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Olivier Clément
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Enrique Goñi Echeverría
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Gavin J Sutton
- School of Biotechnology and Biomolecular Sciences, Cellular Genomics Futures Institute, and the RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alba Alvarez-Franco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Christian Pflueger
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Kerrie McDonald
- Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jose M Polo
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Anna K Nowak
- Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, Cellular Genomics Futures Institute, and the RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Luciano Martelotto
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; University of Melbourne Centre for Cancer Research, Victoria Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Ryan Lister
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
34
|
Liu JW, Li H, Zhang Y. Npas3 regulates stemness maintenance of radial glial cells and neuronal migration in the developing mouse cerebral cortex. Front Cell Neurosci 2022; 16:865681. [PMID: 36313621 PMCID: PMC9608153 DOI: 10.3389/fncel.2022.865681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The neuronal PAS domain 3 (NPAS3) is a member of the basic helix-loop-helix (bHLH) PAS family of transcription factors and is implicated in psychiatric and neurodevelopmental disorders. NPAS3 is robustly expressed in the cortical ventricle zone (VZ), a transient proliferative zone containing progenitor cells, mainly radial glial cells, destined to give rise to cortical excitatory neurons. However, the role of NPAS3 in corticogenesis remains largely unknown. In this study, we knocked down Npas3 expression in the neural progenitor cells residing in the cortical VZ to investigate the role of Npas3 in cerebral cortical development in mice. We demonstrated that Npas3 knockdown profoundly impaired neuronal radial migration and changed the laminar cell fate of the cells detained in the deep cortical layers. Furthermore, the downregulation of Npas3 led to the stemness maintenance of radial glial cells and increased the proliferation rate of neural progenitor cells residing in the VZ/subventricular zone (SVZ). These findings underline the function of Npas3 in the development of the cerebral cortex and may shed light on the etiology of NPAS3-related disorders.
Collapse
|
35
|
Asgarian Z, Oliveira MG, Stryjewska A, Maragkos I, Rubin AN, Magno L, Pachnis V, Ghorbani M, Hiebert SW, Denaxa M, Kessaris N. MTG8 interacts with LHX6 to specify cortical interneuron subtype identity. Nat Commun 2022; 13:5217. [PMID: 36064547 PMCID: PMC9445035 DOI: 10.1038/s41467-022-32898-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
Cortical interneurons originating in the embryonic medial ganglionic eminence (MGE) diverge into a range of different subtypes found in the adult mouse cerebral cortex. The mechanisms underlying this divergence and the timing when subtype identity is set up remain unclear. We identify the highly conserved transcriptional co-factor MTG8 as being pivotal in the development of a large subset of MGE cortical interneurons that co-expresses Somatostatin (SST) and Neuropeptide Y (NPY). MTG8 interacts with the pan-MGE transcription factor LHX6 and together the two factors are sufficient to promote expression of critical cortical interneuron subtype identity genes. The SST-NPY cortical interneuron fate is initiated early, well before interneurons migrate into the cortex, demonstrating an early onset specification program. Our findings suggest that transcriptional co-factors and modifiers of generic lineage specification programs may hold the key to the emergence of cortical interneuron heterogeneity from the embryonic telencephalic germinal zones. There is a large diversity of inhibitory interneurons in the mammalian cerebral cortex. How this emerges during embryogenesis remains unclear. Here, the authors identify MTG8 as a co-factor of LHX6 and a new regulator of cortical interneuron development.
Collapse
Affiliation(s)
- Zeinab Asgarian
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marcio Guiomar Oliveira
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Agata Stryjewska
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ioannis Maragkos
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Anna Noren Rubin
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lorenza Magno
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Mohammadmersad Ghorbani
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK.,Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Scott Wayne Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Myrto Denaxa
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
36
|
Zeng H. What is a cell type and how to define it? Cell 2022; 185:2739-2755. [PMID: 35868277 DOI: 10.1016/j.cell.2022.06.031] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/20/2022]
Abstract
Cell types are the basic functional units of an organism. Cell types exhibit diverse phenotypic properties at multiple levels, making them challenging to define, categorize, and understand. This review provides an overview of the basic principles of cell types rooted in evolution and development and discusses approaches to characterize and classify cell types and investigate how they contribute to the organism's function, using the mammalian brain as a primary example. I propose a roadmap toward a conceptual framework and knowledge base of cell types that will enable a deeper understanding of the dynamic changes of cellular function under healthy and diseased conditions.
Collapse
Affiliation(s)
- Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
37
|
Perrenoud Q, Leclerc C, Geoffroy H, Vitalis T, Richetin K, Rampon C, Gallopin T. Molecular and electrophysiological features of GABAergic neurons in the dentate gyrus reveal limited homology with cortical interneurons. PLoS One 2022; 17:e0270981. [PMID: 35802727 PMCID: PMC9269967 DOI: 10.1371/journal.pone.0270981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
GABAergic interneurons tend to diversify into similar classes across telencephalic regions. However, it remains unclear whether the electrophysiological and molecular properties commonly used to define these classes are discriminant in the hilus of the dentate gyrus. Here, using patch-clamp combined with single cell RT-PCR, we compare the relevance of commonly used electrophysiological and molecular features for the clustering of GABAergic interneurons sampled from the mouse hilus and primary sensory cortex. While unsupervised clustering groups cortical interneurons into well-established classes, it fails to provide a convincing partition of hilar interneurons. Statistical analysis based on resampling indicates that hilar and cortical GABAergic interneurons share limited homology. While our results do not invalidate the use of classical molecular marker in the hilus, they indicate that classes of hilar interneurons defined by the expression of molecular markers do not exhibit strongly discriminating electrophysiological properties.
Collapse
Affiliation(s)
- Quentin Perrenoud
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Clémence Leclerc
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
| | - Hélène Geoffroy
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Tania Vitalis
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Kevin Richetin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
| | - Thierry Gallopin
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
- * E-mail:
| |
Collapse
|
38
|
Wu J, Zhao Z, Shi Y, He M. Cortical VIP + Interneurons in the Upper and Deeper Layers Are Transcriptionally Distinct. J Mol Neurosci 2022; 72:1779-1795. [PMID: 35708842 DOI: 10.1007/s12031-022-02040-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/07/2022] [Indexed: 12/19/2022]
Abstract
Different interneuron classes have distinct laminar distribution patterns which contribute to the layer-specific organization of cortical microcircuits. However, laminar differences within the same interneuron classes are not well recognized. Despite systematic efforts towards neuron cell-type taxonomy in the neocortex by single-cell transcriptomics, less attention has been driven towards laminar differences in interneurons compared to projection neurons. VIP+ interneurons are the major interneuron class that mostly populate superficial layers and mediate disinhibition. A few reports noted the morphological and electrophysiological differences between VIP+ interneurons residing in layers I-III (upper layer) and layers IV-VI (deeper layer), but little is known about their molecular differences. Here, we delineated the laminar difference in their transcriptome employing single-cell RNA sequencing (scRNAseq) data from public databases. Analysis of 1175 high-quality VIP+ interneurons in the primary visual cortex (VISp) showed that the upper layer and deeper layer VIP+ interneurons are transcriptionally distinct distinguished by genes implicated in synapse organization and regulation of membrane potential. Similar differences are also observed in the anterior lateral motor cortex (ALM) and primary motor cortex (MOp). Cross-comparing between the top 10 differentially expressed genes (DEGs) with Allen Mouse Brain in situ hybridization database, we identified Tac2 and CxCl14 as potential marker genes of upper layer VIP+ interneurons across most cortical regions. Importantly, such expression patterns are conserved in the human brain. Together, we revealed significant laminar differences in transcriptomic profiles within VIP+ interneurons, which provided new insight into their molecular heterogeneity that may contribute to their functional diversity.
Collapse
Affiliation(s)
- Jinyun Wu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhirong Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yun Shi
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
39
|
Kaluthantrige Don F, Kalebic N. Forebrain Organoids to Model the Cell Biology of Basal Radial Glia in Neurodevelopmental Disorders and Brain Evolution. Front Cell Dev Biol 2022; 10:917166. [PMID: 35774229 PMCID: PMC9237216 DOI: 10.3389/fcell.2022.917166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
The acquisition of higher intellectual abilities that distinguish humans from their closest relatives correlates greatly with the expansion of the cerebral cortex. This expansion is a consequence of an increase in neuronal cell production driven by the higher proliferative capacity of neural progenitor cells, in particular basal radial glia (bRG). Furthermore, when the proliferation of neural progenitor cells is impaired and the final neuronal output is altered, severe neurodevelopmental disorders can arise. To effectively study the cell biology of human bRG, genetically accessible human experimental models are needed. With the pioneering success to isolate and culture pluripotent stem cells in vitro, we can now routinely investigate the developing human cerebral cortex in a dish using three-dimensional multicellular structures called organoids. Here, we will review the molecular and cell biological features of bRG that have recently been elucidated using brain organoids. We will further focus on the application of this simple model system to study in a mechanistically actionable way the molecular and cellular events in bRG that can lead to the onset of various neurodevelopmental diseases.
Collapse
|
40
|
Sur S, Ray RB. Emerging role of lncRNA ELDR in development and cancer. FEBS J 2022; 289:3011-3023. [PMID: 33860640 DOI: 10.1111/febs.15876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Whole-genome sequencing and transcriptome analysis revealed more than 90% of the human genome transcribes noncoding RNAs including lncRNAs. From the beginning of the 21st century, lncRNAs have gained widespread attention as a new layer of regulation in biological processes. lncRNAs are > 200 nucleotides in size, transcribed by RNA polymerase II, and share many similarities with mRNAs. lncRNA interacts with DNA, RNA, protein, and miRNAs, thereby regulating many biological processes. In this review, we have focused mainly on LINC01156 [also known as the EGFR long non-coding downstream RNA (ELDR) or Fabl] and its biological importance. ELDR is a newly identified lncRNA and first reported in a mouse model, but it has a human homolog. The human ELDR gene is closely localized downstream of epidermal growth factor receptor (EGFR) gene at chromosome 7 on the opposite strand. ELDR is highly expressed in neuronal stem cells and associated with neuronal differentiation and mouse brain development. ELDR is upregulated in head and neck cancer, suggesting its role as an oncogene and its importance in prognosis and therapy. Publicly available RNA-seq data further support its oncogenic potential in different cancers. Here, we summarize all the aspects of ELDR in development and cancer, highlighting its future perspectives in the context of mechanism.
Collapse
Affiliation(s)
- Subhayan Sur
- Department of Pathology, Saint Louis University, MO, USA
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, MO, USA.,Cancer Center, Saint Louis University, MO, USA
| |
Collapse
|
41
|
Mercurio S, Serra L, Pagin M, Nicolis SK. Deconstructing Sox2 Function in Brain Development and Disease. Cells 2022; 11:cells11101604. [PMID: 35626641 PMCID: PMC9139651 DOI: 10.3390/cells11101604] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
SOX2 is a transcription factor conserved throughout vertebrate evolution, whose expression marks the central nervous system from the earliest developmental stages. In humans, SOX2 mutation leads to a spectrum of CNS defects, including vision and hippocampus impairments, intellectual disability, and motor control problems. Here, we review how conditional Sox2 knockout (cKO) in mouse with different Cre recombinases leads to very diverse phenotypes in different regions of the developing and postnatal brain. Surprisingly, despite the widespread expression of Sox2 in neural stem/progenitor cells of the developing neural tube, some regions (hippocampus, ventral forebrain) appear much more vulnerable than others to Sox2 deletion. Furthermore, the stage of Sox2 deletion is also a critical determinant of the resulting defects, pointing to a stage-specificity of SOX2 function. Finally, cKOs illuminate the importance of SOX2 function in different cell types according to the different affected brain regions (neural precursors, GABAergic interneurons, glutamatergic projection neurons, Bergmann glia). We also review human genetics data regarding the brain defects identified in patients carrying mutations within human SOX2 and examine the parallels with mouse mutants. Functional genomics approaches have started to identify SOX2 molecular targets, and their relevance for SOX2 function in brain development and disease will be discussed.
Collapse
|
42
|
Yu D, Li T, Delpech JC, Zhu B, Kishore P, Koshi T, Luo R, Pratt KJ, Popova G, Nowakowski TJ, Villeda SA, Piao X. Microglial GPR56 is the molecular target of maternal immune activation-induced parvalbumin-positive interneuron deficits. SCIENCE ADVANCES 2022; 8:eabm2545. [PMID: 35544642 PMCID: PMC9075805 DOI: 10.1126/sciadv.abm2545] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Parvalbumin-positive (PV+) interneurons play a critical role in maintaining circuit rhythm in the brain, and their reduction is implicated in autism spectrum disorders. Animal studies demonstrate that maternal immune activation (MIA) leads to reduced PV+ interneurons in the somatosensory cortex and autism-like behaviors. However, the underlying molecular mechanisms remain largely unknown. Here, we show that MIA down-regulates microglial Gpr56 expression in fetal brains in an interleukin-17a-dependent manner and that conditional deletion of microglial Gpr56 [Gpr56 conditional knockout (cKO)] mimics MIA-induced PV+ interneuron defects and autism-like behaviors in offspring. We further demonstrate that elevated microglial tumor necrosis factor-α expression is the underlying mechanism by which MIA and Gpr56 cKO impair interneuron generation. Genetically restoring Gpr56 expression in microglia ameliorates PV+ interneuron deficits and autism-like behaviors in MIA offspring. Together, our study demonstrates that microglial GPR56 plays an important role in PV+ interneuron development and serves as a salient target of MIA-induced neurodevelopmental disorders.
Collapse
Affiliation(s)
- Diankun Yu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
- Weill Institute for Neuroscience, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Tao Li
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
- Weill Institute for Neuroscience, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jean-Christophe Delpech
- Department of Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Beika Zhu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
- Weill Institute for Neuroscience, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Priya Kishore
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Tatsuhiro Koshi
- Department of Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rong Luo
- Department of Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Karishma J.B. Pratt
- Department of Anatomy, University of California at San Francisco, San Francisco CA 94143, USA
- Developmental and Stem Cell Biology Graduate Program, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Galina Popova
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
- Department of Anatomy, University of California at San Francisco, San Francisco CA 94143, USA
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J. Nowakowski
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
- Weill Institute for Neuroscience, University of California at San Francisco, San Francisco, CA 94143, USA
- Department of Anatomy, University of California at San Francisco, San Francisco CA 94143, USA
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Saul A. Villeda
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
- Department of Anatomy, University of California at San Francisco, San Francisco CA 94143, USA
- Developmental and Stem Cell Biology Graduate Program, University of California at San Francisco, San Francisco, CA 94143, USA
- Department of Physical Therapy and Rehabilitation Science, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Xianhua Piao
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
- Weill Institute for Neuroscience, University of California at San Francisco, San Francisco, CA 94143, USA
- Department of Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Neonatology, Department of Pediatrics, University of California at San Francisco, San Francisco, CA 94158, USA
- Newborn Brain Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
43
|
Cossart R, Garel S. Step by step: cells with multiple functions in cortical circuit assembly. Nat Rev Neurosci 2022; 23:395-410. [DOI: 10.1038/s41583-022-00585-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 12/23/2022]
|
44
|
Tian D, Izumi SI. Transcranial Magnetic Stimulation and Neocortical Neurons: The Micro-Macro Connection. Front Neurosci 2022; 16:866245. [PMID: 35495053 PMCID: PMC9039343 DOI: 10.3389/fnins.2022.866245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the operation of cortical circuits is an important and necessary task in both neuroscience and neurorehabilitation. The functioning of the neocortex results from integrative neuronal activity, which can be probed non-invasively by transcranial magnetic stimulation (TMS). Despite a clear indication of the direct involvement of cortical neurons in TMS, no explicit connection model has been made between the microscopic neuronal landscape and the macroscopic TMS outcome. Here we have performed an integrative review of multidisciplinary evidence regarding motor cortex neurocytology and TMS-related neurophysiology with the aim of elucidating the micro–macro connections underlying TMS. Neurocytological evidence from animal and human studies has been reviewed to describe the landscape of the cortical neurons covering the taxonomy, morphology, circuit wiring, and excitatory–inhibitory balance. Evidence from TMS studies in healthy humans is discussed, with emphasis on the TMS pulse and paradigm selectivity that reflect the underlying neural circuitry constitution. As a result, we propose a preliminary neuronal model of the human motor cortex and then link the TMS mechanisms with the neuronal model by stimulus intensity, direction of induced current, and paired-pulse timing. As TMS bears great developmental potential for both a probe and modulator of neural network activity and neurotransmission, the connection model will act as a foundation for future combined studies of neurocytology and neurophysiology, as well as the technical advances and application of TMS.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- *Correspondence: Dongting Tian,
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Shin-Ichi Izumi,
| |
Collapse
|
45
|
Paredes MF, Mora C, Flores-Ramirez Q, Cebrian-Silla A, Del Dosso A, Larimer P, Chen J, Kang G, Gonzalez Granero S, Garcia E, Chu J, Delgado R, Cotter JA, Tang V, Spatazza J, Obernier K, Ferrer Lozano J, Vento M, Scott J, Studholme C, Nowakowski TJ, Kriegstein AR, Oldham MC, Hasenstaub A, Garcia-Verdugo JM, Alvarez-Buylla A, Huang EJ. Nests of dividing neuroblasts sustain interneuron production for the developing human brain. Science 2022; 375:eabk2346. [PMID: 35084970 DOI: 10.1126/science.abk2346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human cortex contains inhibitory interneurons derived from the medial ganglionic eminence (MGE), a germinal zone in the embryonic ventral forebrain. How this germinal zone generates sufficient interneurons for the human brain remains unclear. We found that the human MGE (hMGE) contains nests of proliferative neuroblasts with ultrastructural and transcriptomic features that distinguish them from other progenitors in the hMGE. When dissociated hMGE cells are transplanted into the neonatal mouse brain, they reform into nests containing proliferating neuroblasts that generate young neurons that migrate extensively into the mouse forebrain and mature into different subtypes of functional interneurons. Together, these results indicate that the nest organization and sustained proliferation of neuroblasts in the hMGE provide a mechanism for the extended production of interneurons for the human forebrain.
Collapse
Affiliation(s)
- Mercedes F Paredes
- Department of Neurology, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Cristina Mora
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | | | - Arantxa Cebrian-Silla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Ashley Del Dosso
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Phil Larimer
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Jiapei Chen
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Gugene Kang
- Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Susana Gonzalez Granero
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València-Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Eric Garcia
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Julia Chu
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Ryan Delgado
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Jennifer A Cotter
- Department of Pathology, Children's Hospital Los Angeles, and Keck School of Medicine of University of Southern California, Los Angeles, CA 90027, USA
| | - Vivian Tang
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Julien Spatazza
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Kirsten Obernier
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Jaime Ferrer Lozano
- Department of Pathology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Maximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.,Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Julia Scott
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - Colin Studholme
- Biomedical Image Computing Group, Departments of Pediatrics, Bioengineering, and Radiology, University of Washington, Seattle, WA 98195, USA.,Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.,Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Tomasz J Nowakowski
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Anatomy and Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
| | - Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Michael C Oldham
- Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Pathology, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Andrea Hasenstaub
- Department of Otolaryngology, University of California, San Francisco, CA 94143, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València-Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Eric J Huang
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Pathology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
46
|
Kessaris N. Human cortical interneuron development unraveled. Science 2022; 375:383-384. [PMID: 35084977 DOI: 10.1126/science.abn6333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, Gower Street, London, UK
| |
Collapse
|
47
|
Heng JIT, Viti L, Pugh K, Marshall OJ, Agostino M. Understanding the impact of ZBTB18 missense variation on transcription factor function in neurodevelopment and disease. J Neurochem 2022; 161:219-235. [PMID: 35083747 PMCID: PMC9302683 DOI: 10.1111/jnc.15572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 12/01/2022]
Abstract
Mutations to genes that encode DNA‐binding transcription factors (TFs) underlie a broad spectrum of human neurodevelopmental disorders. Here, we highlight the pathological mechanisms arising from mutations to TF genes that influence the development of mammalian cerebral cortex neurons. Drawing on recent findings for TF genes including ZBTB18, we discuss how functional missense mutations to such genes confer non‐native gene regulatory actions in developing neurons, leading to cell‐morphological defects, neuroanatomical abnormalities during foetal brain development and functional impairment. Further, we discuss how missense variation to human TF genes documented in the general population endow quantifiable changes to transcriptional regulation, with potential cell biological effects on the temporal progression of cerebral cortex neuron development and homeostasis. We offer a systematic approach to investigate the functional impact of missense variation in brain TFs and define their direct molecular and cellular actions in foetal neurodevelopment, tissue homeostasis and disease states.![]()
Collapse
Affiliation(s)
- Julian I-T Heng
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Neuroscience Laboratories, Sarich Neuroscience Institute, Crawley, WA, Australia.,Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Leon Viti
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Kye Pugh
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Owen J Marshall
- Menzies Institute for Medical Research, The University of Tasmania, Hobart, Australia
| | - Mark Agostino
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Institute for Computation, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
48
|
Ossola C, Kalebic N. Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells. Front Neurosci 2022; 15:817218. [PMID: 35069108 PMCID: PMC8766818 DOI: 10.3389/fnins.2021.817218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
The cerebral cortex is a structure that underlies various brain functions, including cognition and language. Mammalian cerebral cortex starts developing during the embryonic period with the neural progenitor cells generating neurons. Newborn neurons migrate along progenitors’ radial processes from the site of their origin in the germinal zones to the cortical plate, where they mature and integrate in the forming circuitry. Cell biological features of neural progenitors, such as the location and timing of their mitoses, together with their characteristic morphologies, can directly or indirectly regulate the abundance and the identity of their neuronal progeny. Alterations in the complex and delicate process of cerebral cortex development can lead to malformations of cortical development (MCDs). They include various structural abnormalities that affect the size, thickness and/or folding pattern of the developing cortex. Their clinical manifestations can entail a neurodevelopmental disorder, such as epilepsy, developmental delay, intellectual disability, or autism spectrum disorder. The recent advancements of molecular and neuroimaging techniques, along with the development of appropriate in vitro and in vivo model systems, have enabled the assessment of the genetic and environmental causes of MCDs. Here we broadly review the cell biological characteristics of neural progenitor cells and focus on those features whose perturbations have been linked to MCDs.
Collapse
|
49
|
Juarez P, Martínez Cerdeño V. Parvalbumin and parvalbumin chandelier interneurons in autism and other psychiatric disorders. Front Psychiatry 2022; 13:913550. [PMID: 36311505 PMCID: PMC9597886 DOI: 10.3389/fpsyt.2022.913550] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Parvalbumin (PV) is a calcium binding protein expressed by inhibitory fast-spiking interneurons in the cerebral cortex. By generating a fast stream of action potentials, PV+ interneurons provide a quick and stable inhibitory input to pyramidal neurons and contribute to the generation of gamma oscillations in the cortex. Their fast-firing rates, while advantageous for regulating cortical signaling, also leave them vulnerable to metabolic stress. Chandelier (Ch) cells are a type of PV+ interneuron that modulate the output of pyramidal neurons and synchronize spikes within neuron populations by directly innervating the pyramidal axon initial segment. Changes in the morphology and/or function of PV+ interneurons, mostly of Ch cells, are linked to neurological disorders. In ASD, the number of PV+ Ch cells is decreased across several cortical areas. Changes in the morphology and/or function of PV+ interneurons have also been linked to schizophrenia, epilepsy, and bipolar disorder. Herein, we review the role of PV and PV+ Ch cell alterations in ASD and other psychiatric disorders.
Collapse
Affiliation(s)
- Pablo Juarez
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospital for Children and UC Davis School of Medicine, Sacramento, CA, United States.,Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, United States
| | - Verónica Martínez Cerdeño
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospital for Children and UC Davis School of Medicine, Sacramento, CA, United States.,Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, United States.,MIND Institute, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
50
|
Sousa E, Flames N. Transcriptional regulation of neuronal identity. Eur J Neurosci 2021; 55:645-660. [PMID: 34862697 PMCID: PMC9306894 DOI: 10.1111/ejn.15551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Neuronal diversity is an intrinsic feature of the nervous system. Transcription factors (TFs) are key regulators in the establishment of different neuronal identities; how are the actions of different TFs coordinated to orchestrate this diversity? Are there common features shared among the different neuron types of an organism or even among different animal groups? In this review, we provide a brief overview on common traits emerging on the transcriptional regulation of neuron type diversification with a special focus on the comparison between mouse and Caenorhabditis elegans model systems. In the first part, we describe general concepts on neuronal identity and transcriptional regulation of gene expression. In the second part of the review, TFs are classified in different categories according to their key roles at specific steps along the protracted process of neuronal specification and differentiation. The same TF categories can be identified both in mammals and nematodes. Importantly, TFs are very pleiotropic: Depending on the neuron type or the time in development, the same TF can fulfil functions belonging to different categories. Finally, we describe the key role of transcriptional repression at all steps controlling neuronal diversity and propose that acquisition of neuronal identities could be considered a metastable process.
Collapse
Affiliation(s)
- Erick Sousa
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain
| |
Collapse
|