1
|
Monaghan RM, Naylor RW, Flatman D, Kasher PR, Williams SG, Keavney BD. FLT4 causes developmental disorders of the cardiovascular and lymphovascular systems via pleiotropic molecular mechanisms. Cardiovasc Res 2024; 120:1164-1176. [PMID: 38713105 PMCID: PMC11368125 DOI: 10.1093/cvr/cvae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
AIMS Rare, deleterious genetic variants in FLT4 are associated with Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease. The distinct genetic variants in FLT4 are also an established cause of Milroy disease, the most prevalent form of primary hereditary lymphoedema. The phenotypic features of these two conditions are non-overlapping, implying pleiotropic cellular mechanisms during development. METHODS AND RESULTS In this study, we show that FLT4 variants identified in patients with TOF, when expressed in primary human endothelial cells, cause aggregation of FLT4 protein in the perinuclear endoplasmic reticulum, activating proteostatic and metabolic signalling, whereas lymphoedema-associated FLT4 variants and wild-type (WT) FLT4 do not. FLT4 TOF variants display characteristic gene expression profiles in key developmental signalling pathways, revealing a role for FLT4 in cardiogenesis distinct from its role in lymphatic development. Inhibition of proteostatic signalling abrogates these effects, identifying potential avenues for therapeutic intervention. Depletion of flt4 in zebrafish caused cardiac phenotypes of reduced heart size and altered heart looping. These phenotypes were rescued with coinjection of WT human FLT4 mRNA, but incompletely or not at all by mRNA harbouring FLT4 TOF variants. CONCLUSION Taken together, we identify a pathogenic mechanism for FLT4 variants predisposing to TOF that is distinct from the known dominant negative mechanism of Milroy-causative variants. FLT4 variants give rise to conditions of the two circulatory subdivisions of the vascular system via distinct developmental pleiotropic molecular mechanisms.
Collapse
Affiliation(s)
- Richard M Monaghan
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, 5th Floor, AV Hill Building, Oxford Road, Manchester, M13 9NT, UK
| | - Richard W Naylor
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PN, UK
| | - Daisy Flatman
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Paul R Kasher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Simon G Williams
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, 5th Floor, AV Hill Building, Oxford Road, Manchester, M13 9NT, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, 5th Floor, AV Hill Building, Oxford Road, Manchester, M13 9NT, UK
- Manchester Heart Institute, Manchester University NHS Foundation Trust, Oxford Road, M13 9WL, UK
| |
Collapse
|
2
|
Leon RL, Bitar L, Rajagopalan V, Spong CY. Interdependence of placenta and fetal cardiac development. Prenat Diagn 2024; 44:846-855. [PMID: 38676696 PMCID: PMC11269166 DOI: 10.1002/pd.6572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024]
Abstract
The placenta and fetal heart undergo development concurrently during early pregnancy, and, while human studies have reported associations between placental abnormalities and congenital heart disease (CHD), the nature of this relationship remains incompletely understood. Evidence from animal studies suggests a plausible cause and effect connection between placental abnormalities and fetal CHD. Biomechanical models demonstrate the influence of mechanical forces on cardiac development, whereas genetic models highlight the role of confined placental mutations that can cause some forms of CHD. Similar definitive studies in humans are lacking; however, placental pathologies such as maternal and fetal vascular malperfusion and chronic deciduitis are frequently observed in pregnancies complicated by CHD. Moreover, maternal conditions such as diabetes and pre-eclampsia, which affect placental function, are associated with increased risk of CHD in offspring. Bridging the gap between animal models and human studies is crucial to understanding how placental abnormalities may contribute to human fetal CHD. The next steps will require new methodologies and multidisciplinary approaches combining innovative imaging modalities, comprehensive genomic testing, and histopathology. These studies may eventually lead to preventative strategies for some forms of CHD by targeting placental influences on fetal heart development.
Collapse
Affiliation(s)
- Rachel L. Leon
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lynn Bitar
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Vidya Rajagopalan
- Department of Pediatrics, Children’s Hospital of Los Angeles and Keck School of Medicine University of Southern California, Los Angeles, CA
| | - Catherine Y. Spong
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
3
|
Li N, Kang H, Liu Z, Li L, Deng Y, Wang M, Li Y, Xu W, Li X, Wang Y, Zhu J, Tao J, Yu P. Association of maternal phthalates exposure and metabolic gene polymorphisms with congenital heart diseases: a multicenter case-control study. BMC Pregnancy Childbirth 2024; 24:167. [PMID: 38408952 PMCID: PMC10895762 DOI: 10.1186/s12884-024-06343-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND The majority of congenital heart diseases (CHDs) are thought to result from the interactions of genetics and the environment factors. This study aimed to assess the association of maternal non-occupational phthalates exposure, metabolic gene polymorphisms and their interactions with risk of CHDs in offspring. METHODS A multicenter case-control study of 245 mothers with CHDs infants and 268 control mothers of health infant was conducted from six hospitals. Maternal urinary concentrations of eight phthalate metabolites were measured by ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Twenty single nucleotide polymorphisms (SNPs) in cytochrome P450 family 2 subfamily C member 9 (CYP2C9) and 19 (CYP2C19), uridine diphosphate (UDP) glucuronosyl transferase family 1 member A7 (UGT1A7), family 2 member B7 (UGT2B7) and B15(UGT2B15) genes were genotyped. The multivariate logistic regressions were used to estimate the association between maternal phthalates exposure or gene polymorphisms and risk of CHDs. Generalized multifactor dimensionality reduction (GMDR) was used to analyze the gene-gene and gene-phthalates exposure interactions. RESULTS There was no significant difference in phthalate metabolites concentrations between the cases and controls. No significant positive associations were observed between maternal exposure to phthalates and CHDs. The SNPs of UGT1A7 gene at rs4124874 (under three models, log-additive: aOR = 1.74, 95% CI:1.28-2.37; dominant: aOR = 1.86, 95% CI:1.25-2.78; recessive: aOR = 2.50, 95% CI: 1.26-4.94) and rs887829 (under the recessive model: aOR = 13.66, 95% CI: 1.54-121) were significantly associated with an increased risk of CHDs. Furthermore, the associations between rs4124874 (under log-additive and dominant models) of UGT1A7 were statistically significant after the false discovery rate correction. No significant gene-gene or gene-phthalate metabolites interactions were observed. CONCLUSIONS The polymorphisms of maternal UGT1A7 gene at rs4124874 and rs887829 were significantly associated with an increased risk of CHDs. More large-scale studies or prospective study designs are needed to confirm or refute our findings in the future.
Collapse
Affiliation(s)
- Nana Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Hong Kang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Zhen Liu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Lu Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Ying Deng
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Meixian Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yuting Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Wenli Xu
- Department of Maternal Healthcare, Pidu Maternal and Child Care Hospital, Chengdu, China
| | - Xiaohong Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yanping Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jun Zhu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jing Tao
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.
| | - Ping Yu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Qiu M, Chen J, Liu M, Nie Z, Ke M, Dong G, Zhao H, Zhou C, Zeng H, He B, Chen J, Zhuang J, Li X, Ou Y. Single-cell RNA sequencing reveals the role of mitochondrial dysfunction in the cardiogenic toxicity of perfluorooctane sulfonate in human embryonic stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115945. [PMID: 38183750 DOI: 10.1016/j.ecoenv.2024.115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Perfluorooctane sulfonate (PFOS), an endocrine-disrupting chemical pollutant, affects embryonic heart development; however, the mechanisms underlying its toxicity have not been fully elucidated. Here, Single-cell RNA sequencing (scRNA-seq) was used to investigate the overall effects of PFOS on myocardial differentiation from human embryonic stem cells (hESCs). Additionally, apoptosis, mitochondrial membrane potential, and ATP assays were performed. Downregulated cardiogenesis-related genes and inhibited cardiac differentiation were observed after PFOS exposure in vitro. The percentages of cardiomyocyte and cardiac progenitor cell clusters decreased significantly following exposure to PFOS, while the proportion of primitive endoderm cell was increased in PFOS group. Moreover, PFOS inhibited myocardial differentiation and blocked cellular development at the early- and middle-stage. A Gene Ontology analysis and pseudo-time trajectory illustrated that PFOS disturbed multiple processes related to cardiogenesis and oxidative phosphorylation in the mitochondria. Furthermore, PFOS decreased mitochondrial membrane potential and induced apoptosis. These results offer meaningful insights into the cardiogenic toxicity of PFOS exposure during heart formation as well as the adverse effects of PFOS on mitochondria.
Collapse
Affiliation(s)
- Min Qiu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Jing Chen
- Medical Research Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Mingqin Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, PR China
| | - Zhiqiang Nie
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Miaola Ke
- Department of Blood Transfusion, Sun Yat-Sen University Cancer Center, Guangzhou 510050, PR China
| | - Guanghui Dong
- Department of Occupational and Environmental, Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Haishan Zhao
- Medical Research Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Chengbin Zhou
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Haiyan Zeng
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, PR China
| | - Biaochuan He
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Jimei Chen
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| | - Xiaohong Li
- Medical Research Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| | - Yanqiu Ou
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| |
Collapse
|
5
|
Ibrahim S, Gaborit B, Lenoir M, Collod-Beroud G, Stefanovic S. Maternal Pre-Existing Diabetes: A Non-Inherited Risk Factor for Congenital Cardiopathies. Int J Mol Sci 2023; 24:16258. [PMID: 38003449 PMCID: PMC10671602 DOI: 10.3390/ijms242216258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Congenital heart defects (CHDs) are the most common form of birth defects in humans. They occur in 9 out of 1000 live births and are defined as structural abnormalities of the heart. Understanding CHDs is difficult due to the heterogeneity of the disease and its multifactorial etiology. Advances in genomic sequencing have made it possible to identify the genetic factors involved in CHDs. However, genetic origins have only been found in a minority of CHD cases, suggesting the contribution of non-inherited (environmental) risk factors to the etiology of CHDs. Maternal pregestational diabetes is associated with a three- to five-fold increased risk of congenital cardiopathies, but the underlying molecular mechanisms are incompletely understood. According to current hypotheses, hyperglycemia is the main teratogenic agent in diabetic pregnancies. It is thought to induce cell damage, directly through genetic and epigenetic dysregulations and/or indirectly through production of reactive oxygen species (ROS). The purpose of this review is to summarize key findings on the molecular mechanisms altered in cardiac development during exposure to hyperglycemic conditions in utero. It also presents the various in vivo and in vitro techniques used to experimentally model pregestational diabetes. Finally, new approaches are suggested to broaden our understanding of the subject and develop new prevention strategies.
Collapse
Affiliation(s)
- Stéphanie Ibrahim
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France;
| | - Bénédicte Gaborit
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, 13005 Marseille, France
| | - Marien Lenoir
- Department of Congenital Heart Surgery, La Timone Children Hospital, APHM, Aix Marseille University, 13005 Marseille, France
| | | | - Sonia Stefanovic
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France;
| |
Collapse
|
6
|
Bragança J, Pinto R, Silva B, Marques N, Leitão HS, Fernandes MT. Charting the Path: Navigating Embryonic Development to Potentially Safeguard against Congenital Heart Defects. J Pers Med 2023; 13:1263. [PMID: 37623513 PMCID: PMC10455635 DOI: 10.3390/jpm13081263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Congenital heart diseases (CHDs) are structural or functional defects present at birth due to improper heart development. Current therapeutic approaches to treating severe CHDs are primarily palliative surgical interventions during the peri- or prenatal stages, when the heart has fully developed from faulty embryogenesis. However, earlier interventions during embryonic development have the potential for better outcomes, as demonstrated by fetal cardiac interventions performed in utero, which have shown improved neonatal and prenatal survival rates, as well as reduced lifelong morbidity. Extensive research on heart development has identified key steps, cellular players, and the intricate network of signaling pathways and transcription factors governing cardiogenesis. Additionally, some reports have indicated that certain adverse genetic and environmental conditions leading to heart malformations and embryonic death may be amendable through the activation of alternative mechanisms. This review first highlights key molecular and cellular processes involved in heart development. Subsequently, it explores the potential for future therapeutic strategies, targeting early embryonic stages, to prevent CHDs, through the delivery of biomolecules or exosomes to compensate for faulty cardiogenic mechanisms. Implementing such non-surgical interventions during early gestation may offer a prophylactic approach toward reducing the occurrence and severity of CHDs.
Collapse
Affiliation(s)
- José Bragança
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Rute Pinto
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Bárbara Silva
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- PhD Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Nuno Marques
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- School of Health, University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
7
|
Long X, Yuan X, Du J. Single-cell and spatial transcriptomics: Advances in heart development and disease applications. Comput Struct Biotechnol J 2023; 21:2717-2731. [PMID: 37181659 PMCID: PMC10173363 DOI: 10.1016/j.csbj.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Current transcriptomics technologies, including bulk RNA-seq, single-cell RNA sequencing (scRNA-seq), single-nucleus RNA-sequencing (snRNA-seq), and spatial transcriptomics (ST), provide novel insights into the spatial and temporal dynamics of gene expression during cardiac development and disease processes. Cardiac development is a highly sophisticated process involving the regulation of numerous key genes and signaling pathways at specific anatomical sites and developmental stages. Exploring the cell biological mechanisms involved in cardiogenesis also contributes to congenital heart disease research. Meanwhile, the severity of distinct heart diseases, such as coronary heart disease, valvular disease, cardiomyopathy, and heart failure, is associated with cellular transcriptional heterogeneity and phenotypic alteration. Integrating transcriptomic technologies in the clinical diagnosis and treatment of heart diseases will aid in advancing precision medicine. In this review, we summarize applications of scRNA-seq and ST in the cardiac field, including organogenesis and clinical diseases, and provide insights into the promise of single-cell and spatial transcriptomics in translational research and precision medicine.
Collapse
Affiliation(s)
- Xianglin Long
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
8
|
Lipinski RJ, Krauss RS. Gene-environment interactions in birth defect etiology: Challenges and opportunities. Curr Top Dev Biol 2023; 152:1-30. [PMID: 36707208 PMCID: PMC9942595 DOI: 10.1016/bs.ctdb.2022.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Birth defects are relatively common congenital outcomes that significantly impact affected individuals, their families, and communities. Effective development and deployment of prevention and therapeutic strategies for these conditions requires sufficient understanding of etiology, including underlying genetic and environmental causes. Tremendous progress has been made in defining the genetic basis of familial and syndromic forms of birth defects. However, the majority of birth defect cases are considered nonsyndromic and thought to result from multifactorial gene-environment interactions. While substantial advances have been made in elucidating the genetic landscape of these etiologically complex conditions, significant biological and technical constraints have stymied progress toward a refined knowledge of environmental risk factors. Defining specific gene-environment interactions in birth defect etiology is even more challenging. However, progress has been made, including demonstration of critical proofs of concept and development of new conceptual and technical approaches for resolving complex gene-environment interactions. In this review, we discuss current views of multifactorial birth defect etiology, comparing them with other diseases that also involve gene-environment interactions, including primary immunodeficiency and cancer. We describe how various model systems have illuminated mechanisms of multifactorial etiology and these models' individual strengths and weaknesses. Finally, suggestions for areas of future emphasis are proposed.
Collapse
Affiliation(s)
- Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States,Corresponding authors: ;
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Corresponding authors: ;
| |
Collapse
|
9
|
Burns NG, Kardon G. The role of genes and environment in the etiology of congenital diaphragmatic hernias. Curr Top Dev Biol 2022; 152:115-138. [PMID: 36707209 PMCID: PMC10923182 DOI: 10.1016/bs.ctdb.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Structural birth defects are a common cause of abnormalities in newborns. While there are cases of structural birth defects arising due to monogenic defects or environmental exposures, many birth defects are likely caused by a complex interaction between genes and the environment. A structural birth defect with complex etiology is congenital diaphragmatic hernias (CDH), a common and often lethal disruption in diaphragm development. Mutations in more than 150 genes have been implicated in CDH pathogenesis. Although there is generally less evidence for a role for environmental factors in the etiology of CDH, deficiencies in maternal vitamin A and its derivative embryonic retinoic acid are strongly associated with CDH. However, the incomplete penetrance of CDH-implicated genes and environmental factors such as vitamin A deficiency suggest that interactions between genes and environment may be necessary to cause CDH. In this review, we examine the genetic and environmental factors implicated in diaphragm and CDH development. In addition, we evaluate the potential for gene-environment interactions in CDH etiology, focusing on the potential interactions between the CDH-implicated gene, Gata4, and maternal vitamin A deficiency.
Collapse
Affiliation(s)
- Nathan G Burns
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
10
|
Yang X, Zeng J, Gu Y, Fang Y, Wei C, Tan S, Zhang X. Birth defects data from hospital-based birth defect surveillance in Guilin, China, 2018-2020. Front Public Health 2022; 10:961613. [PMID: 36091541 PMCID: PMC9449144 DOI: 10.3389/fpubh.2022.961613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/08/2022] [Indexed: 01/24/2023] Open
Abstract
Objectives Birth defects (BDs) are a major contributor to perinatal and infant mortality, morbidity and lifelong disability worldwide. A hospital-based study on birth defects was designed in Guilin city in the Guangxi province of Southwestern China aiming to determine the prevalence of BDs in the studied region, and the classify the BDs based on clinical presentation and causation. Methods The study involved BDs among all pregnancy outcomes (live births, stillbirths, death within 7 days, and pregnancy terminations) born in the 42 registered hospitals of Guilin between 2018 and 2020. The epidemiological characteristics of BDs and the etiologic profile of BDs were evaluated in this study. Results Of the total 147,817 births recorded during the study period, 2,003 infants with BDs were detected, giving a total prevalence rate of 13.55 per 1,000 births. The top five BD types were congenital heart defects, polydactyly, syndactyly, malformations of the external ear, and talipes equinovarus, whereas, neural tube defects, congential esophageal atresia, gastroschisis, extrophy of urinary bladder, were the least common BD types in these 3 years. Only 8.84% of cases were assigned a known etiology, while most cases (91.16%) could not be conclusively assigned a specific cause. Conclusion This study provides an epidemiological description of BDs in Guilin, which may be helpful for understanding the overall situation in Southwest China of BDs and aid in more comprehensive studies of BDs in future healthcare systems, including funding investment, policy-making, monitor, prevention. Strong prevention strategies should be the priority to reduce BDs and improve the birth quality.
Collapse
Affiliation(s)
- Xingdi Yang
- Public Health, Guilin Medical University, Guilin, China,The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin, China,Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin, China
| | - Jianjuan Zeng
- Department of Child Health Care, Guilin Maternal and Child Health Hospital, Guilin, China
| | - Yiping Gu
- Public Health, Guilin Medical University, Guilin, China,The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin, China,Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin, China
| | - Yiming Fang
- Public Health, Guilin Medical University, Guilin, China,The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin, China,Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin, China
| | - Caiyun Wei
- Public Health, Guilin Medical University, Guilin, China
| | - Shengkui Tan
- Public Health, Guilin Medical University, Guilin, China,The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin, China,Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin, China,*Correspondence: Shengkui Tan
| | - Xiaoying Zhang
- Public Health, Guilin Medical University, Guilin, China,The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin, China,Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin, China,Xiaoying Zhang
| |
Collapse
|
11
|
Single-cell transcriptomic profiling unveils dysregulation of cardiac progenitor cells and cardiomyocytes in a mouse model of maternal hyperglycemia. Commun Biol 2022; 5:820. [PMID: 35970860 PMCID: PMC9378651 DOI: 10.1038/s42003-022-03779-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/28/2022] [Indexed: 11/08/2022] Open
Abstract
Congenital heart disease (CHD) is the most prevalent birth defect, often linked to genetic variations, environmental exposures, or combination of both. Epidemiological studies reveal that maternal pregestational diabetes is associated with ~5-fold higher risk of CHD in the offspring; however, the causal mechanisms affecting cardiac gene-regulatory-network (GRN) during early embryonic development remain poorly understood. In this study, we utilize an established murine model of pregestational diabetes to uncover the transcriptional responses in key cell-types of the developing heart exposed to maternal hyperglycemia (matHG). Here we show that matHG elicits diverse cellular responses in E9.5 and E11.5 embryonic hearts compared to non-diabetic hearts by single-cell RNA-sequencing. Through differential-gene-expression and cellular trajectory analyses, we identify perturbations in genes, predominantly affecting Isl1+ second heart field progenitors and Tnnt2+ cardiomyocytes with matHG. Using cell-fate mapping analysis in Isl1-lineage descendants, we demonstrate that matHG impairs cardiomyocyte differentiation and alters the expression of lineage-specifying cardiac genes. Finally, our work reveals matHG-mediated transcriptional changes in second heart field lineage that elevate CHD risk by perturbing Isl1-GRN during cardiomyocyte differentiation. Gene-environment interaction studies targeting the Isl1-GRN in cardiac progenitor cells will have a broader impact on understanding the mechanisms of matHG-induced risk of CHD associated with diabetic pregnancies. ScRNA-seq of embryonic heart tissues from a mouse model of maternal hyperglycemia (matHG) provides further insight into how matHG disrupts heart development and perturbs second heart field derived cardiomyocyte differentiation.
Collapse
|
12
|
陈 倩, 黄 鹏, 宋 欣, 刘 亦, 孙 梦, 王 婷, 张 森, 秦 家. [Association of maternal MTHFD1 and MTHFD2 gene polymorphisms with congenital heart disease in offspring]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:797-805. [PMID: 35894196 PMCID: PMC9336623 DOI: 10.7499/j.issn.1008-8830.2203002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To study the association of maternal methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) gene polymorphisms with congenital heart disease (CHD) in offspring. METHODS A hospital-based case-control study was conducted. The mothers of 683 children with CHD alone who attended Hunan Children's Hospital, from November 2017 to March 2020 were enrolled as the case group, and the mothers of 740 healthy children who attended the same hospital during the same period and did not have any deformity were enrolled as the control group. A questionnaire survey was performed to collect related exposure data, and then venous blood samples (5 mL) were collected from the mothers to detect MTHFD1 and MTHFD2 gene polymorphisms. A multivariate logistic regression analysis was used to evaluate the association of MTHFD1 and MTHFD2 gene polymorphisms with CHD. The four-gamete test in Haploview 4.2 software was used to construct haplotypes and evaluate the association between haplotypes and CHD. The generalized multifactor dimensionality reduction method and logistic regression analysis were used to examine gene-gene interaction and its association with CHD. RESULTS The multivariate logistic regression analysis showed that maternal MTHFD1 gene polymorphisms at rs11849530 (GA vs AA: OR=1.49; GG vs AA: OR=2.04) andat rs1256142 (GA vs GG: OR=2.34; AA vs GG: OR=3.25) significantly increased the risk of CHD in offspring (P<0.05), while maternal MTHFD1 gene polymorphisms at rs1950902 (AA vs GG: OR=0.57) and MTHFD2 gene polymorphisms at rs1095966 (CA vs CC: OR=0.68) significantly reduced the risk of CHD in offspring (P<0.05). The haplotypes of G-G-G (OR=1.86) and G-A-G (OR=1.35) in mothers significantly increased the risk of CHD in offspring (P<0.05). The gene-gene interaction analyses showed that the first-order interaction between MTHFD1 rs1950902 and MTHFD1 rs2236222 and the second-order interaction involving MTHFD1 rs1950902, MTHFD1 rs1256142, and MTHFD2 rs1095966 might be associated with risk of CHD (P<0.05). CONCLUSIONS Maternal MTHFD1 and MTHFD2 gene polymorphisms and their haplotypes, as well as the interaction between MTHFD1 rs1950902 and MTHFD1 rs2236222 and between MTHFD1 rs1950902, MTHFD1 rs1256142, and MTHFD2 rs1095966, are associated with the risk of CHD in offspring.
Collapse
|
13
|
Wang M, Tian Y, Yu P, Li N, Deng Y, Li L, Kang H, Chen D, Wang H, Liu Z, Liang J. Association between congenital heart defects and maternal manganese and iron concentrations: a case-control study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26950-26959. [PMID: 34865185 PMCID: PMC8989826 DOI: 10.1007/s11356-021-17054-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/11/2021] [Indexed: 05/10/2023]
Abstract
To investigate the correlation between maternal manganese and iron concentrations and the risk of CHD among their infant. A multi-center hospital-based case control study was conducted in China. There were 322 cases and 333 controls have been selected from pregnant women who received prenatal examinations. Correlations between CHDs and maternal manganese and iron concentrations were estimated by conditional logistic regression. Moreover, the interaction between manganese and iron on CHDs was analyzed. Compared with the controls, mothers whose hair manganese concentration was 3.01 μg/g or more were more likely to have a child with CHD than those with a lower concentration. The adjusted OR was 2.68 (95%CI = 1.44-4.99). The results suggested that mothers whose iron content was 52.95 μg/g or more had a significantly higher risk of having a child with CHD (aOR = 2.87, 95%CI = 1.54-5.37). No interaction between maternal manganese and iron concentrations was observed in the multiplicative or additive model. The concurrently existing high concentration of manganese and iron may bring higher risk of CHD (OR = 7.02). Women with excessive manganese concentrations have a significantly increased risk of having offspring with CHDs. The high maternal iron status also correlates with CHDs. The concurrently existing high concentration of manganese and iron may bring higher risk of CHD.
Collapse
Affiliation(s)
- Meixian Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Tian
- Liupanshui Maternal and Child Health Care Hospital, Liupanshui Children's Hospital, Liupanshui, Guizhou, China
| | - Ping Yu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Nana Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Deng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lu Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hong Kang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dapeng Chen
- Chenghua District Maternal and Child Health Hospital of Chengdu, Chengdu, Sichuan, China
| | - Hui Wang
- Mianyang Maternal and Child Health Care Hospital, Mianyang, Sichuan, China
| | - Zhen Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Juan Liang
- National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Liu Z, Wang M, Yu P, Li X, Lin Y, Duan Y, Tian Y, Zhu J, Deng Y, Li N. Maternal trichloroethylene exposure and metabolic gene polymorphisms may interact during fetal cardiovascular malformation. Reprod Toxicol 2021; 106:1-8. [PMID: 34555461 DOI: 10.1016/j.reprotox.2021.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
This study aimed to analyze the potential association between trichloroethylene (TCE) exposure and congenital heart disease (CHD) and to explore the effect of metabolic enzyme gene polymorphisms on heart development. A multicenter case-control study was conducted. The trichloroethylene concentrations were measured by UPLC-MSMS in urine. Fourteen SNPs in the GSTA1, GSTP1, MPO, NAT1, NAT2, CYP1A1, CYP1A2, CYP2E1 and EPHX1 genes were genotyped using an improved multiplex ligation detection reaction (iMLDR) technique. A total of 283 cases and 331 controls with maternal urine and/or venous blood were included in the present study. The median NAcDCVC was 7.65 ng/mL in the case group and 7.43 ng/mL in the control group. There was no significant difference in the NAcDCVC concentration between the CHD subtypes and controls (P > 0.05). The GA/AA of GSTA1 rs3957357 could increase the risk of CHDs under the dominant model (aOR = 2.26, 95 % CI: 1.31, 3.90), but other SNPs were not associated with CHDs (P > 0.05). GA or AA genotypes of GSTA1 rs3957357 with lower levels of TCE exposure were 3.53 times at risk relative to mothers carrying the wild type genotype. In conclusion, maternal exposure to trichloroethylene alone is not associated with the occurrence of fetal CHD and CHD subtypes. Maternal GSTA1 rs3957357 may increase the risk of CHD in offspring. TCE exposure and metabolic gene polymorphisms probably interact with each other to induce fetal cardiovascular malformation, but larger sample size studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Zhen Liu
- National Center for Birth Defect Monitoring, Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Meixian Wang
- National Center for Birth Defect Monitoring, Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Ping Yu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China; Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Xiaohong Li
- National Center for Birth Defect Monitoring, Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Lin
- Department of Obstetrics & Gynecology, Fujian Provincial Maternal and Child Health Care Hospital, Fuzhou, Fujian, China
| | - Yinghong Duan
- Department of Obstetrics & Gynecology, Huize Maternal and Child Health Care Hospital, Qujing, Yunnan, China
| | - Yan Tian
- Department of Obstetrics & Gynecology, Maternal and Child Health Hospital of Liupanshui, Liupanshui, Guizhou, China
| | - Jun Zhu
- National Center for Birth Defect Monitoring, Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China; Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Ying Deng
- National Center for Birth Defect Monitoring, Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.
| | - Nana Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China; Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Yu H, Wang X, Cao H. Construction and investigation of a circRNA-associated ceRNA regulatory network in Tetralogy of Fallot. BMC Cardiovasc Disord 2021; 21:437. [PMID: 34521346 PMCID: PMC8442392 DOI: 10.1186/s12872-021-02217-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Background As the most frequent type of cyanotic congenital heart disease (CHD), tetralogy of Fallot (TOF) has a relatively poor prognosis without corrective surgery. Circular RNAs (circRNAs) represent a novel class of endogenous noncoding RNAs that regulate target gene expression posttranscriptionally in heart development. Here, we investigated the potential role of the ceRNA network in the pathogenesis of TOF. Methods To identify circRNA expression profiles in TOF, microarrays were used to screen the differentially expressed circRNAs between 3 TOF and 3 control human myocardial tissue samples. Then, a dysregulated circRNA-associated ceRNA network was constructed using the established multistep screening strategy. Results In summary, a total of 276 differentially expressed circRNAs were identified, including 214 upregulated and 62 downregulated circRNAs in TOF samples. By constructing the circRNA-associated ceRNA network based on bioinformatics data, a total of 19 circRNAs, 9 miRNAs, and 34 mRNAs were further screened. Moreover, by enlarging the sample size, the qPCR results validated the positive correlations between hsa_circ_0007798 and HIF1A. Conclusions The findings in this study provide a comprehensive understanding of the ceRNA network involved in TOF biology, such as the hsa_circ_0007798/miR-199b-5p/HIF1A signalling axis, and may offer candidate diagnostic biomarkers or potential therapeutic targets for TOF. In addition, we propose that the ceRNA network regulates TOF progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02217-w.
Collapse
Affiliation(s)
- Haifei Yu
- Department of Cardiac Surgery, Fujian Maternity and Child Health Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primates, National Health and Family Planning Commission, Fuzhou, Fujian, People's Republic of China
| | - Xinrui Wang
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primates, National Health and Family Planning Commission, Fuzhou, Fujian, People's Republic of China. .,Medical Research Centre, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
| | - Hua Cao
- Department of Cardiac Surgery, Fujian Maternity and Child Health Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, People's Republic of China. .,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primates, National Health and Family Planning Commission, Fuzhou, Fujian, People's Republic of China. .,Medical Research Centre, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
16
|
Knutson AK, Williams AL, Boisvert WA, Shohet RV. HIF in the heart: development, metabolism, ischemia, and atherosclerosis. J Clin Invest 2021; 131:137557. [PMID: 34623330 DOI: 10.1172/jci137557] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The heart forms early in development and delivers oxygenated blood to the rest of the embryo. After birth, the heart requires kilograms of ATP each day to support contractility for the circulation. Cardiac metabolism is omnivorous, utilizing multiple substrates and metabolic pathways to produce this energy. Cardiac development, metabolic tuning, and the response to ischemia are all regulated in part by the hypoxia-inducible factors (HIFs), central components of essential signaling pathways that respond to hypoxia. Here we review the actions of HIF1, HIF2, and HIF3 in the heart, from their roles in development and metabolism to their activity in regeneration and preconditioning strategies. We also discuss recent work on the role of HIFs in atherosclerosis, the precipitating cause of myocardial ischemia and the leading cause of death in the developed world.
Collapse
|
17
|
Estermann MA, Mariette MM, Moreau JLM, Combes AN, Smith CA. PAX 2 + Mesenchymal Origin of Gonadal Supporting Cells Is Conserved in Birds. Front Cell Dev Biol 2021; 9:735203. [PMID: 34513849 PMCID: PMC8429852 DOI: 10.3389/fcell.2021.735203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022] Open
Abstract
During embryonic gonadal development, the supporting cell lineage is the first cell type to differentiate, giving rise to Sertoli cells in the testis and pre-granulosa cells in the ovary. These cells are thought to direct other gonadal cell lineages down the testis or ovarian pathways, including the germline. Recent research has shown that, in contrast to mouse, chicken gonadal supporting cells derive from a PAX2/OSR1/DMRT1/WNT4 positive mesenchymal cell population. These cells colonize the undifferentiated genital ridge during early gonadogenesis, around the time that germ cells migrate into the gonad. During the process of somatic gonadal sex differentiation, PAX2 expression is down-regulated in embryonic chicken gonads just prior to up-regulation of testis- and ovary-specific markers and prior to germ cell differentiation. Most research on avian gonadal development has focused on the chicken model, and related species from the Galloanserae clade. There is a lack of knowledge on gonadal sex differentiation in other avian lineages. Comparative analysis in birds is required to fully understand the mechanisms of avian sex determination and gonadal differentiation. Here we report the first comparative molecular characterization of gonadal supporting cell differentiation in birds from each of the three main clades, Galloanserae (chicken and quail), Neoaves (zebra finch) and Palaeognathe (emu). Our analysis reveals conservation of PAX2+ expression and a mesenchymal origin of supporting cells in each clade. Moreover, down-regulation of PAX2 expression precisely defines the onset of gonadal sex differentiation in each species. Altogether, these results indicate that gonadal morphogenesis is conserved among the major bird clades.
Collapse
Affiliation(s)
- Martin A. Estermann
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mylene M. Mariette
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Julie L. M. Moreau
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Alexander N. Combes
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Craig A. Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
18
|
Sun M, Wang T, Huang P, Diao J, Zhang S, Li J, Luo L, Li Y, Chen L, Liu Y, Wei J, Song X, Sheng X, Qin J. Association analysis of maternal MTHFR gene polymorphisms and the occurrence of congenital heart disease in offspring. BMC Cardiovasc Disord 2021; 21:298. [PMID: 34126931 PMCID: PMC8204503 DOI: 10.1186/s12872-021-02117-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Although many studies showed that the risk of congenital heart disease (CHD) was closely related to genetic factors, the exact pathogenesis is still unknown. Our study aimed to comprehensively assess the association of single nucleotide polymorphisms (SNPs) of maternal MTHFR gene with risk of CHD and its three subtypes in offspring. METHODS A case-control study involving 569 mothers of CHD cases and 652 health controls was conducted. Thirteen SNPs were detected and analyzed. RESULTS Our study showed that genetic polymorphisms of maternal MTHFR gene at rs4846052 and rs1801131 were significantly associated with risk of CHD in the homozygote comparisons (TT vs. CC at rs4846052: OR = 7.62 [95%CI 2.95-19.65]; GG vs. TT at rs1801131: OR = 5.18 [95%CI 2.77-9.71]). And six haplotypes of G-C (involving rs4846048 and rs2274976), A-C (involving rs1801133 and rs4846052), G-T (involving rs1801133 and rs4846052), G-T-G (involving rs2066470, rs3737964 and rs535107), A-C-G (involving rs2066470, rs3737964 and rs535107) and G-C-G (involving rs2066470, rs3737964 and rs535107) were identified to be significantly associated with risk of CHD. Additionally, we observed that a two-locus model involving rs2066470 and rs1801131 as well as a three-locus model involving rs227497, rs1801133 and rs1801131 were significantly associated with risk of CHD in the gene-gene interaction analyses. For three subtypes including atrial septal defect, ventricular septal defect and patent ductus arteriosus, similar results were observed. CONCLUSIONS Our study indicated genetic polymorphisms of maternal MTHFR gene were significantly associated with risk of fetal CHD in the Chinese population. Additionally, there were significantly interactions among different SNPs on risk of CHD. However, how these SNPs affect the development of fetal heart remains unknown, and more studies in different ethnic populations and with a larger sample are required to confirm these findings.
Collapse
Affiliation(s)
- Mengting Sun
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Tingting Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China. .,NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 78 Xiangchun Road, Changsha, 410008, Hunan, China.
| | - Peng Huang
- Department of Cardiothoracic Surgery, Hunan Children's Hospital, Changsha, Hunan, China
| | - Jingyi Diao
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Senmao Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Jinqi Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Liu Luo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Yihuan Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Letao Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Yiping Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Jianhui Wei
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Xinli Song
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Xiaoqi Sheng
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 78 Xiangchun Road, Changsha, 410008, Hunan, China.
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China. .,NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 78 Xiangchun Road, Changsha, 410008, Hunan, China. .,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China. .,Hunan Provincial Key Laboratory of Clinical Epidemiology, Hunan, China.
| |
Collapse
|
19
|
Kalisch-Smith JI, Ved N, Szumska D, Munro J, Troup M, Harris SE, Rodriguez-Caro H, Jacquemot A, Miller JJ, Stuart EM, Wolna M, Hardman E, Prin F, Lana-Elola E, Aoidi R, Fisher EMC, Tybulewicz VLJ, Mohun TJ, Lakhal-Littleton S, De Val S, Giannoulatou E, Sparrow DB. Maternal iron deficiency perturbs embryonic cardiovascular development in mice. Nat Commun 2021; 12:3447. [PMID: 34103494 PMCID: PMC8187484 DOI: 10.1038/s41467-021-23660-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women.
Collapse
Affiliation(s)
- Jacinta I Kalisch-Smith
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Nikita Ved
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Dorota Szumska
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Jacob Munro
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Michael Troup
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
| | - Shelley E Harris
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Helena Rodriguez-Caro
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Aimée Jacquemot
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Ealing Hospital, London, UK
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Eleanor M Stuart
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Magda Wolna
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Emily Hardman
- Heart Development Laboratory, The Francis Crick Institute, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fabrice Prin
- Heart Development Laboratory, The Francis Crick Institute, London, UK
- Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | - Eva Lana-Elola
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
| | - Rifdat Aoidi
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
| | | | - Victor L J Tybulewicz
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
- Imperial College London, London, UK
| | - Timothy J Mohun
- Heart Development Laboratory, The Francis Crick Institute, London, UK
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Sarah De Val
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research Limited, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Duncan B Sparrow
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Abstract
Congenital heart disease is the most frequent birth defect and the leading cause of death for the fetus and in the first year of life. The wide phenotypic diversity of congenital heart defects requires expert diagnosis and sophisticated repair surgery. Although these defects have been described since the seventeenth century, it was only in 2005 that a consensus international nomenclature was adopted, followed by an international classification in 2017 to help provide better management of patients. Advances in genetic engineering, imaging, and omics analyses have uncovered mechanisms of heart formation and malformation in animal models, but approximately 80% of congenital heart defects have an unknown genetic origin. Here, we summarize current knowledge of congenital structural heart defects, intertwining clinical and fundamental research perspectives, with the aim to foster interdisciplinary collaborations at the cutting edge of each field. We also discuss remaining challenges in better understanding congenital heart defects and providing benefits to patients.
Collapse
Affiliation(s)
- Lucile Houyel
- Unité de Cardiologie Pédiatrique et Congénitale and Centre de Référence des Malformations Cardiaques Congénitales Complexes (M3C), Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France.,Université de Paris, 75015 Paris, France
| | - Sigolène M Meilhac
- Université de Paris, 75015 Paris, France.,Imagine-Institut Pasteur Unit of Heart Morphogenesis, INSERM UMR 1163, 75015 Paris, France;
| |
Collapse
|
21
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|
22
|
Doll CF, Pereira NJ, Hashimi MS, Grindrod TJ, Alkassis FF, Cai LX, Milovanovic U, Sandino AI, Kasahara H. Gestational intermittent hyperoxia rescues murine genetic congenital heart disease in part. Sci Rep 2021; 11:6608. [PMID: 33758249 PMCID: PMC7988122 DOI: 10.1038/s41598-021-85569-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/22/2021] [Indexed: 11/09/2022] Open
Abstract
Cardiac development is a dynamic process, temporally and spatially. When disturbed, it leads to congenital cardiac anomalies that affect approximately 1% of live births. Genetic variants in several loci lead to anomalies, with the transcription factor NKX2-5 being one of the largest. However, there are also non-genetic factors that influence cardiac malformations. We examined the hypothesis that hyperoxia may be beneficial and can rescue genetic cardiac anomalies induced by an Nkx2-5 mutation. Intermittent mild hyperoxia (40% PO2) was applied for 10 h per day to normal wild-type female mice mated with heterozygous Nkx2-5 mutant males from gestational day 8.5 to birth. Hyperoxia therapy reduced excessive trabeculation in Nkx2-5 mutant mice compared to normoxic conditions (ratio of trabecular layer relative to compact layer area, normoxia 1.84 ± 0.07 vs. hyperoxia 1.51 ± 0.04) and frequency of muscular ventricular septal defects per heart (1.53 ± 0.32 vs. 0.68 ± 0.15); however, the incidence of membranous ventricular septal defects in Nkx2-5 mutant hearts was not changed. Nkx2-5 mutant embryonic hearts showed defective coronary vessel organization, which was improved by intermittent mild hyperoxia. The results of our study showed that mild gestational hyperoxia therapy rescued genetic cardiac malformation induced by Nkx2-5 mutation in part.
Collapse
Affiliation(s)
- Cassandra F Doll
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd. M543, Gainesville, FL, 32610-0274, USA
| | - Natalia J Pereira
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd. M543, Gainesville, FL, 32610-0274, USA
| | - Mustafa S Hashimi
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd. M543, Gainesville, FL, 32610-0274, USA
| | - Tabor J Grindrod
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd. M543, Gainesville, FL, 32610-0274, USA
| | - Fariz F Alkassis
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd. M543, Gainesville, FL, 32610-0274, USA
| | - Lawrence X Cai
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd. M543, Gainesville, FL, 32610-0274, USA
| | - Una Milovanovic
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd. M543, Gainesville, FL, 32610-0274, USA
| | - Adriana I Sandino
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd. M543, Gainesville, FL, 32610-0274, USA
| | - Hideko Kasahara
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd. M543, Gainesville, FL, 32610-0274, USA. .,International University of Health and Welfare, School of Medicine, 852 Hatakeda, Narita, Chiba, Japan.
| |
Collapse
|
23
|
Men H, Cai H, Cheng Q, Zhou W, Wang X, Huang S, Zheng Y, Cai L. The regulatory roles of p53 in cardiovascular health and disease. Cell Mol Life Sci 2021; 78:2001-2018. [PMID: 33179140 PMCID: PMC11073000 DOI: 10.1007/s00018-020-03694-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality globally, so further investigation is required to identify its underlying mechanisms and potential targets for its prevention. The transcription factor p53 functions as a gatekeeper, regulating a myriad of genes to maintain normal cell functions. It has received a great deal of research attention as a tumor suppressor. In the past three decades, evidence has also shown a regulatory role for p53 in the heart. Basal p53 is essential for embryonic cardiac development; it is also necessary to maintain normal heart architecture and physiological function. In pathological cardiovascular circumstances, p53 expression is elevated in both patient samples and animal models. Elevated p53 plays a regulatory role via anti-angiogenesis, pro-programmed cell death, metabolism regulation, and cell cycle arrest regulation. This largely promotes the development of CVDs, particularly cardiac remodeling in the infarcted heart, hypertrophic cardiomyopathy, dilated cardiomyopathy, and diabetic cardiomyopathy. Roles for p53 have also been found in atherosclerosis and chemotherapy-induced cardiotoxicity. However, it has different roles in cardiomyocytes and non-myocytes, even in the same model. In this review, we describe the different effects of p53 in cardiovascular physiological and pathological conditions, in addition to potential CVD therapies targeting p53.
Collapse
Affiliation(s)
- Hongbo Men
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, 40202, USA
| | - He Cai
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Quanli Cheng
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Wenqian Zhou
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, 40202, USA
| | - Xiang Wang
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, 40202, USA
| | - Shan Huang
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, 40202, USA
| | - Yang Zheng
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.
| | - Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
24
|
Liu Z, Wang M, Tang Q, He F, Li N, Deng Y, Yu P, Zhu J, Li X. Unintended pregnancy-related factors and the occurrence of offspring congenital heart disease: a multi-site case-control study in China. EUR J CONTRACEP REPR 2021; 26:221-226. [PMID: 33624567 DOI: 10.1080/13625187.2020.1862081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The aim of this study was to explore the association between unintended pregnancy and related factors among congenital heart defects (CHDs) in infants. METHODS A total of 1197 cases with isolated CHDs and 1125 controls without any abnormalities were analysed in this multicentre study at seven hospitals in China. According to the pregnancy intention, cases were divided into two groups: planned and unintended pregnancies. The adjusted odds ratio (AOR) was calculated by logistic regression analysis to assess the association between unintended pregnancy and CHD occurrence. The time to prepare for pregnancy and the influencing factors were also compared in this article. RESULTS The risk for CHD occurrence was significantly associated with unintended pregnancy (AOR: 1.42; 95%CI: 1.16-1.73), which may increase the risks for each subtype of CHD occurrence. Risks such as parental smoking, housing renovation, accidental alcohol consumption, lack of health check-ups, and no folic acid supplementation before pregnancy were distributed differently among the planned and unintended pregnancy groups and were associated with CHD occurrence. However, there was no significant association between the duration of planned pregnancy and the risk of CHDs. CONCLUSIONS Unintended pregnancy increased the risk of CHDs in infants. This risk may be related to some known and unknown factors. SYNOPSIS Some unintended pregnancy related factors may increase the risk for foetal CHDs. The duration of planning pregnancy may not be associated with the risk of CHDs.
Collapse
Affiliation(s)
- Zhen Liu
- National Center for Birth Defect Monitoring, Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, China
| | - Meixian Wang
- National Center for Birth Defect Monitoring, Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, China
| | - Qin Tang
- Department of Obstetrics and Gynecology, Maternal and Child Healthcare Hospital of Peng'an County, Nanchong, China
| | - Fang He
- Department of Obstetrics and Gynecology, Maternal and Child Healthcare Hospital of Qingbaijiang, Chengdu, China
| | - Nana Li
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, China
| | - Ying Deng
- National Center for Birth Defect Monitoring, Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, China
| | - Ping Yu
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, China
| | - Jun Zhu
- National Center for Birth Defect Monitoring, Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, China
| | - Xiaohong Li
- National Center for Birth Defect Monitoring, Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
McCully S. The time has come to extend the 14-day limit. JOURNAL OF MEDICAL ETHICS 2021; 47:medethics-2020-106406. [PMID: 33531360 DOI: 10.1136/medethics-2020-106406] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 05/04/2023]
Abstract
For the past 40 years, the 14-day rule has governed and, by defining a clear boundary, enabled embryo research and the clinical benefits derived from this. It has been both a piece of legislation and a rule of good practice globally. However, methods now allow embryos to be cultured for more than 14 days, something difficult to imagine when the rule was established, and knowledge gained in the intervening years provides robust scientific rationale for why it is now essential to conduct research on later stage human embryos. In this paper, I argue that the current limit for embryo research in vitro should be extended to 28 days to permit research that will illuminate our beginnings as well as provide new therapeutic possibilities to reduce miscarriage and developmental abnormalities. It will also permit validation of potentially useful alternatives. Through consideration of current ethical arguments, I also conclude that there are no coherent or persuasive reasons to deny researchers, and through them humanity, the knowledge and the innovation that this will generate.
Collapse
Affiliation(s)
- Sophia McCully
- Department of Global Health and Social Medicine, King's College London, London, UK
| |
Collapse
|
26
|
Abstract
Congenital heart disease is the most common congenital defect observed in newborns. Within the spectrum of congenital heart disease are left‐sided obstructive lesions (LSOLs), which include hypoplastic left heart syndrome, aortic stenosis, bicuspid aortic valve, coarctation of the aorta, and interrupted aortic arch. These defects can arise in isolation or as a component of a defined syndrome; however, nonsyndromic defects are often observed in multiple family members and associated with high sibling recurrence risk. This clear evidence for a heritable basis has driven a lengthy search for disease‐causing variants that has uncovered both rare and common variants in genes that, when perturbed in cardiac development, can result in LSOLs. Despite advancements in genetic sequencing platforms and broadening use of exome sequencing, the currently accepted LSOL‐associated genes explain only 10% to 20% of patients. Further, the combinatorial effects of common and rare variants as a cause of LSOLs are emerging. In this review, we highlight the genes and variants associated with the different LSOLs and discuss the strengths and weaknesses of the present genetic associations. Furthermore, we discuss the research avenues needed to bridge the gaps in our current understanding of the genetic basis of nonsyndromic congenital heart disease.
Collapse
Affiliation(s)
- Lauren E Parker
- Division of Cardiology Department of Pediatrics Duke University School of Medicine Durham NC
| | - Andrew P Landstrom
- Division of Cardiology Department of Pediatrics Duke University School of Medicine Durham NC.,Department of Cell Biology Duke University School of Medicine Durham NC
| |
Collapse
|
27
|
Yalçin SS, Dönmez Y, Aypar E, Yalçin S. Element profiles in blood and teeth samples of children with congenital heart diseases in comparison with healthy ones. J Trace Elem Med Biol 2021; 63:126662. [PMID: 33126039 DOI: 10.1016/j.jtemb.2020.126662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/29/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Some elements were claimed to play a role in the pathogenesis of congenital heart defects (CHD) and influence the general well-being and health of these children. OBJECTIVES We aimed to assess the levels of some elements simultaneously in the blood and teeth samples of children with cyanotic and acyanotic CHD compared with healthy children. METHODS A total of 39 children with CHD (11 with cyanotic and 28 with acyanotic CHD) and 42 age- and sex-adjusted controls were enrolled. Levels of 13 elements, including magnesium, phosphorus, calcium, chromium, manganese, iron, copper, zinc, strontium, cadmium, lead, mercury, and molybdenum, were assessed using inductively coupled plasma mass spectrometry. RESULTS Children with cyanotic and acyanotic CHD had significantly lower teeth calcium and calcium/phosphorus ratio as compared to the controls after adjusting for confounders. The mean blood iron level was found to be significantly higher in the cyanotic CHD group compared to the other groups. In addition, children with acyanotic CHD had significantly higher teeth copper levels, higher blood molybdenum and lower blood magnesium levels compared to the healthy control group. Blood cadmium and mercury levels were found to be significantly elevated in both the cyanotic and acyanotic CHD groups compared to the healthy control group. There were no differences in toxic metal levels of teeth in cases with CHD. CONCLUSION Monitoring adequate and balanced gestational micronutrient intake might support not only maternal health but also fetal cardiac development and infant well-being. Supplementation of magnesium should be evaluated in patients having CHD.
Collapse
Affiliation(s)
- Sıddıka Songül Yalçin
- Unit of Social Pediatrics, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - Yasemin Dönmez
- Unit of Pediatric Cardiology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ebru Aypar
- Unit of Pediatric Cardiology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Suzan Yalçin
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey
| |
Collapse
|
28
|
Adam AP, Curry CJ, Hall JG, Keppler-Noreuil KM, Adam MP, Dobyns WB. Recurrent constellations of embryonic malformations re-conceptualized as an overlapping group of disorders with shared pathogenesis. Am J Med Genet A 2020; 182:2646-2661. [PMID: 32924308 DOI: 10.1002/ajmg.a.61847] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
Several recurrent malformation associations affecting the development of the embryo have been described in which a genetic etiology has not been found, including LBWC, MURCS, OAVS, OEIS, POC, VACTERL, referred to here as "recurrent constellations of embryonic malformations" (RCEM). All are characterized by an excess of reported monozygotic discordant twins and lack of familial recurrence. We performed a comprehensive review of published twin data across all six phenotypes to allow a more robust assessment of the association with twinning and potential embryologic timing of a disruptive event. We recorded the type of twinning, any overlapping features of another RCEM, maternal characteristics, and the use of ART. Statistically significant associations included an excess of monozygotic twins and 80% discordance rate for the phenotype across all twins. There was an 18.5% rate of ART and no consistently reported maternal adverse events during pregnancy. We found 24 instances of co-occurrence of two RCEM, suggesting a shared pathogenesis across all RCEM phenotypes. We hypothesize the following timing for RCEM phenotypes from the earliest perturbation in development to the latest: LBWC, POC, OEIS, VACTERL, OAVS, then MURCS. The RCEM group of conditions should be considered a spectrum that could be studied as a group.
Collapse
Affiliation(s)
- Aaron P Adam
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Cynthia J Curry
- Genetic Medicine, Department of Pediatrics, University of California San Francisco, Fresno, California, USA
| | - Judith G Hall
- Pediatrics and Medical Genetics, Children's and Women's Health Center of BC, UBC, Vancouver, British Columbia, Canada.,Department of Medical Genetics, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Kim M Keppler-Noreuil
- Division of Genetics and Metabolism, Rare Disease Institute, Children's National, Washington, District of Columbia, USA
| | - Margaret P Adam
- Divison of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - William B Dobyns
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
29
|
Nie Z, Yang B, Ou Y, Bloom MS, Han F, Qu Y, Nasca P, Matale R, Mai J, Wu Y, Gao X, Guo Y, Markevych I, Zou Y, Lin S, Dong G, Liu X. Maternal residential greenness and congenital heart defects in infants: A large case-control study in Southern China. ENVIRONMENT INTERNATIONAL 2020; 142:105859. [PMID: 32593836 DOI: 10.1016/j.envint.2020.105859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/07/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Proximity to greenness has shown protective effects on coronary heart diseases by limiting exposure to environmental hazards, encouraging physical activity, and reducing mental stress. However, no studies have previously evaluated the impacts of greenness on congenital heart defects (CHDs). We examined the association between maternal residential greenness and the risks of CHDs. METHODS We conducted a case-control study (8042 children with major CHDs and 6887 controls without malformations) in 21 cities in Southern China, 2004 - 2016. CHDs cases were diagnosed and verified by obstetrician, pediatrician, or pediatric cardiologists, within one year. We estimated maternal residential greenness using satellite-derived normalized difference vegetation index (NDVI) in zones of 500 meters (m) and 1000 m surrounding participants' residences. Logistic regression models were used to assess NDVI-CHD relationships adjusting for confounders. RESULTS Interquartile range NDVI increases within 500 m or 1000 m were associated with odds ratios (OR) of 0.95 (95% confidence interval (CI): 0.92, 0.98) and 0.94 (95%CI: 0.91, 0.97) for total CHDs respectively. Air pollutants mediated 52.1% of the association. We also identified a protective threshold at 0.21 NDVI on CHD. Similar protective effects from greenness were found in most CHDs subtypes. The protective associations were stronger for fall, urban or permanent residents, higher household income maternal age ≤35 years of age, and high maternal education (ORs: ranged from 0.85 to 0.96). CONCLUSION Our findings suggest a beneficial effect of maternal residential greenness on CHDs. Further studies are needed to confirm our findings, which will help to refine preventive health and urban design strategies.
Collapse
Affiliation(s)
- Zhiqiang Nie
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Boyi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Yuexiu District, Guangzhou 510080, China
| | - Yanqiu Ou
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Michael S Bloom
- Departments of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, One University Place, Rensselaer, Albany, NY 12144, USA
| | - Fengzhen Han
- Department of Obstetrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road , Guangzhou 510080, Guangdong, China
| | - Yanji Qu
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Philip Nasca
- Departments of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, One University Place, Rensselaer, Albany, NY 12144, USA
| | - Rosemary Matale
- Departments of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, One University Place, Rensselaer, Albany, NY 12144, USA
| | - Jinzhuang Mai
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Yong Wu
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Xiangmin Gao
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Yuming Guo
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Yuexiu District, Guangzhou 510080, China
| | - Iana Markevych
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Yuexiu District, Guangzhou 510080, China
| | - Yuxuan Zou
- School of Geographical Sciences, Guangzhou University, Guangzhou 510080, China
| | - Shao Lin
- Departments of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, One University Place, Rensselaer, Albany, NY 12144, USA.
| | - Guanghui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Yuexiu District, Guangzhou 510080, China.
| | - Xiaoqing Liu
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
30
|
Wang H, Liu Y, Han S, Zi Y, Zhang Y, Kong R, Liu Z, Cai Z, Zhong C, Liu W, Li L, Jiang L. Nkx2-5 Regulates the Proliferation and Migration of H9c2 Cells. Med Sci Monit 2020; 26:e925388. [PMID: 32780729 PMCID: PMC7441744 DOI: 10.12659/msm.925388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background The protein NKX2–5 affects mammalian heart development. In mice, the disruption of Nkx2–5 has been associated with arrhythmias, abnormal myocardial contraction, abnormal cardiac morphogenesis, and death. However, the details of the mechanisms are unclear. This study was designed to investigate them. Material/Methods Rat cardiomyocytes from the H9c2 cell line were used in our study. First, we knocked down Nkx2–5 in the H9c2 cells and then validated consequent changes in cell proliferation and migration. We then used RNA sequencing to determine the changes in transcripts. Finally, we validated these results by quantitative reverse transcription-polymerase chain reaction. Results We confirmed that Nkx2–5 regulates the proliferation and migration of H9c2 cells. In our experiments, Nkx2–5 regulated the expression of genes related to proliferation, migration, heart development, and disease. Based on bioinformatics analysis, knockdown of Nkx2–5 caused differential expression of genes involved in cardiac development, calcium ion-related biological activity, the transforming growth factor (TGF)-β signaling pathway, pathways related to heart diseases, the MAPK signaling pathway, and other biological processes and signaling pathways. Conclusions Nkx2–5 may regulate proliferation and migration of the H9c2 cells through the genes Tgfb-2, Bmp10, Id2, Wt1, Hey1, and Cacna1g; rno-miR-1-3p; the TGF-β signaling pathway; the MAPK signaling pathway; as well as other genes and pathways.
Collapse
Affiliation(s)
- Hongshu Wang
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Yong Liu
- Fuwai Yunnan Cardiovascular Hospital, Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Shen Han
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Yunfeng Zi
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Yayong Zhang
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Ruize Kong
- The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Zu Liu
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Zhibin Cai
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Chongbin Zhong
- Department of Thoracic Surgery, The People's Hospital of Chuxiong Yi Autonomous Prefecture, Chuxiong, Yunnan, China (mainland)
| | - Wei Liu
- Department II of Hepatobillary Surgery, The People's Hospital of Chuxiong Yi Autonomous Prefecture, Chuxiong, Yunnan, China (mainland)
| | - Lifeng Li
- Department of Thoracic Surgery, The People's Hospital of Chuxiong Yi Autonomous Prefecture, Chuxiong, Yunnan, China (mainland)
| | - Lihong Jiang
- The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| |
Collapse
|
31
|
Beames TG, Lipinski RJ. Gene-environment interactions: aligning birth defects research with complex etiology. Development 2020; 147:147/21/dev191064. [PMID: 32680836 DOI: 10.1242/dev.191064] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Developmental biologists rely on genetics-based approaches to understand the origins of congenital abnormalities. Recent advancements in genomics have made it easier than ever to investigate the relationship between genes and disease. However, nonsyndromic birth defects often exhibit non-Mendelian inheritance, incomplete penetrance or variable expressivity. The discordance between genotype and phenotype indicates that extrinsic factors frequently impact the severity of genetic disorders and vice versa. Overlooking gene-environment interactions in birth defect etiology limits our ability to identify and eliminate avoidable risks. We present mouse models of sonic hedgehog signaling and craniofacial malformations to illustrate both the importance of and current challenges in resolving gene-environment interactions in birth defects. We then prescribe approaches for overcoming these challenges, including use of genetically tractable and environmentally responsive in vitro systems. Combining emerging technologies with molecular genetics and traditional animal models promises to advance our understanding of birth defect etiology and improve the identification and protection of vulnerable populations.
Collapse
Affiliation(s)
- Tyler G Beames
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.,Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA .,Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
32
|
Shrestha R, Lieberth J, Tillman S, Natalizio J, Bloomekatz J. Using Zebrafish to Analyze the Genetic and Environmental Etiologies of Congenital Heart Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:189-223. [PMID: 32304074 DOI: 10.1007/978-981-15-2389-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Congenital heart defects (CHDs) are among the most common human birth defects. However, the etiology of a large proportion of CHDs remains undefined. Studies identifying the molecular and cellular mechanisms that underlie cardiac development have been critical to elucidating the origin of CHDs. Building upon this knowledge to understand the pathogenesis of CHDs requires examining how genetic or environmental stress changes normal cardiac development. Due to strong molecular conservation to humans and unique technical advantages, studies using zebrafish have elucidated both fundamental principles of cardiac development and have been used to create cardiac disease models. In this chapter we examine the unique toolset available to zebrafish researchers and how those tools are used to interrogate the genetic and environmental contributions to CHDs.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Jaret Lieberth
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Savanna Tillman
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Joseph Natalizio
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | | |
Collapse
|
33
|
Wang J, Kuang Z, Ma Z, Han G. GBDTL2E: Predicting lncRNA-EF Associations Using Diffusion and HeteSim Features Based on a Heterogeneous Network. Front Genet 2020; 11:272. [PMID: 32351537 PMCID: PMC7174746 DOI: 10.3389/fgene.2020.00272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/06/2020] [Indexed: 12/02/2022] Open
Abstract
Interactions between genetic factors and environmental factors (EFs) play an important role in many diseases. Many diseases result from the interaction between genetics and EFs. The long non-coding RNA (lncRNA) is an important non-coding RNA that regulates life processes. The ability to predict the associations between lncRNAs and EFs is of important practical significance. However, the recent methods for predicting lncRNA-EF associations rarely use the topological information of heterogenous biological networks or simply treat all objects as the same type without considering the different and subtle semantic meanings of various paths in the heterogeneous network. In order to address this issue, a method based on the Gradient Boosting Decision Tree (GBDT) to predict the association between lncRNAs and EFs (GBDTL2E) is proposed in this paper. The innovation of the GBDTL2E integrates the structural information and heterogenous networks, combines the Hetesim features and the diffusion features based on multi-feature fusion, and uses the machine learning algorithm GBDT to predict the association between lncRNAs and EFs based on heterogeneous networks. The experimental results demonstrate that the proposed algorithm achieves a high performance.
Collapse
Affiliation(s)
- Jiaqi Wang
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhufang Kuang
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhihao Ma
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Genwei Han
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
34
|
Kalisch-Smith JI, Ved N, Sparrow DB. Environmental Risk Factors for Congenital Heart Disease. Cold Spring Harb Perspect Biol 2020; 12:a037234. [PMID: 31548181 PMCID: PMC7050589 DOI: 10.1101/cshperspect.a037234] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Congenital heart disease (CHD) has many forms and a wide range of causes. Clinically, it is important to understand the causes. This allows estimation of recurrence rate, guides treatment options, and may also be used to formulate public health advice to reduce the population prevalence of CHD. The recent advent of sophisticated genetic and genomic methods has led to the identification of more than 100 genes associated with CHD. However, despite these great strides, to date only one-third of CHD cases have been shown to have a simple genetic cause. This is because CHD can also be caused by oligogenic factors, environmental factors, and/or gene-environment interaction. Although solid evidence for environmental causes of CHD have been available for almost 80 years, it is only very recently that the molecular mechanisms for these risk factors have begun to be investigated. In this review, we describe the most important environmental CHD risk factors, and what is known about how they cause CHD.
Collapse
Affiliation(s)
| | - Nikita Ved
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, United Kingdom
| | - Duncan Burnaby Sparrow
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, United Kingdom
| |
Collapse
|
35
|
NAD deficiency due to environmental factors or gene-environment interactions causes congenital malformations and miscarriage in mice. Proc Natl Acad Sci U S A 2020; 117:3738-3747. [PMID: 32015132 DOI: 10.1073/pnas.1916588117] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Causes for miscarriages and congenital malformations can be genetic, environmental, or a combination of both. Genetic variants, hypoxia, malnutrition, or other factors individually may not affect embryo development, however, they may do so collectively. Biallelic loss-of-function variants in HAAO or KYNU, two genes of the nicotinamide adenine dinucleotide (NAD) synthesis pathway, are causative of congenital malformation and miscarriage in humans and mice. The variants affect normal embryonic development by disrupting the synthesis of NAD, a key factor in multiple biological processes, from its dietary precursor tryptophan, resulting in NAD deficiency. This study demonstrates that congenital malformations caused by NAD deficiency can occur independent of genetic disruption of NAD biosynthesis. C57BL/6J wild-type mice had offspring exhibiting similar malformations when their supply of the NAD precursors tryptophan and vitamin B3 in the diet was restricted during pregnancy. When the dietary undersupply was combined with a maternal heterozygous variant in Haao, which alone does not cause NAD deficiency or malformations, the incidence of embryo loss and malformations was significantly higher, suggesting a gene-environment interaction. Maternal and embryonic NAD levels were deficient. Mild hypoxia as an additional factor exacerbated the embryo outcome. Our data show that NAD deficiency as a cause of embryo loss and congenital malformation is not restricted to the rare cases of biallelic mutations in NAD synthesis pathway genes. Instead, monoallelic genetic variants and environmental factors can result in similar outcomes. The results expand our understanding of the causes of congenital malformations and the importance of sufficient NAD precursor consumption during pregnancy.
Collapse
|
36
|
Poncet N, Halley PA, Lipina C, Gierliński M, Dady A, Singer GA, Febrer M, Shi Y, Yamaguchi TP, Taylor PM, Storey KG. Wnt regulates amino acid transporter Slc7a5 and so constrains the integrated stress response in mouse embryos. EMBO Rep 2020; 21:e48469. [PMID: 31789450 PMCID: PMC6944906 DOI: 10.15252/embr.201948469] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 12/29/2022] Open
Abstract
Amino acids are essential for cellular metabolism, and it is important to understand how nutrient supply is coordinated with changing energy requirements during embryogenesis. Here, we show that the amino acid transporter Slc7a5/Lat1 is highly expressed in tissues undergoing morphogenesis and that Slc7a5-null mouse embryos have profound neural and limb bud outgrowth defects. Slc7a5-null neural tissue exhibited aberrant mTORC1 activity and cell proliferation; transcriptomics, protein phosphorylation and apoptosis analyses further indicated induction of the integrated stress response as a potential cause of observed defects. The pattern of stress response gene expression induced in Slc7a5-null embryos was also detected at low level in wild-type embryos and identified stress vulnerability specifically in tissues undergoing morphogenesis. The Slc7a5-null phenotype is reminiscent of Wnt pathway mutants, and we show that Wnt/β-catenin loss inhibits Slc7a5 expression and induces this stress response. Wnt signalling therefore normally supports the metabolic demands of morphogenesis and constrains cellular stress. Moreover, operation in the embryo of the integrated stress response, which is triggered by pathogen-mediated as well as metabolic stress, may provide a mechanistic explanation for a range of developmental defects.
Collapse
Affiliation(s)
- Nadège Poncet
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
- Present address:
Institute of PhysiologyUniversity of ZürichZürichSwitzerland
| | - Pamela A Halley
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Christopher Lipina
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Marek Gierliński
- Division of Computational BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Alwyn Dady
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Gail A Singer
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Melanie Febrer
- Sequencing FacilitySchool of Life SciencesUniversity of DundeeDundeeUK
- Present address:
Illumina CanadaVictoriaBCCanada
| | - Yun‐Bo Shi
- Section on Molecular MorphogenesisNICHD, NIHBethesdaMDUSA
| | - Terry P Yamaguchi
- Cancer and Developmental Biology LaboratoryCenter for Cancer ResearchNational Cancer Institute‐Frederick, NIHFrederickMDUSA
| | - Peter M Taylor
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Kate G Storey
- Division of Cell & Developmental BiologySchool of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
37
|
Cannizzaro E, Ramaci T, Cirrincione L, Plescia F. Work-Related Stress, Physio-Pathological Mechanisms, and the Influence of Environmental Genetic Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4031. [PMID: 31640269 PMCID: PMC6843930 DOI: 10.3390/ijerph16204031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/16/2022]
Abstract
Work-related stress is a growing health problem in modern society. The stress response is characterized by numerous neurochemicals, neuroendocrine and immune modifications that involve various neurological systems and circuits, and regulation of the gene expression of the different receptors. In this regard, a lot of research has focused the attention on the role played by the environment in influencing gene expression, which in turn can control the stress response. In particular, genetic factors can moderate the sensitivities of specific types of neural cells or circuits mediating the imprinting of the environment on different biological systems. In this current review, we wish to analyze systematic reviews and recent experimental research on the physio-pathological mechanisms that underline stress-related responses. In particular, we analyze the relationship between genetic and epigenetic factors in the stress response.
Collapse
Affiliation(s)
- Emanuele Cannizzaro
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities "Giuseppe D'Alessandro", University of Palermo, via del Vespro 133, 90127 Palermo, Italy.
| | - Tiziana Ramaci
- Faculty of Human and Social Sciences, Kore University of Enna, 94100 Enna, Italy.
| | - Luigi Cirrincione
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities "Giuseppe D'Alessandro", University of Palermo, via del Vespro 133, 90127 Palermo, Italy.
| | - Fulvio Plescia
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities "Giuseppe D'Alessandro", University of Palermo, via del Vespro 133, 90127 Palermo, Italy.
| |
Collapse
|
38
|
Zhao Z, Zhan Y, Chen W, Ma X, Sheng W, Huang G. Functional analysis of rare variants of GATA4 identified in Chinese patients with congenital heart defect. Genesis 2019; 57:e23333. [PMID: 31513339 DOI: 10.1002/dvg.23333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 08/27/2019] [Indexed: 12/16/2022]
Abstract
Congenital heart defect (CHD) is one of the most common cardiovascular diseases, affecting approximately 0.8% of live births. The transcription factor GATA4 has been known to play a key role in cardiac development. In this study, we performed whole exome sequencing in nine unrelated CHD patients and found two rare deleterious missense variants in the GATA4 gene (c.C487T,p.P163S and c.C1223A,p.P408Q) (ExAC <0.001 and CADD >15) in three cases that were confirmed by Sanger sequencing. Subsequently, these two variants were screened for in an additional 226 patients with CHD and 206 healthy controls by Sanger sequencing, and no variants were observed. These two variants were predicted to be damaging to protein function using a functional prediction program. Co-IP indicated that both of the GATA4 variants (P163S and P408Q) blocked heterodimer formation between GATA4 and ZFPM2 protein. Immunofluorescence showed that the two GATA4 variants diminished the colocalization formation between GATA4 and ZFPM2 protein compared to that of WT protein. These findings indicate that the two rare variants of GATA4 might disturb its interaction with ZFPM2 and influence corresponding downstream gene activity, suggesting that the GATA4 variants may be associated with the pathogenesis of CHD.
Collapse
Affiliation(s)
- Zhengshan Zhao
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yongkun Zhan
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Weicheng Chen
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaojing Ma
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Wei Sheng
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Guoying Huang
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| |
Collapse
|
39
|
Fang T, Zhu Y, Xu A, Zhang Y, Wu Q, Huang G, Sheng W, Chen M. Functional analysis of the congenital heart disease‑associated GATA4 H436Y mutation in vitro. Mol Med Rep 2019; 20:2325-2331. [PMID: 31322241 PMCID: PMC6691264 DOI: 10.3892/mmr.2019.10481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022] Open
Abstract
Congenital heart disease (CHD) is the most common type of developmental defect, with high rates of morbidity in infants. The transcription factor GATA‑binding factor 4 (GATA4) has been reported to serve a critical role in embryogenesis and cardiac development. Our previous study reported a heterozygous GATA4 c.1306C>T (p.H436Y) mutation in four Chinese infants with congenital heart defects. In the present study, functional analysis of the GATA4 H436Y mutation was performed in vitro. The functional effect of GATA4 mutation was compared with GATA4 wild‑type using a dual‑luciferase reporter assay system and immunofluorescence. Electrophoretic mobility‑shift assays were performed to explore the binding affinity of the mutated GATA4 to the heart and neural crest derivatives expressed 2 (HAND2) gene. The results revealed that the mutation had no effect on normal nuclear localization, but resulted in diminished GATA‑binding affinity to HAND2 and significantly decreased gene transcriptional activation. These results indicated that this GATA4 mutation may not influence cellular localization in transfected cells, but may affect the affinity of the GATA‑binding site on HAND2 and decrease transcriptional activity, thus suggesting that the GATA4 mutation may be associated with the pathogenesis of CHD.
Collapse
Affiliation(s)
- Tao Fang
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| | - Yanjie Zhu
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Anlan Xu
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| | - Yanli Zhang
- Department of Neonatology, Anhui Women and Child Health Care Hospital, Hefei, Anhui 230027, P.R. China
| | - Qingfa Wu
- Department of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Guoying Huang
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Wei Sheng
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Mingwu Chen
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| |
Collapse
|