1
|
Young AM, Miller JA, Ednie AR, Bennett ES. Cardiomyocyte Reduction of Hybrid/Complex N-Glycosylation in the Adult Causes Heart Failure With Reduced Ejection Fraction in the Absence of Cellular Remodeling. J Am Heart Assoc 2024; 13:e036626. [PMID: 39392134 DOI: 10.1161/jaha.124.036626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Heart failure (HF) presents a massive burden to health care with a complex pathophysiology that results in HF with reduced left ventricle ejection fraction (EF) or HF with preserved EF. It has been shown that relatively modest changes in protein glycosylation, an essential posttranslational modification, are associated with clinical presentations of HF. We and others previously showed that such aberrant protein glycosylation in animal models can lead to HF. METHODS AND RESULTS We develop and characterize a novel, tamoxifen-inducible, cardiomyocyte Mgat1 knockout mouse strain, achieved through deletion of Mgat1, alpha-1,3-mannosyl-glycoproten 2-beta-N-acetlyglucosaminyltransferase, which encodes N-acetylglucosaminyltransferase I. We investigate the role of hybrid/complex N-glycosylation in adult HFrEF pathogenesis at the ion channel, cardiomyocyte, tissue, and gross cardiac level. The data demonstrate successful reduction of N-acetylglucosaminyltransferase I activity and confirm that hybrid/complex N-glycans modulate gating of cardiomyocyte voltage-gated calcium channels. A longitudinal study shows that the tamoxifen-inducible, cardiomyocyte Mgat1 knockout mice present with significantly reduced systolic function by 28 days post induction that progresses into HFrEF by 8 weeks post induction, without significant ventricular dilation or hypertrophy. Further, there was minimal, if any, physiologic or pathophysiologic cardiomyocyte electromechanical remodeling or fibrosis observed before (10-21 days post induction) or after (90-130 days post induction) HFrEF development. CONCLUSIONS The tamoxifen-inducible, cardiomyocyte Mgat1 knockout mouse strain created and characterized here provides a model to describe novel mechanisms and causes responsible for HFrEF onset in the adult, likely occurring primarily through tissue-level reductions in electromechanical activity in the absence of (or at least before) cardiomyocyte remodeling and fibrosis.
Collapse
Affiliation(s)
- Anthony M Young
- Department of Neuroscience, Cell Biology & Physiology Boonshoft School of Medicine and College of Science and Mathematics, Wright State University Dayton OH
| | - John A Miller
- Department of Neuroscience, Cell Biology & Physiology Boonshoft School of Medicine and College of Science and Mathematics, Wright State University Dayton OH
| | - Andrew R Ednie
- Department of Neuroscience, Cell Biology & Physiology Boonshoft School of Medicine and College of Science and Mathematics, Wright State University Dayton OH
| | - Eric S Bennett
- Department of Neuroscience, Cell Biology & Physiology Boonshoft School of Medicine and College of Science and Mathematics, Wright State University Dayton OH
| |
Collapse
|
2
|
Vanhecke D, Bugada V, Steiner R, Polić B, Buch T. Refined tamoxifen administration in mice by encouraging voluntary consumption of palatable formulations. Lab Anim (NY) 2024; 53:205-214. [PMID: 39080504 PMCID: PMC11291282 DOI: 10.1038/s41684-024-01409-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
Drug administration in preclinical rodent models is essential for research and the development of novel therapies. Compassionate administration methods have been developed, but these are mostly incompatible with water-insoluble drugs such as tamoxifen or do not allow for precise timing or dosing of the drugs. For more than two decades, tamoxifen has been administered by oral gavage or injection to CreERT2-loxP gene-modified mouse models to spatiotemporally control gene expression, with the numbers of such inducible models steadily increasing in recent years. Animal-friendly procedures for accurately administering tamoxifen or other water-insoluble drugs would, therefore, have an important impact on animal welfare. On the basis of a previously published micropipette feeding protocol, we developed palatable formulations to encourage voluntary consumption of tamoxifen. We evaluated the acceptance of the new formulations by mice during training and treatment and assessed the efficacy of tamoxifen-mediated induction of CreERT2-loxP-dependent reporter genes. Both sweetened milk and syrup-based formulations encouraged mice to consume tamoxifen voluntarily, but only sweetened milk formulations were statistically noninferior to oral gavage or intraperitoneal injections in inducing CreERT2-mediated gene expression. Serum concentrations of tamoxifen metabolites, quantified using an in-house-developed cell assay, confirmed the lower efficacy of syrup- as compared to sweetened milk-based formulations. We found dosing with a micropipette to be more accurate than oral gavage or injection, with the added advantage that the method requires little training for the experimenter. The new palatable solutions encourage voluntary consumption of tamoxifen without loss of efficacy compared to oral gavage or injections and thus represent a refined administration method.
Collapse
Affiliation(s)
- Dominique Vanhecke
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Viola Bugada
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Regula Steiner
- Institute of Clinical Chemistry, University and University Hospital of Zurich, Zurich, Switzerland
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Marrow JP, Alshamali R, Edgett BA, Allwood MA, Cochrane KLS, Al-Sabbag S, Ayoub A, Ask K, Hare GMT, Brunt KR, Simpson JA. Cardiomyocyte crosstalk with endothelium modulates cardiac structure, function, and ischemia-reperfusion injury susceptibility through erythropoietin. Front Physiol 2024; 15:1397049. [PMID: 39011088 PMCID: PMC11246973 DOI: 10.3389/fphys.2024.1397049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Erythropoietin (EPO) exerts non-canonical roles beyond erythropoiesis that are developmentally, structurally, and physiologically relevant for the heart as a paracrine factor. The role for paracrine EPO signalling and cellular crosstalk in the adult is uncertain. Here, we provided novel evidence showing cardiomyocyte restricted loss of function in Epo in adult mice induced hyper-compensatory increases in Epo expression by adjacent cardiac endothelial cells via HIF-2α independent mechanisms. These hearts showed concentric cellular hypertrophy, elevated contractility and relaxation, and greater resistance to ischemia-reperfusion injury. Voluntary exercise capacity compared to control hearts was improved independent of any changes to whole-body metabolism or blood O2 content or delivery (i.e., hematocrit). Our findings suggest cardiac EPO had a localized effect within the normoxic heart, which was regulated by cell-specific EPO-reciprocity between cardiomyocytes and endothelium. Within the heart, hyper-compensated endothelial Epo expression was accompanied by elevated Vegfr1 and Vegfb RNA, that upon pharmacological pan-inhibition of VEGF-VEGFR signaling, resulted in a paradoxical upregulation in whole-heart Epo. Thus, we provide the first evidence that a novel EPO-EPOR/VEGF-VEGFR axis exists to carefully mediate cardiac homeostasis via cardiomyocyte-endothelial EPO crosstalk.
Collapse
Affiliation(s)
- Jade P Marrow
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| | - Razan Alshamali
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| | - Brittany A Edgett
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Melissa A Allwood
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| | - Kyla L S Cochrane
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| | - Sara Al-Sabbag
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Anmar Ayoub
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Gregory M T Hare
- IMPART Investigator Team Canada, Guelph, ON, Canada
- Department of Anesthesiology and Pain Medicine, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Keith R Brunt
- IMPART Investigator Team Canada, Guelph, ON, Canada
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| |
Collapse
|
4
|
Novak S, Tanigawa H, Singh V, Root SH, Schmidt TA, Hankenson KD, Kalajzic I. Endothelial to mesenchymal Notch signaling regulates skeletal repair. JCI Insight 2024; 9:e181073. [PMID: 38781018 PMCID: PMC11383173 DOI: 10.1172/jci.insight.181073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
We present a transcriptomic analysis that provides a better understanding of regulatory mechanisms within the healthy and injured periosteum. The focus of this work is on characterizing early events controlling bone healing during formation of periosteal callus on day 3 after fracture. Building on our previous findings showing that induced Notch1 signaling in osteoprogenitors leads to better healing, we compared samples in which the Notch 1 intracellular domain is overexpressed by periosteal stem/progenitor cells, with control intact and fractured periosteum. Molecular mechanisms and changes in skeletal stem/progenitor cells (SSPCs) and other cell populations within the callus, including hematopoietic lineages, were determined. Notably, Notch ligands were differentially expressed in endothelial and mesenchymal populations, with Dll4 restricted to endothelial cells, whereas Jag1 was expressed by mesenchymal populations. Targeted deletion of Dll4 in endothelial cells using Cdh5CreER resulted in negative effects on early fracture healing, while deletion in SSPCs using α-smooth muscle actin-CreER did not impact bone healing. Translating these observations into a clinically relevant model of bone healing revealed the beneficial effects of delivering Notch ligands alongside the osteogenic inducer, BMP2. These findings provide insights into the regulatory mechanisms within the healthy and injured periosteum, paving the way for novel translational approaches to bone healing.
Collapse
Affiliation(s)
- Sanja Novak
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Hitoshi Tanigawa
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Vijender Singh
- Institute for Systems Genomics, Computational Biology Core, UConn, Storrs, Connecticut, USA
| | - Sierra H Root
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Tannin A Schmidt
- Biomedical Engineering Department, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
5
|
Sikder K, Phillips E, Zhong Z, Wang N, Saunders J, Mothy D, Kossenkov A, Schneider T, Nichtova Z, Csordas G, Margulies KB, Choi JC. Perinuclear damage from nuclear envelope deterioration elicits stress responses that contribute to LMNA cardiomyopathy. SCIENCE ADVANCES 2024; 10:eadh0798. [PMID: 38718107 PMCID: PMC11078192 DOI: 10.1126/sciadv.adh0798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2024] [Indexed: 05/12/2024]
Abstract
Mutations in the LMNA gene encoding lamins A/C cause an array of tissue-selective diseases, with the heart being the most commonly affected organ. Despite progress in understanding the perturbations emanating from LMNA mutations, an integrative understanding of the pathogenesis underlying cardiac dysfunction remains elusive. Using a novel conditional deletion model capable of translatome profiling, we observed that cardiomyocyte-specific Lmna deletion in adult mice led to rapid cardiomyopathy with pathological remodeling. Before cardiac dysfunction, Lmna-deleted cardiomyocytes displayed nuclear abnormalities, Golgi dilation/fragmentation, and CREB3-mediated stress activation. Translatome profiling identified MED25 activation, a transcriptional cofactor that regulates Golgi stress. Autophagy is disrupted in the hearts of these mice, which can be recapitulated by disrupting the Golgi. Systemic administration of modulators of autophagy or ER stress significantly delayed cardiac dysfunction and prolonged survival. These studies support a hypothesis wherein stress responses emanating from the perinuclear space contribute to the LMNA cardiomyopathy development.
Collapse
Affiliation(s)
- Kunal Sikder
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia PA, USA
| | - Elizabeth Phillips
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia PA, USA
| | - Zhijiu Zhong
- Translational Research and Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nadan Wang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia PA, USA
| | - Jasmine Saunders
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia PA, USA
| | - David Mothy
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia PA, USA
| | - Andrew Kossenkov
- Bioinformatics Facility, The Wistar Institute Cancer Center, Philadelphia, PA, USA
| | - Timothy Schneider
- Mitocare, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zuzana Nichtova
- Mitocare, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gyorgy Csordas
- Mitocare, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kenneth B. Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason C. Choi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia PA, USA
| |
Collapse
|
6
|
Shi R, Ma X, Zhou M, Xie X, Xu L. Integrated analysis reveals the dysfunction of intercellular communication and metabolic signals in dilated cardiomyopathy. Heliyon 2024; 10:e26803. [PMID: 38434389 PMCID: PMC10907783 DOI: 10.1016/j.heliyon.2024.e26803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Aims Dilated cardiomyopathy refers to a heart muscle condition characterized by structural and functional irregularities in the myocardium that are not related to ischemia. Due to diverse etiologies such as genetic mutations, infections, and exposure to toxins, dilated cardiomyopathy can lead to substantial morbidity and mortality despite advances in the management of heart failure in dilated cardiomyopathy patients. We sought to analyze the characteristics of cell-cell communication and the metabolic signaling pathways in dilated cardiomyopathy. Methods and results The single-nucleus sequencing data of left ventricle samples were acquired from two donor datasets and two dilated cardiomyopathy datasets. Three dilated cardiomyopathy bulk-sequencing datasets were included to determine the shared dilated cardiomyopathy-specific alterations in differentially expressed genes and signaling pathways. Using "CellChat," we analyzed intercellular communication to grasp how cell clusters interact and to map out the impaired signaling pathways in both donor and dilated cardiomyopathy conditions. Gene set enrichment analysis was applied to compare the metabolic signaling before and after dilated cardiomyopathy. We showcased how cell clusters exhibited abnormal cell-to-cell signaling transduction and how each cell type displayed dysfunctional metabolic signaling pathways through the integration of various datasets. The crucial ligand-receptor signaling contributing to outgoing or incoming signaling of dilated cardiomyopathy was identified in a cell-type dependent way, and the cell-specific metabolic alterations in glucose, lipid and amino acid were determined. The expression of gene pairs in BMP and NOTCH signal, as well as the gene expression in the arginine metabolism was validated. Conclusions We reveal the key signals and metabolic pathways for dilated cardiomyopathy adaptation and maintenance, providing potential targets for dilated cardiomyopathy interference.
Collapse
Affiliation(s)
- Rui Shi
- Department of Obstetrics and Gynecology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiue Ma
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Mi Zhou
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin Xie
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Liang Xu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 201620, China
| |
Collapse
|
7
|
Ye Z, Okamoto R, Ito H, Ito R, Moriwaki K, Ichikawa M, Kimena L, Ali Y, Ito M, Gomez‐Sanchez CE, Dohi K. Myosin Light Chain Phosphatase Plays an Important Role in Cardiac Fibrosis in a Model of Mineralocorticoid Receptor-Associated Hypertension. J Am Heart Assoc 2024; 13:e032828. [PMID: 38420846 PMCID: PMC10944028 DOI: 10.1161/jaha.123.032828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Myosin phosphatase targeting subunit 2 (MYPT2) is an important subunit of cardiac MLC (myosin light chain) phosphatase, which plays a crucial role in regulating the phosphorylation of MLC to phospho-MLC (p-MLC). A recent study demonstrated mineralocorticoid receptor-related hypertension is associated with RhoA/Rho-associated kinase/MYPT1 signaling upregulation in smooth muscle cells. Our purpose is to investigate the effect of MYPT2 on cardiac function and fibrosis in mineralocorticoid receptor-related hypertension. METHODS AND RESULTS HL-1 murine cardiomyocytes were incubated with different concentrations or durations of aldosterone. After 24-hour stimulation, aldosterone increased CTGF (connective tissue growth factor) and MYPT2 and decreased p-MLC in a dose-dependent manner. MYPT2 knockdown decreased CTGF. Cardiac-specific MYPT2-knockout (c-MYPT2-/-) mice exhibited decreased type 1 phosphatase catalytic subunit β and increased p-MLC. A disease model of mouse was induced by subcutaneous aldosterone and 8% NaCl food for 4 weeks after uninephrectomy. Blood pressure elevation and left ventricular hypertrophy were observed in both c-MYPT2-/- and MYPT2+/+ mice, with no difference in heart weights or nuclear localization of mineralocorticoid receptor in cardiomyocytes. However, c-MYPT2-/- mice had higher ejection fraction and fractional shortening on echocardiography after aldosterone treatment. Histopathology revealed less fibrosis, reduced CTGF, and increased p-MLC in c-MYPT2-/- mice. Basal global radial strain and global longitudinal strain were higher in c-MYPT2-/- than in MYPT2+/+ mice. After aldosterone treatment, both global radial strain and global longitudinal strain remained higher in c-MYPT2-/- mice compared with MYPT2+/+ mice. CONCLUSIONS Cardiac-specific MYPT2 knockout leads to decreased myosin light chain phosphatase and increased p-MLC. MYPT2 deletion prevented cardiac fibrosis and dysfunction in a model of mineralocorticoid receptor-associated hypertension.
Collapse
Affiliation(s)
- Zhe Ye
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Ryuji Okamoto
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
- Regional Medical Support CenterMie University HospitalTsuMieJapan
- Department of Clinical Training and Career Support CenterMie University HospitalTsuMieJapan
| | - Hiromasa Ito
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Rie Ito
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Keishi Moriwaki
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Mizuki Ichikawa
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Lupiya Kimena
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Yusuf Ali
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Masaaki Ito
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Celso E. Gomez‐Sanchez
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Kaoru Dohi
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| |
Collapse
|
8
|
Rashbrook VS, Denti L, Ruhrberg C. Tamoxifen exacerbates morbidity and mortality in male mice receiving medetomidine anaesthesia. Anim Welf 2023; 32:e78. [PMID: 38487465 PMCID: PMC10936365 DOI: 10.1017/awf.2023.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/20/2023] [Accepted: 11/21/2023] [Indexed: 03/17/2024]
Abstract
Tamoxifen-induced CreER-LoxP recombination is often used to induce spatiotemporally controlled gene deletion in genetically modified mice. Prior work has shown that tamoxifen and tamoxifen-induced CreER activation can have off-target effects that should be controlled. However, it has not yet been reported whether tamoxifen administration, independently of CreER expression, interacts adversely with commonly used anaesthetic drugs such as medetomidine or its enantiomer dexmedetomidine in laboratory mice (Mus musculus). Here, we report a high incidence of urinary plug formation and morbidity in male mice on a mixed C57Bl6/J6 and 129/SvEv background when tamoxifen treatment was followed by ketamine-medetomidine anaesthesia. Medetomidine is therefore contra-indicated for male mice after tamoxifen treatment. As dexmedetomidine causes morbidity and mortality in male mice at higher rates than medetomidine even without tamoxifen treatment, our findings suggest that dexmedetomidine is not a suitable alternative for anaesthesia of male mice after tamoxifen treatment. We conclude that the choice of anaesthetic drug needs to be carefully evaluated in studies using male mice that have undergone tamoxifen treatment for inducing CreER-LoxP recombination.
Collapse
Affiliation(s)
- Victoria S Rashbrook
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Laura Denti
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
9
|
Mao H, Angelini A, Li S, Wang G, Li L, Patterson C, Pi X, Xie L. CRAT links cholesterol metabolism to innate immune responses in the heart. Nat Metab 2023; 5:1382-1394. [PMID: 37443356 PMCID: PMC10685850 DOI: 10.1038/s42255-023-00844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Chronic inflammation is associated with increased risk and poor prognosis of heart failure; however, the precise mechanism that provokes sustained inflammation in the failing heart remains elusive. Here we report that depletion of carnitine acetyltransferase (CRAT) promotes cholesterol catabolism through bile acid synthesis pathway in cardiomyocytes. Intracellular accumulation of bile acid or intermediate, 7α-hydroxyl-3-oxo-4-cholestenoic acid, induces mitochondrial DNA stress and triggers cGAS-STING-dependent type I interferon responses. Furthermore, type I interferon responses elicited by CRAT deficiency substantially increase AIM2 expression and AIM2-dependent inflammasome activation. Genetic deletion of cardiomyocyte CRAT in mice of both sexes results in myocardial inflammation and dilated cardiomyopathy, which can be reversed by combined depletion of caspase-1, cGAS or AIM2. Collectively, we identify a mechanism by which cardiac energy metabolism, cholesterol homeostasis and cardiomyocyte-intrinsic innate immune responses are interconnected via a CRAT-mediated bile acid synthesis pathway, which contributes to chronic myocardial inflammation and heart failure progression.
Collapse
Affiliation(s)
- Hua Mao
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Aude Angelini
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Shengyu Li
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Luge Li
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Cam Patterson
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Xinchun Pi
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Liang Xie
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA.
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
10
|
Sikder K, Phillips E, Zhong Z, Wang N, Saunders J, Mothy D, Kossenkov A, Schneider T, Nichtova Z, Csordas G, Margulies KB, Choi JC. Perinuclear damage from nuclear envelope deterioration elicits stress responses that contribute to LMNA cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528563. [PMID: 36824975 PMCID: PMC9949050 DOI: 10.1101/2023.02.14.528563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Mutations in the LMNA gene encoding nuclear lamins A/C cause a diverse array of tissue-selective diseases, with the heart being the most commonly affected organ. Despite progress in understanding the molecular perturbations emanating from LMNA mutations, an integrative understanding of the pathogenesis leading to cardiac dysfunction remains elusive. Using a novel cell-type specific Lmna deletion mouse model capable of translatome profiling, we found that cardiomyocyte-specific Lmna deletion in adult mice led to rapid cardiomyopathy with pathological remodeling. Prior to the onset of cardiac dysfunction, lamin A/C-depleted cardiomyocytes displayed nuclear envelope deterioration, golgi dilation/fragmentation, and CREB3-mediated golgi stress activation. Translatome profiling identified upregulation of Med25, a transcriptional co-factor that can selectively dampen UPR axes. Autophagy is disrupted in the hearts of these mice, which can be recapitulated by disrupting the golgi or inducing nuclear damage by increased matrix stiffness. Systemic administration of pharmacological modulators of autophagy or ER stress significantly improved the cardiac function. These studies support a hypothesis wherein stress responses emanating from the perinuclear space contribute to the development of LMNA cardiomyopathy. Teaser Interplay of stress responses underlying the development of LMNA cardiomyopathy.
Collapse
|
11
|
Rossi M, Salomon A, Chaumontel N, Molet J, Bailly S, Tillet E, Bouvard C. Warning regarding hematological toxicity of tamoxifen activated CreERT2 in young Rosa26CreERT2 mice. Sci Rep 2023; 13:5976. [PMID: 37045870 PMCID: PMC10097815 DOI: 10.1038/s41598-023-32633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
The Cre-lox system is a versatile and powerful tool used in mouse genetics. It allows spatial and/or temporal control of the deletion of a target gene. The Rosa26-CreERT2 (R26CreERT2) mouse model allows ubiquitous expression of CreERT2. Once activated by tamoxifen, CreERT2 will enter into the nuclei and delete floxed DNA sequences. Here, we show that intraperitoneal injection of tamoxifen in young R26CreERT2 mice leads to morbidity and mortality within 10 days after the first injection, in the absence of a floxed allele. Activation of CreERT2 by tamoxifen led to severe hematological defects, with anemia and a strong disorganization of the bone marrow vascular bed. Cell proliferation was significantly reduced in the bone marrow and the spleen resulting in the depletion of several hematopoietic cells. However, not all cell types or organs were affected to the same extent. We realized that many research groups are not aware of the potential toxicity of Cre recombinases, resulting in misinterpretation of the observed phenotype and in a waste of time and resources. We discuss the necessity to include tamoxifen injected CreERT2 controls lacking a floxed allele in experimental designs and to improve communication about the limitations of Cre-lox mouse models among the scientific community.
Collapse
Affiliation(s)
- Martina Rossi
- Laboratory BioSanté U1292, Univ. Grenoble Alpes, INSERM, CEA, 38000, Grenoble, France
| | - Aude Salomon
- Laboratory BioSanté U1292, Univ. Grenoble Alpes, INSERM, CEA, 38000, Grenoble, France
| | - Nicolas Chaumontel
- Laboratory BioSanté U1292, Univ. Grenoble Alpes, INSERM, CEA, 38000, Grenoble, France
| | - Jenny Molet
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France
| | - Sabine Bailly
- Laboratory BioSanté U1292, Univ. Grenoble Alpes, INSERM, CEA, 38000, Grenoble, France
| | - Emmanuelle Tillet
- Laboratory BioSanté U1292, Univ. Grenoble Alpes, INSERM, CEA, 38000, Grenoble, France
| | - Claire Bouvard
- Laboratory BioSanté U1292, Univ. Grenoble Alpes, INSERM, CEA, 38000, Grenoble, France.
| |
Collapse
|
12
|
Johnson J, Yang Y, Bian Z, Schena G, Li Y, Zhang X, Eaton DM, Gross P, Angheloiu A, Shaik A, Foster M, Berretta R, Kubo H, Mohsin S, Tian Y, Houser SR. Systemic Hypoxemia Induces Cardiomyocyte Hypertrophy and Right Ventricular Specific Induction of Proliferation. Circ Res 2023; 132:723-740. [PMID: 36799218 PMCID: PMC10023496 DOI: 10.1161/circresaha.122.321604] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND A recent study suggests that systemic hypoxemia in adult male mice can induce cardiac myocytes to proliferate. The goal of the present experiments was to confirm these results, provide new insights on the mechanisms that induce adult cardiomyocyte cell cycle reentry, and to determine if hypoxemia also induces cardiomyocyte proliferation in female mice. METHODS EdU-containing mini pumps were implanted in 3-month-old, male and female C57BL/6 mice. Mice were placed in a hypoxia chamber, and the oxygen was lowered by 1% every day for 14 days to reach 7% oxygen. The animals remained in 7% oxygen for 2 weeks before terminal studies. Myocyte proliferation was also studied with a mosaic analysis with double markers mouse model. RESULTS Hypoxia induced cardiac hypertrophy in both left ventricular (LV) and right ventricular (RV) myocytes, with LV myocytes lengthening and RV myocytes widening and lengthening. Hypoxia induced an increase (0.01±0.01% in normoxia to 0.11±0.09% in hypoxia) in the number of EdU+ RV cardiomyocytes, with no effect on LV myocytes in male C57BL/6 mice. Similar results were observed in female mice. Furthermore, in mosaic analysis with double markers mice, hypoxia induced a significant increase in RV myocyte proliferation (0.03±0.03% in normoxia to 0.32±0.15% in hypoxia of RFP+ myocytes), with no significant change in LV myocyte proliferation. RNA sequencing showed upregulation of mitotic cell cycle genes and a downregulation of Cullin genes, which promote the G1 to S phase transition in hypoxic mice. There was significant proliferation of nonmyocytes and mild cardiac fibrosis in hypoxic mice that did not disrupt cardiac function. Male and female mice exhibited similar gene expression following hypoxia. CONCLUSIONS Systemic hypoxia induces a global hypertrophic stress response that was associated with increased RV proliferation, and while LV myocytes did not show increased proliferation, our results minimally confirm previous reports that hypoxia can induce cardiomyocyte cell cycle activity in vivo.
Collapse
Affiliation(s)
- Jaslyn Johnson
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yijun Yang
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Zilin Bian
- Tandon School of Engineering, New York University, Brooklyn, NY, USA
| | | | - Yijia Li
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xiaoying Zhang
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Deborah M. Eaton
- Penn Cardiovascular Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Polina Gross
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | | | | | | | - Remus Berretta
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hajime Kubo
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sadia Mohsin
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ying Tian
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Steven R. Houser
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
13
|
Landstrom AP, Yang Q, Sun B, Perelli RM, Bidzimou MT, Zhang Z, Aguilar-Sanchez Y, Alsina KM, Cao S, Reynolds JO, Word TA, van der Sangen NM, Wells Q, Kannankeril PJ, Ludwig A, Kim JJ, Wehrens XH. Reduction in Junctophilin 2 Expression in Cardiac Nodal Tissue Results in Intracellular Calcium-Driven Increase in Nodal Cell Automaticity. Circ Arrhythm Electrophysiol 2023; 16:e010858. [PMID: 36706317 PMCID: PMC9974897 DOI: 10.1161/circep.122.010858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/06/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Spontaneously depolarizing nodal cells comprise the pacemaker of the heart. Intracellular calcium (Ca2+) plays a critical role in mediating nodal cell automaticity and understanding this so-called Ca2+ clock is critical to understanding nodal arrhythmias. We previously demonstrated a role for Jph2 (junctophilin 2) in regulating Ca2+-signaling through inhibition of RyR2 (ryanodine receptor 2) Ca2+ leak in cardiac myocytes; however, its role in pacemaker function and nodal arrhythmias remains unknown. We sought to determine whether nodal Jph2 expression silencing causes increased sinoatrial and atrioventricular nodal cell automaticity due to aberrant RyR2 Ca2+ leak. METHODS A tamoxifen-inducible, nodal tissue-specific, knockdown mouse of Jph2 was achieved using a Cre-recombinase-triggered short RNA hairpin directed against Jph2 (Hcn4:shJph2). In vivo cardiac rhythm was monitored by surface ECG, implantable cardiac telemetry, and intracardiac electrophysiology studies. Intracellular Ca2+ imaging was performed using confocal-based line scans of isolated nodal cells loaded with fluorescent Ca2+ reporter Cal-520. Whole cell patch clamp was conducted on isolated nodal cells to determine action potential kinetics and sodium-calcium exchanger function. RESULTS Hcn4:shJph2 mice demonstrated a 40% reduction in nodal Jph2 expression, resting sinus tachycardia, and impaired heart rate response to pharmacologic stress. In vivo intracardiac electrophysiology studies and ex vivo optical mapping demonstrated accelerated junctional rhythm originating from the atrioventricular node. Hcn4:shJph2 nodal cells demonstrated increased and irregular Ca2+ transient generation with increased Ca2+ spark frequency and Ca2+ leak from the sarcoplasmic reticulum. This was associated with increased nodal cell AP firing rate, faster diastolic repolarization rate, and reduced sodium-calcium exchanger activity during repolarized states compared to control. Phenome-wide association studies of the JPH2 locus identified an association with sinoatrial nodal disease and atrioventricular nodal block. CONCLUSIONS Nodal-specific Jph2 knockdown causes increased nodal automaticity through increased Ca2+ leak from intracellular stores. Dysregulated intracellular Ca2+ underlies nodal arrhythmogenesis in this mouse model.
Collapse
Affiliation(s)
- Andrew P. Landstrom
- Dept of Pediatrics, Division of Cardiology, Duke Univ School of Medicine, Durham, NC
- Dept of Cell Biology, Duke Univ School of Medicine, Durham, NC
| | - Qixin Yang
- Dept of Pediatrics, Division of Cardiology, Duke Univ School of Medicine, Durham, NC
- Dept of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang Univ, Hangzhou, China
| | - Bo Sun
- Dept of Pediatrics, Division of Cardiology, Duke Univ School of Medicine, Durham, NC
| | | | | | - Zhushan Zhang
- Dept of Cell Biology, Duke Univ School of Medicine, Durham, NC
| | - Yuriana Aguilar-Sanchez
- Integrative Molecular & Biomedical Sciences Program, Baylor College of Medicine, Houston, TX
| | - Katherina M. Alsina
- Integrative Molecular & Biomedical Sciences Program, Baylor College of Medicine, Houston, TX
| | - Shuyi Cao
- Dept of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX
| | - Julia O. Reynolds
- Dept of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX
| | - Tarah A. Word
- Dept of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX
| | | | - Quinn Wells
- Depts of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt Univ School of Medicine, Nashville, TN
| | - Prince J. Kannankeril
- Center for Pediatric Precision Medicine, Dept of Pediatrics, Vanderbilt Univ School of Medicine, Nashville, TN
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jeffrey J. Kim
- Dept of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, TX
| | - Xander H.T. Wehrens
- Dept of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX
- Dept of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, TX
- Depts of Neuroscience & Center for Space Medicine and the Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX
| |
Collapse
|
14
|
Comparative Evaluation of Inducible Cre Mouse Models for Fibroblast Targeting in the Healthy and Infarcted Myocardium. Biomedicines 2022; 10:biomedicines10102350. [PMID: 36289614 PMCID: PMC9598630 DOI: 10.3390/biomedicines10102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Several Cre recombinase transgenic mouse models have been generated for cardiac fibroblast (CF) tracking and heart regulation. However, there is still no consensus on the ideal mouse model to optimally identify and/or regulate these cells. Here, a comparative evaluation of the efficiency and specificity of the indirect reporter Cre-loxP system was carried out in three of the most commonly used fibroblast reporter transgenic mice (Pdgfra-CreERT2, Col1a1-CreERT2 and PostnMCM) under healthy and ischemic conditions, to determine their suitability in in vivo studies of cardiac fibrosis. We demonstrate optimal Cre recombinase activity in CF (but also, although moderate, in endothelial cells (ECs)) derived from healthy and infarcted hearts in the PDGFRa-creERT2 mouse strain. In contrast, no positive reporter signal was found in CF derived from the Col1a1-CreERT2 mice. Finally, in the PostnMCM line, fluorescent reporter expression was specifically detected in activated CF but not in EC, which leads us to conclude that it may be the most reliable model for future studies on cardiovascular disease. Importantly, no lethality or cardiac fibrosis were induced after tamoxifen administration at the established doses, either in healthy or infarcted mice of the three fibroblast reporter lineages. This study lays the groundwork for future efficient in vivo CF tracking and functional analyses.
Collapse
|
15
|
Garcia-Gonzalez C, Dieterich C, Maroli G, Wiesnet M, Wietelmann A, Li X, Yuan X, Graumann J, Stellos K, Kubin T, Schneider A, Braun T. ADAR1 Prevents Autoinflammatory Processes in the Heart Mediated by IRF7. Circ Res 2022; 131:580-597. [PMID: 36000401 DOI: 10.1161/circresaha.122.320839] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND ADAR1 (adenosine deaminase acting on RNA-1)-mediated adenosine to inosine (A-to-I) RNA editing plays an essential role for distinguishing endogenous from exogenous RNAs, preventing autoinflammatory ADAR1 also regulates cellular processes by recoding specific mRNAs, thereby altering protein functions, but may also act in an editing-independent manner. The specific role of ADAR1 in cardiomyocytes and its mode of action in the heart is not fully understood. To determine the role of ADAR1 in the heart, we used different mutant mouse strains, which allows to distinguish immunogenic, editing-dependent, and editing-independent functions of ADAR1. METHODS Different Adar1-mutant mouse strains were employed for gene deletion or specific inactivation of ADAR1 enzymatic activity in cardiomyocytes, either alone or in combination with Ifih1 (interferon induced with helicase C domain 1) or Irf7 (interferon regulatory factor 7) gene inactivation. Mutant mice were investigated by immunofluorescence, Western blot, RNAseq, proteomics, and functional MRI analysis. RESULTS Inactivation of Adar1 in cardiomyocytes resulted in late-onset autoinflammatory myocarditis progressing into dilated cardiomyopathy and heart failure at 6 months of age. Adar1 depletion activated interferon signaling genes but not NFκB (nuclear factor kappa B) signaling or apoptosis and reduced cardiac hypertrophy during pressure overload via induction of Irf7. Additional inactivation of the cytosolic RNA sensor MDA5 (melanoma differentiation-associated gene 5; encoded by the Ifih1 gene) in Adar1 mutant mice prevented activation of interferon signaling gene and delayed heart failure but did not prevent lethality after 8.5 months. In contrast, compound mutants only expressing catalytically inactive ADAR1 in an Ifih1-mutant background were completely normal. Inactivation of Irf7 attenuated the phenotype of Adar1-deficient cardiomyocytes to a similar extent as Ifih1 depletion, identifying IRF7 as the main mediator of autoinflammatory responses caused by the absence of ADAR1 in cardiomyocytes. CONCLUSIONS Enzymatically active ADAR1 prevents IRF7-mediated autoinflammatory reactions in the heart triggered by endogenous nonedited RNAs. In addition to RNA editing, ADAR1 also serves editing-independent roles in the heart required for long-term cardiac function and survival.
Collapse
Affiliation(s)
- Claudia Garcia-Gonzalez
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.).,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. Del Hospital Universitario, Oviedo, Spain (C.G.-G.)
| | - Christoph Dieterich
- Department of Internal Medicine III and Klaus Tschira Institute for Computational Cardiology, Section of Bioinformatics and Systems Cardiology, University Hospital, Heidelberg, Germany (C.D.)
| | - Giovanni Maroli
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Marion Wiesnet
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Astrid Wietelmann
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Xiang Li
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Xuejun Yuan
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Johannes Graumann
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.).,German Centre for Cardiovascular Research (DZHK), Partner Sites Rhine-Main and Heidelberg/Mannheim, Bad Nauheim and Mannheim, Germany (J.G., K.S., T.B.)
| | - Konstantinos Stellos
- German Centre for Cardiovascular Research (DZHK), Partner Sites Rhine-Main and Heidelberg/Mannheim, Bad Nauheim and Mannheim, Germany (J.G., K.S., T.B.).,Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (K.S.).,Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom (K.S.)
| | - Thomas Kubin
- Department of Cardiac Surgery, Kerckhoff Heart Center, Bad Nauheim, Germany (T.K.)
| | - Andre Schneider
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Thomas Braun
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.).,German Centre for Cardiovascular Research (DZHK), Partner Sites Rhine-Main and Heidelberg/Mannheim, Bad Nauheim and Mannheim, Germany (J.G., K.S., T.B.)
| |
Collapse
|
16
|
Hirose W, Horiuchi M, Li D, Motoike IN, Zhang L, Nishi H, Taniyama Y, Kamei T, Suzuki M, Kinoshita K, Katsuoka F, Taguchi K, Yamamoto M. Selective Elimination of NRF2-Activated Cells by Competition With Neighboring Cells in the Esophageal Epithelium. Cell Mol Gastroenterol Hepatol 2022; 15:153-178. [PMID: 36115578 PMCID: PMC9672893 DOI: 10.1016/j.jcmgh.2022.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS NF-E2-related factor 2 (NRF2) is a transcription factor that regulates cytoprotective gene expression in response to oxidative and electrophilic stresses. NRF2 activity is mainly controlled by Kelch-like ECH-associated protein 1 (KEAP1). Constitutive NRF2 activation by NRF2 mutations or KEAP1 dysfunction results in a poor prognosis for esophageal squamous cell carcinoma (ESCC) through the activation of cytoprotective functions. However, the detailed contributions of NRF2 to ESCC initiation or promotion have not been clarified. Here, we investigated the fate of NRF2-activated cells in the esophageal epithelium. METHODS We generated tamoxifen-inducible, squamous epithelium-specific Keap1 conditional knockout (Keap1-cKO) mice in which NRF2 was inducibly activated in a subset of cells at the adult stage. Histologic, quantitative reverse-transcription polymerase chain reaction, single-cell RNA-sequencing, and carcinogen experiments were conducted to analyze the Keap1-cKO esophagus. RESULTS KEAP1-deleted/NRF2-activated cells and cells with normal NRF2 expression (KEAP1-normal cells) coexisted in the Keap1-cKO esophageal epithelium in approximately equal numbers, and NRF2-activated cells formed dysplastic lesions. NRF2-activated cells exhibited weaker attachment to the basement membrane and gradually disappeared from the epithelium. In contrast, neighboring KEAP1-normal cells exhibited accelerated proliferation and started dominating the epithelium but accumulated DNA damage that triggered carcinogenesis upon carcinogen exposure. CONCLUSIONS Constitutive NRF2 activation promotes the selective elimination of epithelial cells via cell competition, but this competition induces DNA damage in neighboring KEAP1-normal cells, which predisposes them to chemical-induced ESCC.
Collapse
Affiliation(s)
- Wataru Hirose
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan,Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Horiuchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan,Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Donghan Li
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ikuko N. Motoike
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Lin Zhang
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Hafumi Nishi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Yusuke Taniyama
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mikiko Suzuki
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Graduate School of Information Sciences, Tohoku University, Sendai, Japan,Advanced Research Center for Innovations in Next Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Fumiki Katsuoka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Advanced Research Center for Innovations in Next Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Advanced Research Center for Innovations in Next Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Advanced Research Center for Innovations in Next Generation Medicine (INGEM), Tohoku University, Sendai, Japan.
| |
Collapse
|
17
|
Rashbrook VS, Brash JT, Ruhrberg C. Cre toxicity in mouse models of cardiovascular physiology and disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:806-816. [PMID: 37692772 PMCID: PMC7615056 DOI: 10.1038/s44161-022-00125-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/27/2022] [Indexed: 09/12/2023]
Abstract
The Cre-LoxP system provides a widely used method for studying gene requirements in the mouse as the main mammalian genetic model organism. To define the molecular and cellular mechanisms that underlie cardiovascular development, function and disease, various mouse strains have been engineered that allow Cre-LoxP-mediated gene targeting within specific cell types of the cardiovascular system. Despite the usefulness of this system, evidence is accumulating that Cre activity can have toxic effects in cells, independently of its ability to recombine pairs of engineered LoxP sites in target genes. Here, we have gathered published evidence for Cre toxicity in cells and tissues relevant to cardiovascular biology and provide an overview of mechanisms proposed to underlie Cre toxicity. Based on this knowledge, we propose that each study utilising the Cre-LoxP system to investigate gene function in the cardiovascular system should incorporate appropriate controls to account for Cre toxicity.
Collapse
Affiliation(s)
- Victoria S. Rashbrook
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - James T. Brash
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
18
|
Li L, Guo H, Lai B, Liang C, Chen H, Chen Y, Guo W, Yuan Z, Huang R, Zeng Z, Liang L, Zhao H, Zheng X, Li Y, Pu Q, Qi X, Cai D. Ablation of cardiomyocyte-derived BDNF during development causes myocardial degeneration and heart failure in the adult mouse heart. Front Cardiovasc Med 2022; 9:967463. [PMID: 36061561 PMCID: PMC9433718 DOI: 10.3389/fcvm.2022.967463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Brain-derived neurotrophic factor (BDNF) and its receptor TrkB-T1 were recently found to be expressed in cardiomyocytes. However, the functional role of cardiomyocyte-derived BDNF in heart pathophysiology is not yet fully known. Recent studies revealed that BDNF-TrkB pathway plays a critical role to maintain integrity of cardiac structure and function, cardiac pathology and regeneration of myocardial infarction (MI). Therefore, the BDNF-TrkB pathway may be a novel target for myocardial pathophysiology in the adult heart. Approach and results In the present study, we established a cardiomyocyte-derived BDNF conditional knockout mouse in which BDNF expression in developing cardiomyocytes is ablated under the control of the Myosin heavy chain 6 (MYH6) promoter. The results of the present study show that ablation of cardiomyocyte-derived BDNF during development does not impair survival, growth or reproduction; however, in the young adult heart, it causes cardiomyocyte death, degeneration of the myocardium, cardiomyocyte hypertrophy, left atrial appendage thrombosis, decreased cardiac function, increased cardiac inflammation and ROS activity, and metabolic disorders, leading to heart failure (HF) in the adult heart and eventually resulting in a decrease in the one-year survival rate. In addition, ablation of cardiomyocyte-derived BDNF during the developmental stage leads to exacerbation of cardiac dysfunction and poor regeneration after MI in adult hearts. Conclusion Cardiomyocyte-derived BDNF is irreplaceable for maintaining the integrity of cardiac structure and function in the adult heart and regeneration after MI. Therefore, the BDNF-TrkB pathway will be a novel target for myocardial pathophysiology in the adult heart.
Collapse
Affiliation(s)
- Lilin Li
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Hongyan Guo
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
- Jiangxi Provincial Key Laboratory of Medical Immunology and Immunotherapy, Jiangxi Academy of Medical Sciences, Nanchang, China
| | - Binglin Lai
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Chunbao Liang
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Hongyi Chen
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Yilin Chen
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Weimin Guo
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Ziqiang Yuan
- Department of Medical Oncology, Robert Wood Johnson of Medical School, Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Ruijin Huang
- Department of Neuroanatomy, Institute of Anatomy, University of Bonn, Bonn, Germany
- Department of Anatomy and Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Zhaohua Zeng
- Division of Cardiology, Department of Internal Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liying Liang
- Division of Cardiology, Department of Internal Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Zhao
- Stem Cell and Regeneration TRP, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xin Zheng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Yanmei Li
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Qin Pu
- Department of Neuroanatomy, Institute of Anatomy, University of Bonn, Bonn, Germany
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
- *Correspondence: Xufeng Qi,
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
- Dongqing Cai,
| |
Collapse
|
19
|
CDC-like kinase 4 deficiency contributes to pathological cardiac hypertrophy by modulating NEXN phosphorylation. Nat Commun 2022; 13:4433. [PMID: 35907876 PMCID: PMC9338968 DOI: 10.1038/s41467-022-31996-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Kinase-catalyzed phosphorylation plays a crucial role in pathological cardiac hypertrophy. Here, we show that CDC-like kinase 4 (CLK4) is a critical regulator of cardiomyocyte hypertrophy and heart failure. Knockdown of Clk4 leads to pathological cardiomyocyte hypertrophy, while overexpression of Clk4 confers resistance to phenylephrine-induced cardiomyocyte hypertrophy. Cardiac-specific Clk4-knockout mice manifest pathological myocardial hypertrophy with progressive left ventricular systolic dysfunction and heart dilation. Further investigation identifies nexilin (NEXN) as the direct substrate of CLK4, and overexpression of a phosphorylation-mimic mutant of NEXN is sufficient to reverse the hypertrophic growth of cardiomyocytes induced by Clk4 knockdown. Importantly, restoring phosphorylation of NEXN ameliorates myocardial hypertrophy in mice with cardiac-specific Clk4 deletion. We conclude that CLK4 regulates cardiac function through phosphorylation of NEXN, and its deficiency may lead to pathological cardiac hypertrophy. CLK4 is a potential intervention target for the prevention and treatment of heart failure. Phosphorylation catalyzed by kinases is a key event in signaling pathways involved in cardiomyocyte hypertrophy. Here the authors show that the kinase CLK4 ameliorates cardiac hypertrophy by phosphorylating NEXN.
Collapse
|
20
|
Yu ZY, Gong H, Kesteven S, Guo Y, Wu J, Li JV, Cheng D, Zhou Z, Iismaa SE, Kaidonis X, Graham RM, Cox CD, Feneley MP, Martinac B. Piezo1 is the cardiac mechanosensor that initiates the cardiomyocyte hypertrophic response to pressure overload in adult mice. NATURE CARDIOVASCULAR RESEARCH 2022; 1:577-591. [PMID: 39195867 PMCID: PMC11358016 DOI: 10.1038/s44161-022-00082-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/06/2022] [Indexed: 08/29/2024]
Abstract
Pressure overload-induced cardiac hypertrophy is a maladaptive response with poor outcomes and limited treatment options. The transient receptor potential melastatin 4 (TRPM4) ion channel is key to activation of a Ca2+/calmodulin-dependent kinase II (CaMKII)-reliant hypertrophic signaling pathway after pressure overload, but TRPM4 is neither stretch-activated nor Ca2+-permeable. Here we show that Piezo1, which is both stretch-activated and Ca2+-permeable, is the mechanosensor that transduces increased myocardial forces into the chemical signal that initiates hypertrophic signaling via a close physical interaction with TRPM4. Cardiomyocyte-specific deletion of Piezo1 in adult mice prevented activation of CaMKII and inhibited the hypertrophic response: residual hypertrophy was associated with calcineurin activation in the absence of its usual inhibition by activated CaMKII. Piezo1 deletion prevented upregulation of the sodium-calcium exchanger and changes in other Ca2+ handling proteins after pressure overload. These findings establish Piezo1 as the cardiomyocyte mechanosensor that instigates the maladaptive hypertrophic response to pressure overload, and as a potential therapeutic target.
Collapse
Affiliation(s)
- Ze-Yan Yu
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Hutao Gong
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Scott Kesteven
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Yang Guo
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Jianxin Wu
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Jinyuan Vero Li
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Delfine Cheng
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Zijing Zhou
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Siiri E Iismaa
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Xenia Kaidonis
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Robert M Graham
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael P Feneley
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
- Department of Cardiology, St Vincent's Hospital, Sydney, New South Wales, Australia.
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
21
|
Xu Y, Schrank PR, Williams JW. Macrophage Fate Mapping. Curr Protoc 2022; 2:e456. [PMID: 35687806 PMCID: PMC9328150 DOI: 10.1002/cpz1.456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tissue-resident macrophages are present in all tissues where they perform homeostatic and immune surveillance functions. In many tissues, resident macrophages develop from embryonic progenitors, which mature into a self-maintaining population through local proliferation. However, tissue-resident macrophages can be supported by recruited monocyte-derived macrophages during scenarios such as tissue growth, infection, or sterile inflammation. Circulating blood monocytes arise from hematopoietic stem cell progenitors and possess unique gene profiles that support additional functions within the tissue. Determining cell origins (ontogeny) and cellular turnover within tissues has become important to understanding monocyte and macrophage contributions to tissue homeostasis and disease. Fate mapping, or lineage tracing, is a promising approach to tracking cells based on unique gene expression driving reporter systems, often downstream of a Cre-recombinase-mediated excision event, to express a fluorescent protein. This approach is typically deployed temporally with developmental stage, disease onset, or in association with key stages of inflammation resolution. Importantly, myeloid fate mapping can be combined with many emerging technologies, including single-cell RNA-sequencing and spatial imaging. The application of myeloid cell fate mapping approaches has allowed for impactful discoveries regarding myeloid ontogeny, tissue residency, and monocyte fate within disease models. This protocol outline will discuss a variety of myeloid fate mapping approaches, including constitutive and inducible labeling approaches in adult and embryo tissues. This article outlines basic approaches and models used in mice for fate mapping macrophages. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Adult Fate Mapping Basic Protocol 2: Embryonic Fate Mapping.
Collapse
Affiliation(s)
- Yingzheng Xu
- Center for Immunology Department of Integrative Biology & Physiology University of Minnesota Minneapolis Minnesota
| | - Patricia R. Schrank
- Center for Immunology Department of Integrative Biology & Physiology University of Minnesota Minneapolis Minnesota
| | - Jesse W. Williams
- Center for Immunology Department of Integrative Biology & Physiology University of Minnesota Minneapolis Minnesota
| |
Collapse
|
22
|
Cervantes DO, Pizzo E, Ketkar H, Parambath SP, Tang S, Cianflone E, Cannata A, Vinukonda G, Jain S, Jacobson JT, Rota M. Scn1b expression in the adult mouse heart modulates Na + influx in myocytes and reveals a mechanistic link between Na + entry and diastolic function. Am J Physiol Heart Circ Physiol 2022; 322:H975-H993. [PMID: 35394857 PMCID: PMC9076421 DOI: 10.1152/ajpheart.00465.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022]
Abstract
Voltage-gated sodium channels (VGSCs) are macromolecular assemblies composed of a number of proteins regulating channel conductance and properties. VGSCs generate Na+ current (INa) in myocytes and play fundamental roles in excitability and impulse conduction in the heart. Moreover, VGSCs condition mechanical properties of the myocardium, a process that appears to involve the late component of INa. Variants in the gene SCN1B, encoding the VGSC β1- and β1B-subunits, result in inherited neurological disorders and cardiac arrhythmias. But the precise contributions of β1/β1B-subunits and VGSC integrity to the overall function of the adult heart remain to be clarified. For this purpose, adult mice with cardiac-restricted, inducible deletion of Scn1b (conditional knockout, cKO) were studied. Myocytes from cKO mice had increased densities of fast (+20%)- and slow (+140%)-inactivating components of INa, with respect to control cells. By echocardiography and invasive hemodynamics, systolic function was preserved in cKO mice, but diastolic properties and ventricular compliance were compromised, with respect to control animals. Importantly, inhibition of late INa with GS967 normalized left ventricular filling pattern and isovolumic relaxation time in cKO mice. At the cellular level, cKO myocytes presented delayed kinetics of Ca2+ transients and cell mechanics, defects that were corrected by inhibition of INa. Collectively, these results document that VGSC β1/β1B-subunits modulate electrical and mechanical function of the heart by regulating, at least in part, Na+ influx in cardiomyocytes.NEW & NOTEWORTHY We have investigated the consequences of deletion of Scn1b, the gene encoding voltage-gated sodium channel β1-subunits, on myocyte and cardiac function. Our findings support the notion that Scn1b expression controls properties of Na+ influx and Ca2+ cycling in cardiomyocytes affecting the modality of cell contraction and relaxation. These effects at the cellular level condition electrical recovery and diastolic function in vivo, substantiating the multifunctional role of β1-subunits in the physiology of the heart.
Collapse
Affiliation(s)
| | - Emanuele Pizzo
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Harshada Ketkar
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York
| | - Sreema P Parambath
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York
| | - Samantha Tang
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York
| | - Eleonora Cianflone
- Department of Physiology, New York Medical College, Valhalla, New York
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Antonio Cannata
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | | | - Sudhir Jain
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York
| | - Jason T Jacobson
- Department of Physiology, New York Medical College, Valhalla, New York
- Department of Cardiology, Westchester Medical Center, Valhalla, New York
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
23
|
Šisl D, Flegar D, Filipović M, Turčić P, Planinić P, Šućur A, Kovačić N, Grčević D, Kelava T. Tamoxifen Ameliorates Cholestatic Liver Fibrosis in Mice: Upregulation of TGFβ and IL6 Is a Potential Protective Mechanism. Biomedicines 2022; 10:biomedicines10051209. [PMID: 35625945 PMCID: PMC9138605 DOI: 10.3390/biomedicines10051209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/20/2023] Open
Abstract
The available treatments for cholestatic liver fibrosis are limited, and the disease often progresses to liver cirrhosis. Tamoxifen is a selective modulator of estrogen receptors, commonly used in breast cancer therapy. A recent in vitro study showed that tamoxifen deactivates hepatic stellate cells, suggesting its potential as an antifibrotic therapeutic, but its effects in vivo remain poorly investigated. In the present study, we show that tamoxifen protects against the cholestatic fibrosis induced by a diet supplemented with 0.025% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Mice fed with a DDC-supplemented diet for four weeks and treated with tamoxifen developed a significantly milder degree of liver fibrosis than vehicle-treated mice, as evidenced by a lower percentage of Sirius red-stained area (60.4% decrease in stained area in male and 42% decrease in female mice, p < 0.001 and p < 0.01, respectively) and by lower hydroxyproline content. The finding was further confirmed by qPCR analysis, which showed a lower expression of genes for Col1a1, Acta2, Sox9, Pdgf, and Krt19, indicating the inhibitory effect on hepatic stellate cells, collagen production, and biliary duct proliferation. The degree of protection was similar in male and female mice. Tamoxifen per se, injected into standard-diet-fed mice, increased the expression of genes for Il6 (p < 0.01 and p < 0.001 in male and female mice, respectively) and Tgfβ (p < 0.01 for both sexes), and had no adverse effects. We showed that tamoxifen sex-independently protects against cholestatic DDC-induced liver fibrosis. The increased expression of Il6 and Tgfβ seems to be a plausible protective mechanism that should be the primary focus of further research.
Collapse
Affiliation(s)
- Dino Šisl
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.Š.); (D.F.); (M.F.); (A.Š.); (N.K.); (D.G.)
- Department of Physiology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Darja Flegar
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.Š.); (D.F.); (M.F.); (A.Š.); (N.K.); (D.G.)
- Department of Physiology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Maša Filipović
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.Š.); (D.F.); (M.F.); (A.Š.); (N.K.); (D.G.)
- Department of Physiology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Petra Turčić
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia;
| | - Pavao Planinić
- Department of Physiology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
| | - Alan Šućur
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.Š.); (D.F.); (M.F.); (A.Š.); (N.K.); (D.G.)
- Department of Physiology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.Š.); (D.F.); (M.F.); (A.Š.); (N.K.); (D.G.)
- Department of Anatomy, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Danka Grčević
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.Š.); (D.F.); (M.F.); (A.Š.); (N.K.); (D.G.)
- Department of Physiology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Kelava
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.Š.); (D.F.); (M.F.); (A.Š.); (N.K.); (D.G.)
- Department of Physiology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-14-56-69-45
| |
Collapse
|
24
|
Pizzo E, Berrettoni S, Kaul R, Cervantes DO, Di Stefano V, Jain S, Jacobson JT, Rota M. Heart Rate Variability Reveals Altered Autonomic Regulation in Response to Myocardial Infarction in Experimental Animals. Front Cardiovasc Med 2022; 9:843144. [PMID: 35586660 PMCID: PMC9108187 DOI: 10.3389/fcvm.2022.843144] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
The analysis of beating rate provides information on the modulatory action of the autonomic nervous system on the heart, which mediates adjustments of cardiac function to meet hemodynamic requirements. In patients with myocardial infarction, alterations of heart rate variability (HRV) have been correlated to the occurrence of arrhythmic events and all-cause mortality. In the current study, we tested whether experimental rodent models of myocardial infarction recapitulate dynamics of heart rate variability observed in humans, and constitute valid platforms for understanding mechanisms linking autonomic function to the development and manifestation of cardiovascular conditions. For this purpose, HRV was evaluated in two engineered mouse lines using electrocardiograms collected in the conscious, restrained state, using a tunnel device. Measurements were obtained in naïve mice and animals at 3-∼28 days following myocardial infarction, induced by permanent coronary artery ligation. Two mouse lines with inbred and hybrid genetic background and, respectively, homozygous (Homo) and heterozygous (Het) for the MerCreMer transgene, were employed. In the naïve state, Het female and male mice presented prolonged RR interval duration (∼9%) and a ∼4-fold increased short- and long-term RR interval variability, with respect to sex-matched Homo mice. These differences were abrogated by pharmacological interventions inhibiting the sympathetic and parasympathetic axes. At 3-∼14 days after myocardial infarction, RR interval duration increased in Homo mice, but was not affected in Het animals. In contrast, Homo mice had minor modifications in HRV parameters, whereas substantial (> 50%) reduction of short- and long-term RR interval variation occurred in Het mice. Interestingly, ex vivo studies in isolated organs documented that intrinsic RR interval duration increased in infarcted vs. non-infarcted Homo and Het hearts, whereas RR interval variation was not affected. In conclusion, our study documents that, as observed in humans, myocardial infarction in rodents is associated with alterations in heart rhythm dynamics consistent with sympathoexcitation and parasympathetic withdrawal. Moreover, we report that mouse strain is an important variable when evaluating autonomic function via the analysis of HRV.
Collapse
Affiliation(s)
- Emanuele Pizzo
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Silvia Berrettoni
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Ridhima Kaul
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Daniel O. Cervantes
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Valeria Di Stefano
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Sudhir Jain
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Jason T. Jacobson
- Department of Physiology, New York Medical College, Valhalla, NY, United States
- Department of Cardiology, Westchester Medical Center, Valhalla, NY, United States
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
25
|
Auchampach J, Han L, Huang GN, Kühn B, Lough JW, O'Meara CC, Payumo AY, Rosenthal NA, Sucov HM, Yutzey KE, Patterson M. Measuring cardiomyocyte cell-cycle activity and proliferation in the age of heart regeneration. Am J Physiol Heart Circ Physiol 2022; 322:H579-H596. [PMID: 35179974 PMCID: PMC8934681 DOI: 10.1152/ajpheart.00666.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
During the past two decades, the field of mammalian myocardial regeneration has grown dramatically, and with this expanded interest comes increasing claims of experimental manipulations that mediate bona fide proliferation of cardiomyocytes. Too often, however, insufficient evidence or improper controls are provided to support claims that cardiomyocytes have definitively proliferated, a process that should be strictly defined as the generation of two de novo functional cardiomyocytes from one original cardiomyocyte. Throughout the literature, one finds inconsistent levels of experimental rigor applied, and frequently the specific data supplied as evidence of cardiomyocyte proliferation simply indicate cell-cycle activation or DNA synthesis, which do not necessarily lead to the generation of new cardiomyocytes. In this review, we highlight potential problems and limitations faced when characterizing cardiomyocyte proliferation in the mammalian heart, and summarize tools and experimental standards, which should be used to support claims of proliferation-based remuscularization. In the end, definitive establishment of de novo cardiomyogenesis can be difficult to prove; therefore, rigorous experimental strategies should be used for such claims.
Collapse
Affiliation(s)
- John Auchampach
- Department of Pharmacology and Toxicology and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lu Han
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Division of Pediatric Cardiology, Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, California
| | - Bernhard Kühn
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania
| | - John W Lough
- Department of Cell Biology Neurobiology and Anatomy and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Caitlin C O'Meara
- Department of Physiology and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alexander Y Payumo
- Department of Biological Sciences, San José State University, San Jose, California
| | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, Maine
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
- National Heart and Lung Institute, Imperial College of London, London, United Kingdom
| | - Henry M Sucov
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Katherine E Yutzey
- The Heart Institute, Cincinnati Children's Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Michaela Patterson
- Department of Cell Biology Neurobiology and Anatomy and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
26
|
Saclier M, Angelini G, Bonfanti C, Mura G, Temponi G, Messina G. Selective ablation of Nfix in macrophages attenuates muscular dystrophy by inhibiting fibro-adipogenic progenitor-dependent fibrosis. J Pathol 2022; 257:352-366. [PMID: 35297529 PMCID: PMC9322546 DOI: 10.1002/path.5895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 11/10/2022]
Abstract
Muscular dystrophies are genetic diseases characterized by chronic inflammation and fibrosis. Macrophages are immune cells that sustain muscle regeneration upon acute injury but seem deleterious in the context of chronic muscle injury such as in muscular dystrophies. Here, we observed that the number of macrophages expressing the transcription factor Nfix increases in two distinct mouse models of muscular dystrophies. We showed that the deletion of Nfix in macrophages in dystrophic mice delays the establishment of fibrosis and muscle wasting, and increases grasp force. Macrophages lacking Nfix expressed more TNFα and less TGFβ1, thus promoting apoptosis of fibro‐adipogenic progenitors. Moreover, pharmacological treatment of dystrophic mice with a ROCK inhibitor accelerated fibrosis through the increase of Nfix expression by macrophages. Thus, we have identified Nfix as a macrophage profibrotic factor in muscular dystrophies, whose inhibition could be a therapeutic route to reduce severity of the dystrophic disease. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | - Chiara Bonfanti
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giada Mura
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giulia Temponi
- Department of Biosciences, University of Milan, Milan, Italy
| | | |
Collapse
|
27
|
Chen M, Tian X, Xu L, Wu R, He H, Zhu H, Xu W, Wei CJ. Membrane tethering of CreER decreases uninduced cell labeling and cytotoxicity while maintaining recombination efficiency. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1078-1091. [PMID: 35228901 PMCID: PMC8851158 DOI: 10.1016/j.omtn.2022.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/28/2022] [Indexed: 02/05/2023]
Abstract
Genetic lineage tracing is indispensable to unraveling the origin, fate, and plasticity of cells. However, the intrinsic leakiness in the CreER-loxP system raises concerns on data interpretation. Here, we reported the generation of a novel dual inducible CreER-loxP system with superior labeling characteristics. This two-component system consists of membrane localized CreER (mCreER: CD8α-FRB-CS-CreER) and TEV protease (mTEVp: CD8α-FKBP-TEVp), which are fusion proteins incorporated with the chemically induced dimerization machinery. Rapamycin and tamoxifen induce sequential dimerization of FKBP and FRB, cleavage of CreER from the membrane, and translocation into the nucleus. The labeling leakiness in Ad293 cells reduced dramatically from more than 70% to less than 5%. This tight labeling feature depends largely on the association of mCreER with HSP90, which conceals the TEV protease cutting site between FRB and CreER and thus preventing uninduced cleavage of the membrane-tethering CreER. Membrane-bound CreER also diminished significantly cytotoxicity. Our studies showed mCreER under the control of the rat insulin promoter increased labeling specificity in MIN6 islet beta-cells. Viability and insulin secretion of MIN6 cells remained intact. Our results demonstrate that this novel system can provide more stringent temporal and spatial control of gene expression and will be useful in cell fate probing.
Collapse
Affiliation(s)
- Mianqiao Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Xiong Tian
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Liqun Xu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Ruolan Wu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Haoming He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Haibao Zhu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Wencan Xu
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Chi-ju Wei
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, China
- Corresponding author Chi-ju Wei, PhD, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
28
|
In Vivo Methods to Monitor Cardiomyocyte Proliferation. J Cardiovasc Dev Dis 2022; 9:jcdd9030073. [PMID: 35323621 PMCID: PMC8950582 DOI: 10.3390/jcdd9030073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/07/2022] Open
Abstract
Adult mammalian cardiomyocytes demonstrate scarce cycling and even lower proliferation rates in response to injury. Signals that enhance cardiomyocyte proliferation after injury will be groundbreaking, address unmet clinical needs, and represent new strategies to treat cardiovascular diseases. In vivo methods to monitor cardiomyocyte proliferation are critical to addressing this challenge. Fortunately, advances in transgenic approaches provide sophisticated techniques to quantify cardiomyocyte cycling and proliferation.
Collapse
|
29
|
Zhao Y, Zhao S, Qin XY, He TT, Hu MM, Gong Z, Wang HM, Gong FY, Gao XM, Wang J. Altered Phenotype and Enhanced Antibody-Producing Ability of Peripheral B Cells in Mice with Cd19-Driven Cre Expression. Cells 2022; 11:cells11040700. [PMID: 35203346 PMCID: PMC8870415 DOI: 10.3390/cells11040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Given the importance of B lymphocytes in inflammation and immune defense against pathogens, mice transgenic for Cre under the control of Cd19 promoter (Cd19Cre/+ mice) have been widely used to specifically investigate the role of loxP-flanked genes in B cell development/function. However, impacts of expression/insertion of the Cre transgene on the phenotype and function of B cells have not been carefully studied. Here, we show that the number of marginal zone B and B1a cells was selectively reduced in Cd19Cre/+ mice, while B cell development in the bone marrow and total numbers of peripheral B cells were comparable between Cd19Cre/+ and wild type C57BL/6 mice. Notably, humoral responses to both T cell-dependent and independent antigens were significantly increased in Cd19Cre/+ mice. We speculate that these differences are mainly attributable to reduced surface CD19 levels caused by integration of the Cre-expressing cassette that inactivates one Cd19 allele. Moreover, our literature survey showed that expression of Cd19Cre/+ alone may affect the development/progression of inflammatory and anti-infectious responses. Thus, our results have important implications for the design and interpretation of results on gene functions specifically targeted in B cells in the Cd19Cre/+ mouse strain, for instance, in the context of (auto) inflammatory/infectious diseases.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China;
| | - Sai Zhao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Xiao-Yuan Qin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Ting-Ting He
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Miao-Miao Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Zheng Gong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Hong-Min Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Fang-Yuan Gong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
- Correspondence: (X.-M.G.); (J.W.); Tel./Fax: +86-512-65882135 (J.W.)
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
- Correspondence: (X.-M.G.); (J.W.); Tel./Fax: +86-512-65882135 (J.W.)
| |
Collapse
|
30
|
Reinhardt JW, Breuer CK. Fibrocytes: A Critical Review and Practical Guide. Front Immunol 2021; 12:784401. [PMID: 34975874 PMCID: PMC8718395 DOI: 10.3389/fimmu.2021.784401] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
Fibrocytes are hematopoietic-derived cells that directly contribute to tissue fibrosis by producing collagen following injury, during disease, and with aging. The lack of a fibrocyte-specific marker has led to the use of multiple strategies for identifying these cells in vivo. This review will detail how past studies were performed, report their findings, and discuss their strengths and limitations. The motivation is to identify opportunities for further investigation and promote the adoption of best practices during future study design.
Collapse
Affiliation(s)
- James W. Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
31
|
Abstract
Mitochondria, which resemble their α-proteobacteria ancestors, are a major cellular asset, producing energy 'on the cheap' through oxidative phosphorylation. They are also a liability. Increased oxidative phosphorylation means increased oxidative stress, and damaged mitochondria incite inflammation through release of their bacteria-like macromolecules. Mitophagy (the selective macroautophagy of mitochondria) controls mitochondria quality and number to manage these risky assets. Parkin, BNIP3 and NIX were identified as being part of the first mitophagy pathways identified in mammals over a decade ago, with additional pathways, including that mediated by FUNDC1 reported more recently. Loss of Parkin or PINK1 function causes Parkinson's disease, highlighting the importance of mitophagy as a quality control mechanism in the brain. Additionally, mitophagy is induced in idiopathic Parkinson's disease and Alzheimer's disease, protects the heart and other organs against energy stress and lipotoxicity, regulates metabolism by controlling mitochondrial number in brown and beige fat, and clears mitochondria during terminal differentiation of glycolytic cells, such as red blood cells and neurons. Despite its importance in disease, mitophagy is likely dispensable under physiological conditions. This Review explores the in vivo roles of mitophagy in mammalian systems, focusing on the best studied examples - mitophagy in neurodegeneration, cardiomyopathy, metabolism, and red blood cell development - to draw out common themes.
Collapse
Affiliation(s)
- Derek P. Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Generation and characterization of a Myh6-driven Cre knockin mouse line. Transgenic Res 2021; 30:821-835. [PMID: 34542814 PMCID: PMC8580938 DOI: 10.1007/s11248-021-00285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/10/2021] [Indexed: 10/25/2022]
Abstract
Gene deletion by the Cre-Loxp system has facilitated functional studies of many critical genes in mice, offering important insights and allowing deeper understanding on the mechanisms underlying organ development and diseases, such as heart development and diseases. In this study, we generated a Myh6-Cre knockin mouse model by inserting the IRES-Cre-wpre-polyA cassette between the translational stop codon and the 3' untranslated region of the endogenous Myh6 gene. By crossing knockin mice with the Rosa26 reporter lines, we found that Myh6-Cre targeted cardiomyocytes at the embryonic and postnatal stages. In addition, we were able to inactivate the desmosome gene Desmoplakin (Dsp) by breeding Myh6-Cre mice with a conditional Dspflox knockout mouse line, which resulted in embryonic lethality during the mid-term pregnancy. These results suggest that the new Myh6-Cre mouse line can serve as a robust tool to dissect the distinct roles of genes involved in heart development and function.
Collapse
|
33
|
Ritterhoff J, McMillen TS, Villet O, Young S, Kolwicz SC, Senn T, Caudal A, Tian R. Increasing fatty acid oxidation elicits a sex-dependent response in failing mouse hearts. J Mol Cell Cardiol 2021; 158:1-10. [PMID: 33989657 PMCID: PMC8405556 DOI: 10.1016/j.yjmcc.2021.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Reduced fatty acid oxidation (FAO) is a hallmark of metabolic remodeling in heart failure. Enhancing mitochondrial long-chain fatty acid uptake by Acetyl-CoA carboxylase 2 (ACC2) deletion increases FAO and prevents cardiac dysfunction during chronic stresses, but therapeutic efficacy of this approach has not been determined. METHODS Male and female ACC2 f/f-MCM (ACC2KO) and their respective littermate controls were subjected to chronic pressure overload by TAC surgery. Tamoxifen injection 3 weeks after TAC induced ACC2 deletion and increased FAO in ACC2KO mice with pathological hypertrophy. RESULTS ACC2 deletion in mice with pre-existing cardiac pathology promoted FAO in female and male hearts, but improved cardiac function only in female mice. In males, pressure overload caused a downregulation in the mitochondrial oxidative function. Stimulating FAO by ACC2 deletion caused unproductive acyl-carnitine accumulation, which failed to improve cardiac energetics. In contrast, mitochondrial oxidative capacity was sustained in female pressure overloaded hearts and ACC2 deletion improved myocardial energetics. Mechanistically, we revealed a sex-dependent regulation of PPARα signaling pathway in heart failure, which accounted for the differential response to ACC2 deletion. CONCLUSION Metabolic remodeling in the failing heart is sex-dependent which could determine the response to metabolic intervention. The findings suggest that both mitochondrial oxidative capacity and substrate preference should be considered for metabolic therapy of heart failure.
Collapse
Affiliation(s)
- Julia Ritterhoff
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Republican Street 850, 98109 Seattle, WA, USA
| | - Timothy S. McMillen
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Republican Street 850, 98109 Seattle, WA, USA
| | - Outi Villet
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Republican Street 850, 98109 Seattle, WA, USA
| | - Sara Young
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Republican Street 850, 98109 Seattle, WA, USA
| | - Stephen C. Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Republican Street 850, 98109 Seattle, WA, USA.,Heart and Muscle Metabolism Laboratory, Health and Exercise Physiology, Ursinus College, Collegeville, PA 19426, USA
| | - Taurence Senn
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, H172 Health Science Building, 98195 Seattle, WA, USA
| | - Arianne Caudal
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Republican Street 850, 98109 Seattle, WA, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Republican Street 850, 98109 Seattle, WA, USA.,Corresponding author at: Mitochondria and Metabolism Center, University of Washington School of Medicine, 850 Republican Street, Seattle, WA 98109
| |
Collapse
|
34
|
Marian AJ, Asatryan B, Wehrens XHT. Genetic basis and molecular biology of cardiac arrhythmias in cardiomyopathies. Cardiovasc Res 2021; 116:1600-1619. [PMID: 32348453 DOI: 10.1093/cvr/cvaa116] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/09/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac arrhythmias are common, often the first, and sometimes the life-threatening manifestations of hereditary cardiomyopathies. Pathogenic variants in several genes known to cause hereditary cardiac arrhythmias have also been identified in the sporadic cases and small families with cardiomyopathies. These findings suggest a shared genetic aetiology of a subset of hereditary cardiomyopathies and cardiac arrhythmias. The concept of a shared genetic aetiology is in accord with the complex and exquisite interplays that exist between the ion currents and cardiac mechanical function. However, neither the causal role of cardiac arrhythmias genes in cardiomyopathies is well established nor the causal role of cardiomyopathy genes in arrhythmias. On the contrary, secondary changes in ion currents, such as post-translational modifications, are common and contributors to the pathogenesis of arrhythmias in cardiomyopathies through altering biophysical and functional properties of the ion channels. Moreover, structural changes, such as cardiac hypertrophy, dilatation, and fibrosis provide a pro-arrhythmic substrate in hereditary cardiomyopathies. Genetic basis and molecular biology of cardiac arrhythmias in hereditary cardiomyopathies are discussed.
Collapse
Affiliation(s)
- Ali J Marian
- Department of Medicine, Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Xander H T Wehrens
- Department of Biophysics and Molecular Physiology, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
35
|
Ock S, Ham W, Kang CW, Kang H, Lee WS, Kim J. IGF-1 protects against angiotensin II-induced cardiac fibrosis by targeting αSMA. Cell Death Dis 2021; 12:688. [PMID: 34244467 PMCID: PMC8270920 DOI: 10.1038/s41419-021-03965-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) signaling in cardiomyocytes is implicated in physiological hypertrophy and myocardial aging. Although fibroblasts account for a small amount of the heart, they are activated when the heart is damaged to promote cardiac remodeling. However, the role of IGF-1R signaling in cardiac fibroblasts is still unknown. In this study, we investigated the roles of IGF-1 signaling during agonist-induced cardiac fibrosis and evaluated the molecular mechanisms in cultured cardiac fibroblasts. Using an experimental model of cardiac fibrosis with angiotensin II/phenylephrine (AngII/PE) infusion, we found severe interstitial fibrosis in the AngII/PE infused myofibroblast-specific IGF-1R knockout mice compared to the wild-type mice. In contrast, low-dose IGF-1 infusion markedly attenuated AngII-induced cardiac fibrosis by inhibiting fibroblast proliferation and differentiation. Mechanistically, we demonstrated that IGF-1-attenuated AngII-induced cardiac fibrosis through the Akt pathway and through suppression of rho-associated coiled-coil containing kinases (ROCK)2-mediated α-smooth muscle actin (αSMA) expression. Our study highlights a novel function of the IGF-1/IGF-1R signaling in agonist-induced cardiac fibrosis. We propose that low-dose IGF-1 may be an efficacious therapeutic avenue against cardiac fibrosis.
Collapse
MESH Headings
- Actins/metabolism
- Angiotensin II
- Animals
- Cardiomyopathies/chemically induced
- Cardiomyopathies/metabolism
- Cardiomyopathies/pathology
- Cardiomyopathies/prevention & control
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Fibrosis
- Infusions, Intravenous
- Insulin-Like Growth Factor I/administration & dosage
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phenylephrine
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Signal Transduction
- rho-Associated Kinases/metabolism
- Mice
Collapse
Affiliation(s)
- Sangmi Ock
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Woojin Ham
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Chae Won Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyun Kang
- Department of Anesthesiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Wang Soo Lee
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea.
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea.
| |
Collapse
|
36
|
Best KT, Studentsova V, Ackerman JE, Nichols AEC, Myers M, Cobb J, Knapp E, Awad HA, Loiselle AE. Effects of tamoxifen on tendon homeostasis and healing: Considerations for the use of tamoxifen-inducible mouse models. J Orthop Res 2021; 39:1572-1580. [PMID: 32485026 PMCID: PMC7708438 DOI: 10.1002/jor.24767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/07/2020] [Accepted: 05/28/2020] [Indexed: 02/04/2023]
Abstract
The use of tamoxifen-inducible models of Cre recombinase in the tendon field is rapidly expanding, resulting in an enhanced understanding of tendon homeostasis and healing. However, the effects of tamoxifen on the tendon are not well-defined, which is particularly problematic given that tamoxifen can have both profibrotic and antifibrotic effects in a tissue-specific manner. Therefore, in the present study, we examined the effects of tamoxifen on tendon homeostasis and healing in male and female C57Bl/6J mice. Tamoxifen-treated mice were compared to corn oil (vehicle)-treated mice. In the "washout" treatment regimen, mice were treated with tamoxifen or corn oil for 3 days beginning 1 week prior to undergoing complete transection and surgical repair of the flexor digitorum longus tendon. In the second regimen, mice were treated with tamoxifen or corn oil beginning on the day of surgery, daily through day 2 postsurgery, and every 48 hours thereafter (D0-2q48) until harvest. All repaired tendons and uninjured contralateral control tendons were harvested at day 14 postsurgery. Tamoxifen treatment had no effect on tendon healing in male mice, regardless of the treatment regimen, while Max load was significantly decreased in female repairs in the Tamoxifen washout group, relative to corn oil. In contrast, D0-2q48 corn oil treatment in female mice led to substantial disruptions in tendon homeostasis, relative to washout corn oil treatment. Collectively, these data clearly define the functional effects of tamoxifen and corn oil treatment in the tendon and inform future use of tamoxifen-inducible genetic models.
Collapse
Affiliation(s)
- Katherine T. Best
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY, 14642
| | - Valentina Studentsova
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY, 14642
| | - Jessica E. Ackerman
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY, 14642
| | - Anne E. C. Nichols
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY, 14642
| | - Marlin Myers
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY, 14642
| | - Justin Cobb
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY, 14642
| | - Emma Knapp
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY, 14642
| | - Hani A. Awad
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY, 14642
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Alayna E. Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY, 14642
| |
Collapse
|
37
|
Lygate CA. The Pitfalls of in vivo Cardiac Physiology in Genetically Modified Mice - Lessons Learnt the Hard Way in the Creatine Kinase System. Front Physiol 2021; 12:685064. [PMID: 34054587 PMCID: PMC8160301 DOI: 10.3389/fphys.2021.685064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
In order to fully understand gene function, at some point, it is necessary to study the effects in an intact organism. The creation of the first knockout mouse in the late 1980's gave rise to a revolution in the field of integrative physiology that continues to this day. There are many complex choices when selecting a strategy for genetic modification, some of which will be touched on in this review, but the principal focus is to highlight the potential problems and pitfalls arising from the interpretation of in vivo cardiac phenotypes. As an exemplar, we will scrutinize the field of cardiac energetics and the attempts to understand the role of the creatine kinase (CK) energy buffering and transport system in the intact organism. This story highlights the confounding effects of genetic background, sex, and age, as well as the difficulties in interpreting knockout models in light of promiscuous proteins and metabolic redundancy. It will consider the dose-dependent effects and unintended consequences of transgene overexpression, and the need for experimental rigour in the context of in vivo phenotyping techniques. It is intended that this review will not only bring clarity to the field of cardiac energetics, but also aid the non-expert in evaluating and critically assessing data arising from in vivo genetic modification.
Collapse
Affiliation(s)
- Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Heinen A, Gödecke S, Flögel U, Miklos D, Bottermann K, Spychala A, Gödecke A. 4-hydroxytamoxifen does not deteriorate cardiac function in cardiomyocyte-specific MerCreMer transgenic mice. Basic Res Cardiol 2021; 116:8. [PMID: 33544211 PMCID: PMC7864833 DOI: 10.1007/s00395-020-00841-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 12/28/2020] [Indexed: 01/28/2023]
Abstract
Conditional, cell-type-specific transgenic mouse lines are of high value in cardiovascular research. A standard tool for cardiomyocyte-restricted DNA editing is the αMHC-MerCreMer/loxP system. However, there is an ongoing debate on the occurrence of cardiac side effects caused by unspecific Cre activity or related to tamoxifen/oil overload. Here, we investigated potential adverse effects of DNA editing by the αMHC-MerCreMer/loxP system in combination with a low-dose treatment protocol with the tamoxifen metabolite 4-hydroxytamoxifen (OH-Txf). αMHC-MerCreMer mice received intraperitoneally OH-Txf (20 mg/kg) for 5 or 10 days. These treatment protocols were highly efficient to induce DNA editing in adult mouse hearts. Multi-parametric magnetic resonance imaging revealed neither transient nor permanent effects on cardiac function during or up to 19 days after 5 day OH-Txf treatment. Furthermore, OH-Txf did not affect cardiac phosphocreatine/ATP ratios assessed by in vivo 31P MR spectroscopy, indicating no Cre-mediated side effects on cardiac energy status. No MRI-based indication for the development of cardiac fibrosis was found as mean T1 relaxation time was unchanged. Histological analysis of myocardial collagen III content after OH-Txf confirmed this result. Last, mean T2 relaxation time was not altered after Txf treatment suggesting no pronounced cardiac lipid accumulation or tissue oedema. In additional experiments, cardiac function was assessed for up to 42 days to investigate potential delayed side effects of OH-Txf treatment. Neither 5- nor 10-day treatment resulted in a depression of cardiac function. Efficient cardiomyocyte-restricted DNA editing that is free of unwanted side effects on cardiac function, energetics or fibrosis can be achieved in adult mice when the αMHC-MerCreMer/loxP system is activated by the tamoxifen metabolite OH-Txf.
Collapse
Affiliation(s)
- Andre Heinen
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Stefanie Gödecke
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ulrich Flögel
- Institut für Molekulare Kardiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Dominika Miklos
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Katharina Bottermann
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - André Spychala
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Axel Gödecke
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
39
|
Kopinke D, Norris AM, Mukhopadhyay S. Developmental and regenerative paradigms of cilia regulated hedgehog signaling. Semin Cell Dev Biol 2021; 110:89-103. [PMID: 32540122 PMCID: PMC7736055 DOI: 10.1016/j.semcdb.2020.05.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023]
Abstract
Primary cilia are immotile appendages that have evolved to receive and interpret a variety of different extracellular cues. Cilia play crucial roles in intercellular communication during development and defects in cilia affect multiple tissues accounting for a heterogeneous group of human diseases called ciliopathies. The Hedgehog (Hh) signaling pathway is one of these cues and displays a unique and symbiotic relationship with cilia. Not only does Hh signaling require cilia for its function but the majority of the Hh signaling machinery is physically located within the cilium-centrosome complex. More specifically, cilia are required for both repressing and activating Hh signaling by modifying bifunctional Gli transcription factors into repressors or activators. Defects in balancing, interpreting or establishing these repressor/activator gradients in Hh signaling either require cilia or phenocopy disruption of cilia. Here, we will summarize the current knowledge on how spatiotemporal control of the molecular machinery of the cilium allows for a tight control of basal repression and activation states of the Hh pathway. We will then discuss several paradigms on how cilia influence Hh pathway activity in tissue morphogenesis during development. Last, we will touch on how cilia and Hh signaling are being reactivated and repurposed during adult tissue regeneration. More specifically, we will focus on mesenchymal stem cells within the connective tissue and discuss the similarities and differences of how cilia and ciliary Hh signaling control the formation of fibrotic scar and adipose tissue during fatty fibrosis of several tissues.
Collapse
Affiliation(s)
- Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA.
| | - Alessandra M Norris
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
40
|
Long Y, Cech TR. Targeted mutagenesis in human iPSCs using CRISPR genome-editing tools. Methods 2021; 191:44-58. [PMID: 33444739 DOI: 10.1016/j.ymeth.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/27/2020] [Accepted: 01/02/2021] [Indexed: 12/27/2022] Open
Abstract
Mutagenesis studies have rapidly evolved in the era of CRISPR genome editing. Precise manipulation of genes in human induced pluripotent stem cells (iPSCs) allows biomedical researchers to study the physiological functions of individual genes during development. Furthermore, such genetic manipulation applied to patient-specific iPSCs allows disease modeling, drug screening and development of therapeutics. Although various genome-editing methods have been developed to introduce or remove mutations in human iPSCs, comprehensive strategic designs taking account of the potential side effects of CRISPR editing are needed. Here we present several novel and highly efficient strategies to introduce point mutations, insertions and deletions in human iPSCs, including step-by-step experimental protocols. These approaches involve the application of drug selection for effortless clone screening and the generation of a wild type control strain along with the mutant. We also present several examples of application of these strategies in human iPSCs and show that they are highly efficient and could be applied to other cell types.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, United States
| | - Thomas R Cech
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, United States; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, United States.
| |
Collapse
|
41
|
Son JW, Shin JJ, Kim MG, Kim J, Son SW. Keratinocyte-specific knockout mice models via Cre–loxP recombination system. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-020-00115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Abstract
The Cre-LoxP technology permits gene ablation in specific cell lineages, at chosen differentiation stages of this lineage and in an inducible manner. It has allowed tremendous advances in our understanding of skeleton biology and related pathophysiological mechanisms, through the generation of loss/gain of function or cell tracing experiments based on the creation of an expanding toolbox of transgenic mice expressing the Cre recombinase in skeletal stem cells, chondrocytes, osteoblasts, or osteoclasts. In this chapter, we provide an overview of the different Cre-LoxP systems and Cre mouse lines used in the bone field, we discuss their advantages, limitations, and we outline best practices to interpret results obtained from the use of Cre mice.
Collapse
Affiliation(s)
- Florent Elefteriou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA.
| | - Greig Couasnay
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
43
|
Wang X, Lauth A, Wan TC, Lough JW, Auchampach JA. Myh6-driven Cre recombinase activates the DNA damage response and the cell cycle in the myocardium in the absence of loxP sites. Dis Model Mech 2020; 13:dmm046375. [PMID: 33106234 PMCID: PMC7758623 DOI: 10.1242/dmm.046375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Regeneration of muscle in the damaged myocardium is a major objective of cardiovascular research, for which purpose many investigators utilize mice containing transgenes encoding Cre recombinase to recombine loxP-flanked target genes. An unfortunate side effect of the Cre-loxP model is the propensity of Cre recombinase to inflict off-target DNA damage, which has been documented in various eukaryotic cell types including cardiomyocytes (CMs). In the heart, reported effects of Cre recombinase include contractile dysfunction, fibrosis, cellular infiltration and induction of the DNA damage response (DDR). During experiments on adult mice containing a widely used Myh6-merCremer transgene, the protein product of which is activated by tamoxifen, we observed large, transient, off-target effects of merCremer, some of which have not previously been reported. On Day 3 after the first of three daily tamoxifen injections, immunofluorescent microscopy of heart sections revealed that the presence of merCremer protein in myonuclei was nearly uniform, thereafter diminishing to near extinction by Day 6; during this time, cardiac function was depressed as determined by echocardiography. On Day 5, peaks of apoptosis and expression of DDR-regulatory genes were observed, highlighted by >25-fold increased expression of Brca1 Concomitantly, the expression of genes encoding cyclin-A2, cyclin-B2 and cyclin-dependent kinase 1, which regulate the G2/S cell-cycle transition, were dramatically increased (>50- to 100-fold). Importantly, immunofluorescent staining revealed that this was accompanied by peaks in Ki67, 5'-bromodeoxyuridine and phosphohistone H3 labeling in non-CMs, as well as CMs. We further document that tamoxifen-induced activation of merCremer exacerbates cardiac dysfunction following myocardial infarction. These findings, when considered in the context of previous reports, indicate that the presence of merCremer in the nucleus induces DNA damage and unscheduled cell-cycle activation. Although these effects are transient, the inclusion of appropriate controls, coupled with an awareness of the defects caused by Cre recombinase, are required to avoid misinterpreting results when using Cre-loxP models for cardiac regeneration studies.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amelia Lauth
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tina C Wan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John W Lough
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John A Auchampach
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
44
|
Cibi DM, Bi-Lin KW, Shekeran SG, Sandireddy R, Tee N, Singh A, Wu Y, Srinivasan DK, Kovalik JP, Ghosh S, Seale P, Singh MK. Prdm16 Deficiency Leads to Age-Dependent Cardiac Hypertrophy, Adverse Remodeling, Mitochondrial Dysfunction, and Heart Failure. Cell Rep 2020; 33:108288. [PMID: 33086060 DOI: 10.1016/j.celrep.2020.108288] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/23/2020] [Accepted: 09/29/2020] [Indexed: 01/09/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a well-established risk factor for cardiovascular mortality worldwide. Although hypertrophy is traditionally regarded as an adaptive response to physiological or pathological stress, prolonged hypertrophy can lead to heart failure. Here we demonstrate that Prdm16 is dispensable for cardiac development. However, it is required in the adult heart to preserve mitochondrial function and inhibit hypertrophy with advanced age. Cardiac-specific deletion of Prdm16 results in cardiac hypertrophy, excessive ventricular fibrosis, mitochondrial dysfunction, and impaired metabolic flexibility, leading to heart failure. We demonstrate that Prdm16 and euchromatic histone-lysine N-methyltransferase factors (Ehmts) act together to reduce expression of fetal genes reactivated in pathological hypertrophy by inhibiting the functions of the pro-hypertrophic transcription factor Myc. Although young Prdm16 knockout mice show normal cardiac function, they are predisposed to develop heart failure in response to metabolic stress. Our study demonstrates that Prdm16 protects the heart against age-dependent cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Dasan Mary Cibi
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Kathleen Wung Bi-Lin
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Shamini Guna Shekeran
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Reddemma Sandireddy
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Nicole Tee
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609
| | - Anamika Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594
| | - Jean-Paul Kovalik
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Sujoy Ghosh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857; National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609.
| |
Collapse
|
45
|
Chin HJ, Lee SY, Lee D. Tamoxifen-inducible cardiac-specific Cre transgenic mouse using VIPR2 intron. Lab Anim Res 2020; 36:31. [PMID: 32983955 PMCID: PMC7493340 DOI: 10.1186/s42826-020-00065-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022] Open
Abstract
Genetically engineered mouse models through gene deletion are useful tools for analyzing gene function. To delete a gene in a certain tissue temporally, tissue-specific and tamoxifen-inducible Cre transgenic mice are generally used. Here, we generated transgenic mouse with cardiac-specific expression of Cre recombinase fused to a mutant estrogen ligand-binding domain (ERT2) on both N-terminal and C-terminal under the regulatory region of human vasoactive intestinal peptide receptor 2 (VIPR2) intron and Hsp68 promoter (VIPR2-ERT2CreERT2). In VIPR2-ERT2CreERT2 transgenic mice, mRNA for Cre gene was highly expressed in the heart. To further reveal heart-specific Cre expression, VIPR2-ERT2CreERT2 mice mated with ROSA26-lacZ reporter mice were examined by X-gal staining. Results of X-gal staining revealed that Cre-dependent recombination occurred only in the heart after treatment with tamoxifen. Taken together, these results demonstrate that VIPR2-ERT2CreERT2 transgenic mouse is a useful model to unveil a specific gene function in the heart.
Collapse
Affiliation(s)
- Hyun Jung Chin
- Department of Life Science, Ewha Womans University, Ewhayeodae-gil 52, Seodaemun-gu, Seoul, 03760 South Korea
| | - So-Young Lee
- Department of Life Science, Ewha Womans University, Ewhayeodae-gil 52, Seodaemun-gu, Seoul, 03760 South Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Ewhayeodae-gil 52, Seodaemun-gu, Seoul, 03760 South Korea
| |
Collapse
|
46
|
Optimization of tamoxifen-induced Cre activity and its effect on immune cell populations. Sci Rep 2020; 10:15244. [PMID: 32943672 PMCID: PMC7499195 DOI: 10.1038/s41598-020-72179-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/28/2020] [Indexed: 11/08/2022] Open
Abstract
Tamoxifen (TAM) inducible Cre recombinase system is an essential tool to study gene function when early ablation or overexpression can cause developmental defects or embryonic lethality. However, there remains a lack of consensus on the optimal route and dosage of TAM administration in vivo. Here, we assessed dosage and delivery of TAM for activation of Cre in immune cell subsets assessed longitudinally and spatially using transgenic mice with ubiquitously expressed Cre/ER and the Cre-inducible fluorescent reporter YFP. After comparing two TAM delivery methods (intraperitoneal versus oral gavage) and different doses, we found that 3 mg of TAM administered orally for five consecutive days provides maximal reporter induction with minimal adverse effects in vivo. Serum levels of TAM peaked 1 week after initiating treatment then slowly decreased, regardless of dosing and delivery methods. TAM concentration in specific tissues (liver, spleen, lymph nodes, and thymus) was also dependent on delivery method and dose. Cre induction was highest in myeloid cells and B cells and substantially lower in T cells, and double-positive thymocytes had a notably higher response to TAM. In addition to establishing optimal dose and administration of TAM, our study reveals a disparate activity of Cre in different cell immune populations when using Cre/ER models.
Collapse
|
47
|
Ednie AR, Bennett ES. Intracellular O-linked glycosylation directly regulates cardiomyocyte L-type Ca 2+ channel activity and excitation-contraction coupling. Basic Res Cardiol 2020; 115:59. [PMID: 32910282 DOI: 10.1007/s00395-020-00820-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Cardiomyocyte L-type Ca2+ channels (Cavs) are targets of signaling pathways that modulate channel activity in response to physiologic stimuli. Cav regulation is typically transient and beneficial but chronic stimulation can become pathologic; therefore, gaining a more complete understanding of Cav regulation is of critical importance. Intracellular O-linked glycosylation (O-GlcNAcylation), which is the result of two enzymes that dynamically add and remove single N-acetylglucosamines to and from intracellular serine/threonine residues (OGT and OGA respectively), has proven to be an increasingly important post-translational modification that contributes to the regulation of many physiologic processes. However, there is currently no known role for O-GlcNAcylation in the direct regulation of Cav activity nor is its contribution to cardiac electrical signaling and EC coupling well understood. Here we aimed to delineate the role of O-GlcNAcylation in regulating cardiomyocyte L-type Cav activity and its subsequent effect on EC coupling by utilizing a mouse strain possessing an inducible cardiomyocyte-specific OGT-null-transgene. Ablation of the OGT-gene in adult cardiomyocytes (OGTKO) reduced OGT expression and O-GlcNAcylation by > 90%. Voltage clamp recordings indicated an ~ 40% reduction in OGTKO Cav current (ICa), but with increased efficacy of adrenergic stimulation, and Cav steady-state gating and window current were significantly depolarized. Consistently, OGTKO cardiomyocyte intracellular Ca2+ release and contractility were diminished and demonstrated greater beat-to-beat variability. Additionally, we show that the Cav α1 and β2 subunits are O-GlcNAcylated while α2δ1 is not. Echocardiographic analyses indicated that the reductions in OGTKO cardiomyocyte Ca2+ handling and contractility were conserved at the whole-heart level as evidenced by significantly reduced left-ventricular contractility in the absence of hypertrophy. The data indicate, for the first time, that O-GlcNAc signaling is a critical and direct regulator of cardiomyocyte ICa achieved through altered Cav expression, gating, and response to adrenergic stimulation; these mechanisms have significant implications for understanding how EC coupling is regulated in health and disease.
Collapse
Affiliation(s)
- Andrew R Ednie
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, 143 Biological Sciences II, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Eric S Bennett
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, 143 Biological Sciences II, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| |
Collapse
|
48
|
Lee DP, Tan WLW, Anene-Nzelu CG, Lee CJM, Li PY, Luu TDA, Chan CX, Tiang Z, Ng SL, Huang X, Efthymios M, Autio MI, Jiang J, Fullwood MJ, Prabhakar S, Lieberman Aiden E, Foo RSY. Robust CTCF-Based Chromatin Architecture Underpins Epigenetic Changes in the Heart Failure Stress-Gene Response. Circulation 2020; 139:1937-1956. [PMID: 30717603 DOI: 10.1161/circulationaha.118.036726] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The human genome folds in 3 dimensions to form thousands of chromatin loops inside the nucleus, encasing genes and cis-regulatory elements for accurate gene expression control. Physical tethers of loops are anchored by the DNA-binding protein CTCF and the cohesin ring complex. Because heart failure is characterized by hallmark gene expression changes, it was recently reported that substantial CTCF-related chromatin reorganization underpins the myocardial stress-gene response, paralleled by chromatin domain boundary changes observed in CTCF knockout. METHODS We undertook an independent and orthogonal analysis of chromatin organization with mouse pressure-overload model of myocardial stress (transverse aortic constriction) and cardiomyocyte-specific knockout of Ctcf. We also downloaded published data sets of similar cardiac mouse models and subjected them to independent reanalysis. RESULTS We found that the cardiomyocyte chromatin architecture remains broadly stable in transverse aortic constriction hearts, whereas Ctcf knockout resulted in ≈99% abolition of global chromatin loops. Disease gene expression changes correlated instead with differential histone H3K27-acetylation enrichment at their respective proximal and distal interacting genomic enhancers confined within these static chromatin structures. Moreover, coregulated genes were mapped out as interconnected gene sets on the basis of their multigene 3D interactions. CONCLUSIONS This work reveals a more stable genome-wide chromatin framework than previously described. Myocardial stress-gene transcription responds instead through H3K27-acetylation enhancer enrichment dynamics and gene networks of coregulation. Robust and intact CTCF looping is required for the induction of a rapid and accurate stress response.
Collapse
Affiliation(s)
- Dominic Paul Lee
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Wilson Lek Wen Tan
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Chukwuemeka George Anene-Nzelu
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Chang Jie Mick Lee
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Peter Yiqing Li
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Tuan Danh Anh Luu
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Cheryl Xueli Chan
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Zenia Tiang
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Shi Ling Ng
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Xingfan Huang
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (X.H., E.L.A.)
- Center for Theoretical Biological Physics and Department of Computer Science, Rice University, Houston, TX (X.H., E.L.A.)
| | - Motakis Efthymios
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Matias I Autio
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Jianming Jiang
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
- Department of Biochemistry, School of Medicine (J.J.), National University of Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute (M.J.F.), National University of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore (M.J.F.)
| | - Shyam Prabhakar
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
| | - Erez Lieberman Aiden
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (X.H., E.L.A.)
- Center for Theoretical Biological Physics and Department of Computer Science, Rice University, Houston, TX (X.H., E.L.A.)
| | - Roger Sik-Yin Foo
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| |
Collapse
|
49
|
Soliman H, Paylor B, Scott RW, Lemos DR, Chang C, Arostegui M, Low M, Lee C, Fiore D, Braghetta P, Pospichalova V, Barkauskas CE, Korinek V, Rampazzo A, MacLeod K, Underhill TM, Rossi FMV. Pathogenic Potential of Hic1-Expressing Cardiac Stromal Progenitors. Cell Stem Cell 2020; 26:205-220.e8. [PMID: 31978365 DOI: 10.1016/j.stem.2019.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 10/02/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
The cardiac stroma contains multipotent mesenchymal progenitors. However, lineage relationships within cardiac stromal cells are poorly defined. Here, we identified heart-resident PDGFRa+ SCA-1+ cells as cardiac fibro/adipogenic progenitors (cFAPs) and show that they respond to ischemic damage by generating fibrogenic cells. Pharmacological blockade of this differentiation step with an anti-fibrotic tyrosine kinase inhibitor decreases post-myocardial infarction (post-MI) remodeling and leads to improvement in cardiac function. In the undamaged heart, activation of cFAPs through lineage-specific deletion of the gene encoding the quiescence-associated factor HIC1 reveals additional pathogenic potential, causing fibrofatty infiltration within the myocardium and driving major pathological features pathognomonic in arrhythmogenic cardiomyopathy (AC). In this regard, cFAPs contribute to multiple pathogenic cell types within cardiac tissue and therapeutic strategies aimed at modifying their activity are expected to have tremendous benefit for the treatment of diverse cardiac diseases.
Collapse
Affiliation(s)
- Hesham Soliman
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Faculty of Pharmaceutical Sciences, Minia University, Minia, Egypt
| | - Ben Paylor
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - R Wilder Scott
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | | | - ChihKai Chang
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Martin Arostegui
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Marcela Low
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Christina Lee
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Daniela Fiore
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza, University of Rome, Viale Regina Elana 324, 00161 Rome, Italy
| | - Paola Braghetta
- Department of Biology, School of Science, University of Padova, Via 8 Febbraio 2, 35122 Padova, Italy
| | - Vendula Pospichalova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| | - Christina E Barkauskas
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Vladimir Korinek
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| | - Alessandra Rampazzo
- Department of Biology, School of Science, University of Padova, Via 8 Febbraio 2, 35122 Padova, Italy
| | - Kathleen MacLeod
- Molecular and Cellular Pharmacology Research Group, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - T Michael Underhill
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Fabio M V Rossi
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
50
|
Smith LIF, Hill TG, Bowe JE. Generating Beta-Cell-Specific Transgenic Mice Using the Cre-Lox System. Methods Mol Biol 2020; 2128:181-205. [PMID: 32180194 DOI: 10.1007/978-1-0716-0385-7_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Beta-cell-specific transgenic mice provide an invaluable model for dissecting the direct signaling mechanisms involved in regulating beta-cell structure and function. Furthermore, generating novel transgenic models is now easier and more cost-effective than ever, thanks to exciting novel approaches such as CRISPR.Here, we describe the commonly used approaches for generating and maintaining beta-cell-specific transgenic models and some of the considerations involved in their use. This includes the use of different beta-cell-specific promoters (e.g., pancreatic and duodenal homeobox factor 1 (Pdx1), rat insulin 2 promoter (RIP), and mouse insulin 1 promoter (MIP)) to drive site-specific recombinase technology. Important considerations during selection include level and uniformity of expression in the beta-cell population, ectopic transgene expression, and the use of inducible models.This chapter provides a guide to the procurement, generation, and maintenance of a beta-cell-specific transgene colony from preexisting Cre and loxP mouse strains, providing methods for crossbreeding and genotyping, as well as subsequent maintenance and, in the case of inducible models, transgenic induction.
Collapse
Affiliation(s)
- Lorna I F Smith
- Department of Diabetes, School of Life Course Sciences, King's College London, London, UK.
| | - Thomas G Hill
- Department of Diabetes, School of Life Course Sciences, King's College London, London, UK
| | - James E Bowe
- Department of Diabetes, School of Life Course Sciences, King's College London, London, UK
| |
Collapse
|