1
|
Krammer T, Stuart HT, Gromberg E, Ishihara K, Cislo D, Melchionda M, Becerril Perez F, Wang J, Costantini E, Lehr S, Arbanas L, Hörmann A, Neumüller RA, Elvassore N, Siggia E, Briscoe J, Kicheva A, Tanaka EM. Mouse neural tube organoids self-organize floorplate through BMP-mediated cluster competition. Dev Cell 2024; 59:1940-1953.e10. [PMID: 38776925 DOI: 10.1016/j.devcel.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
During neural tube (NT) development, the notochord induces an organizer, the floorplate, which secretes Sonic Hedgehog (SHH) to pattern neural progenitors. Conversely, NT organoids (NTOs) from embryonic stem cells (ESCs) spontaneously form floorplates without the notochord, demonstrating that stem cells can self-organize without embryonic inducers. Here, we investigated floorplate self-organization in clonal mouse NTOs. Expression of the floorplate marker FOXA2 was initially spatially scattered before resolving into multiple clusters, which underwent competition and sorting, resulting in a stable "winning" floorplate. We identified that BMP signaling governed long-range cluster competition. FOXA2+ clusters expressed BMP4, suppressing FOXA2 in receiving cells while simultaneously expressing the BMP-inhibitor NOGGIN, promoting cluster persistence. Noggin mutation perturbed floorplate formation in NTOs and in the NT in vivo at mid/hindbrain regions, demonstrating how the floorplate can form autonomously without the notochord. Identifying the pathways governing organizer self-organization is critical for harnessing the developmental plasticity of stem cells in tissue engineering.
Collapse
Affiliation(s)
- Teresa Krammer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Hannah T Stuart
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; The Francis Crick Institute, London, UK
| | - Elena Gromberg
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Keisuke Ishihara
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Dillon Cislo
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA
| | | | - Fernando Becerril Perez
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Elena Costantini
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Stefanie Lehr
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Laura Arbanas
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | | | | | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova & Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Eric Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA
| | | | - Anna Kicheva
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
2
|
Simpson L, Strange A, Klisch D, Kraunsoe S, Azami T, Goszczynski D, Le Minh T, Planells B, Holmes N, Sang F, Henson S, Loose M, Nichols J, Alberio R. A single-cell atlas of pig gastrulation as a resource for comparative embryology. Nat Commun 2024; 15:5210. [PMID: 38890321 PMCID: PMC11189408 DOI: 10.1038/s41467-024-49407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Cell-fate decisions during mammalian gastrulation are poorly understood outside of rodent embryos. The embryonic disc of pig embryos mirrors humans, making them a useful proxy for studying gastrulation. Here we present a single-cell transcriptomic atlas of pig gastrulation, revealing cell-fate emergence dynamics, as well as conserved and divergent gene programs governing early porcine, primate, and murine development. We highlight heterochronicity in extraembryonic cell-types, despite the broad conservation of cell-type-specific transcriptional programs. We apply these findings in combination with functional investigations, to outline conserved spatial, molecular, and temporal events during definitive endoderm specification. We find early FOXA2 + /TBXT- embryonic disc cells directly form definitive endoderm, contrasting later-emerging FOXA2/TBXT+ node/notochord progenitors. Unlike mesoderm, none of these progenitors undergo epithelial-to-mesenchymal transition. Endoderm/Node fate hinges on balanced WNT and hypoblast-derived NODAL, which is extinguished upon endodermal differentiation. These findings emphasise the interplay between temporal and topological signalling in fate determination during gastrulation.
Collapse
Affiliation(s)
- Luke Simpson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Andrew Strange
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Doris Klisch
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Sophie Kraunsoe
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Takuya Azami
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Daniel Goszczynski
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Triet Le Minh
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Benjamin Planells
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Nadine Holmes
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Sonal Henson
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Matthew Loose
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jennifer Nichols
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK.
| |
Collapse
|
3
|
Harmoush B, Viebahn C, Tsikolia N. Development of node architecture and emergence of molecular organizer characteristics in the pig embryo. Dev Dyn 2024. [PMID: 38733144 DOI: 10.1002/dvdy.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/17/2024] [Accepted: 03/30/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND The avian node is the equivalent of the amphibian Spemann's organizer, as indicated by its ability to induce a secondary axis, cellular contribution, and gene expression, whereas the node of the mouse, which displays limited inductive capacities, was suggested to be a part of spatially distributed signaling. Furthermore, the structural identity of the mouse node is subject of controversy, while little is known about equivalent structures in other mammals. RESULTS We analyzed the node and emerging organizer in the pig using morphology and the expression of selected organizer genes prior to and during gastrulation. The node was defined according to the "four-quarter model" based on comparative consideration. The node of the pig displays a multilayered, dense structure that includes columnar epithelium, bottle-like cells in the dorsal part, and mesenchymal cells ventrally. Expression of goosecoid (gsc), chordin, and brachyury, together with morphology, reveal the consecutive emergence of three distinct domains: the gastrulation precursor domain, the presumptive node, and the mature node. Additionally, gsc displays a ventral expression domain prior to epiblast epithelialization. CONCLUSION Our study defines the morphological and molecular context of the emerging organizer equivalent in the pig and suggests a sequential development of its function.
Collapse
Affiliation(s)
- Braah Harmoush
- Institute of Anatomy and Cell Biology, University Medical Centre Göttingen, Göttingen, Germany
| | - Christoph Viebahn
- Institute of Anatomy and Cell Biology, University Medical Centre Göttingen, Göttingen, Germany
| | - Nikoloz Tsikolia
- Institute of Anatomy and Cell Biology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Manning E, Placzek M. Organizing activities of axial mesoderm. Curr Top Dev Biol 2024; 157:83-123. [PMID: 38556460 DOI: 10.1016/bs.ctdb.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
For almost a century, developmental biologists have appreciated that the ability of the embryonic organizer to induce and pattern the body plan is intertwined with its differentiation into axial mesoderm. Despite this, we still have a relatively poor understanding of the contribution of axial mesoderm to induction and patterning of different body regions, and the manner in which axial mesoderm-derived information is interpreted in tissues of changing competence. Here, with a particular focus on the nervous system, we review the evidence that axial mesoderm notochord and prechordal mesoderm/mesendoderm act as organizers, discuss how their influence extends through the different axes of the developing organism, and describe how the ability of axial mesoderm to direct morphogenesis impacts on its role as a local organizer.
Collapse
Affiliation(s)
- Elizabeth Manning
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom; Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom; Bateson Centre, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
5
|
Ermakova GV, Kucheryavyy AV, Zaraisky AG, Bayramov AV. The Molecular Mechanism of Body Axis Induction in Lampreys May Differ from That in Amphibians. Int J Mol Sci 2024; 25:2412. [PMID: 38397089 PMCID: PMC10889193 DOI: 10.3390/ijms25042412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Lamprey homologues of the classic embryonic inducer Noggin are similar in expression pattern and functional properties to Noggin homologues of jawed vertebrates. All noggin genes of vertebrates apparently originated from a single ancestral gene as a result of genome duplications. nogginA, nogginB and nogginC of lampreys, like noggin1 and noggin2 of gnathostomes, demonstrate the ability to induce complete secondary axes with forebrain and eye structures when overexpressed in Xenopus laevis embryos. According to current views, this finding indicates the ability of lamprey Noggin proteins to suppress the activity of the BMP, Nodal/Activin and Wnt/beta-catenin signaling pathways, as shown for Noggin proteins of gnathostomes. In this work, by analogy with experiments in Xenopus embryos, we attempted to induce secondary axes in the European river lamprey Lampetra fluviatilis by injecting noggin mRNAs into lamprey eggs in vivo. Surprisingly, unlike what occurs in amphibians, secondary axis induction in the lampreys either by noggin mRNAs or by chordin and cerberus mRNAs, the inductive properties of which have been described, was not observed. Only wnt8a mRNA demonstrated the ability to induce secondary axes in the lampreys. Such results may indicate that the mechanism of axial specification in lampreys, which represent jawless vertebrates, may differ in detail from that in the jawed clade.
Collapse
Affiliation(s)
- Galina V. Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Aleksandr V. Kucheryavyy
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia;
| | - Andrey G. Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
- Department of Regenerative Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andrey V. Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| |
Collapse
|
6
|
Celià-Terrassa T, Kang Y. How important is EMT for cancer metastasis? PLoS Biol 2024; 22:e3002487. [PMID: 38324529 PMCID: PMC10849258 DOI: 10.1371/journal.pbio.3002487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT), a biological phenomenon of cellular plasticity initially reported in embryonic development, has been increasingly recognized for its importance in cancer progression and metastasis. Despite tremendous progress being made in the past 2 decades in our understanding of the molecular mechanism and functional importance of EMT in cancer, there are several mysteries around EMT that remain unresolved. In this Unsolved Mystery, we focus on the variety of EMT types in metastasis, cooperative and collective EMT behaviors, spatiotemporal characterization of EMT, and strategies of therapeutically targeting EMT. We also highlight new technical advances that will facilitate the efforts to elucidate the unsolved mysteries of EMT in metastasis.
Collapse
Affiliation(s)
- Toni Celià-Terrassa
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey, United States of America
| |
Collapse
|
7
|
Kondoh H. How the Brain Develops from the Epiblast: The Node Is Not an Organizer. Results Probl Cell Differ 2024; 72:61-80. [PMID: 38509252 DOI: 10.1007/978-3-031-39027-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Studies using early-stage avian embryos have substantially impacted developmental biology, through the availability of simple culture methods and easiness in tissue manipulation. However, the regulations underlying brain and head development, a central issue of developmental biology, have not been investigated systematically. Yoshihi et al. (2022a) devised a technique to randomly label the epiblast cells with a green fluorescent protein before their development into the brain tissue. This technique was combined with grafting a node or node-derived anterior mesendoderm labeled with a cherry-colored fluorescent protein. Then cellular events were live-recorded over 18 hours during the brain and head development. The live imaging-based analyses identified previously undescribed mechanisms central to brain development: all anterior epiblast cells have a potential to develop into the brain tissues and their gathering onto a proximal anterior mesendoderm forms a brain primordium whereas the remaining cells develop into the covering head ectoderm. The analyses also ruled out the direct participation of the node's activity in the brain development. Yoshihi et al. (2022a) also demonstrate how the enigmatic data from classical models can be reinterpreted in the new model.This chapter was adapted from Yoshihi K, Iida H, Teramoto M, Ishii Y, Kato K, Kondoh H. (2022b). Epiblast cells gather onto the anterior mesendoderm and initiate brain development without the direct involvement of the node in avian embryos: Insights from broad-field live imaging. Front Cell Dev Biol. 10:1019845. doi: 10.3389/fcell.2022.1019845.
Collapse
Affiliation(s)
- Hisato Kondoh
- Osaka University, Suita, Osaka, Japan
- Biohistory Research Hall, Takatsuki, Osaka, Japan
| |
Collapse
|
8
|
Masak G, Davidson LA. Constructing the pharyngula: Connecting the primary axial tissues of the head with the posterior axial tissues of the tail. Cells Dev 2023; 176:203866. [PMID: 37394035 PMCID: PMC10756936 DOI: 10.1016/j.cdev.2023.203866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The pharyngula stage of vertebrate development is characterized by stereotypical arrangement of ectoderm, mesoderm, and neural tissues from the anterior spinal cord to the posterior, yet unformed tail. While early embryologists over-emphasized the similarity between vertebrate embryos at the pharyngula stage, there is clearly a common architecture upon which subsequent developmental programs generate diverse cranial structures and epithelial appendages such as fins, limbs, gills, and tails. The pharyngula stage is preceded by two morphogenetic events: gastrulation and neurulation, which establish common shared structures despite the occurrence of cellular processes that are distinct to each of the species. Even along the body axis of a singular organism, structures with seemingly uniform phenotypic characteristics at the pharyngula stage have been established by different processes. We focus our review on the processes underlying integration of posterior axial tissue formation with the primary axial tissues that creates the structures laid out in the pharyngula. Single cell sequencing and novel gene targeting technologies have provided us with new insights into the differences between the processes that form the anterior and posterior axis, but it is still unclear how these processes are integrated to create a seamless body. We suggest that the primary and posterior axial tissues in vertebrates form through distinct mechanisms and that the transition between these mechanisms occur at different locations along the anterior-posterior axis. Filling gaps that remain in our understanding of this transition could resolve ongoing problems in organoid culture and regeneration.
Collapse
Affiliation(s)
- Geneva Masak
- Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lance A Davidson
- Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
9
|
MacColl Garfinkel A, Mnatsakanyan N, Patel JH, Wills AE, Shteyman A, Smith PJS, Alavian KN, Jonas EA, Khokha MK. Mitochondrial leak metabolism induces the Spemann-Mangold Organizer via Hif-1α in Xenopus. Dev Cell 2023; 58:2597-2613.e4. [PMID: 37673063 PMCID: PMC10840693 DOI: 10.1016/j.devcel.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
An instructive role for metabolism in embryonic patterning is emerging, although a role for mitochondria is poorly defined. We demonstrate that mitochondrial oxidative metabolism establishes the embryonic patterning center, the Spemann-Mangold Organizer, via hypoxia-inducible factor 1α (Hif-1α) in Xenopus. Hypoxia or decoupling ATP production from oxygen consumption expands the Organizer by activating Hif-1α. In addition, oxygen consumption is 20% higher in the Organizer than in the ventral mesoderm, indicating an elevation in mitochondrial respiration. To reconcile increased mitochondrial respiration with activation of Hif-1α, we discovered that the "free" c-subunit ring of the F1Fo ATP synthase creates an inner mitochondrial membrane leak, which decouples ATP production from respiration at the Organizer, driving Hif-1α activation there. Overexpression of either the c-subunit or Hif-1α is sufficient to induce Organizer cell fates even when β-catenin is inhibited. We propose that mitochondrial leak metabolism could be a general mechanism for activating Hif-1α and Wnt signaling.
Collapse
Affiliation(s)
- Alexandra MacColl Garfinkel
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeet H Patel
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Andrea E Wills
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Amy Shteyman
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Peter J S Smith
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | | | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA.
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
10
|
Offen N, Filatova A, Nuber UA. Enrichment of FGF8-expressing cells from neurally induced human pluripotent stem cell cultures. Stem Cell Reports 2023; 18:2240-2253. [PMID: 37922914 PMCID: PMC10679777 DOI: 10.1016/j.stemcr.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
In early vertebrate development, organizer regions-groups of cells that signal to and thereby influence neighboring cells by secreted morphogens-play pivotal roles in the establishment and maintenance of cell identities within defined tissue territories. The midbrain-hindbrain organizer drives regionalization of neural tissue into midbrain and hindbrain territories with fibroblast growth factor 8 (FGF8) acting as a key morphogen. This organizer has been extensively studied in chicken, mouse, and zebrafish. Here, we demonstrate the enrichment of FGF8-expressing cells from human pluripotent stem cells (hPSCs), cultured as attached embryoid bodies using antibodies that recognize "Similar Expression to Fgf" (SEF) and Frizzled proteins. The arrangement of cells in embryoid body subsets of these cultures and the gene expression profile of the FGF8-expressing population show certain similarities to the midbrain-hindbrain organizer in animal models. In the embryonic chick brain, the enriched cell population induces formation of midbrain structures, consistent with FGF8-organizing capability.
Collapse
Affiliation(s)
- Nils Offen
- Stem Cell and Developmental Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Alina Filatova
- Stem Cell and Developmental Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Ulrike A Nuber
- Stem Cell and Developmental Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| |
Collapse
|
11
|
Micali N, Ma S, Li M, Kim SK, Mato-Blanco X, Sindhu SK, Arellano JI, Gao T, Shibata M, Gobeske KT, Duque A, Santpere G, Sestan N, Rakic P. Molecular programs of regional specification and neural stem cell fate progression in macaque telencephalon. Science 2023; 382:eadf3786. [PMID: 37824652 PMCID: PMC10705812 DOI: 10.1126/science.adf3786] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/30/2023] [Indexed: 10/14/2023]
Abstract
During early telencephalic development, intricate processes of regional patterning and neural stem cell (NSC) fate specification take place. However, our understanding of these processes in primates, including both conserved and species-specific features, remains limited. Here, we profiled 761,529 single-cell transcriptomes from multiple regions of the prenatal macaque telencephalon. We deciphered the molecular programs of the early organizing centers and their cross-talk with NSCs, revealing primate-biased galanin-like peptide (GALP) signaling in the anteroventral telencephalon. Regional transcriptomic variations were observed along the frontotemporal axis during early stages of neocortical NSC progression and in neurons and astrocytes. Additionally, we found that genes associated with neuropsychiatric disorders and brain cancer risk might play critical roles in the early telencephalic organizers and during NSC progression.
Collapse
Affiliation(s)
- Nicola Micali
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Suel-Kee Kim
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xoel Mato-Blanco
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Catalonia, Spain
| | | | - Jon I. Arellano
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tianliuyun Gao
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mikihito Shibata
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kevin T. Gobeske
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Alvaro Duque
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Gabriel Santpere
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Catalonia, Spain
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Departments of Psychiatry, Genetics and Comparative Medicine, Wu Tsai Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
12
|
Maili L, Tandon B, Yuan Q, Menezes S, Chiu F, Hashmi SS, Letra A, Eisenhoffer GT, Hecht JT. Disruption of fos causes craniofacial anomalies in developing zebrafish. Front Cell Dev Biol 2023; 11:1141893. [PMID: 37664458 PMCID: PMC10469461 DOI: 10.3389/fcell.2023.1141893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/21/2023] [Indexed: 09/05/2023] Open
Abstract
Craniofacial development is a complex and tightly regulated process and disruptions can lead to structural birth defects, the most common being nonsyndromic cleft lip and palate (NSCLP). Previously, we identified FOS as a candidate regulator of NSCLP through family-based association studies, yet its specific contributions to oral and palatal formation are poorly understood. This study investigated the role of fos during zebrafish craniofacial development through genetic disruption and knockdown approaches. Fos was expressed in the periderm, olfactory epithelium and other cell populations in the head. Genetic perturbation of fos produced an abnormal craniofacial phenotype with a hypoplastic oral cavity that showed significant changes in midface dimensions by quantitative facial morphometric analysis. Loss and knockdown of fos caused increased cell apoptosis in the head, followed by a significant reduction in cranial neural crest cells (CNCCs) populating the upper and lower jaws. These changes resulted in abnormalities of cartilage, bone and pharyngeal teeth formation. Periderm cells surrounding the oral cavity showed altered morphology and a subset of cells in the upper and lower lip showed disrupted Wnt/β-catenin activation, consistent with modified inductive interactions between mesenchymal and epithelial cells. Taken together, these findings demonstrate that perturbation of fos has detrimental effects on oral epithelial and CNCC-derived tissues suggesting that it plays a critical role in zebrafish craniofacial development and a potential role in NSCLP.
Collapse
Affiliation(s)
- Lorena Maili
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Bhavna Tandon
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Qiuping Yuan
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Simone Menezes
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, TX, United States
| | - Frankie Chiu
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - S. Shahrukh Hashmi
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ariadne Letra
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, TX, United States
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry at Houston, Houston, TX, United States
| | - George T. Eisenhoffer
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, TX, United States
| |
Collapse
|
13
|
Keum BR, Yeo I, Koo Y, Han W, Choi SC, Kim GH, Han JK. Transmembrane protein 150b attenuates BMP signaling in the Xenopus organizer. J Cell Physiol 2023; 238:1850-1866. [PMID: 37435758 DOI: 10.1002/jcp.31059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 07/13/2023]
Abstract
The vertebrate organizer is a specified embryonic tissue that regulates dorsoventral patterning and axis formation. Although numerous cellular signaling pathways have been identified as regulators of the organizer's dynamic functions, the process remains incompletely understood, and as-yet unknown pathways remain to be explored for sophisticated mechanistic understanding of the vertebrate organizer. To identify new potential key factors of the organizer, we performed complementary DNA (cDNA) microarray screening using organizer-mimicking Xenopus laevis tissue. This analysis yielded a list of prospective organizer genes, and we determined the role of six-transmembrane domain containing transmembrane protein 150b (Tmem150b) in organizer function. Tmem150b was expressed in the organizer region and induced by Activin/Nodal signaling. In X. laevis, Tmem150b knockdown resulted in head defects and a shortened body axis. Moreover, Tmem150b negatively regulated bone morphogenetic protein (BMP) signaling, likely via physical interaction with activin receptor-like kinase 2 (ALK2). These findings demonstrated that Tmem150b functions as a novel membrane regulatory factor of BMP signaling with antagonistic effects, contributing to the understanding of regulatory molecular mechanisms of organizer axis function. Investigation of additional candidate genes identified in the cDNA microarray analysis could further delineate the genetic networks of the organizer during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Byeong-Rak Keum
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- Research Center for drug development, CYPHARMA, Daejeon, Korea
| | - Inchul Yeo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Youngmu Koo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Wonhee Han
- Department of Neurology, F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sun-Cheol Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Gun-Hwa Kim
- Research Center for drug development, CYPHARMA, Daejeon, Korea
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Korea
| | - Jin-Kwan Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| |
Collapse
|
14
|
Kyomen S, Murillo-Rincón AP, Kaucká M. Evolutionary mechanisms modulating the mammalian skull development. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220080. [PMID: 37183900 PMCID: PMC10184257 DOI: 10.1098/rstb.2022.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Mammals possess impressive craniofacial variation that mirrors their adaptation to diverse ecological niches, feeding behaviour, physiology and overall lifestyle. The spectrum of craniofacial geometries is established mainly during embryonic development. The formation of the head represents a sequence of events regulated on genomic, molecular, cellular and tissue level, with each step taking place under tight spatio-temporal control. Even minor variations in timing, position or concentration of the molecular drivers and the resulting events can affect the final shape, size and position of the skeletal elements and the geometry of the head. Our knowledge of craniofacial development increased substantially in the last decades, mainly due to research using conventional vertebrate model organisms. However, how developmental differences in head formation arise specifically within mammals remains largely unexplored. This review highlights three evolutionary mechanisms acknowledged to modify ontogenesis: heterochrony, heterotopy and heterometry. We present recent research that links changes in developmental timing, spatial organization or gene expression levels to the acquisition of species-specific skull morphologies. We highlight how these evolutionary modifications occur on the level of the genes, molecules and cellular processes, and alter conserved developmental programmes to generate a broad spectrum of skull shapes characteristic of the class Mammalia. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Stella Kyomen
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| | - Andrea P Murillo-Rincón
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| | - Markéta Kaucká
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| |
Collapse
|
15
|
Cao Y. Neural induction drives body axis formation during embryogenesis, but a neural induction-like process drives tumorigenesis in postnatal animals. Front Cell Dev Biol 2023; 11:1092667. [PMID: 37228646 PMCID: PMC10203556 DOI: 10.3389/fcell.2023.1092667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Characterization of cancer cells and neural stem cells indicates that tumorigenicity and pluripotency are coupled cell properties determined by neural stemness, and tumorigenesis represents a process of progressive loss of original cell identity and gain of neural stemness. This reminds of a most fundamental process required for the development of the nervous system and body axis during embryogenesis, i.e., embryonic neural induction. Neural induction is that, in response to extracellular signals that are secreted by the Spemann-Mangold organizer in amphibians or the node in mammals and inhibit epidermal fate in ectoderm, the ectodermal cells lose their epidermal fate and assume the neural default fate and consequently, turn into neuroectodermal cells. They further differentiate into the nervous system and also some non-neural cells via interaction with adjacent tissues. Failure in neural induction leads to failure of embryogenesis, and ectopic neural induction due to ectopic organizer or node activity or activation of embryonic neural genes causes a formation of secondary body axis or a conjoined twin. During tumorigenesis, cells progressively lose their original cell identity and gain of neural stemness, and consequently, gain of tumorigenicity and pluripotency, due to various intra-/extracellular insults in cells of a postnatal animal. Tumorigenic cells can be induced to differentiation into normal cells and integrate into normal embryonic development within an embryo. However, they form tumors and cannot integrate into animal tissues/organs in a postnatal animal because of lack of embryonic inducing signals. Combination of studies of developmental and cancer biology indicates that neural induction drives embryogenesis in gastrulating embryos but a similar process drives tumorigenesis in a postnatal animal. Tumorigenicity is by nature the manifestation of aberrant occurrence of pluripotent state in a postnatal animal. Pluripotency and tumorigenicity are both but different manifestations of neural stemness in pre- and postnatal stages of animal life, respectively. Based on these findings, I discuss about some confusion in cancer research, propose to distinguish the causality and associations and discriminate causal and supporting factors involved in tumorigenesis, and suggest revisiting the focus of cancer research.
Collapse
Affiliation(s)
- Ying Cao
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Wnt/β-catenin signalling is required for pole-specific chromatin remodeling during planarian regeneration. Nat Commun 2023; 14:298. [PMID: 36653403 PMCID: PMC9849279 DOI: 10.1038/s41467-023-35937-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
For successful regeneration, the identity of the missing tissue must be specified according to the pre-existing tissue. Planarians are ideal for the study of the mechanisms underlying this process; the same field of cells can regrow a head or a tail according to the missing body part. After amputation, the differential activation of the Wnt/β-catenin signal specifies anterior versus posterior identity. Initially, both wnt1 and notum (Wnt inhibitor) are expressed in all wounds, but 48 hours later they are restricted to posterior or anterior facing wounds, respectively, by an unknown mechanism. Here we show that 12 hours after amputation, the chromatin accessibility of cells in the wound region changes according to the polarity of the pre-existing tissue in a Wnt/β-catenin-dependent manner. Genomic analyses suggest that homeobox transcription factors and chromatin-remodeling proteins are direct Wnt/β-catenin targets, which trigger the expression of posterior effectors. Finally, we identify FoxG as a wnt1 up-stream regulator, probably via binding to its first intron enhancer region.
Collapse
|
17
|
Embryonic organizer formation disorder leads to multiorgan dysplasia in Down syndrome. Cell Death Dis 2022; 13:1054. [PMID: 36535930 PMCID: PMC9763398 DOI: 10.1038/s41419-022-05517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Despite the high prevalence of Down syndrome (DS) and early identification of the cause (trisomy 21), its molecular pathogenesis has been poorly understood and specific treatments have consequently been practically unavailable. A number of medical conditions throughout the body associated with DS have prompted us to investigate its molecular etiology from the viewpoint of the embryonic organizer, which can steer the development of surrounding cells into specific organs and tissues. We established a DS zebrafish model by overexpressing the human DYRK1A gene, a highly haploinsufficient gene located at the "critical region" within 21q22. We found that both embryonic organizer and body axis were significantly impaired during early embryogenesis, producing abnormalities of the nervous, heart, visceral, and blood systems, similar to those observed with DS. Quantitative phosphoproteome analysis and related assays demonstrated that the DYRK1A-overexpressed zebrafish embryos had anomalous phosphorylation of β-catenin and Hsp90ab1, resulting in Wnt signaling enhancement and TGF-β inhibition. We found an uncovered ectopic molecular mechanism present in amniocytes from fetuses diagnosed with DS and isolated hematopoietic stem cells (HSCs) of DS patients. Importantly, the abnormal proliferation of DS HSCs could be recovered by switching the balance between Wnt and TGF-β signaling in vitro. Our findings provide a novel molecular pathogenic mechanism in which ectopic Wnt and TGF-β lead to DS physical dysplasia, suggesting potential targeted therapies for DS.
Collapse
|
18
|
Yoshihi K, Iida H, Teramoto M, Ishii Y, Kato K, Kondoh H. Epiblast cells gather onto the anterior mesendoderm and initiate brain development without the direct involvement of the node in avian embryos: Insights from broad-field live imaging. Front Cell Dev Biol 2022; 10:1019845. [PMID: 36274851 PMCID: PMC9581324 DOI: 10.3389/fcell.2022.1019845] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022] Open
Abstract
Live imaging of migrating and interacting cells in developing embryos has opened a new means for deciphering fundamental principles in morphogenesis and patterning, which was not possible with classic approaches of experimental embryology. In our recent study, we devised a new genetic tool to sparsely label cells with a green-fluorescent protein in the broad field of chicken embryos, enabling the analysis of cell migration during the early stages of brain development. Trajectory analysis indicated that anterior epiblast cells from a broad area gather to the head axis to form the brain primordia or brain-abutting head ectoderm. Grafting the mCherry-labeled stage (st.) 4 node in an anterior embryonic region resulted in the anterior extension of the anterior mesendoderm (AME), the precursor for the prechordal plate and anterior notochord, from the node graft at st. 5. Grafting the st. 4 node or st. 5 AME at various epiblast positions that otherwise develop into the head ectoderm caused local cell gathering to the graft-derived AME. The node was not directly associated with this local epiblast-gathering activity. The gathered anterior epiblast cells developed into secondary brain tissue consisting of consecutive brain portions, e.g., forebrain and midbrain or midbrain and hindbrain, reflecting the brain portion specificities inherent to the epiblast cells. The observations indicated the bipotentiality of all anterior epiblast cells to develop into the brain or head ectoderm. Thus, a new epiblast brain field map is proposed, allowing the reinterpretation of classical node graft data, and the role of the AME is highlighted. The new model leads to the conclusion that the node does not directly participate in brain development.
Collapse
Affiliation(s)
- Koya Yoshihi
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Hideaki Iida
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Machiko Teramoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- National Institute for Basic Biology, Okazaki, Japan
| | - Yasuo Ishii
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Department of Biology, School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kagayaki Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
| | - Hisato Kondoh
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- JT Biohistory Research Hall, Takatsuki, Japan
- *Correspondence: Hisato Kondoh,
| |
Collapse
|
19
|
Bolkhovitinov L, Weselman BT, Shaw GA, Dong C, Giribhattanavar J, Saha MS. Tissue Rotation of the Xenopus Anterior-Posterior Neural Axis Reveals Profound but Transient Plasticity at the Mid-Gastrula Stage. J Dev Biol 2022; 10:38. [PMID: 36135371 PMCID: PMC9503425 DOI: 10.3390/jdb10030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The establishment of anterior-posterior (AP) regional identity is an essential step in the appropriate development of the vertebrate central nervous system. An important aspect of AP neural axis formation is the inherent plasticity that allows developing cells to respond to and recover from the various perturbations that embryos continually face during the course of development. While the mechanisms governing the regionalization of the nervous system have been extensively studied, relatively less is known about the nature and limits of early neural plasticity of the anterior-posterior neural axis. This study aims to characterize the degree of neural axis plasticity in Xenopus laevis by investigating the response of embryos to a 180-degree rotation of their AP neural axis during gastrula stages by assessing the expression of regional marker genes using in situ hybridization. Our results reveal the presence of a narrow window of time between the mid- and late gastrula stage, during which embryos are able undergo significant recovery following a 180-degree rotation of their neural axis and eventually express appropriate regional marker genes including Otx, Engrailed, and Krox. By the late gastrula stage, embryos show misregulation of regional marker genes following neural axis rotation, suggesting that this profound axial plasticity is a transient phenomenon that is lost by late gastrula stages.
Collapse
Affiliation(s)
- Lyuba Bolkhovitinov
- Department of Molecular Biology, Massachusetts General Hospital, Harvard University, Boston, MA 02114, USA
| | - Bryan T. Weselman
- School of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Gladys A. Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Chen Dong
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Margaret S. Saha
- Department of Biology, College of William and Mary, Williamsburg, VA 23185, USA
| |
Collapse
|
20
|
Ducos B, Bensimon D, Scerbo P. Vertebrate Cell Differentiation, Evolution, and Diseases: The Vertebrate-Specific Developmental Potential Guardians VENTX/ NANOG and POU5/ OCT4 Enter the Stage. Cells 2022; 11:cells11152299. [PMID: 35892595 PMCID: PMC9331430 DOI: 10.3390/cells11152299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 01/02/2023] Open
Abstract
During vertebrate development, embryonic cells pass through a continuum of transitory pluripotent states that precede multi-lineage commitment and morphogenesis. Such states are referred to as “refractory/naïve” and “competent/formative” pluripotency. The molecular mechanisms maintaining refractory pluripotency or driving the transition to competent pluripotency, as well as the cues regulating multi-lineage commitment, are evolutionarily conserved. Vertebrate-specific “Developmental Potential Guardians” (vsDPGs; i.e., VENTX/NANOG, POU5/OCT4), together with MEK1 (MAP2K1), coordinate the pluripotency continuum, competence for multi-lineage commitment and morphogenesis in vivo. During neurulation, vsDPGs empower ectodermal cells of the neuro-epithelial border (NEB) with multipotency and ectomesenchyme potential through an “endogenous reprogramming” process, giving rise to the neural crest cells (NCCs). Furthermore, vsDPGs are expressed in undifferentiated-bipotent neuro-mesodermal progenitor cells (NMPs), which participate in posterior axis elongation and growth. Finally, vsDPGs are involved in carcinogenesis, whereby they confer selective advantage to cancer stem cells (CSCs) and therapeutic resistance. Intriguingly, the heterogenous distribution of vsDPGs in these cell types impact on cellular potential and features. Here, we summarize the findings about the role of vsDPGs during vertebrate development and their selective advantage in evolution. Our aim to present a holistic view regarding vsDPGs as facilitators of both cell plasticity/adaptability and morphological innovation/variation. Moreover, vsDPGs may also be at the heart of carcinogenesis by allowing malignant cells to escape from physiological constraints and surveillance mechanisms.
Collapse
Affiliation(s)
- Bertrand Ducos
- LPENS, PSL, CNRS, 24 rue Lhomond, 75005 Paris, France
- IBENS, PSL, CNRS, 46 rue d’Ulm, 75005 Paris, France
- High Throughput qPCR Core Facility, ENS, PSL, 46 rue d’Ulm, 75005 Paris, France
- Correspondence: (B.D.); (D.B.); (P.S.)
| | - David Bensimon
- LPENS, PSL, CNRS, 24 rue Lhomond, 75005 Paris, France
- IBENS, PSL, CNRS, 46 rue d’Ulm, 75005 Paris, France
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90094, USA
- Correspondence: (B.D.); (D.B.); (P.S.)
| | - Pierluigi Scerbo
- LPENS, PSL, CNRS, 24 rue Lhomond, 75005 Paris, France
- IBENS, PSL, CNRS, 46 rue d’Ulm, 75005 Paris, France
- Correspondence: (B.D.); (D.B.); (P.S.)
| |
Collapse
|
21
|
Ozernyuk ND, Isaeva VV. Early Stages of Animal Mesoderm Evolution. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Fulton T, Verd B, Steventon B. The unappreciated generative role of cell movements in pattern formation. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211293. [PMID: 35601454 PMCID: PMC9043703 DOI: 10.1098/rsos.211293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
The mechanisms underpinning the formation of patterned cellular landscapes has been the subject of extensive study as a fundamental problem of developmental biology. In most cases, attention has been given to situations in which cell movements are negligible, allowing researchers to focus on the cell-extrinsic signalling mechanisms, and intrinsic gene regulatory interactions that lead to pattern emergence at the tissue level. However, in many scenarios during development, cells rapidly change their neighbour relationships in order to drive tissue morphogenesis, while also undergoing patterning. To draw attention to the ubiquity of this problem and propose methodologies that will accommodate morphogenesis into the study of pattern formation, we review the current approaches to studying pattern formation in both static and motile cellular environments. We then consider how the cell movements themselves may contribute to the generation of pattern, rather than hinder it, with both a species specific and evolutionary viewpoint.
Collapse
Affiliation(s)
- Timothy Fulton
- Department of Genetics, University of Cambridge, Cambridge, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Berta Verd
- Department of Genetics, University of Cambridge, Cambridge, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
23
|
Yoshihi K, Kato K, Iida H, Teramoto M, Kawamura A, Watanabe Y, Nunome M, Nakano M, Matsuda Y, Sato Y, Mizuno H, Iwasato T, Ishii Y, Kondoh H. Live imaging of avian epiblast and anterior mesendoderm grafting reveals the complexity of cell dynamics during early brain development. Development 2022; 149:274289. [PMID: 35132990 PMCID: PMC9017232 DOI: 10.1242/dev.199999] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
Despite previous intensive investigations on epiblast cell migration in avian embryos during primitive streak development before stage (st.) 4, this migration at later stages of brain development has remained uninvestigated. By live imaging of epiblast cells sparsely labeled with green fluorescence protein, we investigated anterior epiblast cell migration to form individual brain portions. Anterior epiblast cells from a broad area migrated collectively towards the head axis during st. 5-7 at a rate of 70-110 µm/h, changing directions from diagonal to parallel and forming the brain portions and abutting head ectoderm. This analysis revised the previously published head portion precursor map in anterior epiblasts at st. 4/5. Grafting outside the brain precursor region of mCherry-expressing nodes producing anterior mesendoderm (AME) or isolated AME tissues elicited new cell migration towards ectopic AME tissues. These locally convergent cells developed into secondary brains with portions that depended on the ectopic AME position in the anterior epiblast. Thus, anterior epiblast cells are bipotent for brain/head ectoderm development with given brain portion specificities. A brain portion potential map is proposed, also accounting for previous observations. Summary: The first high-resolution live imaging of anterior epiblast cells at the brain-forming stages in avian embryos is reported, revealing their long-distance migration and interaction with the anterior mesendoderm to form brain tissues.
Collapse
Affiliation(s)
- Koya Yoshihi
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Kagayaki Kato
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
| | - Hideaki Iida
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Machiko Teramoto
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Akihito Kawamura
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Yusaku Watanabe
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Mitsuo Nunome
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mikiharu Nakano
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoichi Matsuda
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yuki Sato
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hidenobu Mizuno
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Shizuoka 411-8540, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Shizuoka 411-8540, Japan
| | - Yasuo Ishii
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan.,Department of Biology, School of Medicine, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hisato Kondoh
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan.,Institute for Comprehensive Research, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan.,JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| |
Collapse
|
24
|
Allievi A, Canavesi M, Ferrario C, Sugni M, Bonasoro F. An evo-devo perspective on the regeneration patterns of continuous arm structures in stellate echinoderms. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2039309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- A. Allievi
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - M. Canavesi
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - C. Ferrario
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
| | - M. Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - F. Bonasoro
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| |
Collapse
|
25
|
Cooper F, Tsakiridis A. Shaping axial identity during human pluripotent stem cell differentiation to neural crest cells. Biochem Soc Trans 2022; 50:499-511. [PMID: 35015077 PMCID: PMC9022984 DOI: 10.1042/bst20211152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022]
Abstract
The neural crest (NC) is a multipotent cell population which can give rise to a vast array of derivatives including neurons and glia of the peripheral nervous system, cartilage, cardiac smooth muscle, melanocytes and sympathoadrenal cells. An attractive strategy to model human NC development and associated birth defects as well as produce clinically relevant cell populations for regenerative medicine applications involves the in vitro generation of NC from human pluripotent stem cells (hPSCs). However, in vivo, the potential of NC cells to generate distinct cell types is determined by their position along the anteroposterior (A-P) axis and, therefore the axial identity of hPSC-derived NC cells is an important aspect to consider. Recent advances in understanding the developmental origins of NC and the signalling pathways involved in its specification have aided the in vitro generation of human NC cells which are representative of various A-P positions. Here, we explore recent advances in methodologies of in vitro NC specification and axis patterning using hPSCs.
Collapse
Affiliation(s)
- Fay Cooper
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
- Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
- Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
| |
Collapse
|
26
|
Barratt KS, Drover KA, Thomas ZM, Arkell RM. Patterning of the antero-ventral mammalian brain: Lessons from holoprosencephaly comparative biology in man and mouse. WIREs Mech Dis 2022; 14:e1552. [PMID: 35137563 DOI: 10.1002/wsbm.1552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Adult form and function are dependent upon the activity of specialized signaling centers that act early in development at the embryonic midline. These centers instruct the surrounding cells to adopt a positional fate and to form the patterned structures of the phylotypic embryo. Abnormalities in these processes have devastating consequences for the individual, as exemplified by holoprosencephaly in which anterior midline development fails, leading to structural defects of the brain and/or face. In the 25 years since the first association between human holoprosencephaly and the sonic hedgehog gene, a combination of human and animal genetic studies have enhanced our understanding of the genetic and embryonic causation of this congenital defect. Comparative biology has extended the holoprosencephaly network via the inclusion of gene mutations from multiple signaling pathways known to be required for anterior midline formation. It has also clarified aspects of holoprosencephaly causation, showing that it arises when a deleterious variant is present within a permissive genome, and that environmental factors, as well as embryonic stochasticity, influence the phenotypic outcome of the variant. More than two decades of research can now be distilled into a framework of embryonic and genetic causation. This framework means we are poised to move beyond our current understanding of variants in signaling pathway molecules. The challenges now at the forefront of holoprosencephaly research include deciphering how the mutation of genes involved in basic cell processes can also cause holoprosencephaly, determining the important constituents of the holoprosencephaly permissive genome, and identifying environmental compounds that promote holoprosencephaly. This article is categorized under: Congenital Diseases > Stem Cells and Development Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology Congenital Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Kristen S Barratt
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kyle A Drover
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zoe M Thomas
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ruth M Arkell
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
27
|
Manicka S, Levin M. Minimal Developmental Computation: A Causal Network Approach to Understand Morphogenetic Pattern Formation. ENTROPY (BASEL, SWITZERLAND) 2022; 24:107. [PMID: 35052133 PMCID: PMC8774453 DOI: 10.3390/e24010107] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/22/2022]
Abstract
What information-processing strategies and general principles are sufficient to enable self-organized morphogenesis in embryogenesis and regeneration? We designed and analyzed a minimal model of self-scaling axial patterning consisting of a cellular network that develops activity patterns within implicitly set bounds. The properties of the cells are determined by internal 'genetic' networks with an architecture shared across all cells. We used machine-learning to identify models that enable this virtual mini-embryo to pattern a typical axial gradient while simultaneously sensing the set boundaries within which to develop it from homogeneous conditions-a setting that captures the essence of early embryogenesis. Interestingly, the model revealed several features (such as planar polarity and regenerative re-scaling capacity) for which it was not directly selected, showing how these common biological design principles can emerge as a consequence of simple patterning modes. A novel "causal network" analysis of the best model furthermore revealed that the originally symmetric model dynamically integrates into intercellular causal networks characterized by broken-symmetry, long-range influence and modularity, offering an interpretable macroscale-circuit-based explanation for phenotypic patterning. This work shows how computation could occur in biological development and how machine learning approaches can generate hypotheses and deepen our understanding of how featureless tissues might develop sophisticated patterns-an essential step towards predictive control of morphogenesis in regenerative medicine or synthetic bioengineering contexts. The tools developed here also have the potential to benefit machine learning via new forms of backpropagation and by leveraging the novel distributed self-representation mechanisms to improve robustness and generalization.
Collapse
Affiliation(s)
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA;
| |
Collapse
|
28
|
Kochetkova M, Samuel MS. Differentiation of the tumor microenvironment: are CAFs the Organizer? Trends Cell Biol 2021; 32:285-294. [PMID: 34895986 DOI: 10.1016/j.tcb.2021.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Cancers contain a suite of genetically stable cells within an extracellular matrix, collectively termed the tumor microenvironment (TME). The TME strongly influences disease outcome for patients. Gleaning clues from the literature, we propose that the TME should be viewed not as disparate populations of cells constituting a pathological lesion, but as a cohesive tissue constituting a novel pathological organ, arising from the coordinated differentiation of its constituent cell types - a process we have termed tumor-associated neodifferentiation (TAND). We also discuss why cancer-associated fibroblasts (CAFs) may assume the role of Organizer of this organ, directing the recruitment and differentiation of cells within the TME. Viewing the microenvironment in this way will reveal new cancer vulnerabilities that may be exploited for therapy.
Collapse
Affiliation(s)
- Marina Kochetkova
- Centre for Cancer Biology, an alliance between SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Michael Susithiran Samuel
- Centre for Cancer Biology, an alliance between SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
29
|
Kumar V, Park S, Lee U, Kim J. The Organizer and Its Signaling in Embryonic Development. J Dev Biol 2021; 9:jdb9040047. [PMID: 34842722 PMCID: PMC8628936 DOI: 10.3390/jdb9040047] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
Germ layer specification and axis formation are crucial events in embryonic development. The Spemann organizer regulates the early developmental processes by multiple regulatory mechanisms. This review focuses on the responsive signaling in organizer formation and how the organizer orchestrates the germ layer specification in vertebrates. Accumulated evidence indicates that the organizer influences embryonic development by dual signaling. Two parallel processes, the migration of the organizer’s cells, followed by the transcriptional activation/deactivation of target genes, and the diffusion of secreting molecules, collectively direct the early development. Finally, we take an in-depth look at active signaling that originates from the organizer and involves germ layer specification and patterning.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea;
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2544 (J.K.); Fax: +82-33-244-8425 (J.K.)
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea;
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2544 (J.K.); Fax: +82-33-244-8425 (J.K.)
| |
Collapse
|
30
|
Steventon B, Busby L, Arias AM. Establishment of the vertebrate body plan: Rethinking gastrulation through stem cell models of early embryogenesis. Dev Cell 2021; 56:2405-2418. [PMID: 34520764 DOI: 10.1016/j.devcel.2021.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/20/2021] [Accepted: 08/14/2021] [Indexed: 12/28/2022]
Abstract
A striking property of vertebrate embryos is the emergence of a conserved body plan across a wide range of organisms through the process of gastrulation. As the body plan unfolds, gene regulatory networks (GRNs) and multicellular interactions (cell regulatory networks, CRNs) combine to generate a conserved set of morphogenetic events that lead to the phylotypic stage. Interrogation of these multilevel interactions requires manipulation of the mechanical environment, which is difficult in vivo. We review recent studies of stem cell models of early embryogenesis from different species showing that, independent of species origin, cells in culture form similar structures. The main difference between embryos and in vitro models is the boundary conditions of the multicellular ensembles. We discuss these observations and suggest that the mechanical and geometric boundary conditions of different embryos before gastrulation hide a morphogenetic ground state that is revealed in the stem-cell-based models of embryo development.
Collapse
Affiliation(s)
| | - Lara Busby
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Alfonso Martinez Arias
- Systems Bioengineering, DCEXS, Universidad Pompeu Fabra, Doctor Aiguader, 88 ICREA, Pag Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
31
|
Seleit A, Gross K, Onistschenko J, Hoang OP, Theelke J, Centanin L. Local tissue interactions govern pLL patterning in medaka. Dev Biol 2021; 481:1-13. [PMID: 34517003 DOI: 10.1016/j.ydbio.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 09/03/2021] [Indexed: 11/03/2022]
Abstract
Vertebrate organs are arranged in a stereotypic, species-specific position along the animal body plan. Substantial morphological variation exists between related species, especially so in the vastly diversified teleost clade. It is still unclear how tissues, organs and systems can accommodate such diverse scaffolds. Here, we use the distinctive arrangement of neuromasts in the posterior lateral line (pLL) system of medaka fish to address the tissue-interactions defining a pattern. We show that patterning in this peripheral nervous system is established by autonomous organ precursors independent of neuronal wiring. In addition, we target the keratin 15 gene to generate stuck-in-the-midline (siml) mutants, which display epithelial lesions and a disrupted pLL patterning. By using siml/wt chimeras, we determine that the aberrant siml pLL pattern depends on the mutant epithelium, since a wild type epithelium can rescue the siml phenotype. Inducing epithelial lesions by 2-photon laser ablation during pLL morphogenesis phenocopies siml genetic mutants and reveals that epithelial integrity defines the final position of the embryonic pLL neuromasts. Our results using the medaka pLL disentangle intrinsic from extrinsic properties during the establishment of a sensory system. We speculate that intrinsic programs guarantee proper organ morphogenesis, while instructive interactions from surrounding tissues facilitates the accommodation of sensory organs to the diverse body plans found among teleosts.
Collapse
Affiliation(s)
- Ali Seleit
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Universität Heidelberg, 69120, Heidelberg, Germany; Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Karen Gross
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Universität Heidelberg, 69120, Heidelberg, Germany; Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Jasmin Onistschenko
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Universität Heidelberg, 69120, Heidelberg, Germany; Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Oi Pui Hoang
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Universität Heidelberg, 69120, Heidelberg, Germany
| | - Jonas Theelke
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Universität Heidelberg, 69120, Heidelberg, Germany
| | - Lázaro Centanin
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Universität Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
32
|
Composite morphogenesis during embryo development. Semin Cell Dev Biol 2021; 120:119-132. [PMID: 34172395 DOI: 10.1016/j.semcdb.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 11/21/2022]
Abstract
Morphogenesis drives the formation of functional living shapes. Gene expression patterns and signaling pathways define the body plans of the animal and control the morphogenetic processes shaping the embryonic tissues. During embryogenesis, a tissue can undergo composite morphogenesis resulting from multiple concomitant shape changes. While previous studies have unraveled the mechanisms that drive simple morphogenetic processes, how a tissue can undergo multiple and simultaneous changes in shape is still not known and not much explored. In this chapter, we focus on the process of concomitant tissue folding and extension that is vital for the animal since it is key for embryo gastrulation and neurulation. Recent pioneering studies focus on this problem highlighting the roles of different spatially coordinated cell mechanisms or of the synergy between different patterns of gene expression to drive composite morphogenesis.
Collapse
|
33
|
Glykofrydis F, Cachat E, Berzanskyte I, Dzierzak E, Davies JA. Bioengineering Self-Organizing Signaling Centers to Control Embryoid Body Pattern Elaboration. ACS Synth Biol 2021; 10:1465-1480. [PMID: 34019395 DOI: 10.1021/acssynbio.1c00060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Multicellular systems possess an intrinsic capacity to autonomously generate nonrandom state distributions or morphologies in a process termed self-organization. Facets of self-organization, such as pattern formation, pattern elaboration, and symmetry breaking, are frequently observed in developing embryos. Artificial stem cell-derived structures including embryoid bodies (EBs), gastruloids, and organoids also demonstrate self-organization, but with a limited capacity compared to their in vivo developmental counterparts. There is a pressing need for better tools to allow user-defined control over self-organization in these stem cell-derived structures. Here, we employ synthetic biology to establish an efficient platform for the generation of self-organizing coaggregates, in which HEK-293 cells overexpressing P-cadherin (Cdh3) spontaneously form cell clusters attached mostly to one or two locations on the exterior of EBs. These Cdh3-expressing HEK cells, when further engineered to produce functional mouse WNT3A, evoke polarized and gradual Wnt/β-catenin pathway activation in EBs during coaggregation cultures. The localized WNT3A provision induces nascent mesoderm specification within regions of the EB close to the Cdh3-Wnt3a-expressing HEK source, resulting in pattern elaboration and symmetry breaking within EBs. This synthetic biology-based approach puts us closer toward engineering synthetic organizers to improve the realism in stem cell-derived structures.
Collapse
Affiliation(s)
- Fokion Glykofrydis
- UK Centre for Mammalian Synthetic Biology, Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Elise Cachat
- UK Centre for Mammalian Synthetic Biology, Institute of Quantitative Biology, Biochemistry, and Biotechnology, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Ieva Berzanskyte
- UK Centre for Mammalian Synthetic Biology, Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Elaine Dzierzak
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Jamie A. Davies
- UK Centre for Mammalian Synthetic Biology, Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| |
Collapse
|
34
|
Busby L, Steventon B. Tissue tectonics and the multi-scale regulation of developmental timing. Interface Focus 2021; 11:20200057. [PMID: 34055304 PMCID: PMC8086930 DOI: 10.1098/rsfs.2020.0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Development encompasses processes that occur at multiple length scales, including gene-regulatory interactions, cell movements and reorganization, cell signalling and growth. It is essential that the timing of events in all of these different processes is coordinated to generate well-patterned tissues and organs. However, how the timing of intrinsic cell state changes is coordinated with events occurring at the multi-tissue and whole-organism level is unknown. Here, we argue that an important mechanism that accounts for the integration of timing across levels of organization is provided by tissue tectonics, i.e. how morphogenetic events driving tissue shape changes result in the relative displacement of signalling and responding tissues and coordinate developmental timing across scales. In doing so, tissue tectonics provides a mechanism by which the cell specification events intrinsic to cells can be modulated by the temporal exposure to extracellular signals. This exposure is in turn regulated by higher-order properties of the embryo, such as their physical properties, rates of growth and the combination of dynamic cell behaviours, impacting tissue morphogenesis. Tissue tectonics creates a downward flow of information from higher to lower levels of biological organization, providing an instance of downward causation in development.
Collapse
Affiliation(s)
- Lara Busby
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
35
|
Joy DA, Libby ARG, McDevitt TC. Deep neural net tracking of human pluripotent stem cells reveals intrinsic behaviors directing morphogenesis. Stem Cell Reports 2021; 16:1317-1330. [PMID: 33979602 PMCID: PMC8185472 DOI: 10.1016/j.stemcr.2021.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 01/09/2023] Open
Abstract
Lineage tracing is a powerful tool in developmental biology to interrogate the evolution of tissue formation, but the dense, three-dimensional nature of tissue limits the assembly of individual cell trajectories into complete reconstructions of development. Human induced pluripotent stem cells (hiPSCs) can recapitulate aspects of developmental processes, providing an in vitro platform to assess the dynamic collective behaviors directing tissue morphogenesis. Here, we trained an ensemble of neural networks to track individual hiPSCs in time-lapse microscopy, generating longitudinal measures of cell and cellular neighborhood properties on timescales from minutes to days. Our analysis reveals that, while individual cell parameters are not strongly affected by pluripotency maintenance conditions or morphogenic cues, regional changes in cell behavior predict cell fate and colony organization. By generating complete multicellular reconstructions of hiPSC behavior, our tracking pipeline enables fine-grained understanding of morphogenesis by elucidating the role of regional behavior in early tissue formation.
Collapse
Affiliation(s)
- David A Joy
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, San Francisco, CA, USA; Gladstone Institutes, San Francisco, CA, USA
| | - Ashley R G Libby
- Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology PhD Program, University of California, San Francisco, San Francisco, CA, USA
| | - Todd C McDevitt
- Gladstone Institutes, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
36
|
Abstract
How tissue remodelling is coordinated during morphogenesis is still an open question. In this issue of Developmental Cell, Xiong et al. (2020) reveals the regulation of coordinated tissue elongation during avian embryonic development by inter-tissue mechanical interactions acting as a compression engine.
Collapse
Affiliation(s)
- Élise Trubuil
- Instituto Biofisika (CSIC, UPV/EHU), Basque Excellence Research Centre, Barrio Sarriena, 48940 Leioa, Spain; Fundación Biofísica Bizkaia, 48940 Leioa, Spain
| | - Jérôme Solon
- Instituto Biofisika (CSIC, UPV/EHU), Basque Excellence Research Centre, Barrio Sarriena, 48940 Leioa, Spain; Fundación Biofísica Bizkaia, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
37
|
Wymeersch FJ, Wilson V, Tsakiridis A. Understanding axial progenitor biology in vivo and in vitro. Development 2021; 148:148/4/dev180612. [PMID: 33593754 DOI: 10.1242/dev.180612] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of the components that make up the embryonic body axis, such as the spinal cord and vertebral column, takes place in an anterior-to-posterior (head-to-tail) direction. This process is driven by the coordinated production of various cell types from a pool of posteriorly-located axial progenitors. Here, we review the key features of this process and the biology of axial progenitors, including neuromesodermal progenitors, the common precursors of the spinal cord and trunk musculature. We discuss recent developments in the in vitro production of axial progenitors and their potential implications in disease modelling and regenerative medicine.
Collapse
Affiliation(s)
- Filip J Wymeersch
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield S10 2TN UK .,Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| |
Collapse
|
38
|
Kakebeen AD, Huebner RJ, Shindo A, Kwon K, Kwon T, Wills AE, Wallingford JB. A temporally resolved transcriptome for developing "Keller" explants of the Xenopus laevis dorsal marginal zone. Dev Dyn 2021; 250:717-731. [PMID: 33368695 DOI: 10.1002/dvdy.289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Explanted tissues from vertebrate embryos reliably develop in culture and have provided essential paradigms for understanding embryogenesis, from early embryological investigations of induction, to the extensive study of Xenopus animal caps, to the current studies of mammalian gastruloids. Cultured explants of the Xenopus dorsal marginal zone ("Keller" explants) serve as a central paradigm for studies of convergent extension cell movements, yet we know little about the global patterns of gene expression in these explants. RESULTS In an effort to more thoroughly develop this important model system, we provide here a time-resolved bulk transcriptome for developing Keller explants. CONCLUSIONS The dataset reported here provides a useful resource for those using Keller explants for studies of morphogenesis and provide genome-scale insights into the temporal patterns of gene expression in an important tissue when explanted and grown in culture.
Collapse
Affiliation(s)
- Anneke D Kakebeen
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Robert J Huebner
- Department of Molecular Biosciences, University of Texas, Austin, Texas, USA
| | - Asako Shindo
- Division of Biological Science, Nagoya University, Nagoya, Japan
| | - Kujin Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, (UNIST), Ulsan, Republic of Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, (UNIST), Ulsan, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea
| | - Andrea E Wills
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, Texas, USA
| |
Collapse
|
39
|
WNT-FRIZZLED-LRP5/6 Signaling Mediates Posterior Fate and Proliferation during Planarian Regeneration. Genes (Basel) 2021; 12:genes12010101. [PMID: 33467529 PMCID: PMC7830089 DOI: 10.3390/genes12010101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
An organizer is defined as a group of cells that secrete extracellular proteins that specify the fate of surrounding cells according to their concentration. Their function during embryogenesis is key in patterning new growing tissues. Although organizers should also participate in adult development when new structures are regenerated, their presence in adults has only been identified in a few species with striking regenerative abilities, such as planarians. Planarians provide a unique model to understand the function of adult organizers, since the presence of adult pluripotent stem cells provides them with the ability to regenerate any body part. Previous studies have shown that the differential activation of the WNT/β-catenin signal in each wound is fundamental to establish an anterior or a posterior organizer in the corresponding wound. Here, we identify the receptors that mediate the WNT/β-catenin signal in posterior-facing wounds. We found that Wnt1-Fzd1-LRP5/6 signaling is evolutionarily conserved in executing a WNT/β-catenin signal to specify cell fate and to trigger a proliferative response. Our data allow a better understanding of the mechanism through which organizers signal to a “competent” field of cells and integrate the patterning and growth required during de novo formation of organs and tissues.
Collapse
|
40
|
Murillo-Rincón AP, Kaucka M. Insights Into the Complexity of Craniofacial Development From a Cellular Perspective. Front Cell Dev Biol 2020; 8:620735. [PMID: 33392208 PMCID: PMC7775397 DOI: 10.3389/fcell.2020.620735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
The head represents the most complex part of the body and a distinctive feature of the vertebrate body plan. This intricate structure is assembled during embryonic development in the four-dimensional process of morphogenesis. The head integrates components of the central and peripheral nervous system, sensory organs, muscles, joints, glands, and other specialized tissues in the framework of a complexly shaped skull. The anterior part of the head is referred to as the face, and a broad spectrum of facial shapes across vertebrate species enables different feeding strategies, communication styles, and diverse specialized functions. The face formation starts early during embryonic development and is an enormously complex, multi-step process regulated on a genomic, molecular, and cellular level. In this review, we will discuss recent discoveries that revealed new aspects of facial morphogenesis from the time of the neural crest cell emergence till the formation of the chondrocranium, the primary design of the individual facial shape. We will focus on molecular mechanisms of cell fate specification, the role of individual and collective cell migration, the importance of dynamic and continuous cellular interactions, responses of cells and tissues to generated physical forces, and their morphogenetic outcomes. In the end, we will examine the spatiotemporal activity of signaling centers tightly regulating the release of signals inducing the formation of craniofacial skeletal elements. The existence of these centers and their regulation by enhancers represent one of the core morphogenetic mechanisms and might lay the foundations for intra- and inter-species facial variability.
Collapse
Affiliation(s)
| | - Marketa Kaucka
- Max Planck Research Group Craniofacial Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
41
|
Fuhrmann JF, Buono L, Adelmann L, Martinez-Morales JR, Centanin L. Genetic developmental timing revealed by inter-species transplantations in fish. Development 2020; 147:dev.192500. [PMID: 33033120 DOI: 10.1242/dev.192500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
The path from a fertilised egg to an embryo involves the coordinated formation of cell types, tissues and organs. Developmental modules comprise discrete units specified by self-sufficient genetic programs that can interact with each other during embryogenesis. Here, we have taken advantage of the different span of embryonic development between two distantly related teleosts, zebrafish (Danio rerio) and medaka (Oryzias latipes) (3 and 9 days, respectively), to explore modularity principles. We report that inter-species blastula transplantations result in the ectopic formation of a retina formed by donor cells - a module. We show that the time taken for the retina to develop follows a genetic program: an ectopic zebrafish retina in medaka develops with zebrafish dynamics. Heterologous transplantation results in a temporal decoupling between the donor retina and host organism, illustrated by two paradigms that require retina-host interactions: lens recruitment and retino-tectal projections. Our results uncover a new experimental system for addressing temporal decoupling along embryonic development, and highlight the presence of largely autonomous but interconnected developmental modules that orchestrate organogenesis.
Collapse
Affiliation(s)
- Jana Franziska Fuhrmann
- Laboratory of Clonal Analysis, Center for Organismal Studies, Universität Heidelberg, INF230, 69120 Heidelberg, Germany
| | - Lorena Buono
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Carretera de Utrera km 1, 41013 Seville, Spain
| | - Leonie Adelmann
- Laboratory of Clonal Analysis, Center for Organismal Studies, Universität Heidelberg, INF230, 69120 Heidelberg, Germany
| | - Juan Ramón Martinez-Morales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Carretera de Utrera km 1, 41013 Seville, Spain
| | - Lazaro Centanin
- Laboratory of Clonal Analysis, Center for Organismal Studies, Universität Heidelberg, INF230, 69120 Heidelberg, Germany
| |
Collapse
|
42
|
Transcription Factors of the bHLH Family Delineate Vertebrate Landmarks in the Nervous System of a Simple Chordate. Genes (Basel) 2020; 11:genes11111262. [PMID: 33114624 PMCID: PMC7693978 DOI: 10.3390/genes11111262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Tunicates are marine invertebrates whose tadpole-like larvae feature a highly simplified version of the chordate body plan. Similar to their distant vertebrate relatives, tunicate larvae develop a regionalized central nervous system and form distinct neural structures, which include a rostral sensory vesicle, a motor ganglion, and a caudal nerve cord. The sensory vesicle contains a photoreceptive complex and a statocyst, and based on the comparable expression patterns of evolutionarily conserved marker genes, it is believed to include proto-hypothalamic and proto-retinal territories. The evolutionarily conserved molecular fingerprints of these landmarks of the vertebrate brain consist of genes encoding for different transcription factors, and of the gene batteries that they control, and include several members of the bHLH family. Here we review the complement of bHLH genes present in the streamlined genome of the tunicate Ciona robusta and their current classification, and summarize recent studies on proneural bHLH transcription factors and their expression territories. We discuss the possible roles of bHLH genes in establishing the molecular compartmentalization of the enticing nervous system of this unassuming chordate.
Collapse
|
43
|
Lanza AR, Seaver EC. Activin/Nodal signaling mediates dorsal-ventral axis formation before third quartet formation in embryos of the annelid Chaetopterus pergamentaceus. EvoDevo 2020; 11:17. [PMID: 32788949 PMCID: PMC7418201 DOI: 10.1186/s13227-020-00161-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/22/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The clade of protostome animals known as the Spiralia (e.g., mollusks, annelids, nemerteans and polyclad flatworms) shares a highly conserved program of early development. This includes shared arrangement of cells in the early-stage embryo and fates of descendant cells into embryonic quadrants. In spiralian embryos, a single cell in the D quadrant functions as an embryonic organizer to pattern the body axes. The precise timing of the organizing signal and its cellular identity varies among spiralians. Previous experiments in the annelid Chaetopterus pergamentaceus Cuvier, 1830 demonstrated that the D quadrant possesses an organizing role in body axes formation; however, the molecular signal and exact cellular identity of the organizer were unknown. RESULTS In this study, the timing of the signal and the specific signaling pathway that mediates organizing activity in C. pergamentaceus was investigated through short exposures to chemical inhibitors during early cleavage stages. Chemical interference of the Activin/Nodal pathway but not the BMP or MAPK pathways results in larvae that lack a detectable dorsal-ventral axis. Furthermore, these data show that the duration of organizing activity encompasses the 16 cell stage and is completed before the 32 cell stage. CONCLUSIONS The timing and molecular signaling pathway of the C. pergamentaceus organizer is comparable to that of another annelid, Capitella teleta, whose organizing signal is required through the 16 cell stage and localizes to micromere 2d. Since C. pergamentaceus is an early branching annelid, these data in conjunction with functional genomic investigations in C. teleta hint that the ancestral state of annelid dorsal-ventral axis patterning involved an organizing signal that occurs one to two cell divisions earlier than the organizing signal identified in mollusks, and that the signal is mediated by Activin/Nodal signaling. Our findings have significant evolutionary implications within the Spiralia, and furthermore suggest that global body patterning mechanisms may not be as conserved across bilaterians as was previously thought.
Collapse
Affiliation(s)
- Alexis R. Lanza
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, USA
| | - Elaine C. Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, USA
| |
Collapse
|
44
|
Abstract
The lateral plate mesoderm (LPM) forms the progenitor cells that constitute the heart and cardiovascular system, blood, kidneys, smooth muscle lineage and limb skeleton in the developing vertebrate embryo. Despite this central role in development and evolution, the LPM remains challenging to study and to delineate, owing to its lineage complexity and lack of a concise genetic definition. Here, we outline the processes that govern LPM specification, organization, its cell fates and the inferred evolutionary trajectories of LPM-derived tissues. Finally, we discuss the development of seemingly disparate organ systems that share a common LPM origin. Summary: The lateral plate mesoderm is the origin of several major cell types and organ systems in the vertebrate body plan. How this mesoderm territory emerges and partitions into its downstream fates provides clues about vertebrate development and evolution.
Collapse
Affiliation(s)
- Karin D Prummel
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA.,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Susan Nieuwenhuize
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA.,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA .,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
45
|
Axis Specification in Zebrafish Is Robust to Cell Mixing and Reveals a Regulation of Pattern Formation by Morphogenesis. Curr Biol 2020; 30:2984-2994.e3. [PMID: 32559447 PMCID: PMC7416079 DOI: 10.1016/j.cub.2020.05.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/01/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022]
Abstract
A fundamental question in developmental biology is how the early embryo establishes the spatial coordinate system that is later important for the organization of the embryonic body plan. Although we know a lot about the signaling and gene-regulatory networks required for this process, much less is understood about how these can operate to pattern tissues in the context of the extensive cell movements that drive gastrulation. In zebrafish, germ layer specification depends on the inheritance of maternal mRNAs [1, 2, 3], cortical rotation to generate a dorsal pole of β-catenin activity [4, 5, 6, 7, 8], and the release of Nodal signals from the yolk syncytial layer (YSL) [9, 10, 11, 12]. To determine whether germ layer specification is robust to altered cell-to-cell positioning, we separated embryonic cells from the yolk and allowed them to develop as spherical aggregates. These aggregates break symmetry autonomously to form elongated structures with an anterior-posterior pattern. Both forced reaggregation and endogenous cell mixing reveals how robust early axis specification is to spatial disruption of maternal pre-patterning. During these movements, a pole of Nodal signaling emerges that is required for explant elongation via the planar cell polarity (PCP) pathway. Blocking of PCP-dependent elongation disrupts the shaping of opposing poles of BMP and Wnt/TCF activity and the anterior-posterior patterning of neural tissue. These results lead us to suggest that embryo elongation plays a causal role in timing the exposure of cells to changes in BMP and Wnt signal activity during zebrafish gastrulation. Video Abstract
Whole-zebrafish 256-cell stage embryo explants elongate Patterned germ layers are established Mesoderm formation is robust to extensive cell mixing Inhibition of morphogenesis blocks formation of signaling gradients
Collapse
|
46
|
Yasuoka Y. Enhancer evolution in chordates: Lessons from functional analyses of cephalochordate cis‐regulatory modules. Dev Growth Differ 2020; 62:279-300. [DOI: 10.1111/dgd.12684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis RIKEN Center for Integrative Medical Sciences Tsurumi‐ku Japan
| |
Collapse
|
47
|
Kesavan G, Machate A, Hans S, Brand M. Cell-fate plasticity, adhesion and cell sorting complementarily establish a sharp midbrain-hindbrain boundary. Development 2020; 147:dev186882. [PMID: 32439756 DOI: 10.1242/dev.186882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/30/2020] [Indexed: 01/22/2023]
Abstract
The formation and maintenance of sharp boundaries between groups of cells play a vital role during embryonic development as they serve to compartmentalize cells with similar fates. Some of these boundaries also act as organizers, with the ability to induce specific cell fates and morphogenesis in the surrounding cells. The midbrain-hindbrain boundary (MHB) is such an organizer: it acts as a lineage restriction boundary to prevent the intermingling of cells with different developmental fates. However, the mechanisms underlying the lineage restriction process remain unclear. Here, using novel fluorescent knock-in reporters, live imaging, Cre/lox-mediated lineage tracing, atomic force microscopy-based cell adhesion assays and mutant analysis, we analyze the process of lineage restriction at the MHB and provide mechanistic details. Specifically, we show that lineage restriction occurs by the end of gastrulation, and that the subsequent formation of sharp gene expression boundaries in the developing MHB occur through complementary mechanisms, i.e. cell-fate plasticity and cell sorting. Furthermore, we show that cell sorting at the MHB involves differential adhesion among midbrain and hindbrain cells that is mediated by N-cadherin and Eph-ephrin signaling.
Collapse
Affiliation(s)
- Gokul Kesavan
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Anja Machate
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| |
Collapse
|
48
|
Abstract
The cerebellum is a pivotal centre for the integration and processing of motor and sensory information. Its extended development into the postnatal period makes this structure vulnerable to a variety of pathologies, including neoplasia. These properties have prompted intensive investigations that reveal not only developmental mechanisms in common with other regions of the neuraxis but also unique strategies to generate neuronal diversity. How the phenotypically distinct cell types of the cerebellum emerge rests on understanding how gene expression differences arise in a spatially and temporally coordinated manner from initially homogeneous cell populations. Increasingly sophisticated fate mapping approaches, culminating in genetic-induced fate mapping, have furthered the understanding of lineage relationships between early- versus later-born cells. Tracing the developmental histories of cells in this way coupled with analysis of gene expression patterns has provided insight into the developmental genetic programmes that instruct cellular heterogeneity. A limitation to date has been the bulk analysis of cells, which blurs lineage relationships and obscures gene expression differences between cells that underpin the cellular taxonomy of the cerebellum. This review emphasises recent discoveries, focusing mainly on single-cell sequencing in mouse and parallel human studies that elucidate neural progenitor developmental trajectories with unprecedented resolution. Complementary functional studies of neural repair after cerebellar injury are challenging assumptions about the stability of postnatal cellular identities. The result is a wealth of new information about the developmental mechanisms that generate cerebellar neural diversity, with implications for human evolution.
Collapse
Affiliation(s)
- Max J. van Essen
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Samuel Nayler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Esther B. E. Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - John Jacob
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
Jolly MK, Celià-Terrassa T. Dynamics of Phenotypic Heterogeneity Associated with EMT and Stemness during Cancer Progression. J Clin Med 2019; 8:E1542. [PMID: 31557977 PMCID: PMC6832750 DOI: 10.3390/jcm8101542] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and phenotypic heterogeneity contribute to the generation of diverse tumor cell populations, thus enhancing cancer aggressiveness and therapy resistance. Compared to genetic heterogeneity, a consequence of mutational events, phenotypic heterogeneity arises from dynamic, reversible cell state transitions in response to varying intracellular/extracellular signals. Such phenotypic plasticity enables rapid adaptive responses to various stressful conditions and can have a strong impact on cancer progression. Herein, we have reviewed relevant literature on mechanisms associated with dynamic phenotypic changes and cellular plasticity, such as epithelial-mesenchymal transition (EMT) and cancer stemness, which have been reported to facilitate cancer metastasis. We also discuss how non-cell-autonomous mechanisms such as cell-cell communication can lead to an emergent population-level response in tumors. The molecular mechanisms underlying the complexity of tumor systems are crucial for comprehending cancer progression, and may provide new avenues for designing therapeutic strategies.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Toni Celià-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain.
| |
Collapse
|
50
|
Affiliation(s)
- Jinyang Li
- Department of Medicine and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben Z Stanger
- Department of Medicine and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. .,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|