1
|
Ghobashi AH, Lanzloth R, Ladaika CA, Masood A, O’Hagan HM. Single-Cell Profiling Reveals the Impact of Genetic Alterations on the Differentiation of Inflammation-Induced Murine Colon Tumors. Cancers (Basel) 2024; 16:2040. [PMID: 38893159 PMCID: PMC11171101 DOI: 10.3390/cancers16112040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Genetic mutations and chronic inflammation of the colon contribute to the development of colorectal cancer (CRC). Using a murine model of inflammation-induced colon tumorigenesis, we determined how genetic mutations alter colon tumor cell differentiation. Inflammation induced by enterotoxigenic Bacteroides fragilis (ETBF) colonization of multiple intestinal neoplasia (MinApcΔ716/+) mice triggers loss of heterozygosity of Apc causing colon tumor formation. Here, we report that the addition of BRAFV600E mutation (BRAFF-V600ELgr5tm1(Cre/ERT2)CleMinApcΔ716/+, BLM) or knocking out Msh2 (Msh2LoxP/LoxPVil1-creMinApcΔ716/+, MSH2KO) in the Min model altered colon tumor differentiation. Using single-cell RNA sequencing, we uncovered the differences between BLM, Min, and MSH2KO tumors at a single-cell resolution. BLM tumors showed an increase in differentiated tumor epithelial cell lineages and a reduction in the tumor stem cell population. Interestingly, the tumor stem cell population of BLM tumors had revival colon stem cell characteristics with low WNT signaling and an increase in RevCSC marker gene expression. In contrast, MSH2KO tumors were characterized by an increased tumor stem cell population that had higher WNT signaling activity compared to Min tumors. Furthermore, overall BLM tumors had higher expression of transcription factors that drive differentiation, such as Cdx2, than Min tumors. Using RNA velocity, we identified additional potential regulators of BLM tumor differentiation such as NDRG1. The role of CDX2 and NDRG1 as putative regulators for BLM tumor cell differentiation was verified using organoids derived from BLM tumors. Our results demonstrate the critical connections between genetic mutations and cell differentiation in inflammation-induced colon tumorigenesis. Understanding such roles will deepen our understanding of inflammation-associated colon cancer.
Collapse
Affiliation(s)
- Ahmed H. Ghobashi
- Genome, Cell, and Developmental Biology Graduate Program, Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Rosie Lanzloth
- Genome, Cell, and Developmental Biology Graduate Program, Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Christopher A. Ladaika
- Genome, Cell, and Developmental Biology Graduate Program, Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Ashiq Masood
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Heather M. O’Hagan
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Miura S, Horisawa K, Iwamori T, Tsujino S, Inoue K, Karasawa S, Yamamoto J, Ohkawa Y, Sekiya S, Suzuki A. Hepatocytes differentiate into intestinal epithelial cells through a hybrid epithelial/mesenchymal cell state in culture. Nat Commun 2024; 15:3940. [PMID: 38750036 PMCID: PMC11096382 DOI: 10.1038/s41467-024-47869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/14/2024] [Indexed: 05/18/2024] Open
Abstract
Hepatocytes play important roles in the liver, but in culture, they immediately lose function and dedifferentiate into progenitor-like cells. Although this unique feature is well-known, the dynamics and mechanisms of hepatocyte dedifferentiation and the differentiation potential of dedifferentiated hepatocytes (dediHeps) require further investigation. Here, we employ a culture system specifically established for hepatic progenitor cells to study hepatocyte dedifferentiation. We found that hepatocytes dedifferentiate with a hybrid epithelial/mesenchymal phenotype, which is required for the induction and maintenance of dediHeps, and exhibit Vimentin-dependent propagation, upon inhibition of the Hippo signaling pathway. The dediHeps re-differentiate into mature hepatocytes by forming aggregates, enabling reconstitution of hepatic tissues in vivo. Moreover, dediHeps have an unexpected differentiation potential into intestinal epithelial cells that can form organoids in three-dimensional culture and reconstitute colonic epithelia after transplantation. This remarkable plasticity will be useful in the study and treatment of intestinal metaplasia and related diseases in the liver.
Collapse
Affiliation(s)
- Shizuka Miura
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kenichi Horisawa
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tokuko Iwamori
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Satoshi Tsujino
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kazuya Inoue
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Satsuki Karasawa
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Junpei Yamamoto
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sayaka Sekiya
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
3
|
Sanchez JG, Rankin S, Paul E, McCauley HA, Kechele DO, Enriquez JR, Jones NH, Greeley SAW, Letourneau-Friedberg L, Zorn AM, Krishnamurthy M, Wells JM. RFX6 regulates human intestinal patterning and function upstream of PDX1. Development 2024; 151:dev202529. [PMID: 38587174 PMCID: PMC11128285 DOI: 10.1242/dev.202529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
The gastrointestinal (GI) tract is complex and consists of multiple organs with unique functions. Rare gene variants can cause congenital malformations of the human GI tract, although the molecular basis of these has been poorly studied. We identified a patient with compound-heterozygous variants in RFX6 presenting with duodenal malrotation and atresia, implicating RFX6 in development of the proximal intestine. To identify how mutations in RFX6 impact intestinal patterning and function, we derived induced pluripotent stem cells from this patient to generate human intestinal organoids (HIOs). We identified that the duodenal HIOs and human tissues had mixed regional identity, with gastric and ileal features. CRISPR-mediated correction of RFX6 restored duodenal identity. We then used gain- and loss-of-function and transcriptomic approaches in HIOs and Xenopus embryos to identify that PDX1 is a downstream transcriptional target of RFX6 required for duodenal development. However, RFX6 had additional PDX1-independent transcriptional targets involving multiple components of signaling pathways that are required for establishing early regional identity in the GI tract. In summary, we have identified RFX6 as a key regulator in intestinal patterning that acts by regulating transcriptional and signaling pathways.
Collapse
Affiliation(s)
- J. Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Scott Rankin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Emily Paul
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Heather A. McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Daniel O. Kechele
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Jacob R. Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Nana-Hawa Jones
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Siri A. W. Greeley
- Division of Endocrinology, University of Chicago, Chicago, IL 60637, USA
| | | | - Aaron M. Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Mansa Krishnamurthy
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
4
|
Xue X, Kim YS, Ponce-Arias AI, O'Laughlin R, Yan RZ, Kobayashi N, Tshuva RY, Tsai YH, Sun S, Zheng Y, Liu Y, Wong FCK, Surani A, Spence JR, Song H, Ming GL, Reiner O, Fu J. A patterned human neural tube model using microfluidic gradients. Nature 2024; 628:391-399. [PMID: 38408487 PMCID: PMC11006583 DOI: 10.1038/s41586-024-07204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/16/2024] [Indexed: 02/28/2024]
Abstract
The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles. Recently, models of neurodevelopment based on human pluripotent stem cells, including neural organoids1-5 and bioengineered neural tube development models6-10, have emerged. However, such models fail to recapitulate neural patterning along both rostral-caudal and dorsal-ventral axes in a three-dimensional tubular geometry, a hallmark of neural tube development. Here we report a human pluripotent stem cell-based, microfluidic neural tube-like structure, the development of which recapitulates several crucial aspects of neural patterning in brain and spinal cord regions and along rostral-caudal and dorsal-ventral axes. This structure was utilized for studying neuronal lineage development, which revealed pre-patterning of axial identities of neural crest progenitors and functional roles of neuromesodermal progenitors and the caudal gene CDX2 in spinal cord and trunk neural crest development. We further developed dorsal-ventral patterned microfluidic forebrain-like structures with spatially segregated dorsal and ventral regions and layered apicobasal cellular organizations that mimic development of the human forebrain pallium and subpallium, respectively. Together, these microfluidics-based neurodevelopment models provide three-dimensional lumenal tissue architectures with in vivo-like spatiotemporal cell differentiation and organization, which will facilitate the study of human neurodevelopment and disease.
Collapse
Affiliation(s)
- Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yung Su Kim
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Alfredo-Isaac Ponce-Arias
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Richard O'Laughlin
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Robin Zhexuan Yan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Norio Kobayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Rami Yair Tshuva
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shiyu Sun
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yue Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Frederick C K Wong
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Lorzadeh A, Ye G, Sharma S, Jadhav U. DNA methylation-dependent and -independent binding of CDX2 directs activation of distinct developmental and homeostatic genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579850. [PMID: 38405700 PMCID: PMC10888781 DOI: 10.1101/2024.02.11.579850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Precise spatiotemporal and cell type-specific gene expression is essential for proper tissue development and function. Transcription factors (TFs) guide this process by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of TFs. However, how TFs navigate various chromatin features and selectively bind a small portion of the millions of possible genomic target loci is still not well understood. Here we show that Cdx2 - a pioneer TF that binds distinct targets in developing versus adult intestinal epithelial cells - has a preferential affinity for a non-canonical CpG-containing motif in vivo. A higher frequency of this motif at embryonic and fetal Cdx2 target loci and the specifically methylated state of the CpG during development allows selective Cdx2 binding and activation of developmental enhancers and linked genes. Conversely, demethylation at these enhancers prohibits ectopic Cdx2 binding in adult cells, where Cdx2 binds its canonical motif without a CpG. This differential Cdx2 binding allows for corecruitment of Ctcf and Hnf4, facilitating the establishment of intestinal superenhancers during development and enhancers mediating adult homeostatic functions, respectively. Induced gain of DNA methylation in the adult mouse epithelium or cultured cells causes ectopic recruitment of Cdx2 to the developmental target loci and facilitates cobinding of the partner TFs. Together, our results demonstrate that the differential CpG motif requirements for Cdx2 binding to developmental versus adult target sites allow it to navigate different DNA methylation profiles and activate cell type-specific genes at appropriate times.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| | - George Ye
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| | - Sweta Sharma
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| |
Collapse
|
6
|
Bulger EA, McDevitt TC, Bruneau BG. CDX2 dose-dependently influences the gene regulatory network underlying human extraembryonic mesoderm development. Biol Open 2024; 13:bio060323. [PMID: 38451093 PMCID: PMC10979512 DOI: 10.1242/bio.060323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Loss of Cdx2 in vivo leads to stunted development of the allantois, an extraembryonic mesoderm-derived structure critical for nutrient delivery and waste removal in the early embryo. Here, we investigate how CDX2 dose-dependently influences the gene regulatory network underlying extraembryonic mesoderm development. By engineering human induced pluripotent stem cells (hiPSCs) consisting of wild-type (WT), heterozygous (CDX2-Het), and homozygous null CDX2 (CDX2-KO) genotypes, differentiating these cells in a 2D gastruloid model, and subjecting these cells to single-nucleus RNA and ATAC sequencing, we identify several pathways that are dose-dependently regulated by CDX2 including VEGF and non-canonical WNT. snATAC-seq reveals that CDX2-Het cells retain a WT-like chromatin accessibility profile, suggesting accessibility alone is not sufficient to drive this variability in gene expression. Because the loss of CDX2 or TBXT phenocopy one another in vivo, we compared differentially expressed genes in our CDX2-KO to those from TBXT-KO hiPSCs differentiated in an analogous experiment. This comparison identifies several communally misregulated genes that are critical for cytoskeletal integrity and tissue permeability. Together, these results clarify how CDX2 dose-dependently regulates gene expression in the extraembryonic mesoderm and reveal pathways that may underlie the defects in vascular development and allantoic elongation seen in vivo.
Collapse
Affiliation(s)
- Emily A. Bulger
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, 94158, USA
| | - Todd C. McDevitt
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| | - Benoit G. Bruneau
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
7
|
Yang L, Tu L, Bisht S, Mao Y, Petkovich D, Thursby SJ, Liang J, Patel N, Yen RWC, Largent T, Zahnow C, Brock M, Gabrielson K, Salimian KJ, Baylin SB, Easwaran H. Tissue-location-specific transcription programs drive tumor dependencies in colon cancer. Nat Commun 2024; 15:1384. [PMID: 38360902 PMCID: PMC10869357 DOI: 10.1038/s41467-024-45605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Cancers of the same tissue-type but in anatomically distinct locations exhibit different molecular dependencies for tumorigenesis. Proximal and distal colon cancers exemplify such characteristics, with BRAFV600E predominantly occurring in proximal colon cancers along with increased DNA methylation phenotype. Using mouse colon organoids, here we show that proximal and distal colon stem cells have distinct transcriptional programs that regulate stemness and differentiation. We identify that the homeobox transcription factor, CDX2, which is silenced by DNA methylation in proximal colon cancers, is a key mediator of the differential transcriptional programs. Cdx2-mediated proximal colon-specific transcriptional program concurrently is tumor suppressive, and Cdx2 loss sufficiently creates permissive state for BRAFV600E-driven transformation. Human proximal colon cancers with CDX2 downregulation showed similar transcriptional program as in mouse proximal organoids with Cdx2 loss. Developmental transcription factors, such as CDX2, are thus critical in maintaining tissue-location specific transcriptional programs that create tissue-type origin specific dependencies for tumor development.
Collapse
Affiliation(s)
- Lijing Yang
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shilpa Bisht
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Yiqing Mao
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Daniel Petkovich
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Sara-Jayne Thursby
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Jinxiao Liang
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Nibedita Patel
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Ray-Whay Chiu Yen
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Tina Largent
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Cynthia Zahnow
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Malcolm Brock
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Kathy Gabrielson
- Department of Comparative Medicine, Johns Hopkins Medical Institutions, 863 Broadway Research Building, 733 N. Broadway, Baltimore, MD, 21205-2196, USA
| | - Kevan J Salimian
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Stephen B Baylin
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Hariharan Easwaran
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA.
| |
Collapse
|
8
|
Bulger EA, McDevitt TC, Bruneau BG. CDX2 dose-dependently influences the gene regulatory network underlying human extraembryonic mesoderm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577277. [PMID: 38328098 PMCID: PMC10849648 DOI: 10.1101/2024.01.25.577277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Proper regulation of gene dosage is critical for the development of the early embryo and the extraembryonic tissues that support it. Specifically, loss of Cdx2 in vivo leads to stunted development of the allantois, an extraembryonic mesoderm-derived structure critical for nutrient delivery and waste removal in the early embryo. In this study, we investigate how CDX2 dose-dependently influences the gene regulatory network underlying extraembryonic mesoderm development. We generate an allelic series for CDX2 in human induced pluripotent stem cells (hiPSCs) consisting of WT, heterozygous, and homozygous null CDX2 genotypes, differentiate these cells in a 2D gastruloid model, and subject these cells to multiomic single nucleus RNA and ATAC sequencing. We identify several genes that CDX2 dose-dependently regulate cytoskeletal integrity and adhesiveness in the extraembryonic mesoderm population, including regulators of the VEGF, canonical WNT, and non-canonical WNT signaling pathways. Despite these dose-dependent gene expression patterns, snATAC-seq reveals that heterozygous CDX2 expression is capable of inducing a WT-like chromatin accessibility profile, suggesting accessibility is not sufficient to drive gene expression when the CDX2 dosage is reduced. Finally, because the loss of CDX2 or TBXT phenocopy one another in vivo, we compare differentially expressed genes in our CDX2 knock-out model to those from TBXT knock-out hiPSCs differentiated in an analogous experiment. This comparison identifies several communally misregulated genes that are critical for cytoskeletal integrity and tissue permeability, including ANK3 and ANGPT1. Together, these results clarify how CDX2 dose-dependently regulates gene expression in the extraembryonic mesoderm and suggest these genes may underlie the defects in vascular development and allantoic elongation seen in the absence or reduction of CDX2 in vivo.
Collapse
Affiliation(s)
- Emily A. Bulger
- Gladstone Institutes, San Francisco, CA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA
| | - Todd C. McDevitt
- Gladstone Institutes, San Francisco, CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA
| | - Benoit G. Bruneau
- Gladstone Institutes, San Francisco, CA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco
| |
Collapse
|
9
|
Ghobashi AH, Lanzloth R, Ladaika CA, O'Hagan HM. Single-cell profiling reveals the impact of genetic alterations on the differentiation of inflammation-induced colon tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569463. [PMID: 38077052 PMCID: PMC10705473 DOI: 10.1101/2023.11.30.569463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Genetic mutations and chronic inflammation of the colon contribute to the development of colorectal cancer (CRC). Using a murine model of inflammation-induced colon tumorigenesis, we determined how genetic mutations alter colon tumor cell differentiation. Inflammation induced by enterotoxigenic Bacteroides fragilis (ETBF) colonization of multiple intestinal neoplasia (Min ApcΔ716/+ ) mice triggers loss of heterozygosity of Apc causing colon tumor formation. Here, we report that the addition of BRAF V600E mutation ( BRAF FV600E Lgr5 tm1(Cre/ERT2)Cle Min ApcΔ716/+ , BLM) or knocking out Msh2 ( Msh2 LoxP/LoxP Vil1-cre Min ApcΔ716/+ , MSH2KO) in the Min model altered colon tumor differentiation. Using single cell RNA-sequencing, we uncovered the differences between BLM, Min, and MSH2KO tumors at a single cell resolution. BLM tumors showed an increase in differentiated tumor epithelial cell lineages and a reduction in the stem cell population. In contrast, MSH2KO tumors were characterized by an increased stem cell population that had higher WNT signaling activity compared to Min tumors. Additionally, comparative analysis of single-cell transcriptomics revealed that BLM tumors had higher expression of transcription factors that drive differentiation, such as Cdx2, than Min tumors. Using RNA velocity, we were able to identify additional potential regulators of BLM tumor differentiation such as NDRG1. The role of CDX2 and NDRG1 as putative regulators for BLM tumor cell differentiation was verified using organoids derived from BLM tumors. Our results demonstrate the critical connections between genetic mutations and cell differentiation in inflammation-induced colon tumorigenesis. Understanding such roles will deepen our understanding of inflammation-associated colon cancer.
Collapse
|
10
|
Hung YH, Capeling M, Villanueva JW, Kanke M, Shanahan MT, Huang S, Cubitt R, Rinaldi VD, Schimenti JC, Spence JR, Sethupathy P. Integrative genome-scale analyses reveal post-transcriptional signatures of early human small intestinal development in a directed differentiation organoid model. BMC Genomics 2023; 24:641. [PMID: 37884859 PMCID: PMC10601309 DOI: 10.1186/s12864-023-09743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are important post-transcriptional gene regulators controlling cellular lineage specification and differentiation during embryonic development, including the gastrointestinal system. However, miRNA-mediated regulatory mechanisms involved in early embryonic development of human small intestine (SI) remains underexplored. To explore candidate roles for miRNAs in prenatal SI lineage specification in humans, we used a multi-omic analysis strategy in a directed differentiation model that programs human pluripotent stem cells toward the SI lineage. RESULTS We leveraged small RNA-seq to define the changing miRNA landscape, and integrated chromatin run-on sequencing (ChRO-seq) and RNA-seq to define genes subject to significant post-transcriptional regulation across the different stages of differentiation. Small RNA-seq profiling revealed temporal dynamics of miRNA signatures across different developmental events of the model, including definitive endoderm formation, SI lineage specification and SI regional patterning. Our multi-omic, integrative analyses showed further that the elevation of miR-182 and reduction of miR-375 are key events during SI lineage specification. We demonstrated that loss of miR-182 leads to an increase in the foregut master marker SOX2. We also used single-cell analyses in murine adult intestinal crypts to support a life-long role for miR-375 in the regulation of Zfp36l2. Finally, we uncovered opposing roles of SMAD4 and WNT signaling in regulating miR-375 expression during SI lineage specification. Beyond the mechanisms highlighted in this study, we also present a web-based application for exploration of post-transcriptional regulation and miRNA-mediated control in the context of early human SI development. CONCLUSION The present study uncovers a novel facet of miRNAs in regulating prenatal SI development. We leveraged multi-omic, systems biology approaches to discover candidate miRNA regulators associated with early SI developmental events in a human organoid model. In this study, we highlighted miRNA-mediated post-transcriptional regulation relevant to the event of SI lineage specification. The candidate miRNA regulators that we identified for the other stages of SI development also warrant detailed characterization in the future.
Collapse
Affiliation(s)
- Yu-Han Hung
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Meghan Capeling
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan W Villanueva
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Michael T Shanahan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sha Huang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rebecca Cubitt
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Vera D Rinaldi
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - John C Schimenti
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
11
|
Vemuri K, Radi SH, Sladek FM, Verzi MP. Multiple roles and regulatory mechanisms of the transcription factor HNF4 in the intestine. Front Endocrinol (Lausanne) 2023; 14:1232569. [PMID: 37635981 PMCID: PMC10450339 DOI: 10.3389/fendo.2023.1232569] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4α) drives a complex array of transcriptional programs across multiple organs. Beyond its previously documented function in the liver, HNF4α has crucial roles in the kidney, intestine, and pancreas. In the intestine, a multitude of functions have been attributed to HNF4 and its accessory transcription factors, including but not limited to, intestinal maturation, differentiation, regeneration, and stem cell renewal. Functional redundancy between HNF4α and its intestine-restricted paralog HNF4γ, and co-regulation with other transcription factors drive these functions. Dysregulated expression of HNF4 results in a wide range of disease manifestations, including the development of a chronic inflammatory state in the intestine. In this review, we focus on the multiple molecular mechanisms of HNF4 in the intestine and explore translational opportunities. We aim to introduce new perspectives in understanding intestinal genetics and the complexity of gastrointestinal disorders through the lens of HNF4 transcription factors.
Collapse
Affiliation(s)
- Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sarah H. Radi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
12
|
Hansen SL, Larsen HL, Pikkupeura LM, Maciag G, Guiu J, Müller I, Clement DL, Mueller C, Johansen JV, Helin K, Lerdrup M, Jensen KB. An organoid-based CRISPR-Cas9 screen for regulators of intestinal epithelial maturation and cell fate. SCIENCE ADVANCES 2023; 9:eadg4055. [PMID: 37436979 DOI: 10.1126/sciadv.adg4055] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Generation of functionally mature organs requires exquisite control of transcriptional programs governing cell state transitions during development. Despite advances in understanding the behavior of adult intestinal stem cells and their progeny, the transcriptional regulators that control the emergence of the mature intestinal phenotype remain largely unknown. Using mouse fetal and adult small intestinal organoids, we uncover transcriptional differences between the fetal and adult state and identify rare adult-like cells present in fetal organoids. This suggests that fetal organoids have an inherent potential to mature, which is locked by a regulatory program. By implementing a CRISPR-Cas9 screen targeting transcriptional regulators expressed in fetal organoids, we establish Smarca4 and Smarcc1 as important factors safeguarding the immature progenitor state. Our approach demonstrates the utility of organoid models in the identification of factors regulating cell fate and state transitions during tissue maturation and reveals that SMARCA4 and SMARCC1 prevent precocious differentiation during intestinal development.
Collapse
Affiliation(s)
- Stine L Hansen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Hjalte L Larsen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Laura M Pikkupeura
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Grzegorz Maciag
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jordi Guiu
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 3a planta, Av. Granvia de l'Hospitalet 199, 08908 Hospitalet de Llobregat, Spain
| | - Iris Müller
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Ditte L Clement
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Christina Mueller
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Jens Vilstrup Johansen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Mads Lerdrup
- The DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Kim B Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
13
|
Childs CJ, Holloway EM, Sweet CW, Tsai YH, Wu A, Vallie A, Eiken MK, Capeling MM, Zwick RK, Palikuqi B, Trentesaux C, Wu JH, Pellón-Cardenas O, Zhang CJ, Glass I, Loebel C, Yu Q, Camp JG, Sexton JZ, Klein OD, Verzi MP, Spence JR. EPIREGULIN creates a developmental niche for spatially organized human intestinal enteroids. JCI Insight 2023; 8:e165566. [PMID: 36821371 PMCID: PMC10070114 DOI: 10.1172/jci.insight.165566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Epithelial organoids derived from intestinal tissue, called enteroids, recapitulate many aspects of the organ in vitro and can be used for biological discovery, personalized medicine, and drug development. Here, we interrogated the cell signaling environment within the developing human intestine to identify niche cues that may be important for epithelial development and homeostasis. We identified an EGF family member, EPIREGULIN (EREG), which is robustly expressed in the developing human crypt. Enteroids generated from the developing human intestine grown in standard culture conditions, which contain EGF, are dominated by stem and progenitor cells and feature little differentiation and no spatial organization. Our results demonstrate that EREG can replace EGF in vitro, and EREG leads to spatially resolved enteroids that feature budded and proliferative crypt domains and a differentiated villus-like central lumen. Multiomic (transcriptome plus epigenome) profiling of native crypts, EGF-grown enteroids, and EREG-grown enteroids showed that EGF enteroids have an altered chromatin landscape that is dependent on EGF concentration, downregulate the master intestinal transcription factor CDX2, and ectopically express stomach genes, a phenomenon that is reversible. This is in contrast to EREG-grown enteroids, which remain intestine like in culture. Thus, EREG creates a homeostatic intestinal niche in vitro, enabling interrogation of stem cell function, cellular differentiation, and disease modeling.
Collapse
Affiliation(s)
- Charlie J. Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily M. Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Caden W. Sweet
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, and
| | - Yu-Hwai Tsai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, and
| | - Angeline Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, and
| | - Abigail Vallie
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Madeline K. Eiken
- Department of Biomedical Engineering, University of Michigan Medical School and University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Meghan M. Capeling
- Department of Biomedical Engineering, University of Michigan Medical School and University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Rachel K. Zwick
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Brisa Palikuqi
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Coralie Trentesaux
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Joshua H. Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, and
| | - Oscar Pellón-Cardenas
- New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Charles J. Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Ian Glass
- Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Claudia Loebel
- Department of Biomedical Engineering, University of Michigan Medical School and University of Michigan College of Engineering, Ann Arbor, Michigan, USA
- Department of Materials Science and Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Qianhui Yu
- Roche Institute for Translational Bioengineering (ITB), Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - J. Gray Camp
- Roche Institute for Translational Bioengineering (ITB), Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Jonathan Z. Sexton
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, and
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Ophir D. Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Michael P. Verzi
- New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Jason R. Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, and
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan Medical School and University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Liao L, Yao Z, Kong J, Zhang X, Li H, Chen W, Xie Q. Transcriptomic analysis reveals the dynamic changes of transcription factors during early development of chicken embryo. BMC Genomics 2022; 23:825. [PMID: 36513979 PMCID: PMC9746114 DOI: 10.1186/s12864-022-09054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The transition from fertilized egg to embryo in chicken requires activation of hundreds of genes that were mostly inactivated before fertilization, which is accompanied with various biological processes. Undoubtedly, transcription factors (TFs) play important roles in regulating the changes in gene expression pattern observed at early development. However, the contribution of TFs during early embryo development of chicken still remains largely unknown that need to be investigated. Therefore, an understanding of the development of vertebrates would be greatly facilitated by study of the dynamic changes in transcription factors during early chicken embryo. RESULTS In the current study, we selected five early developmental stages in White Leghorn chicken, gallus gallus, for transcriptome analysis, cover 17,478 genes with about 807 million clean reads of RNA-sequencing. We have compared global gene expression patterns of consecutive stages and noted the differences. Comparative analysis of differentially expressed TFs (FDR < 0.05) profiles between neighboring developmental timepoints revealed significantly enriched biological categories associated with differentiation, development and morphogenesis. We also found that Zf-C2H2, Homeobox and bHLH were three dominant transcription factor families that appeared in early embryogenesis. More importantly, a TFs co-expression network was constructed and 16 critical TFs were identified. CONCLUSION Our findings provide a comprehensive regulatory framework of TFs in chicken early embryo, revealing new insights into alterations of chicken embryonic TF expression and broadening better understanding of TF function in chicken embryogenesis.
Collapse
Affiliation(s)
- Liqin Liao
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China ,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 P. R. China
| | - Ziqi Yao
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China
| | - Jie Kong
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China
| | - Xinheng Zhang
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China
| | - Hongxin Li
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 P. R. China
| | - Weiguo Chen
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China
| | - Qingmei Xie
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China ,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 P. R. China
| |
Collapse
|
15
|
Jin Q, Gao Y, Shuai S, Chen Y, Wang K, Chen J, Peng J, Gao C. Cdx1b protects intestinal cell fate by repressing signaling networks for liver specification. J Genet Genomics 2022; 49:1101-1113. [PMID: 36460297 DOI: 10.1016/j.jgg.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
In mammals, the expression of the homeobox family member Cdx2/CDX2 is restricted within the intestine. Conditional ablation of the mouse Cdx2 in the endodermal cells causes a homeotic transformation of the intestine towards the esophagus or gastric fate. In this report, we show that null mutants of zebrafish cdx1b, encoding the counterpart of mammalian CDX2, could survive more than 10 days post fertilization, a stage when the zebrafish digestive system has been well developed. Through RNA sequencing (RNA-seq) and single-cell sequencing (scRNA-seq) of the dissected intestine from the mutant embryos, we demonstrate that the loss-of-function of the zebrafish cdx1b yields hepatocyte-like intestinal cells, a phenotype never observed in the mouse model. Further RNA-seq data analysis, and genetic double mutants and signaling inhibitor studies reveal that Cdx1b functions to guard the intestinal fate by repressing, directly or indirectly, a range of transcriptional factors and signaling pathways for liver specification. Finally, we demonstrate that heat shock-induced overexpression of cdx1b in a transgenic fish abolishes the liver formation. Therefore, we demonstrate that Cdx1b is a key repressor of hepatic fate during the intestine specification in zebrafish.
Collapse
Affiliation(s)
- Qingxia Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuqi Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shimin Shuai
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yayue Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kaiyuan Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Ce Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
16
|
Smith RJ, Zhang H, Hu SS, Yung T, Francis R, Lee L, Onaitis MW, Dirks PB, Zang C, Kim TH. Single-cell chromatin profiling of the primitive gut tube reveals regulatory dynamics underlying lineage fate decisions. Nat Commun 2022; 13:2965. [PMID: 35618699 PMCID: PMC9135761 DOI: 10.1038/s41467-022-30624-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/06/2022] [Indexed: 01/07/2023] Open
Abstract
Development of the gastrointestinal system occurs after gut tube closure, guided by spatial and temporal control of gene expression. However, it remains unclear what forces regulate these spatiotemporal gene expression patterns. Here we perform single-cell chromatin profiling of the primitive gut tube to reveal organ-specific chromatin patterns that reflect the anatomical patterns of distinct organs. We generate a comprehensive map of epigenomic changes throughout gut development, demonstrating that dynamic chromatin accessibility patterns associate with lineage-specific transcription factor binding events to regulate organ-specific gene expression. Additionally, we show that loss of Sox2 and Cdx2, foregut and hindgut lineage-specific transcription factors, respectively, leads to fate shifts in epigenomic patterns, linking transcription factor binding, chromatin accessibility, and lineage fate decisions in gut development. Notably, abnormal expression of Sox2 in the pancreas and intestine impairs lineage fate decisions in both development and adult homeostasis. Together, our findings define the chromatin and transcriptional mechanisms of organ identity and lineage plasticity in development and adult homeostasis.
Collapse
Affiliation(s)
- Ryan J Smith
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Hongpan Zhang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Shengen Shawn Hu
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Theodora Yung
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Roshane Francis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Lilian Lee
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Mark W Onaitis
- Division of Cardiovascular and Thoracic Surgery, University of California San Diego Medical Center, San Diego, CA, USA
| | - Peter B Dirks
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA.
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
17
|
Concurrent CDX2 cis-deregulation and UBTF-ATXN7L3 fusion define a novel high-risk subtype of B-cell ALL. Blood 2022; 139:3505-3518. [PMID: 35316324 PMCID: PMC9203705 DOI: 10.1182/blood.2021014723] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/12/2022] [Indexed: 11/20/2022] Open
Abstract
CDX2 cis-deregulation and UBTF::ATXN7L3 fusion driven by focal deletions define a novel subtype of B-ALL. CDX2/UBTF::ATXN7L3 is a high-risk B-ALL subtype in young adults, which warrants improved therapeutic strategies.
Oncogenic alterations underlying B-cell acute lymphoblastic leukemia (B-ALL) in adults remain incompletely elucidated. To uncover novel oncogenic drivers, we performed RNA sequencing and whole-genome analyses in a large cohort of unresolved B-ALL. We identified a novel subtype characterized by a distinct gene expression signature and the unique association of 2 genomic microdeletions. The 17q21.31 microdeletion resulted in a UBTF::ATXN7L3 fusion transcript encoding a chimeric protein. The 13q12.2 deletion resulted in monoallelic ectopic expression of the homeobox transcription factor CDX2, located 138 kb in cis from the deletion. Using 4C-sequencing and CRISPR interference experiments, we elucidated the mechanism of CDX2 cis-deregulation, involving PAN3 enhancer hijacking. CDX2/UBTF ALL (n = 26) harbored a distinct pattern of additional alterations including 1q gain and CXCR4 activating mutations. Within adult patients with Ph− B-ALL enrolled in GRAALL trials, patients with CDX2/UBTF ALL (n = 17/723, 2.4%) were young (median age, 31 years) and dramatically enriched in females (male/female ratio, 0.2, P = .002). They commonly presented with a pro-B phenotype ALL and moderate blast cell infiltration. They had poor response to treatment including a higher risk of failure to first induction course (19% vs 3%, P = .017) and higher post-induction minimal residual disease (MRD) levels (MRD ≥ 10−4, 93% vs 46%, P < .001). This early resistance to treatment translated into a significantly higher cumulative incidence of relapse (75.0% vs 32.4%, P = .004) in univariate and multivariate analyses. In conclusion, we discovered a novel B-ALL entity defined by the unique combination of CDX2 cis-deregulation and UBTF::ATXN7L3 fusion, representing a high-risk disease in young adults.
Collapse
|
18
|
Lee JA, Seo MK, Yoo SY, Cho NY, Kwak Y, Lee K, Kim JH, Kang GH. Comprehensive clinicopathologic, molecular, and immunologic characterization of colorectal carcinomas with loss of three intestinal markers, CDX2, SATB2, and KRT20. Virchows Arch 2022; 480:543-555. [PMID: 35029777 DOI: 10.1007/s00428-021-03260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/04/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022]
Abstract
Caudal-type homeobox 2 (CDX2), special AT-rich sequence-binding protein 2 (SATB2), and keratin 20 (KRT20) are frequently used as intestinal epithelium-specific markers in immunohistochemical studies. However, subsets of colorectal carcinomas (CRCs) show loss of these markers. We analyzed The Cancer Genome Atlas data to explore molecular correlates of CDX2, SATB2, and KRT20 genes in 390 CRCs. The decreased mRNA expression of each of the three genes commonly correlated with microsatellite instability-high (MSI-H), CpG island methylator phenotype-high (CIMP-H), BRAF/RNF43 mutations, consensus molecular subtype 1, and high tumor mutational burden. The downregulation of CDX2 or SATB2 was dependent on both MSI-H and CIMP-H, whereas that of KRT20 was more dependent on MSI-H than on CIMP-H. Next, we evaluated the immunohistochemical expression of CDX2, SATB2, and KRT20 in 436 primary CRCs. In contrast to RNA-level expression, decreased expression of CDX2 and SATB2 was more dependent on CIMP-H than on MSI-H. However, consistent with RNA-level expression, decreased expression of KRT20 was more dependent on MSI-H than on CIMP-H. CIMP-H and lymphatic invasion were consistently associated with both CDX2 loss and SATB2 loss in CRCs, regardless of MSI status. In microsatellite stable CRCs, CDX2 loss correlated with BRAF mutation, whereas SATB2 loss was associated with KRAS mutations and decreased T-cell infiltration. Cases with concurrent loss of all three markers were found exclusively in MLH1-methylated MSI-H/CIMP-H CRCs. In conclusion, MSI-H and/or CIMP-H are major common correlates of decreased CDX2/SATB2/KRT20 expression in CRCs, but the specific features associated with the loss of each marker are different in CRCs.
Collapse
Affiliation(s)
- Ji Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Mi-Kyoung Seo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea.,Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Seung-Yeon Yoo
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Nam-Yun Cho
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyoungbun Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
19
|
Ogura C, Nishihara S. Dermatan-4- O-Sulfotransferase-1 Contributes to the Undifferentiated State of Mouse Embryonic Stem Cells. Front Cell Dev Biol 2021; 9:733964. [PMID: 34631712 PMCID: PMC8495257 DOI: 10.3389/fcell.2021.733964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) have the properties of self-renewal and pluripotency. Various signals and growth factors maintain their undifferentiated state and also regulate their differentiation. Glycosaminoglycans are present on the cell surface and in the cell matrix as proteoglycans. Previously, we and other groups reported that the glycosaminoglycan heparan sulfate contributes to both maintenance of undifferentiated state and regulation of mESC differentiation. It has been shown that chondroitin sulfate is needed for pluripotency and differentiation of mESCs, while keratan sulfate is a known marker of human ESCs or induced pluripotent stem cells. We also found that DS promotes neuronal differentiation from mESCs and human neural stem cells; however, the function of DS in the maintenance of mESCs has not yet been revealed. Here, we investigated the role of DS in mESCs by knockdown (KD) or overexpression (O/E) of the dermatan-4-O-sulfotransferase-1 (D4ST1) gene. We found that the activity of the ESC self-renewal marker alkaline phosphatase was reduced in D4ST1 KD mESCs, but, in contrast, increased in D4ST1 O/E mESCs. D4ST1 KD promoted endodermal differentiation, as indicated by an increase in Cdx2 expression. Conversely, Cdx2 expression was decreased by D4ST1 O/E. Wnt signaling, which is also involved in endodermal differentiation, was activated by D4ST1 KD and suppressed by D4ST1 O/E. Collectively, these results demonstrate that D4ST1 contributes to the undifferentiated state of mESCs. Our findings provide new insights into the function of DS in mESCs.
Collapse
Affiliation(s)
- Chika Ogura
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Japan
| | - Shoko Nishihara
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Japan.,Glycan and Life System Integration Center (GaLSIC), Soka University, Hachioji, Japan
| |
Collapse
|
20
|
Ramakrishnan AB, Chen L, Burby PE, Cadigan KM. Wnt target enhancer regulation by a CDX/TCF transcription factor collective and a novel DNA motif. Nucleic Acids Res 2021; 49:8625-8641. [PMID: 34358319 PMCID: PMC8421206 DOI: 10.1093/nar/gkab657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/10/2021] [Accepted: 07/23/2021] [Indexed: 01/01/2023] Open
Abstract
Transcriptional regulation by Wnt signalling is primarily thought to be accomplished by a complex of β-catenin and TCF family transcription factors (TFs). Although numerous studies have suggested that additional TFs play roles in regulating Wnt target genes, their mechanisms of action have not been investigated in detail. We characterised a Wnt-responsive element (WRE) downstream of the Wnt target gene Axin2 and found that TCFs and Caudal type homeobox (CDX) proteins were required for its activation. Using a new separation-of-function TCF mutant, we found that WRE activity requires the formation of a TCF/CDX complex. Our systematic mutagenesis of this enhancer identified other sequences essential for activation by Wnt signalling, including several copies of a novel CAG DNA motif. Computational and experimental evidence indicates that the TCF/CDX/CAG mode of regulation is prevalent in multiple WREs. Put together, our results demonstrate the complex nature of cis- and trans- interactions required for signal-dependent enhancer activity.
Collapse
Affiliation(s)
| | - Lisheng Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Peter E Burby
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Ken M Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
21
|
Degani N, Lubelsky Y, Perry RBT, Ainbinder E, Ulitsky I. Highly conserved and cis-acting lncRNAs produced from paralogous regions in the center of HOXA and HOXB clusters in the endoderm lineage. PLoS Genet 2021; 17:e1009681. [PMID: 34280202 PMCID: PMC8330917 DOI: 10.1371/journal.pgen.1009681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/03/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play important roles in gene regulatory networks acting in early development. There has been rapid turnover of lncRNA loci during vertebrate evolution, with few human lncRNAs conserved beyond mammals. The sequences of these rare deeply conserved lncRNAs are typically not similar to each other. Here, we characterize HOXA-AS3 and HOXB-AS3, lncRNAs produced from the central regions of the HOXA and HOXB clusters. Sequence-similar orthologs of both lncRNAs are found in multiple vertebrate species and there is evident sequence similarity between their promoters, suggesting that the production of these lncRNAs predates the duplication of the HOX clusters at the root of the vertebrate lineage. This conservation extends to similar expression patterns of the two lncRNAs, in particular in cells transiently arising during early development or in the adult colon. Functionally, the RNA products of HOXA-AS3 and HOXB-AS3 regulate the expression of their overlapping HOX5-7 genes both in HT-29 cells and during differentiation of human embryonic stem cells. Beyond production of paralogous protein-coding and microRNA genes, the regulatory program in the HOX clusters therefore also relies on paralogous lncRNAs acting in restricted spatial and temporal windows of embryonic development and cell differentiation.
Collapse
Affiliation(s)
- Neta Degani
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Lubelsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Ben-Tov Perry
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Ainbinder
- Department of Life Sciences Core Facilites, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
22
|
Yu Q, Kilik U, Holloway EM, Tsai YH, Harmel C, Wu A, Wu JH, Czerwinski M, Childs CJ, He Z, Capeling MM, Huang S, Glass IA, Higgins PDR, Treutlein B, Spence JR, Camp JG. Charting human development using a multi-endodermal organ atlas and organoid models. Cell 2021; 184:3281-3298.e22. [PMID: 34019796 PMCID: PMC8208823 DOI: 10.1016/j.cell.2021.04.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/11/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022]
Abstract
Organs are composed of diverse cell types that traverse transient states during organogenesis. To interrogate this diversity during human development, we generate a single-cell transcriptome atlas from multiple developing endodermal organs of the respiratory and gastrointestinal tract. We illuminate cell states, transcription factors, and organ-specific epithelial stem cell and mesenchyme interactions across lineages. We implement the atlas as a high-dimensional search space to benchmark human pluripotent stem cell (hPSC)-derived intestinal organoids (HIOs) under multiple culture conditions. We show that HIOs recapitulate reference cell states and use HIOs to reconstruct the molecular dynamics of intestinal epithelium and mesenchyme emergence. We show that the mesenchyme-derived niche cue NRG1 enhances intestinal stem cell maturation in vitro and that the homeobox transcription factor CDX2 is required for regionalization of intestinal epithelium and mesenchyme in humans. This work combines cell atlases and organoid technologies to understand how human organ development is orchestrated.
Collapse
Affiliation(s)
- Qianhui Yu
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Umut Kilik
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christoph Harmel
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael Czerwinski
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Charlie J Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Meghan M Capeling
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Sha Huang
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ian A Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Peter D R Higgins
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland.
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
23
|
Hung YH, Huang S, Dame MK, Yu Q, Yu QC, Zeng YA, Camp JG, Spence JR, Sethupathy P. Chromatin regulatory dynamics of early human small intestinal development using a directed differentiation model. Nucleic Acids Res 2021; 49:726-744. [PMID: 33406262 PMCID: PMC7826262 DOI: 10.1093/nar/gkaa1204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
The establishment of the small intestinal (SI) lineage during human embryogenesis ensures functional integrity of the intestine after birth. The chromatin dynamics that drive SI lineage formation and regional patterning in humans are essentially unknown. To fill this knowledge void, we apply a cutting-edge genomic technology to a state-of-the-art human model of early SI development. Specifically, we leverage chromatin run-on sequencing (ChRO-seq) to define the landscape of active promoters, enhancers and gene bodies across distinct stages of directed differentiation of human pluripotent stem cells into SI spheroids with regional specification. Through comprehensive ChRO-seq analysis we identify candidate stage-specific chromatin activity states, novel markers and enhancer hotspots during the directed differentiation. Moreover, we propose a detailed transcriptional network associated with SI lineage formation or regional patterning. Our ChRO-seq analyses uncover a previously undescribed pattern of enhancer activity and transcription at HOX gene loci underlying SI regional patterning. We also validated this unique HOX dynamics by the analysis of single cell RNA-seq data from human fetal SI. Overall, the results lead to a new proposed working model for the regulatory underpinnings of human SI development, thereby adding a novel dimension to the literature that has relied almost exclusively on non-human models.
Collapse
Affiliation(s)
- Yu-Han Hung
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Sha Huang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael K Dame
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qianhui Yu
- Institute of Molecular and Clinical Ophthalmology Basal, Basel 4056, Switzerland
| | - Qing C Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi A Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basal, Basel 4056, Switzerland.,Department of Ophthalmology, University of Basel, Basel 4001, Switzerland
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
24
|
Transcriptional programmes underlying cellular identity and microbial responsiveness in the intestinal epithelium. Nat Rev Gastroenterol Hepatol 2021; 18:7-23. [PMID: 33024279 PMCID: PMC7997278 DOI: 10.1038/s41575-020-00357-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2020] [Indexed: 12/19/2022]
Abstract
The intestinal epithelium serves the unique and critical function of harvesting dietary nutrients, while simultaneously acting as a cellular barrier separating tissues from the luminal environment and gut microbial ecosystem. Two salient features of the intestinal epithelium enable it to perform these complex functions. First, cells within the intestinal epithelium achieve a wide range of specialized identities, including different cell types and distinct anterior-posterior patterning along the intestine. Second, intestinal epithelial cells are sensitive and responsive to the dynamic milieu of dietary nutrients, xenobiotics and microorganisms encountered in the intestinal luminal environment. These diverse identities and responsiveness of intestinal epithelial cells are achieved in part through the differential transcription of genes encoded in their shared genome. Here, we review insights from mice and other vertebrate models into the transcriptional regulatory mechanisms underlying intestinal epithelial identity and microbial responsiveness, including DNA methylation, chromatin accessibility, histone modifications and transcription factors. These studies are revealing that most transcription factors involved in intestinal epithelial identity also respond to changes in the microbiota, raising both opportunities and challenges to discern the underlying integrative transcriptional regulatory networks.
Collapse
|
25
|
A panel of intestinal differentiation markers (CDX2, GPA33, and LI-cadherin) identifies gastric cancer patients with favourable prognosis. Gastric Cancer 2020; 23:811-823. [PMID: 32215766 DOI: 10.1007/s10120-020-01064-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer is the fifth most common cancer and the third cause of global cancer mortality. CDX2 is an intestinal differentiation marker with prognostic value in gastric cancer and transcriptionally regulates the expression of glycoprotein A33 (GPA33) and liver intestine cadherin (LI-cadherin). METHODS This study evaluated the clinical significance of the combined expression of CDX2 and its targets GPA33 and LI-cadherin in gastric cancer by fluorescence-based multiplex immunohistochemistry together with digital image analysis and chromogenic immunohistochemistry in 329 gastric cancer samples arranged in tissue microarrays. Additionally, publicly available RNA-seq expression data from 354 gastric cancer samples from the TCGA database were used to validate the immunohistochemistry results. RESULTS Expression of the three markers (CDX2, GPA33, and LI-cadherin) was strongly correlated, defining an intestinal differentiation panel. Low or negative protein expression of the intestinal differentiation panel identified patients with particularly poor overall survival, irrespective of the methodology used, and was validated in the independent series at the RNA-seq level. CONCLUSIONS Expression of the intestinal differentiation panel (CDX2, GPA33, and LI-cadherin) defines a set of biomarkers with a strong biological rationale and favourable impact for prognostication of gastric cancer patients.
Collapse
|
26
|
Metastatic colon cancer of the small intestine diagnosed using genetic analysis: a case report. Diagn Pathol 2020; 15:106. [PMID: 32867793 PMCID: PMC7457373 DOI: 10.1186/s13000-020-01019-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Intestinal-type adenocarcinoma is widely detected in the gastrointestinal tract, head and neck, lower respiratory and urinary systems. Determining the nature (monoclonal or multicentric) of the intestinal adenocarcinoma is sometimes a diagnostic challenge owing to its occurrence at various locations of the body, especially in the lower gastrointestinal tract. Herein, we successfully diagnosed metastatic colon cancer in the small intestine using tumor protein 53 gene (TP53) mutation analysis. CASE PRESENTATION An 83-year-old woman presented with severe abdominal pain and nausea at the emergency department of the hospital. Her history included surgery and adjuvant chemotherapy for colon and breast cancers. Abdominal computed tomography revealed small intestinal dilation, which was associated with the mural nodule detected on fluorodeoxyglucose positron emission tomography. Laparoscopy-assisted small bowel resection was performed based on the diagnosis of small bowel obstruction, probably due to recurrence of the colon or breast cancer. Macroscopically, an ulcerated tumor was present in the resected small intestine. Histologically, the cancer cells showed infiltrative growth of colonic dysplastic glands, whose non-specific finding made it difficult to determine the relationship with past colon cancers. Retrospective pathological examination confirmed that the previous breast and colon carcinomas were primary cancers. Immunohistochemical analysis revealed that the small intestinal and colon cancer cells showed diffuse positive tumor protein 53 (p53) expression. However, the breast cancer cells showed only weakly positive p53 expression. In addition, TP53 mutational analysis detected an identical missense mutation (p.T211I) between the two intestinal cancers. Moreover, further molecular genetic work-up revealed that both small intestinal and colon adenocarcinomas harbored an identical missense mutation (p.G12D) of KRAS gene. In conclusion, the small intestinal cancer in this case was identified as a metastatic adenocarcinoma arising from a past colon cancer. CONCLUSIONS Genetic analyses help in clarifying the identity of the cells in multiple cancer cases. In morphologically indeterminate cases, molecular analysis of common cancer-related genes can be useful for a precise and reproducible diagnosis.
Collapse
|
27
|
Baulies A, Angelis N, Li VSW. Hallmarks of intestinal stem cells. Development 2020; 147:147/15/dev182675. [PMID: 32747330 DOI: 10.1242/dev.182675] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intestinal stem cells (ISCs) are highly proliferative cells that fuel the continuous renewal of the intestinal epithelium. Understanding their regulatory mechanisms during tissue homeostasis is key to delineating their roles in development and regeneration, as well as diseases such as bowel cancer and inflammatory bowel disease. Previous studies of ISCs focused mainly on the position of these cells along the intestinal crypt and their capacity for multipotency. However, evidence increasingly suggests that ISCs also exist in distinct cellular states, which can be an acquired rather than a hardwired intrinsic property. In this Review, we summarise the recent findings into how ISC identity can be defined by proliferation state, signalling crosstalk, epigenetics and metabolism, and propose an update on the hallmarks of ISCs. We further discuss how these properties contribute to intestinal development and the dynamics of injury-induced regeneration.
Collapse
Affiliation(s)
- Anna Baulies
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nikolaos Angelis
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
28
|
Verzi MP, Shivdasani RA. Epigenetic regulation of intestinal stem cell differentiation. Am J Physiol Gastrointest Liver Physiol 2020; 319:G189-G196. [PMID: 32628072 PMCID: PMC7500269 DOI: 10.1152/ajpgi.00084.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To fulfill the lifelong need to supply diverse epithelial cells, intestinal stem cells (ISCs) rely on executing accurate transcriptional programs. This review addresses the mechanisms that control those programs. Genes that define cell behaviors and identities are regulated principally through thousands of dispersed enhancers, each individually <1 kb long and positioned from a few to hundreds of kilobases away from transcription start sites, upstream or downstream from coding genes or within introns. Wnt, Notch, and other epithelial control signals feed into these cis-regulatory DNA elements, which are also common loci of polymorphisms and mutations that confer disease risk. Cell-specific gene activity requires promoters to interact with the correct combination of signal-responsive enhancers. We review the current state of knowledge in ISCs regarding active enhancers, the nucleosome modifications that may enable appropriate and hinder inappropriate enhancer-promoter contacts, and the roles of lineage-restricted transcription factors.
Collapse
Affiliation(s)
- Michael P. Verzi
- 1Department of Genetics, Rutgers, State University of New Jersey, Piscataway, New Jersey,2Cancer Institute of New Jersey and Human Genetics Institute of New Jersey, Piscataway, New Jersey
| | - Ramesh A. Shivdasani
- 3Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts,4Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts,5Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
29
|
Fernandez Vallone V, Leprovots M, Ribatallada‐Soriano D, Gerbier R, Lefort A, Libert F, Vassart G, Garcia M. LGR5 controls extracellular matrix production by stem cells in the developing intestine. EMBO Rep 2020; 21:e49224. [PMID: 32468660 PMCID: PMC7332981 DOI: 10.15252/embr.201949224] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
The Lgr5 receptor is a marker of intestinal stem cells (ISCs) that regulates Wnt/b-catenin signaling. In this study, phenotype analysis of knockin/knockout Lgr5-eGFP-IRES-Cre and Lgr5-DTReGFP embryos reveals that Lgr5 deficiency during Wnt-mediated cytodifferentiation results in amplification of ISCs and early differentiation into Paneth cells, which can be counteracted by in utero treatment with the Wnt inhibitor LGK974. Conditional ablation of Lgr5 postnatally, but not in adults, alters stem cell fate toward the Paneth lineage. Together, these in vivo studies suggest that Lgr5 is part of a feedback loop to adjust the Wnt tone in ISCs. Moreover, transcriptome analyses reveal that Lgr5 controls fetal ISC maturation associated with acquisition of a definitive stable epithelial phenotype, as well as the capacity of ISCs to generate their own extracellular matrix. Finally, using the ex vivo culture system, evidences are provided that Lgr5 antagonizes the Rspondin 2-Wnt-mediated response in ISCs in organoids, revealing a sophisticated regulatory process for Wnt signaling in ISCs.
Collapse
Affiliation(s)
- Valeria Fernandez Vallone
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
- Present address:
1 Charité – Universitätsmedizin Berlin, Berlin Institute of Health (BIH)BerlinGermany
| | - Morgane Leprovots
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Didac Ribatallada‐Soriano
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Romain Gerbier
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Anne Lefort
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Frédérick Libert
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Gilbert Vassart
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Marie‐Isabelle Garcia
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| |
Collapse
|
30
|
Nystrom SL, Niederhuber MJ, McKay DJ. Expression of E93 provides an instructive cue to control dynamic enhancer activity and chromatin accessibility during development. Development 2020; 147:dev181909. [PMID: 32094114 PMCID: PMC7097197 DOI: 10.1242/dev.181909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
How temporal cues combine with spatial inputs to control gene expression during development is poorly understood. Here, we test the hypothesis that the Drosophila transcription factor E93 controls temporal gene expression by regulating chromatin accessibility. Precocious expression of E93 early in wing development reveals that it can simultaneously activate and deactivate different target enhancers. Notably, the precocious patterns of enhancer activity resemble the wild-type patterns that occur later in development, suggesting that expression of E93 alters the competence of enhancers to respond to spatial cues. Genomic profiling reveals that precocious E93 expression is sufficient to regulate chromatin accessibility at a subset of its targets. These accessibility changes mimic those that normally occur later in development, indicating that precocious E93 accelerates the wild-type developmental program. Further, we find that target enhancers that do not respond to precocious E93 in early wings become responsive after a developmental transition, suggesting that parallel temporal pathways work alongside E93. These findings support a model wherein E93 expression functions as an instructive cue that defines a broad window of developmental time through control of chromatin accessibility.
Collapse
Affiliation(s)
- Spencer L Nystrom
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew J Niederhuber
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel J McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
31
|
Mithal A, Capilla A, Heinze D, Berical A, Villacorta-Martin C, Vedaie M, Jacob A, Abo K, Szymaniak A, Peasley M, Stuffer A, Mahoney J, Kotton DN, Hawkins F, Mostoslavsky G. Generation of mesenchyme free intestinal organoids from human induced pluripotent stem cells. Nat Commun 2020; 11:215. [PMID: 31924806 PMCID: PMC6954238 DOI: 10.1038/s41467-019-13916-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Efficient generation of human induced pluripotent stem cell (hiPSC)-derived human intestinal organoids (HIOs) would facilitate the development of in vitro models for a variety of diseases that affect the gastrointestinal tract, such as inflammatory bowel disease or Cystic Fibrosis. Here, we report a directed differentiation protocol for the generation of mesenchyme-free HIOs that can be primed towards more colonic or proximal intestinal lineages in serum-free defined conditions. Using a CDX2eGFP iPSC knock-in reporter line to track the emergence of hindgut progenitors, we follow the kinetics of CDX2 expression throughout directed differentiation, enabling the purification of intestinal progenitors and robust generation of mesenchyme-free organoids expressing characteristic markers of small intestinal or colonic epithelium. We employ HIOs generated in this way to measure CFTR function using cystic fibrosis patient-derived iPSC lines before and after correction of the CFTR mutation, demonstrating their future potential for disease modeling and therapeutic screening applications.
Collapse
Affiliation(s)
- Aditya Mithal
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
- The Department of Microbiology at Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - Amalia Capilla
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
| | - Dar Heinze
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
- The Department of Surgery at Boston University School of Medicine, 72 E Concord Street, Boston, MA, 02118, USA
| | - Andrew Berical
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
- The Pulmonary Center at Boston University School of Medicine, 72 E Concord Street, Boston, MA, 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
| | - Marall Vedaie
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
| | - Anjali Jacob
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
| | - Kristine Abo
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
| | - Aleksander Szymaniak
- Cystic Fibrosis Foundation Therapeutics Lab, 44 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Megan Peasley
- Cystic Fibrosis Foundation Therapeutics Lab, 44 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Alexander Stuffer
- Cystic Fibrosis Foundation Therapeutics Lab, 44 Hartwell Avenue, Lexington, MA, 02421, USA
| | - John Mahoney
- Cystic Fibrosis Foundation Therapeutics Lab, 44 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
- The Pulmonary Center at Boston University School of Medicine, 72 E Concord Street, Boston, MA, 02118, USA
| | - Finn Hawkins
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
- The Pulmonary Center at Boston University School of Medicine, 72 E Concord Street, Boston, MA, 02118, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA.
- The Department of Microbiology at Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA.
- The Section of Gastroenterology in the Department of Medicine at Boston University School of Medicine, 650 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
32
|
Daoud A, Múnera JO. Insights Into Human Development and Disease From Human Pluripotent Stem Cell Derived Intestinal Organoids. Front Med (Lausanne) 2019; 6:297. [PMID: 31956653 PMCID: PMC6951411 DOI: 10.3389/fmed.2019.00297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
In recent years, advances in human pluripotent stem cell (hPSC) biology have enabled the generation of gastrointestinal (GI) organoids which recapitulate aspects of normal organ development. HPSC derived gastrointestinal organoids are comprised of epithelium and mesenchyme and have a remarkable ability to self-organize and recapitulate early stages of human intestinal development. Furthermore, hPSC derived organoids can be transplanted into immunocompromised mice which allows further maturation of both the epithelium and mesenchyme. In this review, we will briefly summarize work from model systems which has elucidated mechanisms of GI patterning and how these insights have been used to guide the differentiation of hPSCs into organoids resembling small intestine and colon. We will succinctly discuss how developmental principles have been used to promote maturation of human intestinal organoids (HIOs) in vitro as well as to introduce an enteric nervous system into HIOs. We will then concisely review how organoids have been used to study human pathogens, how new genetic and bioengineering tools are being applied to organoid research, and how this integration has allowed researchers to elucidate mechanisms of human development and disease. Finally, we will briefly discuss remaining challenges in the field and how they can be addressed. HPSC derived organoids are promising new model systems which hold the potential of unlocking unknown mechanisms of human gastrointestinal development and disease.
Collapse
Affiliation(s)
- Abdelkader Daoud
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Jorge O Múnera
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
33
|
Francis R, Guo H, Streutker C, Ahmed M, Yung T, Dirks PB, He HH, Kim TH. Gastrointestinal transcription factors drive lineage-specific developmental programs in organ specification and cancer. SCIENCE ADVANCES 2019; 5:eaax8898. [PMID: 31844668 PMCID: PMC6905862 DOI: 10.1126/sciadv.aax8898] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/16/2019] [Indexed: 05/09/2023]
Abstract
Transcription factors (TFs) are spatially and temporally regulated during gut organ specification. Although accumulating evidence shows aberrant reactivation of developmental programs in cancer, little is known about how TFs drive lineage specification in development and cancer. We first defined gastrointestinal tissue-specific chromatin accessibility and gene expression during development, identifying the dynamic epigenetic regulation of SOX family of TFs. We revealed that Sox2 is not only essential for gastric specification, by maintaining chromatin accessibility at forestomach lineage loci, but also sufficient to promote forestomach/esophageal transformation upon Cdx2 deletion. By comparing our gastrointestinal lineage-specific transcriptome to human gastrointestinal cancer data, we found that stomach and intestinal lineage-specific programs are reactivated in Sox2high /Sox9high and Cdx2high cancers, respectively. By analyzing mice deleted for both Sox2 and Sox9, we revealed their potentially redundant roles in both gastric development and cancer, highlighting the importance of developmental lineage programs reactivated by gastrointestinal TFs in cancer.
Collapse
Affiliation(s)
- Roshane Francis
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Haiyang Guo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Catherine Streutker
- Department of Laboratory Medicine, St. Michael’s Hospital, Toronto, Ontario M5B 1W8, Canada
| | - Musaddeque Ahmed
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Theodora Yung
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Peter B. Dirks
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
- Corresponding author. (T.-H.K.); (H.H.H.)
| | - Tae-Hee Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Corresponding author. (T.-H.K.); (H.H.H.)
| |
Collapse
|
34
|
DGCR8/ZFAT-AS1 Promotes CDX2 Transcription in a PRC2 Complex-Dependent Manner to Facilitate the Malignant Biological Behavior of Glioma Cells. Mol Ther 2019; 28:613-630. [PMID: 31813799 DOI: 10.1016/j.ymthe.2019.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 11/24/2022] Open
Abstract
Studies have found that RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are dysregulated and play an important regulatory role in the development of tumors. Based on The Cancer Genome Atlas (TCGA) database, our findings from experiments, and the evidence of previous studies, we screened DiGeorge syndrome critical region gene 8 (DGCR8), ZFAT antisense RNA 1 (ZFAT-AS1), and caudal type homeobox 2 (CDX2) as research candidates. In the present study, DGCR8 and CDX2 were highly expressed and ZFAT-AS1 was markedly downregulated in glioma tissues and cells. DGCR8 or CDX2 knockdown or ZFAT-AS1 overexpression suppressed glioma cell proliferation, migration, and invasion and facilitated apoptosis. DGCR8 might decrease ZFAT-AS1 expression by attenuating its stability in a manner of inducing its cleavage. Importantly, ZFAT-AS1 could inhibit CDX2 transcription by mediating the methylation of histone H3 on lysine 27 (H3K27me3) modification induced by PRC2 in the CDX2 promoter region. In addition, CDX2 transcriptionally activated DGCR8 expression by binding to its promoter regions, forming a positive feedback loop of DGCR8/ZFAT-AS1/CDX2. In conclusion, DGCR8/ZFAT-AS1 promotes CDX2 transcription in a PRC2 complex-dependent manner to facilitate the malignant biological behavior of glioma cells.
Collapse
|
35
|
Chen L, Toke NH, Luo S, Vasoya RP, Aita R, Parthasarathy A, Tsai YH, Spence JR, Verzi MP. HNF4 factors control chromatin accessibility and are redundantly required for maturation of the fetal intestine. Development 2019; 146:dev.179432. [PMID: 31345929 DOI: 10.1242/dev.179432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022]
Abstract
As embryos mature, cells undergo remarkable transitions that are accompanied by shifts in transcription factor regulatory networks. Mechanisms driving developmental transitions are incompletely understood. The embryonic intestine transitions from a rapidly proliferating tube with pseudostratified epithelium prior to murine embryonic day (E) 14.5 to an exquisitely folded columnar epithelium in fetal stages. We sought to identify factors driving mouse fetal intestinal maturation by mining chromatin accessibility data for transcription factor motifs. ATAC-seq accessible regions shift during tissue maturation, with CDX2 transcription factor motifs abundant at chromatin-accessible regions of the embryo. Hepatocyte nuclear factor 4 (HNF4) transcription factor motifs are the most abundant in the fetal stages (>E16.5). Genetic inactivation of Hnf4a and its paralog Hnf4g revealed that HNF4 factors are redundantly required for fetal maturation. CDX2 binds to and activates Hnf4 gene loci to elevate HNF4 expression at fetal stages. HNF4 and CDX2 transcription factors then occupy shared genomic regulatory sites to promote chromatin accessibility and gene expression in the maturing intestine. Thus, HNF4 paralogs are key components of an intestinal transcription factor network shift during the embryonic to fetal transition.
Collapse
Affiliation(s)
- Lei Chen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Natalie H Toke
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Shirley Luo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Roshan P Vasoya
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Rohit Aita
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Aditya Parthasarathy
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA.,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
36
|
Han B, Yuan Y, Li Y, Liu L, Sun D. Single Nucleotide Polymorphisms of NUCB2 and their Genetic Associations with Milk Production Traits in Dairy Cows. Genes (Basel) 2019; 10:E449. [PMID: 31200542 PMCID: PMC6627143 DOI: 10.3390/genes10060449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
We previously used the RNA sequencing technique to detect the hepatic transcriptome of Chinese Holstein cows among the dry period, early lactation, and peak of lactation, and implied that the nucleobindin 2 (NUCB2) gene might be associated with milk production traits due to its expression being significantly increased in early lactation or peak of lactation as compared to dry period (q value < 0.05). Hence, in this study, we detected the single nucleotide polymorphisms (SNPs) of NUCB2 and analyzed their genetic associations with milk yield, fat yield, fat percentage, protein yield, and protein percentage. We re-sequenced the entire coding and 2000 bp of 5' and 3' flanking regions of NUCB2 by pooled sequencing, and identified ten SNPs, including one in 5' flanking region, two in 3' untranslated region (UTR), and seven in 3' flanking region. The single-SNP association analysis results showed that the ten SNPs were significantly associated with milk yield, fat yield, fat percentage, protein yield, or protein percentage in the first or second lactation (p values <= 1 × 10-4 and 0.05). In addition, we estimated the linkage disequilibrium (LD) of the ten SNPs by Haploview 4.2, and found that the SNPs were highly linked in one haplotype block (D' = 0.98-1.00), and the block was also significantly associated with at least one milk traits in the two lactations (p values: 0.0002-0.047). Further, we predicted the changes of transcription factor binding sites (TFBSs) that are caused by the SNPs in the 5' flanking region of NUCB2, and considered that g.35735477C>T might affect the expression of NUCB2 by changing the TFBSs for ETS transcription factor 3 (ELF3), caudal type homeobox 2 (CDX2), mammalian C-type LTR TATA box (VTATA), nuclear factor of activated T-cells (NFAT), and v-ets erythroblastosis virus E26 oncogene homolog (ERG) (matrix similarity threshold, MST > 0.85). However, the further study should be performed to verify the regulatory mechanisms of NUCB2 and its polymorphisms on milk traits. Our findings first revealed the genetic effects of NUCB2 on the milk traits in dairy cows, and suggested that the significant SNPs could be used in genomic selection to improve the accuracy of selection for dairy cattle breeding.
Collapse
Affiliation(s)
- Bo Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Yuwei Yuan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Yanhua Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
- Beijing Key Laboratory of Dairy Cattle Genetic, Breeding and Reproduction, Beijing Dairy Cattle Center, Beijing 100192, China.
| | - Lin Liu
- Beijing Key Laboratory of Dairy Cattle Genetic, Breeding and Reproduction, Beijing Dairy Cattle Center, Beijing 100192, China.
| | - Dongxiao Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|