1
|
Chen Y, Xu H, Xiao L, Zhang M, Yan N. Single-cell RNA sequencing in the study of human retinal organoids. Exp Eye Res 2025; 256:110417. [PMID: 40320034 DOI: 10.1016/j.exer.2025.110417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/26/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) has transformed the study of retinal development and diseases by enabling a detailed analysis of cellular diversity within retinal organoids (ROs). ROs generated from pluripotent stem cells mimic the essential characteristics of the human retina and provide a valuable in vitro model for investigating retinal development, cell interactions, and disease mechanisms. This review summarizes the application of scRNA-seq on RO research, emphasizing its capacity to identify distinct cell populations, uncover developmental trajectories, and reveal the molecular signatures of retinal diseases. scRNA-seq provides new insights into retinal neurogenesis, cellular diversity, and the pathophysiology of retinal degenerative diseases. This technology has enabled the identification of novel biomarkers and potential therapeutic targets. Integrating scRNA-seq with other technologies, such as spatial transcriptomics and CRISPR-based screening, can further deepen our understanding of retinal biology and improve treatment strategies.
Collapse
Affiliation(s)
- Yi Chen
- Department of Ophthalmology and Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hanyue Xu
- Department of Ophthalmology and Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lirong Xiao
- Department of Ophthalmology and Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Naihong Yan
- Department of Ophthalmology and Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Navinés-Ferrer A, Pomares E. Endoplasmic reticulum stress and rhodopsin accumulation in an organoid model of Retinitis Pigmentosa carrying a RHO pathogenic variant. Stem Cell Res Ther 2025; 16:71. [PMID: 39948682 PMCID: PMC11827366 DOI: 10.1186/s13287-025-04199-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Retinitis Pigmentosa (RP) is the most prevalent inherited retinal dystrophy, with more than 120 causative genes. Among them, RHO was the first photoreceptor gene described to harbor mutations responsible for RP. RHO pathogenic variants usually induce a dominant negative effect in which the accumulation of misfolded rhodopsin protein leads to ER stress, autophagy and lastly rod photoreceptor death. METHODS We differentiated photoreceptor precursors and retinal organoids from an iPSC line of a patient carrying the Pro215Leu mutation in RHO gene. Both cell models were analyzed to determine their maturation, the expression and localization of RHO mRNA and the rhodopsin protein and the activation of autophagy or ER pathways. RESULTS The Pro215Leu mutation causes rhodopsin accumulation in the soma of rod photoreceptor precursors along with a faster recycling by the proteasome. In both precursors and retinal organoids, we observed autophagy defects and late endoplasmic reticulum stress through CHOP increase. CONCLUSIONS Unraveling the molecular pathophysiology of these mutations is key for understanding the basis of the disease and design proper gene and cell therapies for its treatment.
Collapse
Affiliation(s)
| | - Esther Pomares
- Departament de Genètica, IMO Grupo Miranza, Barcelona, Spain.
| |
Collapse
|
3
|
Teranishi A, Mori M, Ichiki R, Toda S, Shioi G, Okuda S. An actin bracket-induced elastoplastic transition determines epithelial folding irreversibility. Nat Commun 2024; 15:10476. [PMID: 39668169 PMCID: PMC11638340 DOI: 10.1038/s41467-024-54906-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024] Open
Abstract
During morphogenesis, epithelial sheets undergo sequential folding to form three-dimensional organ structures. The resulting folds are often irreversible, ensuring that morphogenesis progresses in one direction. However, the mechanism establishing folding irreversibility remains unclear. Here, we report a mechanical property of epithelia that determines folding irreversibility. Using a mechanical assay, we demonstrate that long-term, high-curvature folding induces plastic, irreversible deformations, while short-term or low-curvature folding results in an elastic, shape-restoring response. This elastic-plastic transition occurs in a switch-like manner, with critical thresholds in folding curvature and duration. The transition is induced by F-actin accumulating into a bracket-like structure across the fold, triggered by cells sensing deformations via mechanosensitive signaling pathways, including TRPC 3/6-mediated calcium influx and ligand-independent EGFR activation. These results demonstrate that cells control epithelial folding irreversibility by detecting folding characteristics and adaptively switching between elastic and plastic responses, providing mechanical insight into the directionality of morphogenesis.
Collapse
Affiliation(s)
- Aki Teranishi
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Misato Mori
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Rihoko Ichiki
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Satoshi Toda
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Go Shioi
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Satoru Okuda
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan.
- Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
4
|
Ong ALC, Kokaji T, Kishi A, Takihara Y, Shinozuka T, Shimamoto R, Isotani A, Shirai M, Sasai N. Acquisition of neural fate by combination of BMP blockade and chromatin modification. iScience 2023; 26:107887. [PMID: 37771660 PMCID: PMC10522999 DOI: 10.1016/j.isci.2023.107887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Neural induction is a process where naive cells are converted into committed cells with neural characteristics, and it occurs at the earliest step during embryogenesis. Although the signaling molecules and chromatin remodeling for neural induction have been identified, the mutual relationships between these molecules are yet to be fully understood. By taking advantage of the neural differentiation system of mouse embryonic stem (ES) cells, we discovered that the BMP signal regulates the expression of several polycomb repressor complex (PRC) component genes. We particularly focused on Polyhomeotic Homolog 1 (Phc1) and established Phc1-knockout (Phc1-KO) ES cells. We found that Phc1-KO failed to acquire the neural fate, and the cells remained in pluripotent or primitive non-neural states. Chromatin accessibility analysis suggests that Phc1 is essential for chromatin packing. Aberrant upregulation of the BMP signal was confirmed in the Phc1 homozygotic mutant embryos. Taken together, Phc1 is required for neural differentiation through epigenetic modification.
Collapse
Affiliation(s)
- Agnes Lee Chen Ong
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Toshiya Kokaji
- Data-driven biology, NAIST Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Arisa Kishi
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Yoshihiro Takihara
- Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | - Takuma Shinozuka
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Ren Shimamoto
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Ayako Isotani
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Manabu Shirai
- Omics Research Center (ORC), National Cerebral and Cardiovascular Center, 6-1 Kishibe Shinmachi, Suita, Osaka 564-8565, Japan
| | - Noriaki Sasai
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| |
Collapse
|
5
|
Arioka Y, Okumura H, Sakaguchi H, Ozaki N. Shedding light on latent pathogenesis and pathophysiology of mental disorders: The potential of iPS cell technology. Psychiatry Clin Neurosci 2023; 77:308-314. [PMID: 36929185 PMCID: PMC11488641 DOI: 10.1111/pcn.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Mental disorders are considered as one of the major healthcare issues worldwide owing to their significant impact on the quality of life of patients, causing serious social burdens. However, it is hard to examine the living brain-a source of psychiatric symptoms-at the cellular, subcellular, and molecular levels, which poses difficulty in determining the pathogenesis and pathophysiology of mental disorders. Recently, induced pluripotent stem cell (iPSC) technology has been used as a novel tool for research on mental disorders. We believe that the iPSC-based studies will address the limitations of other research approaches, such as human genome, postmortem brain study, brain imaging, and animal model analysis. Notably, studies using integrated iPSC technology with genetic information have provided significant novel findings to date. This review aimed to discuss the history, current trends, potential, and future of iPSC technology in the field of mental disorders. Although iPSC technology has several limitations, this technology can be used in combination with the other approaches to facilitate studies on mental disorders.
Collapse
Affiliation(s)
- Yuko Arioka
- Pathophysiology of Mental DisordersNagoya University Graduate School of MedicineNagoyaJapan
- Center for Advanced Medicine and Clinical ResearchNagoya University HospitalNagoyaJapan
| | - Hiroki Okumura
- Pathophysiology of Mental DisordersNagoya University Graduate School of MedicineNagoyaJapan
- Hospital PharmacyNagoya University HospitalNagoyaJapan
| | - Hideya Sakaguchi
- BDR‐Otsuka Pharmaceutical Collaboration Center, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Norio Ozaki
- Pathophysiology of Mental DisordersNagoya University Graduate School of MedicineNagoyaJapan
- Institute for Glyco‐core Research (iGCORE)Nagoya UniversityNagoyaJapan
| |
Collapse
|
6
|
Paşcalău R, Badea TC. Signaling - transcription interactions in mouse retinal ganglion cells early axon pathfinding -a literature review. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1180142. [PMID: 38983012 PMCID: PMC11182120 DOI: 10.3389/fopht.2023.1180142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/21/2023] [Indexed: 07/11/2024]
Abstract
Sending an axon out of the eye and into the target brain nuclei is the defining feature of retinal ganglion cells (RGCs). The literature on RGC axon pathfinding is vast, but it focuses mostly on decision making events such as midline crossing at the optic chiasm or retinotopic mapping at the target nuclei. In comparison, the exit of RGC axons out of the eye is much less explored. The first checkpoint on the RGC axons' path is the optic cup - optic stalk junction (OC-OS). OC-OS development and the exit of the RGC pioneer axons out of the eye are coordinated spatially and temporally. By the time the optic nerve head domain is specified, the optic fissure margins are in contact and the fusion process is ongoing, the first RGCs are born in its proximity and send pioneer axons in the optic stalk. RGC differentiation continues in centrifugal waves. Later born RGC axons fasciculate with the more mature axons. Growth cones at the end of the axons respond to guidance cues to adopt a centripetal direction, maintain nerve fiber layer restriction and to leave the optic cup. Although there is extensive information on OC-OS development, we still have important unanswered questions regarding its contribution to the exit of the RGC axons out of the eye. We are still to distinguish the morphogens of the OC-OS from the axon guidance molecules which are expressed in the same place at the same time. The early RGC transcription programs responsible for axon emergence and pathfinding are also unknown. This review summarizes the molecular mechanisms for early RGC axon guidance by contextualizing mouse knock-out studies on OC-OS development with the recent transcriptomic studies on developing RGCs in an attempt to contribute to the understanding of human optic nerve developmental anomalies. The published data summarized here suggests that the developing optic nerve head provides a physical channel (the closing optic fissure) as well as molecular guidance cues for the pioneer RGC axons to exit the eye.
Collapse
Affiliation(s)
- Raluca Paşcalău
- Research and Development Institute, Transilvania University of Braşov, Braşov, Romania
- Ophthalmology Clinic, Cluj County Emergency Hospital, Cluj-Napoca, Romania
| | - Tudor Constantin Badea
- Research and Development Institute, Transilvania University of Braşov, Braşov, Romania
- National Center for Brain Research, Institutul de Cercetări pentru Inteligență Artificială, Romanian Academy, Bucharest, Romania
| |
Collapse
|
7
|
Wahlin KJ, Cheng J, Jurlina SL, Jones MK, Dash NR, Ogata A, Kibria N, Ray S, Eldred KC, Kim C, Heng JS, Phillips J, Johnston RJ, Gamm DM, Berlinicke C, Zack DJ. CRISPR Generated SIX6 and POU4F2 Reporters Allow Identification of Brain and Optic Transcriptional Differences in Human PSC-Derived Organoids. Front Cell Dev Biol 2021; 9:764725. [PMID: 34869356 PMCID: PMC8635054 DOI: 10.3389/fcell.2021.764725] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/11/2021] [Indexed: 01/29/2023] Open
Abstract
Human pluripotent stem cells (PSCs) represent a powerful tool to investigate human eye development and disease. When grown in 3D, they can self-assemble into laminar organized retinas; however, variation in the size, shape and composition of individual organoids exists. Neither the microenvironment nor the timing of critical growth factors driving retinogenesis are fully understood. To explore early retinal development, we developed a SIX6-GFP reporter that enabled the systematic optimization of conditions that promote optic vesicle formation. We demonstrated that early hypoxic growth conditions enhanced SIX6 expression and promoted eye formation. SIX6 expression was further enhanced by sequential inhibition of Wnt and activation of sonic hedgehog signaling. SIX6 + optic vesicles showed RNA expression profiles that were consistent with a retinal identity; however, ventral diencephalic markers were also present. To demonstrate that optic vesicles lead to bona fide "retina-like" structures we generated a SIX6-GFP/POU4F2-tdTomato dual reporter line that labeled the entire developing retina and retinal ganglion cells, respectively. Additional brain regions, including the hypothalamus and midbrain-hindbrain (MBHB) territories were identified by harvesting SIX6 + /POU4F2- and SIX6- organoids, respectively. Using RNAseq to study transcriptional profiles we demonstrated that SIX6-GFP and POU4F2-tdTomato reporters provided a reliable readout for developing human retina, hypothalamus, and midbrain/hindbrain organoids.
Collapse
Affiliation(s)
- Karl J. Wahlin
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States,*Correspondence: Karl J. Wahlin,
| | - Jie Cheng
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shawna L. Jurlina
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States
| | - Melissa K. Jones
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States
| | - Nicholas R. Dash
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States
| | - Anna Ogata
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States
| | - Nawal Kibria
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States
| | - Sunayan Ray
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States
| | - Kiara C. Eldred
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Catherine Kim
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jacob S. Heng
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, United States
| | - Jenny Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert J. Johnston
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David M. Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Cynthia Berlinicke
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Donald J. Zack
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Lee JH, Park HS, Holmes DP. Elastic Instabilities Govern the Morphogenesis of the Optic Cup. PHYSICAL REVIEW LETTERS 2021; 127:138102. [PMID: 34623834 DOI: 10.1103/physrevlett.127.138102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Because the normal operation of the eye depends on sensitive morphogenetic processes for its eventual shape, developmental flaws can lead to wide-ranging ocular defects. However, the physical processes and mechanisms governing ocular morphogenesis are not well understood. Here, using analytical theory and nonlinear shell finite-element simulations, we show, for optic vesicles experiencing matrix-constrained growth, that elastic instabilities govern the optic cup morphogenesis. By capturing the stress amplification owing to mass increase during growth, we show that the morphogenesis is driven by two elastic instabilities analogous to the snap through in spherical shells, where the second instability is sensitive to the optic cup geometry. In particular, if the optic vesicle is too slender, it will buckle and break axisymmetry, thus, preventing normal development. Our results shed light on the morphogenetic mechanisms governing the formation of a functional biological system and the role of elastic instabilities in the shape selection of soft biological structures.
Collapse
Affiliation(s)
- Jeong-Ho Lee
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Harold S Park
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Douglas P Holmes
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
9
|
Denault WRP, Romanowska J, Haaland ØA, Lyle R, Taylor J, Xu Z, Lie RT, Gjessing HK, Jugessur A. Wavelet Screening identifies regions highly enriched for differentially methylated loci for orofacial clefts. NAR Genom Bioinform 2021; 3:lqab035. [PMID: 33987535 PMCID: PMC8092375 DOI: 10.1093/nargab/lqab035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 12/04/2022] Open
Abstract
DNA methylation is the most widely studied epigenetic mark in humans and plays an essential role in normal biological processes as well as in disease development. More focus has recently been placed on understanding functional aspects of methylation, prompting the development of methods to investigate the relationship between heterogeneity in methylation patterns and disease risk. However, most of these methods are limited in that they use simplified models that may rely on arbitrarily chosen parameters, they can only detect differentially methylated regions (DMRs) one at a time, or they are computationally intensive. To address these shortcomings, we present a wavelet-based method called 'Wavelet Screening' (WS) that can perform an epigenome-wide association study (EWAS) of thousands of individuals on a single CPU in only a matter of hours. By detecting multiple DMRs located near each other, WS identifies more complex patterns that can differentiate between different methylation profiles. We performed an extensive set of simulations to demonstrate the robustness and high power of WS, before applying it to a previously published EWAS dataset of orofacial clefts (OFCs). WS identified 82 associated regions containing several known genes and loci for OFCs, while other findings are novel and warrant replication in other OFCs cohorts.
Collapse
Affiliation(s)
- William R P Denault
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, 0473, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, 5006, Bergen, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
| | - Julia Romanowska
- Department of Global Public Health and Primary Care, University of Bergen, 5006, Bergen, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
| | - Øystein A Haaland
- Department of Global Public Health and Primary Care, University of Bergen, 5006, Bergen, Norway
| | - Robert Lyle
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, 0450, Oslo, Norway
| | - Jack A Taylor
- Epidemiology Branch and Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences (NIH/NIEHS), 27709, Durham, North Carolina, USA
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIH/NIEHS), 27709, Durham, North Carolina, USA
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, 5006, Bergen, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
| | - Håkon K Gjessing
- Department of Global Public Health and Primary Care, University of Bergen, 5006, Bergen, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
| | - Astanand Jugessur
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, 0473, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, 5006, Bergen, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
| |
Collapse
|
10
|
Sawai T, Hayashi Y, Niikawa T, Shepherd J, Thomas E, Lee TL, Erler A, Watanabe M, Sakaguchi H. Mapping the Ethical Issues of Brain Organoid Research and Application. AJOB Neurosci 2021; 13:81-94. [PMID: 33769221 DOI: 10.1080/21507740.2021.1896603] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In 2008, researchers created human three-dimensional neural tissue - known as the pioneering work of "brain organoids." In recent years, some researchers have transplanted human brain organoids into animal brains for applicational purposes. With these experiments have come many ethical concerns. It is thus an urgent task to clarify what is ethically permissible and impermissible in brain organoid research. This paper seeks (1) to sort out the ethical issues related to brain organoid research and application and (2) to propose future directions for additional ethical consideration and policy debates in the field. Toward (1), this paper first outlines the current state of brain organoid research, and then briefly responds to previously raised related ethical concerns. Looking next at anticipated scientific developments in brain organoid research, we will discuss (i) ethical issues related to in vitro brain organoids, (ii) ethical issues raised when brain organoids form complexes or have relationships with other entities, and (iii) ethical issues of research ethics and governance. Finally, in pursuit of (2), we propose research policies that are mindful of the ethics of brain organoid research and application and also suggest the need for an international framework for research and application of brain organoids.
Collapse
Affiliation(s)
- Tsutomu Sawai
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), KUIAS Kyoto University.,Center for iPS Cell Research and Application, Kyoto University
| | | | | | | | | | - Tsung-Ling Lee
- Institute of Health and Biotechnology of Law, Taipei Medical University
| | | | - Momoko Watanabe
- University of California Irvine, School of Medicine.,Sue & Bill Gross Stem Cell Research Center
| | - Hideya Sakaguchi
- RIKEN Center for Biosystems Dynamics Research, BDR-Otsuka Pharmaceutical Collaboration Center
| |
Collapse
|
11
|
Nguyen T, Urrutia-Cabrera D, Liou RHC, Luu CD, Guymer R, Wong RCB. New Technologies to Study Functional Genomics of Age-Related Macular Degeneration. Front Cell Dev Biol 2021; 8:604220. [PMID: 33505962 PMCID: PMC7829507 DOI: 10.3389/fcell.2020.604220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss in people over 50 years old in developed countries. Currently, we still lack a comprehensive understanding of the genetic factors contributing to AMD, which is critical to identify effective therapeutic targets to improve treatment outcomes for AMD patients. Here we discuss the latest technologies that can facilitate the identification and functional study of putative genes in AMD pathology. We review improved genomic methods to identify novel AMD genes, advances in single cell transcriptomics to profile gene expression in specific retinal cell types, and summarize recent development of in vitro models for studying AMD using induced pluripotent stem cells, organoids and biomaterials, as well as new molecular technologies using CRISPR/Cas that could facilitate functional studies of AMD-associated genes.
Collapse
Affiliation(s)
- Tu Nguyen
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel Urrutia-Cabrera
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Roxanne Hsiang-Chi Liou
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Raymond Ching-Bong Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Grocott T, Lozano-Velasco E, Mok GF, Münsterberg AE. The Pax6 master control gene initiates spontaneous retinal development via a self-organising Turing network. Development 2020; 147:dev185827. [PMID: 33214222 PMCID: PMC7774904 DOI: 10.1242/dev.185827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/05/2020] [Indexed: 12/14/2022]
Abstract
Understanding how complex organ systems are assembled from simple embryonic tissues is a major challenge. Across the animal kingdom a great diversity of visual organs are initiated by a 'master control gene' called Pax6, which is both necessary and sufficient for eye development. Yet precisely how Pax6 achieves this deeply homologous function is poorly understood. Using the chick as a model organism, we show that vertebrate Pax6 interacts with a pair of morphogen-coding genes, Tgfb2 and Fst, to form a putative Turing network, which we have computationally modelled. Computer simulations suggest that this gene network is sufficient to spontaneously polarise the developing retina, establishing the first organisational axis of the eye and prefiguring its further development. Our findings reveal how retinal self-organisation may be initiated independently of the highly ordered tissue interactions that help to assemble the eye in vivo These results help to explain how stem cell aggregates spontaneously self-organise into functional eye-cups in vitro We anticipate these findings will help to underpin retinal organoid technology, which holds much promise as a platform for disease modelling, drug development and regenerative therapies.
Collapse
Affiliation(s)
- Timothy Grocott
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | | | | |
Collapse
|
13
|
Jemni-Damer N, Guedan-Duran A, Fuentes-Andion M, Serrano-Bengoechea N, Alfageme-Lopez N, Armada-Maresca F, Guinea GV, Perez-Rigueiro J, Rojo F, Gonzalez-Nieto D, Kaplan DL, Panetsos F. Biotechnology and Biomaterial-Based Therapeutic Strategies for Age-Related Macular Degeneration. Part II: Cell and Tissue Engineering Therapies. Front Bioeng Biotechnol 2020; 8:588014. [PMID: 33363125 PMCID: PMC7758210 DOI: 10.3389/fbioe.2020.588014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Age-related Macular Degeneration (AMD) is an up-to-date untreatable chronic neurodegenerative eye disease of multifactorial origin, and the main causes of blindness in over 65 y.o. people. It is characterized by a slow progression and the presence of a multitude of factors, highlighting those related to diet, genetic heritage and environmental conditions, present throughout each of the stages of the illness. Current therapeutic approaches, mainly consisting on intraocular drug delivery, are only used for symptoms relief and/or to decelerate the progression of the disease. Furthermore, they are overly simplistic and ignore the complexity of the disease and the enormous differences in the symptomatology between patients. Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, different treatment options have to be considered. Cell therapy is a very promising alternative to drug-based approaches for AMD treatment. Cells delivered to the affected tissue as a suspension have shown poor retention and low survival rate. A solution to these inconveniences has been the encapsulation of these cells on biomaterials, which contrive to their protection, gives them support, and favor their retention of the desired area. We offer a two-papers critical review of the available and under development AMD therapeutic approaches, from a biomaterials and biotechnological point of view. We highlight benefits and limitations and we forecast forthcoming alternatives based on novel biomaterials and biotechnology methods. In this second part we review the preclinical and clinical cell-replacement approaches aiming at the development of efficient AMD-therapies, the employed cell types, as well as the cell-encapsulation and cell-implant systems. We discuss their advantages and disadvantages and how they could improve the survival and integration of the implanted cells.
Collapse
Affiliation(s)
- Nahla Jemni-Damer
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
| | - Atocha Guedan-Duran
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - María Fuentes-Andion
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
| | - Nora Serrano-Bengoechea
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Nuria Alfageme-Lopez
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | | | - Gustavo V. Guinea
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - José Perez-Rigueiro
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Francisco Rojo
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Fivos Panetsos
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| |
Collapse
|
14
|
Gao ML, Lei XL, Han F, He KW, Jin SQ, Zhang YY, Jin ZB. Patient-Specific Retinal Organoids Recapitulate Disease Features of Late-Onset Retinitis Pigmentosa. Front Cell Dev Biol 2020; 8:128. [PMID: 32211407 PMCID: PMC7068133 DOI: 10.3389/fcell.2020.00128] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/13/2020] [Indexed: 12/18/2022] Open
Abstract
Although an increasing number of disease genes have been identified, the exact cellular mechanisms of retinitis pigmentosa (RP) remain largely unclear. Retinal organoids (ROs) derived from the induced pluripotent stem cells (iPSCs) of patients provide a potential but unvalidated platform for deciphering disease mechanisms and an advantageous tool for preclinical testing of new treatments. Notably, early-onset RP has been extensively recapitulated by patient-iPSC-derived ROs. However, it remains a challenge to model late-onset disease in a dish due to its chronicity, complexity, and instability. Here, we generated ROs from late-onset RP proband-derived iPSCs harboring a PDE6B mutation. Transcriptome analysis revealed a remarkably distinct gene expression profile in the patient ROs at differentiation day (D) 230. Changes in the expression genes regulating cGMP hydrolysis prompted the elevation of cGMP levels, which was verified by a cGMP enzyme-linked immunosorbent assay (ELISA) in patient ROs. Furthermore, significantly higher cGMP levels in patient ROs than in control ROs at D193 and D230 might lead to impaired formation of synaptic connections and the connecting cilium in photoreceptor cells. In this study, we established the first late-onset RP model with a consistent phenotype using an in vitro cell culture system and provided new insights into the PDE6B-related mechanism of RP.
Collapse
Affiliation(s)
- Mei-Ling Gao
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Xin-Lan Lei
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Fang Han
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Kai-Wen He
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Si-Qian Jin
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - You-You Zhang
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Zi-Bing Jin
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| |
Collapse
|
15
|
Sun W, Starly B, Daly AC, Burdick JA, Groll J, Skeldon G, Shu W, Sakai Y, Shinohara M, Nishikawa M, Jang J, Cho DW, Nie M, Takeuchi S, Ostrovidov S, Khademhosseini A, Kamm RD, Mironov V, Moroni L, Ozbolat IT. The bioprinting roadmap. Biofabrication 2020; 12:022002. [DOI: 10.1088/1758-5090/ab5158] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Preconditioning the Initial State of Feeder-free Human Pluripotent Stem Cells Promotes Self-formation of Three-dimensional Retinal Tissue. Sci Rep 2019; 9:18936. [PMID: 31831759 PMCID: PMC6908610 DOI: 10.1038/s41598-019-55130-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/21/2019] [Indexed: 12/31/2022] Open
Abstract
A three-dimensional retinal tissue (3D-retina) is a promising graft source for retinal transplantation therapy. We previously demonstrated that embryonic stem cells (ESCs) can generate 3D-retina in vitro using a self-organizing stem cell culture technique known as SFEBq. Here we show an optimized culture method for 3D-retina generation from feeder-free human pluripotent stem cells (hPSCs). Although feeder-free hPSC-maintenance culture was suitable for cell therapy, feeder-free hPSC-derived aggregates tended to collapse during 3D-xdifferentiation culture. We found that the initial hPSC state was a key factor and that preconditioning of the hPSC state by modulating TGF-beta and Shh signaling improved self-formation of 3D-neuroepithelium. Using the preconditioning method, several feeder-free hPSC lines robustly differentiated into 3D-retina. In addition, changing preconditioning stimuli in undifferentiated hPSCs altered the proportions of neural retina and retinal pigment epithelium, important quality factors for 3D-retina. We demonstrated that the feeder-free hiPSC-derived 3D-retina differentiated into rod and cone photoreceptors in vitro and in vivo. Thus, preconditioning is a useful culture methodology for cell therapy to direct the initial hPSC state toward self-organizing 3D-neuroepithelium.
Collapse
|
17
|
Montes-Olivas S, Marucci L, Homer M. Mathematical Models of Organoid Cultures. Front Genet 2019; 10:873. [PMID: 31592020 PMCID: PMC6761251 DOI: 10.3389/fgene.2019.00873] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Organoids are engineered three-dimensional tissue cultures derived from stem cells and capable of self-renewal and self-organization into a variety of progenitors and differentiated cell types. An organoid resembles the cellular structure of an organ and retains some of its functionality, while still being amenable to in vitro experimental study. Compared with two-dimensional cultures, the three-dimensional structure of organoids provides a more realistic environment and structural organization of in vivo organs. Similarly, organoids are better suited to reproduce signaling pathway dynamics in vitro, due to a more realistic physiological environment. As such, organoids are a valuable tool to explore the dynamics of organogenesis and offer routes to personalized preclinical trials of cancer progression, invasion, and drug response. Complementary to experiments, mathematical and computational models are valuable instruments in the description of spatiotemporal dynamics of organoids. Simulations of mathematical models allow the study of multiscale dynamics of organoids, at both the intracellular and intercellular levels. Mathematical models also enable us to understand the underlying mechanisms responsible for phenotypic variation and the response to external stimulation in a cost- and time-effective manner. Many recent studies have developed laboratory protocols to grow organoids resembling different organs such as the intestine, brain, liver, pancreas, and mammary glands. However, the development of mathematical models specific to organoids remains comparatively underdeveloped. Here, we review the mathematical and computational approaches proposed so far to describe and predict organoid dynamics, reporting the simulation frameworks used and the models’ strengths and limitations.
Collapse
Affiliation(s)
- Sandra Montes-Olivas
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom.,Bristol Centre for Synthetic Biology, University of Bristol, Bristol, United Kingdom
| | - Martin Homer
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
18
|
Cardozo MJ, Almuedo-Castillo M, Bovolenta P. Patterning the Vertebrate Retina with Morphogenetic Signaling Pathways. Neuroscientist 2019; 26:185-196. [PMID: 31509088 DOI: 10.1177/1073858419874016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The primordium of the vertebrate eye is composed of a pseudostratified and apparently homogeneous neuroepithelium, which folds inward to generate a bilayered optic cup. During these early morphogenetic events, the optic vesicle is patterned along three different axes-proximo-distal, dorso-ventral, and naso-temporal-and three major domains: the neural retina, the retinal pigment epithelium (RPE), and the optic stalk. These fundamental steps that enable the subsequent development of a functional eye, entail the precise coordination among genetic programs. These programs are driven by the interplay of signaling pathways and transcription factors, which progressively dictate how each tissue should evolve. Here, we discuss the contribution of the Hh, Wnt, FGF, and BMP signaling pathways to the early patterning of the retina. Comparative studies in different vertebrate species have shown that their morphogenetic activity is repetitively used to orchestrate the progressive specification of the eye with evolutionary conserved mechanisms that have been adapted to match the specific need of a given species.
Collapse
Affiliation(s)
- Marcos J Cardozo
- Centro de Biología Molecular "Severo Ochoa," (CSIC/UAM), Madrid, Spain.,CIBERER, ISCIII, Madrid, Spain
| | | | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa," (CSIC/UAM), Madrid, Spain.,CIBERER, ISCIII, Madrid, Spain
| |
Collapse
|
19
|
Sawai T, Sakaguchi H, Thomas E, Takahashi J, Fujita M. The Ethics of Cerebral Organoid Research: Being Conscious of Consciousness. Stem Cell Reports 2019; 13:440-447. [PMID: 31509736 PMCID: PMC6739740 DOI: 10.1016/j.stemcr.2019.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Recently, the use of three-dimensional neural tissues cultured in vitro and called "cerebral organoids" has advanced recapitulation of neural development and disease modeling studies. Along with such advances, cerebral organoid research, and associated concerns call for the elucidation of two points: (1) how cerebral organoid research is currently progressing and the future directions it is likely to take, especially in functional assessment of organoids, and (2) how we should solve ethical issues of possible consciousness in cerebral organoid research. This paper aims first to explore these two issues, and then to present implications and prospects for future cerebral organoid research.
Collapse
Affiliation(s)
- Tsutomu Sawai
- Uehiro Research Division for iPS Cell Ethics, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), KUIAS Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Hideya Sakaguchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Elizabeth Thomas
- Pembroke College, University of Oxford, St. Aldate's, Oxford OX1 1DW, UK
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Misao Fujita
- Uehiro Research Division for iPS Cell Ethics, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), KUIAS Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
20
|
Mori S, Sakakura E, Tsunekawa Y, Hagiwara M, Suzuki T, Eiraku M. Self-organized formation of developing appendages from murine pluripotent stem cells. Nat Commun 2019; 10:3802. [PMID: 31444329 PMCID: PMC6707191 DOI: 10.1038/s41467-019-11702-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/29/2019] [Indexed: 01/28/2023] Open
Abstract
Limb development starts with the formation of limb buds (LBs), which consist of tissues from two different germ layers; the lateral plate mesoderm-derived mesenchyme and ectoderm-derived surface epithelium. Here, we report means for induction of an LB-like mesenchymal/epithelial complex tissues from murine pluripotent stem cells (PSCs) in vitro. The LB-like tissues selectively differentiate into forelimb- or hindlimb-type mesenchymes, depending on a concentration of retinoic acid. Comparative transcriptome analysis reveals that the LB-like tissues show similar gene expression pattern to that seen in LBs. We also show that manipulating BMP signaling enables us to induce a thickened epithelial structure similar to the apical ectodermal ridge. Finally, we demonstrate that the induced tissues can contribute to endogenous digit tissue after transplantation. This PSC technology offers a first step for creating an artificial limb bud in culture and might open the door to inducing other mesenchymal/epithelial complex tissues from PSCs.
Collapse
Affiliation(s)
- Shunsuke Mori
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan. .,Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan. .,Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| | - Eriko Sakakura
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuji Tsunekawa
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Masaya Hagiwara
- NanoSqure Research Institute, Osaka Prefecture University, Osaka, 599-8570, Japan
| | - Takayuki Suzuki
- Laboratory of Avian Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8602, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan. .,Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan. .,Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
21
|
Toward the formation of neural circuits in human brain organoids. Curr Opin Cell Biol 2019; 61:86-91. [PMID: 31425932 DOI: 10.1016/j.ceb.2019.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 01/04/2023]
Abstract
Because of the ability to recapitulate normal developmental processes, brain organoids derived from pluripotent stem cells are an important experimental resource to investigate the development and pathogenesis of human brains. Although brain organoids are used in research on diseases such as microcephaly, it has traditionally been difficult to analyze diseases that affect neuronal networks between distant brain regions, as effective brain organoids containing multiple brain regions with defined connectivity have yet to be established. In this review, we discuss strategies to construct such organoids and provide a review on recent progress on brain organoids.
Collapse
|
22
|
An update on the genetics of ocular coloboma. Hum Genet 2019; 138:865-880. [PMID: 31073883 DOI: 10.1007/s00439-019-02019-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 04/19/2019] [Indexed: 01/04/2023]
Abstract
Ocular coloboma is an uncommon, but often severe, sight-threatening condition that can be identified from birth. This congenital anomaly is thought to be caused by maldevelopment of optic fissure closure during early eye morphogenesis. It has been causally linked to both inherited (genetic) and environmental influences. In particular, as a consequence of work to identify genetic causes of coloboma, new molecular pathways that control optic fissure closure have now been identified. Many more regulatory mechanisms still await better understanding to inform on the development of potential therapies for patients with this malformation. This review provides an update of known coloboma genes, the pathways they influence and how best to manage the condition. In the age of precision medicine, determining the underlying genetic cause in any given patient is of high importance.
Collapse
|
23
|
|
24
|
Apitz H, Salecker I. Spatio-temporal relays control layer identity of direction-selective neuron subtypes in Drosophila. Nat Commun 2018; 9:2295. [PMID: 29895891 PMCID: PMC5997761 DOI: 10.1038/s41467-018-04592-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/04/2018] [Indexed: 11/09/2022] Open
Abstract
Visual motion detection in sighted animals is essential to guide behavioral actions ensuring their survival. In Drosophila, motion direction is first detected by T4/T5 neurons. Their axons innervate one of the four lobula plate layers. How T4/T5 neurons with layer-specific representation of motion-direction preferences are specified during development is unknown. We show that diffusible Wingless (Wg) between adjacent neuroepithelia induces its own expression to form secondary signaling centers. These activate Decapentaplegic (Dpp) signaling in adjacent lateral tertiary neuroepithelial domains dedicated to producing layer 3/4-specific T4/T5 neurons. T4/T5 neurons derived from the core domain devoid of Dpp signaling adopt the default layer 1/2 fate. Dpp signaling induces the expression of the T-box transcription factor Optomotor-blind (Omb), serving as a relay to postmitotic neurons. Omb-mediated repression of Dachshund transforms layer 1/2- into layer 3/4-specific neurons. Hence, spatio-temporal relay mechanisms, bridging the distances between neuroepithelial domains and their postmitotic progeny, implement T4/T5 neuron-subtype identity.
Collapse
Affiliation(s)
- Holger Apitz
- The Francis Crick Institute, Visual Circuit Assembly Laboratory, 1 Midland Road, London, NW1 1AT, UK
| | - Iris Salecker
- The Francis Crick Institute, Visual Circuit Assembly Laboratory, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
25
|
Bernstein CS, Anderson MT, Gohel C, Slater K, Gross JM, Agarwala S. The cellular bases of choroid fissure formation and closure. Dev Biol 2018; 440:137-151. [PMID: 29803644 DOI: 10.1016/j.ydbio.2018.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 01/11/2023]
Abstract
Defects in choroid fissure (CF) formation and closure lead to coloboma, a major cause of childhood blindness. Despite genetic advances, the cellular defects underlying coloboma remain poorly elucidated due to our limited understanding of normal CF morphogenesis. We address this deficit by conducting high-resolution spatio-temporal analyses of CF formation and closure in the chick, mouse and fish. We show that a small ventral midline invagination initiates CF formation in the medial-proximal optic cup, subsequently extending it dorsally toward the lens, and proximally into the optic stalk. Unlike previously supposed, the optic disc does not form solely as a result of this invagination. Morphogenetic events that alter the shape of the proximal optic cup also direct clusters of outer layer and optic stalk cells to form dorsal optic disc. A cross-species comparison suggests that CF closure can be accomplished by breaking down basement membranes (BM) along the CF margins, and by establishing BM continuity along the dorsal and ventral surfaces of the CF. CF closure is subsequently accomplished via two distinct mechanisms: tissue fusion or the intercalation of various tissues into the inter-CF space. We identify several novel cell behaviors that underlie CF fusion, many of which involve remodeling of the retinal epithelium. In addition to BM disruption, these include NCAD downregulation along the SOX2+ retinal CF margin, and the protrusion or movement of partially polarized retinal cells into the inter-CF space to mediate fusion. Proximally, the inter-CF space does not fuse or narrow and is instead loosely packed with migrating SOX2+/PAX2+/Vimentin+ astrocytes until it is closed by the outgoing optic nerve. Taken together, our results highlight distinct proximal-distal differences in CF morphogenesis and closure and establish detailed cellular models that can be utilized for understanding the genetic bases of coloboma.
Collapse
Affiliation(s)
- Cassidy S Bernstein
- Molecular Biosciences Department, University of Texas at Austin, Austin, TX 78712, USA
| | - Mitchell T Anderson
- Molecular Biosciences Department, University of Texas at Austin, Austin, TX 78712, USA
| | - Chintan Gohel
- Molecular Biosciences Department, University of Texas at Austin, Austin, TX 78712, USA
| | - Kayleigh Slater
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Seema Agarwala
- Molecular Biosciences Department, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cell and Molecular Biology, University of Texas at Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
26
|
Gestri G, Bazin-Lopez N, Scholes C, Wilson SW. Cell Behaviors during Closure of the Choroid Fissure in the Developing Eye. Front Cell Neurosci 2018. [PMID: 29515375 PMCID: PMC5826230 DOI: 10.3389/fncel.2018.00042] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coloboma is a defect in the morphogenesis of the eye that is a consequence of failure of choroid fissure fusion. It is among the most common congenital defects in humans and can significantly impact vision. However, very little is known about the cellular mechanisms that regulate choroid fissure closure. Using high-resolution confocal imaging of the zebrafish optic cup, we find that apico-basal polarity is re-modeled in cells lining the fissure in proximal to distal and inner to outer gradients during fusion. This process is accompanied by cell proliferation, displacement of vasculature, and contact between cells lining the choroid fissure and periocular mesenchyme (POM). To investigate the role of POM cells in closure of the fissure, we transplanted optic vesicles onto the yolk, allowing them to develop in a situation where they are depleted of POM. The choroid fissure forms normally in ectopic eyes but fusion fails in this condition, despite timely apposition of the nasal and temporal lips of the retina. This study resolves some of the cell behaviors underlying choroid fissure fusion and supports a role for POM in choroid fissure fusion.
Collapse
Affiliation(s)
- Gaia Gestri
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Naiara Bazin-Lopez
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Clarissa Scholes
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Stephen W Wilson
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
27
|
Ueda K, Onishi A, Ito SI, Nakamura M, Takahashi M. Generation of three-dimensional retinal organoids expressing rhodopsin and S- and M-cone opsins from mouse stem cells. Biochem Biophys Res Commun 2018; 495:2595-2601. [DOI: 10.1016/j.bbrc.2017.12.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/17/2017] [Indexed: 12/13/2022]
|
28
|
Oswald J, Baranov P. Regenerative medicine in the retina: from stem cells to cell replacement therapy. Ther Adv Ophthalmol 2018; 10:2515841418774433. [PMID: 29998222 PMCID: PMC6016968 DOI: 10.1177/2515841418774433] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/15/2018] [Indexed: 12/20/2022] Open
Abstract
Following the fast pace of the growing field of stem cell research, retinal cell replacement is finally emerging as a feasible mean to be explored for clinical application. Although neuroprotective treatments are able to slow the progression of retinal degeneration caused by diseases such as age-related macular degeneration and glaucoma, they are insufficient to fully halt disease progression and unable to recover previously lost vision. Comprehensive, technological and intellectual advances over the past years, including the in vitro differentiation of retinal cells at manufacturing scale from embryonic stem (ES) cell and induced pluripotent stem (iPS) cell cultures, progress within the area of retinal disease modeling, and the first clinical trials have started to shape the way towards addressing this treatment gap and translating retinal cell replacement to the clinic. Here, summarize the most recent advances within retinal cell replacement from both a scientific and clinical perspective, and discuss the remaining challenges towards the delivery of the first retinal cell products.
Collapse
Affiliation(s)
- Julia Oswald
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute, Massachusetts Eye and Ear, 20 Staniford Street, Boston, MA 02114, USA
| | - Petr Baranov
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA
| |
Collapse
|
29
|
Llonch S, Carido M, Ader M. Organoid technology for retinal repair. Dev Biol 2017; 433:132-143. [PMID: 29291970 DOI: 10.1016/j.ydbio.2017.09.028] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/05/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023]
Abstract
A major cause for vision impairment and blindness in industrialized countries is the loss of the light-sensing retinal tissue in the eye. Photoreceptor damage is one of the main characteristics found in retinal degeneration diseases, such as Retinitis Pigmentosa or age-related macular degeneration. The lack of effective therapies to stop photoreceptor loss together with the absence of significant intrinsic regeneration in the human retina converts such degenerative diseases into permanent conditions that are currently irreversible. Cell replacement by means of photoreceptor transplantation has been proposed as a potential approach to tackle cell loss in the retina. Since the first attempt of photoreceptor transplantation in humans, about twenty years ago, several research groups have focused in the development and improvement of technologies necessary to bring cell transplantation for retinal degeneration diseases to reality. Progress in recent years in the generation of human tissue derived from pluripotent stem cells (PSCs) has significantly improved our tools to study human development and disease in the dish. Particularly the availability of 3D culture systems for the generation of PSC-derived organoids, including the human retina, has dramatically increased access to human material for basic and medical research. In this review, we focus on important milestones towards the generation of transplantable photoreceptor precursors from PSC-derived retinal organoids and discuss recent pre-clinical transplantation studies using organoid-derived photoreceptors in context to related in vivo work using primary photoreceptors as donor material. Additionally, we summarize remaining challenges for developing photoreceptor transplantation towards clinical application.
Collapse
Affiliation(s)
- Sílvia Llonch
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Madalena Carido
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases Dresden (DZNE), Arnoldstraße 18, 01307 Dresden, Germany
| | - Marius Ader
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany.
| |
Collapse
|
30
|
Takata N, Abbey D, Fiore L, Acosta S, Feng R, Gil HJ, Lavado A, Geng X, Interiano A, Neale G, Eiraku M, Sasai Y, Oliver G. An Eye Organoid Approach Identifies Six3 Suppression of R-spondin 2 as a Critical Step in Mouse Neuroretina Differentiation. Cell Rep 2017; 21:1534-1549. [PMID: 29117559 PMCID: PMC5728169 DOI: 10.1016/j.celrep.2017.10.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/20/2017] [Accepted: 10/11/2017] [Indexed: 02/01/2023] Open
Abstract
Recent advances in self-organizing, 3-dimensional tissue cultures of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provided an in vitro model that recapitulates many aspects of the in vivo developmental steps. Using Rax-GFP-expressing ESCs, newly generated Six3-/- iPSCs, and conditional null Six3delta/f;Rax-Cre ESCs, we identified Six3 repression of R-spondin 2 (Rspo2) as a required step during optic vesicle morphogenesis and neuroretina differentiation. We validated these results in vivo by showing that transient ectopic expression of Rspo2 in the anterior neural plate of transgenic mouse embryos was sufficient to inhibit neuroretina differentiation. Additionally, using a chimeric eye organoid assay, we determined that Six3 null cells exert a non-cell-autonomous repressive effect during optic vesicle formation and neuroretina differentiation. Our results further validate the organoid culture system as a reliable and fast alternative to identify and evaluate genes involved in eye morphogenesis and neuroretina differentiation in vivo.
Collapse
Affiliation(s)
- Nozomu Takata
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Deepti Abbey
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Luciano Fiore
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Sandra Acosta
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Ruopeng Feng
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hyea Jin Gil
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Alfonso Lavado
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xin Geng
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ashley Interiano
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mototsugu Eiraku
- Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan; Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Kyoto 606-8507, Japan
| | - Yoshiki Sasai
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
31
|
Stem cells and genome editing: approaches to tissue regeneration and regenerative medicine. J Hum Genet 2017; 63:165-178. [PMID: 29192237 DOI: 10.1038/s10038-017-0348-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
Understanding the basis of regeneration of each tissue and organ, and incorporating this knowledge into clinical treatments for degenerative tissues and organs in patients, are major goals for researchers in regenerative biology. Here we provide an overview of current work, from high-regeneration animal models, to stem cell-based culture models, transplantation technologies, large-animal chimeric models, and programmable nuclease-based genome-editing technologies. Three-dimensional culture generating organoids, which represents intact tissue/organ identity including cell fate and morphology are getting more general approaches in the fields by taking advantage of embryonic stem cells, induced pluripotent stem cells and adult stem cells. The organoid culture system potentially has profound impact on the field of regenerative medicine. We also emphasize that the large animal model, in particular pig model would be a hope to manufacture humanized organs in in vivo empty (vacant) niche, which now potentially allows not only appropriate cell fate identity but nearly the same property as human organs in size. Therefore, integrative and collaborative researches across different fields might be critical to the aims needed in clinical trial.
Collapse
|
32
|
Abstract
From March 27-29 2017, the RIKEN Center for Developmental Biology held a symposium entitled 'Towards Understanding Human Development, Heredity, and Evolution' in Kobe, Japan. Recent advances in technologies including stem cell culture, live imaging, single-cell approaches, next-generation sequencing and genome editing have led to an expansion in our knowledge of human development. Organized by Yoshiya Kawaguchi, Mitinori Saitou, Mototsugu Eiraku, Tomoya Kitajima, Fumio Matsuzaki, Takashi Tsuji and Edith Heard, the symposium covered a broad range of topics including human germline development, epigenetics, organogenesis and evolution. This Meeting Review provides a summary of this timely and exciting symposium, which has convinced us that we are moving into the era of science targeted on humans.
Collapse
Affiliation(s)
- Ryuichi Nishinakamura
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Minoru Takasato
- RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| |
Collapse
|
33
|
Sidhaye J, Norden C. Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis. eLife 2017; 6:22689. [PMID: 28372636 PMCID: PMC5380436 DOI: 10.7554/elife.22689] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/14/2017] [Indexed: 12/27/2022] Open
Abstract
Organ formation is a multi-scale event that involves changes at the intracellular, cellular and tissue level. Organogenesis often starts with the formation of characteristically shaped organ precursors. However, the cellular mechanisms driving organ precursor formation are often not clear. Here, using zebrafish, we investigate the epithelial rearrangements responsible for the development of the hemispherical retinal neuroepithelium (RNE), a part of the optic cup. We show that in addition to basal shrinkage of RNE cells, active migration of connected epithelial cells into the RNE is a crucial player in its formation. This cellular movement is driven by progressive cell-matrix contacts and actively translocates prospective RNE cells to their correct location before they adopt neuroepithelial fate. Failure of this migration during neuroepithelium formation leads to ectopic determination of RNE cells and consequently impairs optic cup formation. Overall, this study illustrates how spatiotemporal coordination between morphogenic movements and fate determination critically influences organogenesis.
Collapse
Affiliation(s)
- Jaydeep Sidhaye
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Dresden International Graduate School for Biomedicine and Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|