1
|
Zhang B, Yang H, Cai G, Nie Q, Sun Y. The interactions between the host immunity and intestinal microorganisms in fish. Appl Microbiol Biotechnol 2024; 108:30. [PMID: 38170313 DOI: 10.1007/s00253-023-12934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024]
Abstract
There is a huge quantity of microorganisms in the gut of fish, which exert pivotal roles in maintaining host intestinal and general health. The fish immunity can sense and shape the intestinal microbiota and maintain the intestinal homeostasis. In the meantime, the intestinal commensal microbes regulate the fish immunity, control the extravagant proliferation of pathogenic microorganisms, and ensure the intestinal health of the host. This review summarizes developments and progress on the known interactions between host immunity and intestinal microorganisms in fish, focusing on the recent advances in zebrafish (Danio rerio) showing the host immunity senses and shapes intestinal microbiota, and intestinal microorganisms tune host immunity. This review will offer theoretical references for the development, application, and commercialization of intestinal functional microorganisms in fish. KEY POINTS: • The interactions between the intestinal microorganisms and host immunity in zebrafish • Fish immunity senses and shapes the microbiota • Intestinal microbes tune host immunity in fish.
Collapse
Affiliation(s)
- Biyun Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Hongling Yang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Guohe Cai
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Qingjie Nie
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Yunzhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China.
| |
Collapse
|
2
|
Goumenaki P, Günther S, Kikhi K, Looso M, Marín-Juez R, Stainier DYR. The innate immune regulator MyD88 dampens fibrosis during zebrafish heart regeneration. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1158-1176. [PMID: 39271818 PMCID: PMC11399109 DOI: 10.1038/s44161-024-00538-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
The innate immune response is triggered rapidly after injury and its spatiotemporal dynamics are critical for regeneration; however, many questions remain about its exact role. Here we show that MyD88, a key component of the innate immune response, controls not only the inflammatory but also the fibrotic response during zebrafish cardiac regeneration. We find in cryoinjured myd88-/- ventricles a significant reduction in neutrophil and macrophage numbers and the expansion of a collagen-rich endocardial population. Further analyses reveal compromised PI3K/AKT pathway activation in the myd88-/- endocardium and increased myofibroblasts and scarring. Notably, endothelial-specific overexpression of myd88 reverses these neutrophil, fibrotic and scarring phenotypes. Mechanistically, we identify the endocardial-derived chemokine gene cxcl18b as a target of the MyD88 signaling pathway, and using loss-of-function and gain-of-function tools, we show that it controls neutrophil recruitment. Altogether, these findings shed light on the pivotal role of MyD88 in modulating inflammation and fibrosis during tissue regeneration.
Collapse
Affiliation(s)
- Pinelopi Goumenaki
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rubén Marín-Juez
- Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
3
|
Childers L, Park E, Wang S, Liu R, Barry R, Watts SA, Rawls JF, Bagnat M. Protein absorption in the zebrafish gut is regulated by interactions between lysosome rich enterocytes and the microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597998. [PMID: 38895310 PMCID: PMC11185774 DOI: 10.1101/2024.06.07.597998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Dietary protein absorption in neonatal mammals and fishes relies on the function of a specialized and conserved population of highly absorptive lysosome rich enterocytes (LREs). The gut microbiome has been shown to enhance absorption of nutrients, such as lipids, by intestinal epithelial cells. However, whether protein absorption is also affected by the gut microbiome is poorly understood. Here, we investigate connections between protein absorption and microbes in the zebrafish gut. Using live microscopy-based quantitative assays, we find that microbes slow the pace of protein uptake and degradation in LREs. While microbes do not affect the number of absorbing LRE cells, microbes lower the expression of endocytic and protein digestion machinery in LREs. Using transgene assisted cell isolation and single cell RNA-sequencing, we characterize all intestinal cells that take up dietary protein. We find that microbes affect expression of bacteria-sensing and metabolic pathways in LREs, and that some secretory cell types also take up protein and share components of protein uptake and digestion machinery with LREs. Using custom-formulated diets, we investigated the influence of diet and LRE activity on the gut microbiome. Impaired protein uptake activity in LREs, along with a protein-deficient diet, alters the microbial community and leads to increased abundance of bacterial genera that have the capacity to reduce protein uptake in LREs. Together, these results reveal that diet-dependent reciprocal interactions between LREs and the gut microbiome regulate protein absorption.
Collapse
Affiliation(s)
- Laura Childers
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Esther Park
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Carolina Institute of Developmental Disabilities, Chapel Hill, NC 27510, USA
| | - Siyao Wang
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Richard Liu
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Robert Barry
- Department of Biology, University of Alabama at Birmingham, Birmingham, Al, 35294, USA
| | - Stephen A. Watts
- Department of Biology, University of Alabama at Birmingham, Birmingham, Al, 35294, USA
| | - John F. Rawls
- Department of Molecular Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Lead Contact
| |
Collapse
|
4
|
Isiaku AI, Zhang Z, Pazhakh V, Lieschke GJ. A nox2/cybb zebrafish mutant with defective myeloid cell reactive oxygen species production displays normal initial neutrophil recruitment to sterile tail injuries. G3 (BETHESDA, MD.) 2024; 14:jkae079. [PMID: 38696730 PMCID: PMC11152067 DOI: 10.1093/g3journal/jkae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Reactive oxygen species are important effectors and modifiers of the acute inflammatory response, recruiting phagocytes including neutrophils to sites of tissue injury. In turn, phagocytes such as neutrophils are both consumers and producers of reactive oxygen species. Phagocytes including neutrophils generate reactive oxygen species in an oxidative burst through the activity of a multimeric phagocytic nicotinamide adenine dinucleotide phosphate oxidase complex. Mutations in the NOX2/CYBB (previously gp91phox) nicotinamide adenine dinucleotide phosphate oxidase subunit are the commonest cause of chronic granulomatous disease, a disease characterized by infection susceptibility and an inflammatory phenotype. To model chronic granulomatous disease, we made a nox2/cybb zebrafish (Danio rerio) mutant and demonstrated it to have severely impaired myeloid cell reactive oxygen species production. Reduced early survival of nox2 mutant embryos indicated an essential requirement for nox2 during early development. In nox2/cybb zebrafish mutants, the dynamics of initial neutrophil recruitment to both mild and severe surgical tailfin wounds was normal, suggesting that excessive neutrophil recruitment at the initiation of inflammation is not the primary cause of the "sterile" inflammatory phenotype of chronic granulomatous disease patients. This nox2 zebrafish mutant adds to existing in vivo models for studying reactive oxygen species function in myeloid cells including neutrophils in development and disease.
Collapse
Affiliation(s)
- Abdulsalam I Isiaku
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Zuobing Zhang
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Vahid Pazhakh
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Center and The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| |
Collapse
|
5
|
Xie J, Meijer AH. Xenophagy receptors Optn and p62 and autophagy modulator Dram1 independently promote the zebrafish host defense against Mycobacterium marinum. Front Cell Infect Microbiol 2024; 13:1331818. [PMID: 38264729 PMCID: PMC10803470 DOI: 10.3389/fcimb.2023.1331818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Anti-bacterial autophagy, also known as xenophagy, is a crucial innate immune process that helps maintain cellular homeostasis by targeting invading microbes. This defense pathway is widely studied in the context of infections with mycobacteria, the causative agents of human tuberculosis and tuberculosis-like disease in animal models. Our previous work in a zebrafish tuberculosis model showed that host defense against Mycobacterium marinum (Mm) is impaired by deficiencies in xenophagy receptors, optineurin (Optn) or sequestome 1 (p62), and Damage-regulated autophagy modulator 1 (Dram1). However, the interdependency of these receptors and their interaction with Dram1 remained unknown. In the present study, we used single and double knockout zebrafish lines in combination with overexpression experiments. We show that Optn and p62 can compensate for the loss of each other's function, as their overexpression restores the infection susceptibility of the mutant phenotypes. Similarly, Dram1 can compensate for deficiencies in Optn and p62, and, vice versa, Optn and p62 compensate for the loss of Dram1, indicating that these xenophagy receptors and Dram1 do not rely on each other for host defense against Mm. In agreement, Dram1 overexpression in optn/p62 double mutants restored the interaction of autophagosome marker Lc3 with Mm. Finally, optn/p62 double mutants displayed more severe infection susceptibility than the single mutants. Taken together, these results suggest that Optn and p62 do not function downstream of each other in the anti-mycobacterial xenophagy pathway, and that the Dram1-mediated defense against Mm infection does not rely on specific xenophagy receptors.
Collapse
|
6
|
Tang L, Qiu W, Zhang S, Wang J, Yang X, Xu B, Magnuson JT, Xu EG, Wu M, Zheng C. Poly- and Perfluoroalkyl Substances Induce Immunotoxicity via the TLR Pathway in Zebrafish: Links to Carbon Chain Length. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6139-6149. [PMID: 37017313 DOI: 10.1021/acs.est.2c09716] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Previous studies have reported the immunotoxicity of per- and polyfluoroalkyl substances (PFASs), but it remains a significant challenge to assess over 10,000 distinct PFASs registered in the distributed structure-searchable toxicity (DSSTox) database. We aim to reveal the mechanisms of immunotoxicity of different PFASs and hypothesize that PFAS immunotoxicity is dependent on the carbon chain length. Perfluorobutanesulfonic acid (PFBA), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) representing different carbon chain lengths (4-9) at environmentally relevant levels strongly reduced the host's antibacterial ability during the zebrafish's early-life stage. Innate and adaptive immunities were both suppressed after PFAS exposures, exhibiting a significant induction of macrophages and neutrophils and expression of immune-related genes and indicators. Interestingly, the PFAS-induced immunotoxic responses were positively correlated to the carbon chain length. Moreover, PFASs activated downstream genes of the toll-like receptor (TLR), uncovering a seminal role of TLR in PFAS immunomodulatory effects. Myeloid differentiation factor 88 (MyD88) morpholino knock-down experiments and MyD88 inhibitors alleviated the immunotoxicity of PFASs. Overall, the comparative results demonstrate differences in the immunotoxic responses of PFASs due to carbon chain length in zebrafish, providing new insights into the prediction and classification of PFASs mode of toxic action based on carbon chain length.
Collapse
Affiliation(s)
- Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Shuwen Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Jiazhen Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Chashan University Town, Wenzhou 325035, China
| | - Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Måltidets Hus - Richard Johnsens gate 4, Stavanger 4021, Norway
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
- EIT Institute for Advanced Study, 568 Tongxin Road, Zhenhai District, Ningbo 315410, China
| |
Collapse
|
7
|
Dudziak K, Nowak M, Sozoniuk M. One Host-Multiple Applications: Zebrafish ( Danio rerio) as Promising Model for Studying Human Cancers and Pathogenic Diseases. Int J Mol Sci 2022; 23:10255. [PMID: 36142160 PMCID: PMC9499349 DOI: 10.3390/ijms231810255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, zebrafish (ZF) has been increasingly applied as a model in human disease studies, with a particular focus on cancer. A number of advantages make it an attractive alternative for mice widely used so far. Due to the many advantages of zebrafish, modifications can be based on different mechanisms and the induction of human disease can take different forms depending on the research goal. Genetic manipulation, tumor transplantation, or injection of the pathogen are only a few examples of using ZF as a model. Most of the studies are conducted in order to understand the disease mechanism, monitor disease progression, test new or alternative therapies, and select the best treatment. The transplantation of cancer cells derived from patients enables the development of personalized medicine. To better mimic a patient's body environment, immune-deficient models (SCID) have been developed. A lower immune response is mostly generated by genetic manipulation but also by irradiation or dexamethasone treatment. For many studies, using SCID provides a better chance to avoid cancer cell rejection. In this review, we describe the main directions of using ZF in research, explain why and how zebrafish can be used as a model, what kind of limitations will be met and how to overcome them. We collected recent achievements in this field, indicating promising perspectives for the future.
Collapse
Affiliation(s)
- Karolina Dudziak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Michał Nowak
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
8
|
Levraud JP, Rawls JF, Clatworthy AE. Using zebrafish to understand reciprocal interactions between the nervous and immune systems and the microbial world. J Neuroinflammation 2022; 19:170. [PMID: 35765004 PMCID: PMC9238045 DOI: 10.1186/s12974-022-02506-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Animals rely heavily on their nervous and immune systems to perceive and survive within their environment. Despite the traditional view of the brain as an immunologically privileged organ, these two systems interact with major consequences. Furthermore, microorganisms within their environment are major sources of stimuli and can establish relationships with animal hosts that range from pathogenic to mutualistic. Research from a variety of human and experimental animal systems are revealing that reciprocal interactions between microbiota and the nervous and immune systems contribute significantly to normal development, homeostasis, and disease. The zebrafish has emerged as an outstanding model within which to interrogate these interactions due to facile genetic and microbial manipulation and optical transparency facilitating in vivo imaging. This review summarizes recent studies that have used the zebrafish for analysis of bidirectional control between the immune and nervous systems, the nervous system and the microbiota, and the microbiota and immune system in zebrafish during development that promotes homeostasis between these systems. We also describe how the zebrafish have contributed to our understanding of the interconnections between these systems during infection in fish and how perturbations may result in pathology.
Collapse
Affiliation(s)
- Jean-Pierre Levraud
- Université Paris-Saclay, CNRS, Institut Pasteur, Université Paris-Cité, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France.
| | - John F. Rawls
- grid.26009.3d0000 0004 1936 7961Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, 213 Research Drive, Durham, NC 27710 USA
| | - Anne E. Clatworthy
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA ,grid.32224.350000 0004 0386 9924Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| |
Collapse
|
9
|
Wolińska-Nizioł L, Romaniuk K, Wojciechowska K, Surga K, Kamaszewski M, Szudrowicz H, Miączyńska M. Tollip-deficient zebrafish display no abnormalities in development, organ morphology or gene expression in response to lipopolysaccharide. FEBS Open Bio 2022; 12:1453-1464. [PMID: 35506194 PMCID: PMC9340867 DOI: 10.1002/2211-5463.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/13/2022] [Accepted: 05/03/2022] [Indexed: 11/11/2022] Open
Abstract
Tollip is a multifunctional adaptor protein implicated in innate immunity, lysosomal trafficking/autophagy of protein aggregates and various signaling processes in mammalian models. To verify evolutionary conservation of these functions, we used CRISPR/Cas9 editing to construct a zebrafish line bearing a stable tollip knockout. In contrast to previously reported tollip morphants, Tollip‐deficient fish display normal development until adulthood, are fertile, and have no apparent physiological defects. When challenged with lipopolysaccharide (LPS), inflammatory gene expression is unaffected. Moreover, Tollip deficiency does not aggravate swimming deficiency resulting from lysosomal dysfunction and proteotoxicity in a fish model of Gaucher disease. Thus, individual functions of Tollip may be organism‐specific or manifest only upon certain conditions/challenges or disease backgrounds.
Collapse
Affiliation(s)
- Lidia Wolińska-Nizioł
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Karolina Romaniuk
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Karolina Wojciechowska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Krzysztof Surga
- Zebrafish Core Facility, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Kamaszewski
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, University of Life Sciences, Warsaw, Poland
| | - Hubert Szudrowicz
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, University of Life Sciences, Warsaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
10
|
Zebrafish larvae as experimental model to expedite the search for new biomarkers and treatments for neonatal sepsis. J Clin Transl Sci 2021; 5:e140. [PMID: 34422320 PMCID: PMC8358844 DOI: 10.1017/cts.2021.803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Neonatal sepsis is a major cause of death and disability in newborns. Commonly used biomarkers for diagnosis and evaluation of treatment response lack sufficient sensitivity or specificity. Additionally, new targets to treat the dysregulated immune response are needed, as are methods to effectively screen drugs for these targets. Available research methods have hitherto not yielded the breakthroughs required to significantly improve disease outcomes, we therefore describe the potential of zebrafish (Danio rerio) larvae as preclinical model for neonatal sepsis. In biomedical research, zebrafish larvae combine the complexity of a whole organism with the convenience and high-throughput potential of in vitro methods. This paper illustrates that zebrafish exhibit an immune system that is remarkably similar to humans, both in terms of types of immune cells and signaling pathways. Moreover, the developmental state of the larval immune system is highly similar to human neonates. We provide examples of zebrafish larvae being used to study infections with pathogens commonly causing neonatal sepsis and discuss known limitations. We believe this species could expedite research into immune regulation during neonatal sepsis and may hold keys for the discovery of new biomarkers and novel treatment targets as well as for screening of targeted drug therapies.
Collapse
|
11
|
Isiaku AI, Zhang Z, Pazhakh V, Manley HR, Thompson ER, Fox LC, Yerneni S, Blombery P, Lieschke GJ. Transient, flexible gene editing in zebrafish neutrophils and macrophages for determination of cell-autonomous functions. Dis Model Mech 2021; 14:271018. [PMID: 34296745 PMCID: PMC8319549 DOI: 10.1242/dmm.047431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/04/2021] [Indexed: 11/28/2022] Open
Abstract
Zebrafish are an important model for studying phagocyte function, but rigorous experimental systems to distinguish whether phagocyte-dependent effects are neutrophil or macrophage specific have been lacking. We have developed and validated transgenic lines that enable superior demonstration of cell-autonomous neutrophil and macrophage genetic requirements. We coupled well-characterized neutrophil- and macrophage-specific Gal4 driver lines with UAS:Cas9 transgenes for selective expression of Cas9 in either neutrophils or macrophages. Efficient gene editing, confirmed by both Sanger and next-generation sequencing, occurred in both lineages following microinjection of efficacious synthetic guide RNAs into zebrafish embryos. In proof-of-principle experiments, we demonstrated molecular and/or functional evidence of on-target gene editing for several genes (mCherry, lamin B receptor, trim33) in either neutrophils or macrophages as intended. These new UAS:Cas9 tools provide an improved resource for assessing individual contributions of neutrophil- and macrophage-expressed genes to the many physiological processes and diseases modelled in zebrafish. Furthermore, this gene-editing functionality can be exploited in any cell lineage for which a lineage-specific Gal4 driver is available. This article has an associated First Person interview with the first author of the paper. Summary: We developed new tools for lineage-specific gene editing in neutrophils or macrophages based on leukocyte-specific Cas9 expression, that can be used with injected synthetic gRNAs.
Collapse
Affiliation(s)
- Abdulsalam I Isiaku
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Zuobing Zhang
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia.,Department of Biological Sciences, School of Life Science, Shanxi University, Taiyuan, Shanxi Province 030006, China
| | - Vahid Pazhakh
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Harriet R Manley
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ella R Thompson
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lucy C Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Satwica Yerneni
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia.,Department of Clinical Haematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| |
Collapse
|
12
|
Loes AN, Hinman MN, Farnsworth DR, Miller AC, Guillemin K, Harms MJ. Identification and Characterization of Zebrafish Tlr4 Coreceptor Md-2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1046-1057. [PMID: 33472906 PMCID: PMC7889624 DOI: 10.4049/jimmunol.1901288] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
Abstract
The zebrafish (Danio rerio) is a powerful model organism for studies of the innate immune system. One apparent difference between human and zebrafish innate immunity is the cellular machinery for LPS sensing. In amniotes, the protein complex formed by TLR4 and myeloid differentiation factor 2 (Tlr4/Md-2) recognizes the bacterial molecule LPS and triggers an inflammatory response. It is believed that zebrafish have neither Md-2 nor Tlr4; Md-2 has not been identified outside of amniotes, whereas the zebrafish tlr4 genes appear to be paralogs, not orthologs, of amniote TLR4s We revisited these conclusions. We identified a zebrafish gene encoding Md-2, ly96 Using single-cell RNA sequencing, we found that ly96 is transcribed in cells that also transcribe genes diagnostic for innate immune cells, including the zebrafish tlr4-like genes. In larval zebrafish, ly96 is expressed in a small number of macrophage-like cells. In a functional assay, zebrafish Md-2 and Tlr4ba form a complex that activates NF-κB signaling in response to LPS. In larval zebrafish ly96 loss-of-function mutations perturbed LPS-induced cytokine production but gave little protection against LPS toxicity. Finally, by analyzing the genomic context of tlr4 genes in 11 jawed vertebrates, we found that tlr4 arose prior to the divergence of teleosts and tetrapods. Thus, an LPS-sensitive Tlr4/Md-2 complex is likely an ancestral feature shared by mammals and zebrafish, rather than a de novo invention on the tetrapod lineage. We hypothesize that zebrafish retain an ancestral, low-sensitivity Tlr4/Md-2 complex that confers LPS responsiveness to a specific subset of innate immune cells.
Collapse
Affiliation(s)
- Andrea N Loes
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
| | - Melissa N Hinman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
- Department of Biology, University of Oregon, Eugene, OR 97403
| | - Dylan R Farnsworth
- Department of Biology, University of Oregon, Eugene, OR 97403
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403; and
| | - Adam C Miller
- Department of Biology, University of Oregon, Eugene, OR 97403
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403; and
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
- Department of Biology, University of Oregon, Eugene, OR 97403
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Michael J Harms
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403;
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
| |
Collapse
|
13
|
Hu W, van Steijn L, Li C, Verbeek FJ, Cao L, Merks RMH, Spaink HP. A Novel Function of TLR2 and MyD88 in the Regulation of Leukocyte Cell Migration Behavior During Wounding in Zebrafish Larvae. Front Cell Dev Biol 2021; 9:624571. [PMID: 33659250 PMCID: PMC7917198 DOI: 10.3389/fcell.2021.624571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/22/2021] [Indexed: 01/04/2023] Open
Abstract
Toll-like receptor (TLR) signaling via myeloid differentiation factor 88 protein (MyD88) has been indicated to be involved in the response to wounding. It remains unknown whether the putative role of MyD88 in wounding responses is due to a control of leukocyte cell migration. The aim of this study was to explore in vivo whether TLR2 and MyD88 are involved in modulating neutrophil and macrophage cell migration behavior upon zebrafish larval tail wounding. Live cell imaging of tail-wounded larvae was performed in tlr2 and myd88 mutants and their corresponding wild type siblings. In order to visualize cell migration following tissue damage, we constructed double transgenic lines with fluorescent markers for macrophages and neutrophils in all mutant and sibling zebrafish lines. Three days post fertilization (dpf), tail-wounded larvae were studied using confocal laser scanning microscopy (CLSM) to quantify the number of recruited cells at the wounding area. We found that in both tlr2-/- and myd88-/- groups the recruited neutrophil and macrophage numbers are decreased compared to their wild type sibling controls. Through analyses of neutrophil and macrophage migration patterns, we demonstrated that both tlr2 and myd88 control the migration direction of distant neutrophils upon wounding. Furthermore, in both the tlr2 and the myd88 mutants, macrophages migrated more slowly toward the wound edge. Taken together, our findings show that tlr2 and myd88 are involved in responses to tail wounding by regulating the behavior and speed of leukocyte migration in vivo.
Collapse
Affiliation(s)
- Wanbin Hu
- Institute of Biology, Leiden University, Leiden, Netherlands
| | | | - Chen Li
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, Netherlands
| | - Fons J Verbeek
- Institute of Biology, Leiden University, Leiden, Netherlands.,Leiden Institute of Advanced Computer Science, Leiden University, Leiden, Netherlands
| | - Lu Cao
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, Netherlands
| | - Roeland M H Merks
- Institute of Biology, Leiden University, Leiden, Netherlands.,Mathematical Institute, Leiden University, Leiden, Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
14
|
Hosseini R, Lamers GEM, Bos E, Hogendoorn PCW, Koster AJ, Meijer AH, Spaink HP, Schaaf MJM. The adapter protein Myd88 plays an important role in limiting mycobacterial growth in a zebrafish model for tuberculosis. Virchows Arch 2021; 479:265-275. [PMID: 33559740 PMCID: PMC8364548 DOI: 10.1007/s00428-021-03043-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/27/2022]
Abstract
Tuberculosis (TB) is the most prevalent bacterial infectious disease in the world, caused by the pathogen Mycobacterium tuberculosis (Mtb). In this study, we have used Mycobacterium marinum (Mm) infection in zebrafish larvae as an animal model for this disease to study the role of the myeloid differentiation factor 88 (Myd88), the key adapter protein of Toll-like receptors. Previously, Myd88 has been shown to enhance innate immune responses against bacterial infections, and in the present study, we have investigated the effect of Myd88 deficiency on the granuloma morphology and the intracellular distribution of bacteria during Mm infection. Our results show that granulomas formed in the tail fin from myd88 mutant larvae have a more compact structure and contain a reduced number of leukocytes compared to the granulomas observed in wild-type larvae. These morphological differences were associated with an increased bacterial burden in the myd88 mutant. Electron microscopy analysis showed that the majority of Mm in the myd88 mutant are located extracellularly, whereas in the wild type, most bacteria were intracellular. In the myd88 mutant, intracellular bacteria were mainly present in compartments that were not electron-dense, suggesting that these compartments had not undergone fusion with a lysosome. In contrast, approximately half of the intracellular bacteria in wild-type larvae were found in electron-dense compartments. These observations in a zebrafish model for tuberculosis suggest a role for Myd88-dependent signalling in two important phenomena that limit mycobacterial growth in the infected tissue. It reduces the number of leukocytes at the site of infection and the acidification of bacteria-containing compartments inside these cells.
Collapse
Affiliation(s)
- Rohola Hosseini
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Gerda E M Lamers
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Erik Bos
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Pancras C W Hogendoorn
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, Netherlands.
| | - Abraham J Koster
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
15
|
Sendra M, Pereiro P, Yeste MP, Mercado L, Figueras A, Novoa B. Size matters: Zebrafish (Danio rerio) as a model to study toxicity of nanoplastics from cells to the whole organism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115769. [PMID: 33070068 DOI: 10.1016/j.envpol.2020.115769] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 05/22/2023]
Abstract
The contamination of the aquatic environment by plastic nanoparticles is becoming a major concern due to their potential adverse effects in aquatic biota. Therefore, in-depth knowledge of their uptake, trafficking and effects at cellular and systemic levels is essential to understand their potential impacts for aquatic species. In this work, zebrafish (Danio rerio) was used as a model and our aims were: i) to determine the distribution, uptake, trafficking, degradation and genotoxicity of polystyrene (PS) NPs of different sizes in a zebrafish cell line; ii) to study PS NPs accumulation, migration of immune cells and genotoxicity in larvae exposed to PS NPs; and iii) to assess how PS NPs condition the survival of zebrafish larvae exposed to a pathogen and/or how they impact the resistance of an immunodeficient zebrafish. Our results revealed that the cellular distribution differed depending on the particle size: the 50 nm PS NPs were more homogeneously distributed in the cytoplasm and the 1 μM PS NPs more agglomerated. The main endocytic mechanisms for the uptake of NPs were dynamin-dependent internalization for the 50 nm NPs and phagocytosis for the 1 μm nanoparticles. In both cases, degradation in lysosomes was the main fate of the PS NPs, which generated alkalinisation and modified cathepsin genes expression. These effects at cellular level agree with the results in vivo, since lysosomal alkalization increases oxidative stress and vice versa. Nanoparticles mainly accumulated in the gut, where they triggered reactive oxygen species, decreased expression of the antioxidant gene catalase and induced migration of immune cells. Finally, although PS NPs did not induce mortality in wild-type larvae, immunodeficient and infected larvae had decreased survival upon exposure to PS NPs. This fact could be explained by the mechanical disruption and/or the oxidative damage caused by these NPs that increase their susceptibility to pathogens.
Collapse
Affiliation(s)
- M Sendra
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - P Pereiro
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - M P Yeste
- Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, University of Cádiz, Spain
| | - L Mercado
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - A Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - B Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain.
| |
Collapse
|
16
|
Cunha MI, Su M, Cantuti-Castelvetri L, Müller SA, Schifferer M, Djannatian M, Alexopoulos I, van der Meer F, Winkler A, van Ham TJ, Schmid B, Lichtenthaler SF, Stadelmann C, Simons M. Pro-inflammatory activation following demyelination is required for myelin clearance and oligodendrogenesis. J Exp Med 2020; 217:133824. [PMID: 32078678 PMCID: PMC7201919 DOI: 10.1084/jem.20191390] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/22/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Remyelination requires innate immune system function, but how exactly microglia and macrophages clear myelin debris after injury and tailor a specific regenerative response is unclear. Here, we asked whether pro-inflammatory microglial/macrophage activation is required for this process. We established a novel toxin-based spinal cord model of de- and remyelination in zebrafish and showed that pro-inflammatory NF-κB–dependent activation in phagocytes occurs rapidly after myelin injury. We found that the pro-inflammatory response depends on myeloid differentiation primary response 88 (MyD88). MyD88-deficient mice and zebrafish were not only impaired in the degradation of myelin debris, but also in initiating the generation of new oligodendrocytes for myelin repair. We identified reduced generation of TNF-α in lesions of MyD88-deficient animals, a pro-inflammatory molecule that was able to induce the generation of new premyelinating oligodendrocytes. Our study shows that pro-inflammatory phagocytic signaling is required for myelin debris degradation, for inflammation resolution, and for initiating the generation of new oligodendrocytes.
Collapse
Affiliation(s)
- Maria Inês Cunha
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.,German Center for Neurodegenerative Diseases, Munich, Germany.,Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - Minhui Su
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.,German Center for Neurodegenerative Diseases, Munich, Germany
| | - Ludovico Cantuti-Castelvetri
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.,German Center for Neurodegenerative Diseases, Munich, Germany
| | | | - Martina Schifferer
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.,German Center for Neurodegenerative Diseases, Munich, Germany
| | - Minou Djannatian
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.,German Center for Neurodegenerative Diseases, Munich, Germany
| | - Ioannis Alexopoulos
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.,German Center for Neurodegenerative Diseases, Munich, Germany
| | - Franziska van der Meer
- Department of Neuropathology, University of Göttingen Medical Center, Göttingen, Germany
| | - Anne Winkler
- Department of Neuropathology, University of Göttingen Medical Center, Göttingen, Germany
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bettina Schmid
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christine Stadelmann
- Department of Neuropathology, University of Göttingen Medical Center, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.,German Center for Neurodegenerative Diseases, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
17
|
Cafora M, Brix A, Forti F, Loberto N, Aureli M, Briani F, Pistocchi A. Phages as immunomodulators and their promising use as anti-inflammatory agents in a cftr loss-of-function zebrafish model. J Cyst Fibros 2020; 20:1046-1052. [PMID: 33298374 DOI: 10.1016/j.jcf.2020.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/28/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Cystic Fibrosis (CF), one of the most frequent hereditary diseases due to mutations in the CFTR gene, causes mortality in humans mainly due to infection in the respiratory system. However, besides the massive inflammatory response triggered by chronic bacterial infections, a constitutive pro-inflammatory state associated with the most common CFTR mutations has been reported in paediatric cases before the onset of bacterial colonization. In previous works we isolated and characterized a mix of virulent bacteriophages (phage cocktail) able to efficiently counteract Pseudomonas aeruginosa infection in a zebrafish model with cftr loss-of-function (LOF), but also showing anti-inflammatory effects in zebrafish embryos not infected by bacteria. On these premises, in this work we demonstrated the anti-inflammatory role of the phage cocktail both in the wild-type (WT) and hyper-inflamed cftr LOF zebrafish embryos in terms of reduction of pro-inflammatory markers. We also dissect that only the virion proteinaceous components, but not the phage DNA, are responsible for the immune-modulatory effect and that this action is elicited through the activation of the Toll-like Receptor (TLR) pathway. In the cftr LOF zebrafish embryos, we demonstrated that phages injection significantly reduces neutrophil migration following acute inflammatory induction. The elucidation of the molecular interaction between phages and the cells of vertebrate immune system might open new possibility in their manipulation for therapeutic benefits especially in diseases such as cystic fibrosis, characterized by chronic infection and inflammation.
Collapse
Affiliation(s)
- Marco Cafora
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, via Fratelli Cervi 93, 20090 Segrate, MI, Italy; EPIGET LAB, Dipartimento di Scienze Cliniche e Comunità, Università degli Studi di Milano, Via San Barnaba 8, 20122, Milano, Italy
| | - Alessia Brix
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, via Fratelli Cervi 93, 20090 Segrate, MI, Italy
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Nicoletta Loberto
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, via Fratelli Cervi 93, 20090 Segrate, MI, Italy
| | - Massimo Aureli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, via Fratelli Cervi 93, 20090 Segrate, MI, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, via Fratelli Cervi 93, 20090 Segrate, MI, Italy.
| |
Collapse
|
18
|
Cui J, Chen G, Wen D, Wang Y, Zhao Z, Wu C. Asap1 Affects the Susceptibility of Zebrafish to Mycobacterium by Regulating Macrophage Migration. Front Cell Infect Microbiol 2020; 10:519503. [PMID: 33194781 PMCID: PMC7658321 DOI: 10.3389/fcimb.2020.519503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 09/11/2020] [Indexed: 01/05/2023] Open
Abstract
The ADP ribosylation factor (ARF) GTPase activation protein ASAP1 possesses multiple biological functions, including regulation of cytoskeletal dynamics, small GTP-binding protein receptor recycling, and intracellular vesicle trafficking. Recently, ASAP1 polymorphisms have been reported to be associated with human susceptibility to tuberculosis (TB) according to a large-scale genome-wide association study (GWAS); ASAP1 expression affects dendritic cell migration, which may be involved in TB predisposition. However, it remains unclear whether ASAP1 affects TB in vivo. To address this issue, we used zebrafish as a model system to examine the effects of Asap1 against Mycobacterium marinum, an organism closely related to Mycobacterium tuberculosis. Two zebrafish asap1 homologs (asap1a and asap1b) were identified and characterized. By morpholino knockdown of asap1a and asap1b as a whole, we found that the asap1 morphants showed a higher mycobacterial load than the controls, which was almost rescued by injecting asap1 mRNA that confers resistance to mycobacterial infection. These Asap1-depleted zebrafish also exhibited decreased macrophage migration in response to tail injury or upon infection with M. marinum in the hindbrain ventricle, which was also proved in THP1-derived macrophages of knockdown ASAP1. Together, these findings represent a new perspective on the role of Asap1 in resistance to mycobacterial infection.
Collapse
Affiliation(s)
- Jia Cui
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.,Department of Microbiology, Changzhi Medical College, Changzhi, China
| | - Guangxin Chen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Da Wen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yuhuan Wang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Zhonghua Zhao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.,Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| |
Collapse
|
19
|
Stressmann FA, Bernal-Bayard J, Perez-Pascual D, Audrain B, Rendueles O, Briolat V, Bruchmann S, Volant S, Ghozlane A, Häussler S, Duchaud E, Levraud JP, Ghigo JM. Mining zebrafish microbiota reveals key community-level resistance against fish pathogen infection. ISME JOURNAL 2020; 15:702-719. [PMID: 33077888 DOI: 10.1038/s41396-020-00807-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
The long-known resistance to pathogens provided by host-associated microbiota fostered the notion that adding protective bacteria could prevent or attenuate infection. However, the identification of endogenous or exogenous bacteria conferring such protection is often hindered by the complexity of host microbial communities. Here, we used zebrafish and the fish pathogen Flavobacterium columnare as a model system to study the determinants of microbiota-associated colonization resistance. We compared infection susceptibility in germ-free, conventional and reconventionalized larvae and showed that a consortium of 10 culturable bacterial species are sufficient to protect zebrafish. Whereas survival to F. columnare infection does not rely on host innate immunity, we used antibiotic dysbiosis to alter zebrafish microbiota composition, leading to the identification of two different protection strategies. We first identified that the bacterium Chryseobacterium massiliae individually protects both larvae and adult zebrafish. We also showed that an assembly of 9 endogenous zebrafish species that do not otherwise protect individually confer a community-level resistance to infection. Our study therefore provides a rational approach to identify key endogenous protecting bacteria and promising candidates to engineer resilient microbial communities. It also shows how direct experimental analysis of colonization resistance in low-complexity in vivo models can reveal unsuspected ecological strategies at play in microbiota-based protection against pathogens.
Collapse
Affiliation(s)
- Franziska A Stressmann
- Genetics of Biofilms Laboratory, Institut Pasteur, UMR CNRS2001, 75015, Paris, France.,Department of Chemical Analytics and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Joaquín Bernal-Bayard
- Genetics of Biofilms Laboratory, Institut Pasteur, UMR CNRS2001, 75015, Paris, France.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080, Sevilla, Spain
| | - David Perez-Pascual
- Genetics of Biofilms Laboratory, Institut Pasteur, UMR CNRS2001, 75015, Paris, France
| | - Bianca Audrain
- Genetics of Biofilms Laboratory, Institut Pasteur, UMR CNRS2001, 75015, Paris, France
| | - Olaya Rendueles
- Genetics of Biofilms Laboratory, Institut Pasteur, UMR CNRS2001, 75015, Paris, France.,Microbial Evolutionary Genomics Laboratory, Institut Pasteur, UMR3525, 75015, Paris, France
| | - Valérie Briolat
- Macrophages and Development of Immunity Laboratory, Institut Pasteur, UMR3738 CNRS, 75015, Paris, France
| | - Sebastian Bruchmann
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Stevenn Volant
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Amine Ghozlane
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Clinical Microbiology, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Eric Duchaud
- Unité VIM, INRAE, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jean-Pierre Levraud
- Macrophages and Development of Immunity Laboratory, Institut Pasteur, UMR3738 CNRS, 75015, Paris, France
| | - Jean-Marc Ghigo
- Genetics of Biofilms Laboratory, Institut Pasteur, UMR CNRS2001, 75015, Paris, France.
| |
Collapse
|
20
|
Mohammad-Beigi H, Scavenius C, Jensen PB, Kjaer-Sorensen K, Oxvig C, Boesen T, Enghild JJ, Sutherland DS, Hayashi Y. Tracing the In Vivo Fate of Nanoparticles with a "Non-Self" Biological Identity. ACS NANO 2020; 14:10666-10679. [PMID: 32806026 DOI: 10.1021/acsnano.0c05178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoparticles can acquire a biomolecular corona with a species-specific biological identity. However, "non-self" incompatibility of recipient biological systems is often not considered, for example, when rodents are used as a model organism for preclinical studies of biomolecule-inspired nanomedicines. Using zebrafish embryos as an emerging model for nanobioimaging, here we unravel the in vivo fate of intravenously injected 70 nm SiO2 nanoparticles with a protein corona preformed from fetal bovine serum (FBS), representing a non-self biological identity. Strikingly rapid sequestration and endolysosomal acidification of nanoparticles with the preformed FBS corona were observed in scavenger endothelial cells within minutes after injection. This led to loss of blood vessel integrity and to inflammatory activation of macrophages over the course of several hours. As unmodified nanoparticles or the equivalent dose of FBS proteins alone failed to induce the observed pathophysiology, this signifies how the corona enriched with a differential repertoire of proteins can determine the fate of the nanoparticles in vivo. Our findings thus reveal the adverse outcome triggered by incompatible protein coronas and indicate a potential pitfall in the use of mismatched species combinations during nanomedicine development.
Collapse
Affiliation(s)
- Hossein Mohammad-Beigi
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Pia Bomholt Jensen
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Kasper Kjaer-Sorensen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Thomas Boesen
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Duncan S Sutherland
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Yuya Hayashi
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| |
Collapse
|
21
|
Effects of MP Polyethylene Microparticles on Microbiome and Inflammatory Response of Larval Zebrafish. TOXICS 2020; 8:toxics8030055. [PMID: 32796641 PMCID: PMC7560425 DOI: 10.3390/toxics8030055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Plastic polymers have quickly become one of the most abundant materials on Earth due to their low production cost and high versatility. Unfortunately, some of the discarded plastic can make its way into the environment and become fragmented into smaller microscopic particles, termed secondary microplastics (MP). In addition, primary MP, purposely manufactured microscopic plastic particles, can also make their way into our environment via various routes. Owing to their size and resilience, these MP can then be easily ingested by living organisms. The effect of MP particles on living organisms is suspected to have negative implications, especially during early development. In this study, we examined the effects of polyethylene MP ingestion for four and ten days of exposure starting at 5 days post-fertilization (dpf). In particular, we examined the effects of polyethylene MP exposure on resting metabolic rate, on gene expression of several inflammatory and oxidative stress linked genes, and on microbiome composition between treatments. Overall, we found no evidence of broad metabolic disturbances or inflammatory markers in MP-exposed fish for either period of time. However, there was a significant increase in the oxidative stress mediator L-FABP that occurred at 15 dpf. Furthermore, the microbiome was disrupted by MP exposure, with evidence of an increased abundance of Bacteroidetes in MP fish, a combination frequently found in intestinal pathologies. Thus, it appears that acute polyethylene MP exposure can increase oxidative stress and dysbiosis, which may render the animal more susceptible to diseases.
Collapse
|
22
|
Vedder VL, Aherrahrou Z, Erdmann J. Dare to Compare. Development of Atherosclerotic Lesions in Human, Mouse, and Zebrafish. Front Cardiovasc Med 2020; 7:109. [PMID: 32714944 PMCID: PMC7344238 DOI: 10.3389/fcvm.2020.00109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases, such as atherosclerosis, are the leading cause of death worldwide. Although mice are currently the most commonly used model for atherosclerosis, zebrafish are emerging as an alternative, especially for inflammatory and lipid metabolism studies. Here, we review the history of in vivo atherosclerosis models and highlight the potential for future studies on inflammatory responses in lipid deposits in zebrafish, based on known immune reactions in humans and mice, in anticipation of new zebrafish models with more advanced atherosclerotic plaques.
Collapse
Affiliation(s)
- Viviana L Vedder
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| |
Collapse
|
23
|
Biological Activity of Porcine Gastric Mucin on Stress Resistance and Immunomodulation. Molecules 2020; 25:molecules25132981. [PMID: 32610600 PMCID: PMC7411864 DOI: 10.3390/molecules25132981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Purified porcine gastric mucin (PGM) is an alternative biomaterial to native mucin which displays multifunctional properties for exploring a wide range of biomedical applications. The present study evaluated the in vitro (RAW 264.7 macrophage cells) and in vivo (zebrafish embryos and larvae) bioactivities of PGM. The median lethal concentration (LC50) of PGM was 197.9 µg/mL for embryos, while it was non-toxic to RAW 264.7 cells, even at 500 µg/mL. Following PGM exposure (100 µg/mL), a higher embryo hatching rate (59.9%) was observed at 48 h post fertilization, compared to the control (30.6%). Protective effects of PGM from pathogenic Aeromonas hydrophila were demonstrated by high larvae survival rates of 85.0% and 94.0% at 50 and 100 μg/mL of PGM exposure, respectively. Heat tolerance effect of PGM (50 and 100 µg/mL) on larvae (40 °C for 48 h) was confirmed by 75% and 100% of survival rates, respectively. Additionally, PGM reduced the A. hydrophila–induced reactive oxygen species (ROS) generation in larvae. The qRT-PCR results in PGM exposed larvae exhibited induction of immune-related genes (tlr5a and tlr5b, myd88, c-rel, il1β, tnf-α, il6, il10, cxcl18b, ccl34a.4, defbl1, hamp, ctsd, muc2.1, muc5.1, muc5.2, and muc5.3), stress response (hsp70, hsp90aa1.1, and hsp90ab1), and antioxidant genes (cat and sod1). Moreover, our results revealed that PGM involved in the regulation of transcriptional gene induction increases Hsp90 protein in the zebrafish larvae. Furthermore, upregulation of Il6, Il10, Tnfα, Ccl3, Defa-rs2, Defa21 and Camp and antioxidant genes (Sod2 and Cat) were observed in PGM-exposed RAW 264.7 cells. Overall findings confirmed the activation of immune responses, disease resistance against pathogenic bacteria, heat tolerance, and ROS-scavenging properties by PGM, which may provide insights into new applications for PGM as a multifunctional immunomodulator.
Collapse
|
24
|
Yu T, Kuang H, Chen J, Lin X, Wu Y, Chen K, Zhang M, Zhang W, Wen Z. Tripartite-motif family protein 35-28 regulates microglia development by preventing necrotic death of microglial precursors in zebrafish. J Biol Chem 2020; 295:8846-8856. [PMID: 32398256 DOI: 10.1074/jbc.ra119.012043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/04/2020] [Indexed: 02/02/2023] Open
Abstract
Microglia are tissue-resident macrophages in the central nervous system (CNS) that play essential roles in the regulation of CNS development and homeostasis. Yet, the genetic networks governing microglia development remain incompletely defined. Here, we report the identification and characterization of a microglia-defective zebrafish mutant wulonghkz12 (wulhkz12 ) isolated from an ethylnitrosourea (ENU)-based genetic screen. We show that wulhkz12 mutants harbors a missense point mutation in the gene region encoding the PRY/SPRY domain of the tripartite-motif family protein 35-28 (trim35-28) gene. Time-lapse imaging revealed that the loss of Trim35-28 function causes lytic necrosis of microglial precursors/peripheral macrophages, as indicated by cytoplasmic swelling and membrane rupture of these precursors and accompanied by neutrophil infiltration and systemic inflammation. Intriguingly, the lytic necrosis of microglial precursors in trim35-28-deficient mutants appeared to depend neither on the canonical pyroptotic nor necroptotic pathways, as inhibition of the key component in each pathway could not rescue the microglia phenotype in trim35-28-deficient mutants. Finally, results from tissue-specific rescue experiments suggested that Trim35-28 acts cell-autonomously in the survival of microglial precursors. Taken together, the findings of our study reveal Trim35-28 as a regulatory protein essential for microglia development.
Collapse
Affiliation(s)
- Tao Yu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University- The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Haoyue Kuang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University- The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jiahao Chen
- Department of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangdong, Guangzhou, China
| | - Xi Lin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yi Wu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University- The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Keyu Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Mingjie Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University- The Hong Kong University of Science and Technology Medical Center, Shenzhen, China; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Wenqing Zhang
- Department of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangdong, Guangzhou, China.
| | - Zilong Wen
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University- The Hong Kong University of Science and Technology Medical Center, Shenzhen, China; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
25
|
van den Bos R, Cromwijk S, Tschigg K, Althuizen J, Zethof J, Whelan R, Flik G, Schaaf M. Early Life Glucocorticoid Exposure Modulates Immune Function in Zebrafish ( Danio rerio) Larvae. Front Immunol 2020; 11:727. [PMID: 32411141 PMCID: PMC7201046 DOI: 10.3389/fimmu.2020.00727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
In this study we have assessed the effects of increased cortisol levels during early embryonic development on immune function in zebrafish (Danio rerio) larvae. Fertilized eggs were exposed to either a cortisol-containing, a dexamethasone-containing (to stimulate the glucocorticoid receptor selectively) or a control medium for 6 h post-fertilization (0–6 hpf). First, we measured baseline expression of a number of immune-related genes (socs3a, mpeg1.1, mpeg1.2, and irg1l) 5 days post-fertilization (dpf) in larvae of the AB and TL strain to assess the effectiveness of our exposure procedure and potential strain differences. Cortisol and dexamethasone strongly up-regulated baseline expression of these genes independent of strain. The next series of experiments were therefore carried out in larvae of the AB strain only. We measured neutrophil/macrophage recruitment following tail fin amputation (performed at 3 dpf) and phenotypical changes as well as survival following LPS-induced sepsis (150 μg/ml; 4–5 dpf). Dexamethasone, but not cortisol, exposure at 0–6 hpf enhanced neutrophil recruitment 4 h post tail fin amputation. Cortisol and dexamethasone exposure at 0–6 hpf led to a milder phenotype (e.g., less tail fin damage) and enhanced survival following LPS challenge compared to control exposure. Gene-expression analysis showed accompanying differences in transcript abundance of tlr4bb, cxcr4a, myd88, il1β, and il10. These data show that early-life exposure to cortisol, which may be considered to be a model or proxy of maternal stress, induces an adaptive response to immune challenges, which seems mediated via the glucocorticoid receptor.
Collapse
Affiliation(s)
- Ruud van den Bos
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Suzanne Cromwijk
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Katharina Tschigg
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Joep Althuizen
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Jan Zethof
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Robert Whelan
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Gert Flik
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Marcel Schaaf
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
26
|
Hu W, Yang S, Shimada Y, Münch M, Marín-Juez R, Meijer AH, Spaink HP. Infection and RNA-seq analysis of a zebrafish tlr2 mutant shows a broad function of this toll-like receptor in transcriptional and metabolic control and defense to Mycobacterium marinum infection. BMC Genomics 2019; 20:878. [PMID: 31747871 PMCID: PMC6869251 DOI: 10.1186/s12864-019-6265-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background The function of Toll-like receptor 2 (TLR2) in host defense against pathogens, especially Mycobacterium tuberculosis (Mtb) is poorly understood. To investigate the role of TLR2 during mycobacterial infection, we analyzed the response of tlr2 zebrafish mutant larvae to infection with Mycobacterium marinum (Mm), a close relative to Mtb, as a model for tuberculosis. We measured infection phenotypes and transcriptome responses using RNA deep sequencing in mutant and control larvae. Results tlr2 mutant embryos at 2 dpf do not show differences in numbers of macrophages and neutrophils compared to control embryos. However, we found substantial changes in gene expression in these mutants, particularly in metabolic pathways, when compared with the heterozygote tlr2+/− control. At 4 days after Mm infection, the total bacterial burden and the presence of extracellular bacteria were higher in tlr2−/− larvae than in tlr2+/−, or tlr2+/+ larvae, whereas granuloma numbers were reduced, showing a function of Tlr2 in zebrafish host defense. RNAseq analysis of infected tlr2−/− versus tlr2+/− shows that the number of up-regulated and down-regulated genes in response to infection was greatly diminished in tlr2 mutants by at least 2 fold and 10 fold, respectively. Analysis of the transcriptome data and qPCR validation shows that Mm infection of tlr2 mutants leads to decreased mRNA levels of genes involved in inflammation and immune responses, including il1b, tnfb, cxcl11aa/ac, fosl1a, and cebpb. Furthermore, RNAseq analyses revealed that the expression of genes for Maf family transcription factors, vitamin D receptors, and Dicps proteins is altered in tlr2 mutants with or without infection. In addition, the data indicate a function of Tlr2 in the control of induction of cytokines and chemokines, such as the CXCR3-CXCL11 signaling axis. Conclusion The transcriptome and infection burden analyses show a function of Tlr2 as a protective factor against mycobacteria. Transcriptome analysis revealed tlr2-specific pathways involved in Mm infection, which are related to responses to Mtb infection in human macrophages. Considering its dominant function in control of transcriptional processes that govern defense responses and metabolism, the TLR2 protein can be expected to be also of importance for other infectious diseases and interactions with the microbiome.
Collapse
Affiliation(s)
- Wanbin Hu
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Shuxin Yang
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yasuhito Shimada
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands.,Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Magnus Münch
- Mathematical Institute, Leiden University, Leiden, the Netherlands.,Department of Epidemiology & Biostatistics, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Rubén Marín-Juez
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands.,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands.
| |
Collapse
|
27
|
Lewis A, Elks PM. Hypoxia Induces Macrophage tnfa Expression via Cyclooxygenase and Prostaglandin E2 in vivo. Front Immunol 2019; 10:2321. [PMID: 31611882 PMCID: PMC6776637 DOI: 10.3389/fimmu.2019.02321] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/13/2019] [Indexed: 01/25/2023] Open
Abstract
Macrophage phenotypes are poorly characterized in disease systems in vivo. Appropriate macrophage activation requires complex coordination of local microenvironmental cues and cytokine signaling. If the molecular mechanisms underpinning macrophage activation were better understood, macrophages could be pharmacologically tuned during disease situations. Here, using zebrafish tnfa:GFP transgenic lines as in vivo readouts, we show that physiological hypoxia and stabilization of Hif-1α promotes macrophage tnfa expression. We demonstrate a new mechanism of Hif-1α-induced macrophage tnfa expression via a cyclooxygenase/prostaglandin E2 axis. These findings uncover a macrophage HIF/COX/TNF axis that links microenvironmental cues to macrophage phenotype, with important implications during inflammation, infection, and cancer, where hypoxia is a common microenvironmental feature and where cyclooxygenase and TNF are major mechanistic players.
Collapse
Affiliation(s)
| | - Philip M. Elks
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
28
|
Murdoch CC, Rawls JF. Commensal Microbiota Regulate Vertebrate Innate Immunity-Insights From the Zebrafish. Front Immunol 2019; 10:2100. [PMID: 31555292 PMCID: PMC6742977 DOI: 10.3389/fimmu.2019.02100] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Microbial communities populate the mucosal surfaces of all animals. Metazoans have co-evolved with these microorganisms, forming symbioses that affect the molecular and cellular underpinnings of animal physiology. These microorganisms, collectively referred to as the microbiota, are found on many distinct body sites (including the skin, nasal cavity, and urogenital tract), however the most densely colonized host tissue is the intestinal tract. Although spatially confined within the intestinal lumen, the microbiota and associated products shape the development and function of the host immune system. Studies comparing gnotobiotic animals devoid of any microbes (germ free) with counterparts colonized with selected microbial communities have demonstrated that commensal microorganisms are required for the proper development and function of the immune system at homeostasis and following infectious challenge or injury. Animal model systems have been essential for defining microbiota-dependent shifts in innate immune cell function and intestinal physiology during infection and disease. In particular, the zebrafish has emerged as a powerful vertebrate model organism with unparalleled capacity for in vivo imaging, a full complement of genetic approaches, and facile methods to experimentally manipulate microbial communities. Here we review key insights afforded by the zebrafish into the impact of microbiota on innate immunity, including evidence that the perception of and response to the microbiota is evolutionarily conserved. We also highlight opportunities to strengthen the zebrafish model system, and to gain new insights into microbiota-innate immune interactions that would be difficult to achieve in mammalian models.
Collapse
Affiliation(s)
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
29
|
Masud S, van der Burg L, Storm L, Prajsnar TK, Meijer AH. Rubicon-Dependent Lc3 Recruitment to Salmonella-Containing Phagosomes Is a Host Defense Mechanism Triggered Independently From Major Bacterial Virulence Factors. Front Cell Infect Microbiol 2019; 9:279. [PMID: 31428591 PMCID: PMC6688089 DOI: 10.3389/fcimb.2019.00279] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Intracellular pathogens such as Salmonella depend on their molecular virulence factors to evade host defense responses like autophagy. Using a zebrafish systemic infection model, we have previously shown that phagocytes, predominantly macrophages, target Salmonella Typhimurium by an autophagy-related pathway known as Lc3-associated phagocytosis (LAP), which is dependent on the host protein Rubicon. Here, we explore the influence of Salmonella virulence factors on pathogenicity in the zebrafish model and induction of LAP as a defense response. We investigated five mutant strains that all could trigger GFP-Lc3 recruitment as puncta or rings around single bacteria or bacterial clusters, in a Rubicon-dependent manner. We found that S. Typhimurium strains carrying mutations in PhoP or PurA, responsible for adaptation to the intracellular environment and efficient metabolism of purines, respectively, are attenuated in the zebrafish model. However, both strains show increased virulence when LAP is inhibited by knockdown of Rubicon. Mutations in type III secretion systems 1 and 2, SipB and SsrB, which are important for invading and replicating in non-phagocytic cells, did not affect the ability to establish successful infection in the zebrafish model. This observation is in line with our previous characterization of this infection model revealing that macrophages actively phagocytose the majority of S. Typhimurium. In contrast to SipB mutants, SsrB mutants were unable to become more virulent in Rubicon-deficient hosts, suggesting that type III system 2 effectors are important for intracellular replication of Salmonella in the absence of LAP. Finally, we found that mutation of FlhD, required for production of flagella, renders S. Typhimurium hypervirulent both in wild type zebrafish embryos and in Rubicon-deficient hosts. FlhD mutation also led to lower levels of GFP-Lc3 recruitment compared with the wild type strain, indicating that recognition of flagellin by the host innate immune system promotes the LAP response. Together, our results provide new evidence that the Rubicon-dependent LAP process is an important defense mechanism against S. Typhimurium.
Collapse
Affiliation(s)
- Samrah Masud
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | | - Lisanne Storm
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | | | |
Collapse
|
30
|
White DT, Saxena MT, Mumm JS. Let's get small (and smaller): Combining zebrafish and nanomedicine to advance neuroregenerative therapeutics. Adv Drug Deliv Rev 2019; 148:344-359. [PMID: 30769046 PMCID: PMC6937731 DOI: 10.1016/j.addr.2019.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 01/18/2023]
Abstract
Several key attributes of zebrafish make them an ideal model system for the discovery and development of regeneration promoting therapeutics; most notably their robust capacity for self-repair which extends to the central nervous system. Further, by enabling large-scale drug discovery directly in living vertebrate disease models, zebrafish circumvent critical bottlenecks which have driven drug development costs up. This review summarizes currently available zebrafish phenotypic screening platforms, HTS-ready neurodegenerative disease modeling strategies, zebrafish small molecule screens which have succeeded in identifying regeneration promoting compounds and explores how intravital imaging in zebrafish can facilitate comprehensive analysis of nanocarrier biodistribution and pharmacokinetics. Finally, we discuss the benefits and challenges attending the combination of zebrafish and nanoparticle-based drug optimization, highlighting inspiring proof-of-concept studies and looking toward implementation across the drug development community.
Collapse
Affiliation(s)
- David T White
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Meera T Saxena
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA; Luminomics Inc., Baltimore, MD 21286, USA
| | - Jeff S Mumm
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
31
|
Zhao Z, Hao J, Li X, Chen Y, Qi X. MiR-21-5p regulates mycobacterial survival and inflammatory responses by targeting Bcl-2 and TLR4 in Mycobacterium tuberculosis-infected macrophages. FEBS Lett 2019; 593:1326-1335. [PMID: 31090056 DOI: 10.1002/1873-3468.13438] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 11/09/2022]
Abstract
To date, very little is known about the role of microRNA-21-5p (miR-21-5p) in Mycobacterium tuberculosis (M.tb)-infected macrophages. Here, we show that M.tb infection of RAW264.7 and THP-1 cells increases the expression of miR-21-5p. MiR-21-5p enhances M.tb survival and apoptosis, and attenuates the secretion of inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in M.tb-infected macrophages. Dual-luciferase reporter assay revealed that the 3'-UTR of B-cell lymphoma 2 (Bcl-2) or toll-like receptor 4 (TLR4) is a direct target of miR-21-5p. Enforced expressions of Bcl-2 or TLR4 partially attenuate the suppressive effects of miR-21-5p on cell viability and inflammatory cytokines, and effectively decrease bacterial burden. Therefore, the present study highlights a novel role for miR-21-5p in regulation of mycobacterial survival and inflammatory responses by targeting Bcl-2 and TLR4 in M.tb-infected macrophages.
Collapse
Affiliation(s)
- Zhonghua Zhao
- Department of Tuberculosis, Shandong Provincial Chest Hospital, Jinan, China
| | - Jinzhu Hao
- Department of Tuberculosis, Shandong Provincial Chest Hospital, Jinan, China
| | - Xia Li
- Department of Tuberculosis, Shandong Provincial Chest Hospital, Jinan, China
| | - Yanfang Chen
- Department of Tuberculosis, Shandong Provincial Chest Hospital, Jinan, China
| | - Xiaoyan Qi
- Department of Tuberculosis, Shandong Provincial Chest Hospital, Jinan, China
| |
Collapse
|
32
|
Liu X, Li X, Du X, Sun M, Wang X, Li W, Zhai J, Liu J, Yu H, Zhang Q. Spotted knifejaw (Oplegnathus punctatus) MyD88: Intracellular localization, signal transduction function and immune responses to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2019; 89:719-726. [PMID: 30995543 DOI: 10.1016/j.fsi.2019.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/02/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) links members of the toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) superfamily to the downstream activation of NF-κB as a "bridge" molecular in response to exogenous pathogen, but the function in spotted knifejaw (Oplegnathus. punctatus), a commercial fish in China, is still unknown. We present a functional analysis of spotted knifejaw MyD88 (OppMyD88) with a typical death domain (DD) at the N-terminus and a conservative Toll/IL-1R (TIR) domain at the C-terminus and suggest that MyD88 is important for the activation of TLR-mediated NF-κB with the synergy between domains. Subcellular localization showed that OppMyD88 was distributed in the cytoplasm in a condensed form. Tissues expression profiling analysis showed that OppMyD88 ubiquitously expressed in all tested tissues with the highest expression in the liver, as determined by real-time PCR. The expression of OppMyD88 significantly upregulated in the liver, spleen, kidney and gills within 120 h post Vibrio anguillarum infection. Moreover, we further confirmed that over-expressed OppMyD88 could also induce apoptosis. These results indicate that OppMyD88 might possess important roles in defense against microbial infection and other biological processes in spotted knifejaw similar to those in mammals, which will deepen our understandings in innate immunity of spotted knifejaw.
Collapse
Affiliation(s)
- Xiaobing Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xuemei Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xinxin Du
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China; Department of Life Science and Engineering, Jining University, Jining, China
| | - Minmin Sun
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xuangang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Wensheng Li
- LaizhouMingbo Aquatic Co., Ltd., Laizhou, Shandong, China
| | - Jieming Zhai
- LaizhouMingbo Aquatic Co., Ltd., Laizhou, Shandong, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| |
Collapse
|
33
|
Masud S, Prajsnar TK, Torraca V, Lamers GE, Benning M, Van Der Vaart M, Meijer AH. Macrophages target Salmonella by Lc3-associated phagocytosis in a systemic infection model. Autophagy 2019; 15:796-812. [PMID: 30676840 PMCID: PMC6526873 DOI: 10.1080/15548627.2019.1569297] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 11/08/2022] Open
Abstract
Innate immune defense against intracellular pathogens, like Salmonella, relies heavily on the autophagy machinery of the host. This response is studied intensively in epithelial cells, the target of Salmonella during gastrointestinal infections. However, little is known of the role that autophagy plays in macrophages, the predominant carriers of this pathogen during systemic disease. Here we utilize a zebrafish embryo model to study the interaction of S. enterica serovar Typhimurium with the macroautophagy/autophagy machinery of macrophages in vivo. We show that phagocytosis of live but not heat-killed Salmonella triggers recruitment of the autophagy marker GFP-Lc3 in a variety of patterns labeling tight or spacious bacteria-containing compartments, also revealed by electron microscopy. Neutrophils display similar GFP-Lc3 associations, but genetic modulation of the neutrophil/macrophage balance and ablation experiments show that macrophages are critical for the defense response. Deficiency of atg5 reduces GFP-Lc3 recruitment and impairs host resistance, in contrast to atg13 deficiency, indicating that Lc3-Salmonella association at this stage is independent of the autophagy preinitiation complex and that macrophages target Salmonella by Lc3-associated phagocytosis (LAP). In agreement, GFP-Lc3 recruitment and host resistance are impaired by deficiency of Rubcn/Rubicon, known as a negative regulator of canonical autophagy and an inducer of LAP. We also found strict dependency on NADPH oxidase, another essential factor for LAP. Both Rubcn and NADPH oxidase are required to activate a Salmonella biosensor for reactive oxygen species inside infected macrophages. These results identify LAP as the major host protective autophagy-related pathway responsible for macrophage defense against Salmonella during systemic infection. Abbreviations: ATG: autophagy related gene; BECN1: Beclin 1; CFU: colony forming units; CYBA/P22PHOX: cytochrome b-245, alpha chain; CYBB/NOX2: cytochrome b-245 beta chain; dpf: days post fertilization; EGFP: enhanced green fluorescent protein; GFP: green fluorescent protein; hfp: hours post fertilization; hpi: hours post infection; IRF8: interferon regulatory factor 8; Lcp1/L-plastin: lymphocyte cytosolic protein 1; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1A/1B-light chain 3; mCherry: red fluorescent protein; mpeg1: macrophage expressed gene 1; mpx: myeloid specific peroxidase; NADPH oxidase: nicotinamide adenine dinucleotide phosphate oxidase; NCF4/P40PHOX: neutrophil cytosolic factor 4; NTR-mCherry: nitroreductase-mCherry fusion; PTU: phenylthiourea; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; RB1CC1/FIP200: RB-1 inducible coiled coin 1; ROS: reactive oxygen species; RT-PCR: reverse transcriptase polymerase chain reaction; RUBCN/RUBICON: RUN and cysteine rich domain containing BECN1-interacting protein; SCV: Salmonella-containing vacuole; S. Typhimurium/S.T: Salmonella enterica serovar Typhimurium; TEM: transmission electron microscopy; Tg: transgenic; TSA: tyramide signal amplification; ULK1/2: unc-51-like autophagy activating kinase 1/2; UVRAG: UVRAG: UV radiation resistance associated; wt: wild type.
Collapse
Affiliation(s)
- Samrah Masud
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | - Vincenzo Torraca
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Gerda E.M. Lamers
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Marianne Benning
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | | |
Collapse
|
34
|
Schug H, Yue Y, Krese R, Fischer S, Kortner TM, Schirmer K. Time- and concentration-dependent expression of immune and barrier genes in the RTgutGC fish intestinal model following immune stimulation. FISH & SHELLFISH IMMUNOLOGY 2019; 88:308-317. [PMID: 30844464 DOI: 10.1016/j.fsi.2019.02.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The fish intestine comprises an important environment-organism interface that is vital to fish growth, health and pathogen defense. Yet, knowledge about the physiology and defense mechanisms toward environmental stressors, such as bacterial or viral cues, is limited and depends largely on in vivo experiments with fish. On this background, we here explore the immune competence of a recently established in vitro intestinal barrier model based on the rainbow trout (Oncorhynchus mykiss) intestinal epithelial cell line, RTgutGC. We demonstrate that the RTgutGC cell barrier reacts to two immune stimuli, the bacterial lipopolysaccharide (LPS) from Escherichia coli and the viral Poly(I:C), by regulating the mRNA abundance of selected genes in a partly time- and concentration dependent manner. The immune stimuli activated the Myd88-and Ticam-dependent signalling cascades, which resulted in downstream activation of pro-inflammatory cytokines and interferon, comparable to the regulatory patterns known from in vivo. Stimuli exposure furthermore influenced the regulation of epithelial barrier markers and resulted in slightly impaired barrier functionality after long-term exposure to LPS. Collectively, we provide proof of the usefulness of this unique cell culture model to further gain basic understanding of the fish innate immune system and to apply it in various fields, such as fish feed development and fish health in aquaculture or the evaluation of immuno-toxicity of chemical contaminants.
Collapse
Affiliation(s)
- Hannah Schug
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015, Lausanne, Switzerland
| | - Yang Yue
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Rok Krese
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Stephan Fischer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; aQuaTox-Solutions, 8304, Wallisellen, Switzerland
| | - Trond M Kortner
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015, Lausanne, Switzerland; ETH Zürich, Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics, 8092, Zürich, Switzerland.
| |
Collapse
|
35
|
Rougeot J, Torraca V, Zakrzewska A, Kanwal Z, Jansen HJ, Sommer F, Spaink HP, Meijer AH. RNAseq Profiling of Leukocyte Populations in Zebrafish Larvae Reveals a cxcl11 Chemokine Gene as a Marker of Macrophage Polarization During Mycobacterial Infection. Front Immunol 2019; 10:832. [PMID: 31110502 PMCID: PMC6499218 DOI: 10.3389/fimmu.2019.00832] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophages are phagocytic cells from the innate immune system, which forms the first line of host defense against invading pathogens. These highly dynamic immune cells can adopt specific functional phenotypes, with the pro-inflammatory M1 and anti-inflammatory M2 polarization states as the two extremes. Recently, the process of macrophage polarization during inflammation has been visualized by real time imaging in larvae of the zebrafish. This model organism has also become widely used to study macrophage responses to microbial pathogens. To support the increasing use of zebrafish in macrophage biology, we set out to determine the complete transcriptome of zebrafish larval macrophages. We studied the specificity of the macrophage signature compared with other larval immune cells and the macrophage-specific expression changes upon infection. We made use of the well-established mpeg1, mpx, and lck fluorescent reporter lines to sort and sequence the transcriptome of larval macrophages, neutrophils, and lymphoid progenitor cells, respectively. Our results provide a complete dataset of genes expressed in these different immune cell types and highlight their similarities and differences. Major differences between the macrophage and neutrophil signatures were found within the families of proteinases. Furthermore, expression of genes involved in antigen presentation and processing was specifically detected in macrophages, while lymphoid progenitors showed expression of genes involved in macrophage activation. Comparison with datasets of in vitro polarized human macrophages revealed that zebrafish macrophages express a strongly homologous gene set, comprising both M1 and M2 markers. Furthermore, transcriptome analysis of low numbers of macrophages infected by the intracellular pathogen Mycobacterium marinum revealed that infected macrophages change their transcriptomic response by downregulation of M2-associated genes and overexpression of specific M1-associated genes. Among the infection-induced genes, a homolog of the human CXCL11 chemokine gene, cxcl11aa, stood out as the most strongly overexpressed M1 marker. Upregulation of cxcl11aa in Mycobacterium-infected macrophages was found to require the function of Myd88, a critical adaptor molecule in the Toll-like and interleukin 1 receptor pathways that are central to pathogen recognition and activation of the innate immune response. Altogether, our data provide a valuable data mining resource to support infection and inflammation research in the zebrafish model.
Collapse
Affiliation(s)
- Julien Rougeot
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Vincenzo Torraca
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Ania Zakrzewska
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Zakia Kanwal
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | | - Frida Sommer
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
36
|
Xiong G, Zou L, Deng Y, Meng Y, Liao X, Lu H. Clethodim exposure induces developmental immunotoxicity and neurobehavioral dysfunction in zebrafish embryos. FISH & SHELLFISH IMMUNOLOGY 2019; 86:549-558. [PMID: 30517881 DOI: 10.1016/j.fsi.2018.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Clethodim is one of the most widely used herbicides in agriculture, but its potential negative effects on aquatic organisms are still poorly understood. This study examined the effects of clethodim on zebrafish at aspects of early stage embryonic development, immune toxicity, cell apoptosis and locomotor behavior. Firstly, clethodim exposure markedly decreased the survival rate, body length, and heart rate and resulted in a series of morphological abnormalities, primarily spinal deformities (SD) and yolk sac edema, in zebrafish larvae. Secondly, the number of immune cells was substantially reduced but the levels of apoptosis and oxidative stress were significantly increased in a dose-dependent manner upon clethodim exposure. Thirdly, we evaluated the expression of some key genes in TLR signaling including TLR4, MyD88, and NF-κB p65 and they were all up-regulated by exposure to 300 μg/L clethodim. Meanwhile, some proinflammatory cytokines such as TNF-α, IL-1β, IL8, and IFN-γ were also activated in both the mock and the TLR4-KD conditions. Moreover, the locomotor behaviors and the enzymatic activities of AChE were obviously inhibited but the levels of acetylated histone H3 were greatly increased by clethodim exposure. In addition, incubation of zebrafish larvae with acetylcholine receptor (AChR) agonist carbachol can partially rescue the clethodim-modulated locomotor behavior. Taken together, our results suggest that clethodim has the potential to induce developmental immunotoxicity and cause behavioral alterations in zebrafish larvae. The information presented in this study will help to elucidate the molecular mechanisms underlying clethodim exposure in aquatic ecosystems.
Collapse
Affiliation(s)
- Guanghua Xiong
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Lufang Zou
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Yunyun Deng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Yunlong Meng
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Xinjun Liao
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Huiqiang Lu
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China.
| |
Collapse
|
37
|
Jurynec MJ, Sawitzke AD, Beals TC, Redd MJ, Stevens J, Otterud B, Leppert MF, Grunwald DJ. A hyperactivating proinflammatory RIPK2 allele associated with early-onset osteoarthritis. Hum Mol Genet 2019; 27:2383-2391. [PMID: 29659823 DOI: 10.1093/hmg/ddy132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a common debilitating disease characterized by abnormal remodeling of the cartilage and bone of the articular joint. Ameliorating therapeutics are lacking due to limited understanding of the molecular pathways affecting disease initiation and progression. Notably, although a link between inflammation and overt OA is well established, the role of inflammation as a driver of disease occurrence is highly disputed. We analyzed a family with dominant inheritance of early-onset OA and found that affected individuals harbored a rare variant allele encoding a significant amino acid change (p.Asn104Asp) in the kinase domain of receptor interacting protein kinase 2 (RIPK2), which transduces signals from activated bacterial peptidoglycan sensors through the NF-κB pathway to generate a proinflammatory immune response. Functional analyses of RIPK2 activity in zebrafish embryos indicated that the variant RIPK2104Asp protein is hyperactive in its signaling capacity, with augmented ability to activate the innate immune response and the NF-κB pathway and to promote upregulation of OA-associated genes. Further we show a second allele of RIPK2 linked to an inflammatory disease associated with arthritis also has enhanced activity stimulating the NF-κB pathway. Our studies reveal for the first time the inflammatory response can function as a gatekeeper risk factor for OA.
Collapse
Affiliation(s)
- Michael J Jurynec
- Department of Orthopaedics, University of Utah, Salt Lake City, 84112, USA
| | - Allen D Sawitzke
- Division of Rheumatology, Department of Internal Medicine, University of Utah, Salt Lake City, 84112, USA
| | - Timothy C Beals
- Department of Orthopaedics, University of Utah, Salt Lake City, 84112, USA
| | - Michael J Redd
- Health Sciences Center Imaging Core Facility, Salt Lake City, 84112, USA
| | - Jeff Stevens
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Brith Otterud
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark F Leppert
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
38
|
Huang C, Niethammer P. Tissue Damage Signaling Is a Prerequisite for Protective Neutrophil Recruitment to Microbial Infection in Zebrafish. Immunity 2019; 48:1006-1013.e6. [PMID: 29768163 DOI: 10.1016/j.immuni.2018.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 04/04/2018] [Accepted: 04/17/2018] [Indexed: 12/28/2022]
Abstract
Tissue damage and infection are deemed likewise triggers of innate immune responses. But whereas neutrophil responses to microbes are generally protective, neutrophil recruitment into damaged tissues without infection is deleterious. Why neutrophils respond to tissue damage and not just to microbes is unknown. Is it a flaw of the innate immune system that persists because evolution did not select against it, or does it provide a selective advantage? Here we dissect the contribution of tissue damage signaling to antimicrobial immune responses in a live vertebrate. By intravital imaging of zebrafish larvae, a powerful model for innate immunity, we show that prevention of tissue damage signaling upon microbial ear infection abrogates leukocyte chemotaxis and reduces animal survival, at least in part, through suppression of cytosolic phospholipase A2 (cPla2), which integrates tissue damage- and microbe-derived cues. Thus, microbial cues are insufficient, and damage signaling is essential for antimicrobial neutrophil responses in zebrafish.
Collapse
Affiliation(s)
- Cong Huang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
39
|
Ogryzko NV, Lewis A, Wilson HL, Meijer AH, Renshaw SA, Elks PM. Hif-1α-Induced Expression of Il-1β Protects against Mycobacterial Infection in Zebrafish. THE JOURNAL OF IMMUNOLOGY 2018; 202:494-502. [PMID: 30552162 PMCID: PMC6321843 DOI: 10.4049/jimmunol.1801139] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022]
Abstract
Drug-resistant mycobacteria are a rising problem worldwide. There is an urgent need to understand the immune response to tuberculosis to identify host targets that, if targeted therapeutically, could be used to tackle these currently untreatable infections. In this study we use an Il-1β fluorescent transgenic line to show that there is an early innate immune proinflammatory response to well-established zebrafish models of inflammation and Mycobacterium marinum infection. We demonstrate that host-derived hypoxia signaling, mediated by the Hif-1α transcription factor, can prime macrophages with increased levels of Il-1β in the absence of infection, upregulating neutrophil antimicrobial NO production, leading to greater protection against infection. Our data link Hif-1α to proinflammatory macrophage Il-1β transcription in vivo during early mycobacterial infection and importantly highlight a host protective mechanism, via antimicrobial NO, that decreases disease outcomes and that could be targeted therapeutically to stimulate the innate immune response to better deal with infections.
Collapse
Affiliation(s)
- Nikolay V Ogryzko
- The Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom.,Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Amy Lewis
- The Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom.,Department of Infection and Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2RX, United Kingdom; and
| | - Heather L Wilson
- Department of Infection and Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2RX, United Kingdom; and
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, 2333 CC Leiden, the Netherlands
| | - Stephen A Renshaw
- The Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom.,Department of Infection and Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2RX, United Kingdom; and
| | - Philip M Elks
- The Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom; .,Department of Infection and Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2RX, United Kingdom; and
| |
Collapse
|
40
|
Guo B, Liu S, Li J, Liao Z, Liu H, Xia H, Qi P. Identification and functional characterization of three myeloid differentiation factor 88 (MyD88) isoforms from thick shell mussel Mytilus coruscus. FISH & SHELLFISH IMMUNOLOGY 2018; 83:123-133. [PMID: 30205204 DOI: 10.1016/j.fsi.2018.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/10/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a pivotal adapter protein that involved in interleukin-1 receptor/toll-like receptor (IL-1R/TLR) signal transduction, which could spur downstream cascades and eventually drawn into innate immune response. MyD88 has been extensively studied in vertebrates, however, the information ascribe to MyD88 in invertebrates is still very scarce especially its function annotation remains extremely obscure. At here, three novel MyD88 isoforms termed McMyD88a, McMyD88b and McMyD88c were firstly cloned from thick shell mussel Mytilus coruscus. McMyD88a, McMyD88b and McMyD88c shared domain topology containing the Death domain (DD) and TIR domain (TIR) with its counterparts in mammals. All three McMyD88s were ubiquitously expressed in examined tissues in thick shell mussel, with the higher expression levels in immune-related tissues such as haemocytes, gills and digestive glands. Upon Vibrio alginolyticus, polyinosine-polycytidylic acid (poly I:C) and lipopolysaccharide (LPS) challenge, McMyD88a, McMyD88b and McMyD88c transcripts were significantly induced in haemocytes despite of differential expression levels and responsive time points. Overexpression of McMyD88a, McMyD88b and McMyD88c showed a dose-dependent induction to NF-κB or ISRE in mammalian cell lines. Taken together, these results suggested that McMyD88a, McMyD88b and McMyD88c are members of MyD88 family and play potential roles in innate immune response to pathogenic invasions in thick shell mussel. Moreover, these results suggested indirectly the existence of a MyD88-dependent signaling pathway in thick shell mussel, and provide insight into the immunoregulatory effect in molluscs.
Collapse
Affiliation(s)
- Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Shuobo Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Jiji Li
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Huihui Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Hu Xia
- Collaborative Innovation Center for Efficient, Health Production of Fisheries in Hunan Province, Hunan University of Arts and Science, Hunan, Changde, 415000, China
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China.
| |
Collapse
|
41
|
Robinson CD, Klein HS, Murphy KD, Parthasarathy R, Guillemin K, Bohannan BJM. Experimental bacterial adaptation to the zebrafish gut reveals a primary role for immigration. PLoS Biol 2018; 16:e2006893. [PMID: 30532251 PMCID: PMC6301714 DOI: 10.1371/journal.pbio.2006893] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/20/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
All animals live in intimate association with microorganisms that profoundly influence their health and development, yet the traits that allow microorganisms to establish and maintain host associations are not well understood. To date, most investigations aimed at identifying traits required for host association have focused on intrahost niches. Consequently, little is known about the relative contribution of extrahost factors such as environmental growth and survival and immigration into hosts from the external environment, as promoters of host association. To address this, we developed a tractable experimental evolution system that investigates both intra- and extrahost factors contributing to bacterial adaptation to the vertebrate gut. We passaged replicate lines of a zebrafish bacterial isolate, Aeromonas veronii, through populations of germ-free larval zebrafish (Danio rerio), each time using gut-associated Aeromonas populations to inoculate the aquatic environment of the next zebrafish population. We observed rapid increased adaptation to the host in all replicate lines. The initial adaptations present in early-evolved isolates did not increase intrahost fitness but rather enhanced both immigration from the environment and interhost transmission. Only in later-evolved isolates did we find evidence for intrahost-specific adaptations, as demonstrated by comparing their competitive fitness in the host genotype to which they evolved to that in a different genotype. Our results show how selection for bacterial transmission between hosts and their environment can shape bacterial-host association. This work illuminates the nature of selective forces present in host-microbe systems and reveals specific mechanisms of increased host association. Furthermore, our findings demonstrate that the entire host-microbe-environment system must be considered when identifying microbial traits that contribute to host adaptation.
Collapse
Affiliation(s)
- Catherine D. Robinson
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Helena S. Klein
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Kyleah D. Murphy
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - Raghuveer Parthasarathy
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Brendan J. M. Bohannan
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
42
|
Rajshekar S, Yao J, Arnold PK, Payne SG, Zhang Y, Bowman TV, Schmitz RJ, Edwards JR, Goll M. Pericentromeric hypomethylation elicits an interferon response in an animal model of ICF syndrome. eLife 2018; 7:39658. [PMID: 30484769 PMCID: PMC6261255 DOI: 10.7554/elife.39658] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/04/2018] [Indexed: 12/13/2022] Open
Abstract
Pericentromeric satellite repeats are enriched in 5-methylcytosine (5mC). Loss of 5mC at these sequences is common in cancer and is a hallmark of Immunodeficiency, Centromere and Facial abnormalities (ICF) syndrome. While the general importance of 5mC is well-established, the specific functions of 5mC at pericentromeres are less clear. To address this deficiency, we generated a viable animal model of pericentromeric hypomethylation through mutation of the ICF-gene ZBTB24. Deletion of zebrafish zbtb24 caused a progressive loss of 5mC at pericentromeres and ICF-like phenotypes. Hypomethylation of these repeats triggered derepression of pericentromeric transcripts and activation of an interferon-based innate immune response. Injection of pericentromeric RNA is sufficient to elicit this response in wild-type embryos, and mutation of the MDA5-MAVS dsRNA-sensing machinery blocks the response in mutants. These findings identify activation of the innate immune system as an early consequence of pericentromeric hypomethylation, implicating derepression of pericentromeric transcripts as a trigger of autoimmunity. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter). Cells package DNA into structures called chromosomes. When cells divide, each chromosome duplicates, and a structure called a centromere initially holds the copies together. The sequences of DNA on either side of the centromeres are often highly repetitive. In backboned animals, this DNA normally also has extra chemical modifications called methyl groups attached to it. The role that these methyl groups play in this region is not known, although in other DNA regions they often stop the DNA being ‘transcribed’ into molecules of RNA. The cells of people who have a rare human genetic disorder called ICF syndrome, lack the methyl groups near the centromere. The methyl groups may also be lost in old and cancerous cells. Researchers often use ‘model’ animals to investigate the effects of DNA modifications. But, until now, there were no animal models that lose methyl groups from the DNA around centromeres in the same way as seen in ICF syndrome. Rajshekar et al. have developed a new zebrafish model for ICF syndrome that loses the methyl groups around its centromeres over time. Studying the cells of these zebrafish showed that when the methyl groups are missing, the cell starts to transcribe the DNA sequences around the centromeres. The resulting RNA molecules appear to be mistaken by the cell for viral RNA. They activate immune sensors that normally detect RNA viruses, which triggers an immune response. The new zebrafish model can now be used in further studies to help researchers to understand the key features of ICF syndrome. Future work could also investigate whether the loss of methyl groups around the centromeres plays a role in other diseases where the immune system attacks healthy tissues.
Collapse
Affiliation(s)
- Srivarsha Rajshekar
- Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, United States.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Institute of Bioinformatics, University of Georgia, Athens, United States
| | - Jun Yao
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Paige K Arnold
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Sara G Payne
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, United States
| | - Yinwen Zhang
- Institute of Bioinformatics, University of Georgia, Athens, United States
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, United States
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Georgia, United States
| | - John R Edwards
- Department of Medicine, Center for Pharmacogenomics, Washington University in St. Louis School of Medicine, Missouri, United States
| | - Mary Goll
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Department of Genetics, University of Georgia, Georgia, United States
| |
Collapse
|
43
|
Kumar SS, Tandberg JI, Penesyan A, Elbourne LDH, Suarez-Bosche N, Don E, Skadberg E, Fenaroli F, Cole N, Winther-Larsen HC, Paulsen IT. Dual Transcriptomics of Host-Pathogen Interaction of Cystic Fibrosis Isolate Pseudomonas aeruginosa PASS1 With Zebrafish. Front Cell Infect Microbiol 2018; 8:406. [PMID: 30524971 PMCID: PMC6262203 DOI: 10.3389/fcimb.2018.00406] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/29/2018] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa is a significant cause of mortality in patients with cystic fibrosis (CF). To explore the interaction of the CF isolate P. aeruginosa PASS1 with the innate immune response, we have used Danio rerio (zebrafish) as an infection model. Confocal laser scanning microscopy (CLSM) enabled visualization of direct interactions between zebrafish macrophages and P. aeruginosa PASS1. Dual RNA-sequencing of host-pathogen was undertaken to profile RNA expression simultaneously in the pathogen and the host during P. aeruginosa infection. Following establishment of infection in zebrafish embryos with PASS1, 3 days post infection (dpi), there were 6739 genes found to be significantly differentially expressed in zebrafish and 176 genes in PASS1. A range of virulence genes were upregulated in PASS1, including genes encoding pyoverdine biosynthesis, flagellin, non-hemolytic phospholipase C, proteases, superoxide dismutase and fimbrial subunits. Additionally, iron and phosphate acquisition genes were upregulated in PASS1 cells in the zebrafish. Transcriptional changes in the host immune response genes highlighted phagocytosis as a key response mechanism to PASS1 infection. Transcriptional regulators of neutrophil and macrophage phagocytosis were upregulated alongside transcriptional regulators governing response to tissue injury, infection, and inflammation. The zebrafish host showed significant downregulation of the ribosomal RNAs and other genes involved in translation, suggesting that protein translation in the host is affected by PASS1 infection.
Collapse
Affiliation(s)
- Sheemal S Kumar
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Julia I Tandberg
- Department of Pharmaceutical Biosciences, Centre of Integrative Microbial Evolution, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Anahit Penesyan
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Liam D H Elbourne
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Nadia Suarez-Bosche
- Microscopy Unit, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Emily Don
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Eline Skadberg
- Department of Pharmaceutical Biosciences, Centre of Integrative Microbial Evolution, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Federico Fenaroli
- Department of Biosciences, The Faculty of Mathematic and Natural Sciences, University of Oslo, Oslo, Norway
| | - Nicholas Cole
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Hanne Cecilie Winther-Larsen
- Department of Pharmaceutical Biosciences, Centre of Integrative Microbial Evolution, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ian T Paulsen
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
44
|
Li Y, Spiropoulos J, Cooley W, Khara JS, Gladstone CA, Asai M, Bossé JT, Robertson BD, Newton SM, Langford PR. Galleria mellonella - a novel infection model for the Mycobacterium tuberculosis complex. Virulence 2018; 9:1126-1137. [PMID: 30067135 PMCID: PMC6086298 DOI: 10.1080/21505594.2018.1491255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Animal models have long been used in tuberculosis research to understand disease pathogenesis and to evaluate novel vaccine candidates and anti-mycobacterial drugs. However, all have limitations and there is no single animal model which mimics all the aspects of mycobacterial pathogenesis seen in humans. Importantly mice, the most commonly used model, do not normally form granulomas, the hallmark of tuberculosis infection. Thus there is an urgent need for the development of new alternative in vivo models. The insect larvae, Galleria mellonella has been increasingly used as a successful, simple, widely available and cost-effective model to study microbial infections. Here we report for the first time that G. mellonella can be used as an infection model for members of the Mycobacterium tuberculosis complex. We demonstrate a dose-response for G. mellonella survival infected with different inocula of bioluminescent Mycobacterium bovis BCG lux, and demonstrate suppression of mycobacterial luminesence over 14 days. Histopathology staining and transmission electron microscopy of infected G. mellonella phagocytic haemocytes show internalization and aggregation of M. bovis BCG lux in granuloma-like structures, and increasing accumulation of lipid bodies within M. bovis BCG lux over time, characteristic of latent tuberculosis infection. Our results demonstrate that G. mellonella can act as a surrogate host to study the pathogenesis of mycobacterial infection and shed light on host-mycobacteria interactions, including latent tuberculosis infection.
Collapse
Affiliation(s)
- Yanwen Li
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - John Spiropoulos
- b Department of Pathology , Animal and Plant Health Agency , Addlestone , UK
| | - William Cooley
- b Department of Pathology , Animal and Plant Health Agency , Addlestone , UK
| | - Jasmeet Singh Khara
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK.,c Department of Pharmacy , National University of Singapore , Singapore
| | - Camilla A Gladstone
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - Masanori Asai
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - Janine T Bossé
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - Brian D Robertson
- d MRC Centre for Molecular Bacteriology and Infection, Department of Medicine , Imperial College London , London , UK
| | - Sandra M Newton
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| | - Paul R Langford
- a Section of Paediatric Infectious Diseases and Allergy, Department of Medicine , Imperial College London , London , UK
| |
Collapse
|
45
|
Intestinal microbiome adjusts the innate immune setpoint during colonization through negative regulation of MyD88. Nat Commun 2018; 9:4099. [PMID: 30291253 PMCID: PMC6173721 DOI: 10.1038/s41467-018-06658-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/17/2018] [Indexed: 11/17/2022] Open
Abstract
Host pathways mediating changes in immune states elicited by intestinal microbial colonization are incompletely characterized. Here we describe alterations of the host immune state induced by colonization of germ-free zebrafish larvae with an intestinal microbial community or single bacterial species. We show that microbiota-induced changes in intestinal leukocyte subsets and whole-body host gene expression are dependent on the innate immune adaptor gene myd88. Similar patterns of gene expression are elicited by colonization with conventional microbiome, as well as mono-colonization with two different zebrafish commensal bacterial strains. By studying loss-of-function myd88 mutants, we find that colonization suppresses Myd88 at the mRNA level. Tlr2 is essential for microbiota-induced effects on myd88 transcription and intestinal immune cell composition. It remains unclear how microbial sensing during early-life colonization results in immune homeostasis rather than acute inflammation. Here the authors show that zebrafish larvae colonization suppresses intestinal MyD88, accounting for a considerable proportion of microbiota-induced alterations in immune setpoint.
Collapse
|
46
|
Rosowski EE, Raffa N, Knox BP, Golenberg N, Keller NP, Huttenlocher A. Macrophages inhibit Aspergillus fumigatus germination and neutrophil-mediated fungal killing. PLoS Pathog 2018; 14:e1007229. [PMID: 30071103 PMCID: PMC6091969 DOI: 10.1371/journal.ppat.1007229] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/14/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023] Open
Abstract
In immunocompromised individuals, Aspergillus fumigatus causes invasive fungal disease that is often difficult to treat. Exactly how immune mechanisms control A. fumigatus in immunocompetent individuals remains unclear. Here, we use transparent zebrafish larvae to visualize and quantify neutrophil and macrophage behaviors in response to different A. fumigatus strains. We find that macrophages form dense clusters around spores, establishing a protective niche for fungal survival. Macrophages exert these protective effects by inhibiting fungal germination, thereby inhibiting subsequent neutrophil recruitment and neutrophil-mediated killing. Germination directly drives fungal clearance as faster-growing CEA10-derived strains are killed better in vivo than slower-growing Af293-derived strains. Additionally, a CEA10 pyrG-deficient strain with impaired germination is cleared less effectively by neutrophils. Host inflammatory activation through Myd88 is required for killing of a CEA10-derived strain but not sufficient for killing of an Af293-derived strain, further demonstrating the role of fungal-intrinsic differences in the ability of a host to clear an infection. Altogether, we describe a new role for macrophages in the persistence of A. fumigatus and highlight the ability of different A. fumigatus strains to adopt diverse modes of virulence. Immunocompromised patients are susceptible to invasive fungal infections, including aspergillosis. However, healthy humans inhale spores of the fungus Aspergillus fumigatus from the environment every day without becoming sick, and how the immune system clears this infection is still obscure. Additionally, there are many different strains of A. fumigatus, and whether the pathogenesis of these different strains varies is also largely unknown. To investigate these questions, we infected larval zebrafish with A. fumigatus spores derived from two genetically diverse strains. Larval zebrafish allow for visualization of fungal growth and innate immune cell behavior in live, intact animals. We find that differences in the rate of growth between strains directly affect fungal persistence. In both wild-type and macrophage-deficient zebrafish larvae, a fast-germinating strain is actually cleared better than a slow-germinating strain. This fungal killing is driven primarily by neutrophils while macrophages promote fungal persistence by inhibiting spore germination. Our experiments underline different mechanisms of virulence that pathogens can utilize—rapid growth versus dormancy and persistence—and inform future strategies for fighting fungal infections in susceptible immunocompromised patients.
Collapse
Affiliation(s)
- Emily E. Rosowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicholas Raffa
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Benjamin P. Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Netta Golenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
47
|
Deficiency in class III PI3-kinase confers postnatal lethality with IBD-like features in zebrafish. Nat Commun 2018; 9:2639. [PMID: 29980668 PMCID: PMC6035235 DOI: 10.1038/s41467-018-05105-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/22/2018] [Indexed: 12/26/2022] Open
Abstract
The class III PI3-kinase (PIK3C3) is an enzyme responsible for the generation of phosphatidylinositol 3-phosphate (PI3P), a critical component of vesicular membrane. Here, we report that PIK3C3 deficiency in zebrafish results in intestinal injury and inflammation. In pik3c3 mutants, gut tube forms but fails to be maintained. Gene expression analysis reveals that barrier-function-related inflammatory bowel disease (IBD) susceptibility genes (e-cadherin, hnf4a, ttc7a) are suppressed, while inflammatory response genes are stimulated in the mutants. Histological analysis shows neutrophil infiltration into mutant intestinal epithelium and the clearance of gut microbiota. Yet, gut microorganisms appear dispensable as mutants cultured under germ-free condition have similar intestinal defects. Mechanistically, we show that PIK3C3 deficiency suppresses the formation of PI3P and disrupts the polarized distribution of cell-junction proteins in intestinal epithelial cells. These results not only reveal a role of PIK3C3 in gut homeostasis, but also provide a zebrafish IBD model. The functions of the class III PI3-kinase (PIK3C3) in gut homeostasis and innate immunity are poorly understood. Here the authors show that PIK3C3-deficient zebrafishes develop intestinal injury and inflammation due to mislocalization of cell junction proteins.
Collapse
|
48
|
Zhao X, Hong X, Chen R, Yuan L, Zha J, Qin J. New cytokines and TLR pathway signaling molecules in Chinese rare minnow (Gobiocypris rarus): Molecular characterization, basal expression, and their response to chlorpyrifos. CHEMOSPHERE 2018; 199:26-34. [PMID: 29427811 DOI: 10.1016/j.chemosphere.2018.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
In this study, the cDNA fragments of cytokines (il-8) and toll-like receptor (TLR) pathway signaling molecules (myd88, irak-1, irf5, and irf7) in the Chinese rare minnow were cloned and exhibited a high amino-acid sequence identity compared to other cyprinid fish orthologs. The mRNA expressions of these genes in the different tissues (liver, brain, spleen, kidney, and skin) were observed. The highest expression levels of myd88, irak-1, and irf5 were detected in the spleen, whereas il-8 and irf7 were detected in the kidney and liver respectively. The mRNA expression of irak-1, irf5, and irf7 in the liver from 0.1 μg/L and 0.5 μg/L CPF treatments were significantly increased on day 7 (p < 0.05), whereas the levels of only irak-1 and irf7 were markedly increased on day 28 (p < 0.05). Moreover, the mRNA expression of il-8 in the spleen following 0.5 μg/L CPF treatments was significantly decreased on day 7 (p < 0.05), whereas significantly decrease were observed in the levels of irf7 in the spleen at 2.5 μg/L CPF on days 7 and 28 (p < 0.05). The 0.1 μg/L and 0.5 μg/L of CPF significantly induced the levels of irak-1 and myd88 in the spleen after 28 d exposure (p < 0.05). Therefore, the high induction of cytokines and TLR pathway signaling molecules demonstrated that Chinese rare minnow was immune-compromised exposed to CPF. Moreover, our finding indicated that these immune-related genes could be feasible to screen for substances hazardous to the immune system of fish.
Collapse
Affiliation(s)
- Xu Zhao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jianhui Qin
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
49
|
Troll JV, Hamilton MK, Abel ML, Ganz J, Bates JM, Stephens WZ, Melancon E, van der Vaart M, Meijer AH, Distel M, Eisen JS, Guillemin K. Microbiota promote secretory cell determination in the intestinal epithelium by modulating host Notch signaling. Development 2018; 145:145/4/dev155317. [PMID: 29475973 DOI: 10.1242/dev.155317] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/19/2018] [Indexed: 12/15/2022]
Abstract
Resident microbes promote many aspects of host development, although the mechanisms by which microbiota influence host tissues remain unclear. We showed previously that the microbiota is required for allocation of appropriate numbers of secretory cells in the zebrafish intestinal epithelium. Because Notch signaling is crucial for secretory fate determination, we conducted epistasis experiments to establish whether the microbiota modulates host Notch signaling. We also investigated whether innate immune signaling transduces microbiota cues via the Myd88 adaptor protein. We provide the first evidence that microbiota-induced, Myd88-dependent signaling inhibits host Notch signaling in the intestinal epithelium, thereby promoting secretory cell fate determination. These results connect microbiota activity via innate immune signaling to the Notch pathway, which also plays crucial roles in intestinal homeostasis throughout life and when impaired can result in chronic inflammation and cancer.
Collapse
Affiliation(s)
- Joshua V Troll
- Institute of Molecular Biology, Department of Biology, 1229 University of Oregon, Eugene, OR 97403, USA
| | - M Kristina Hamilton
- Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Melissa L Abel
- Institute of Molecular Biology, Department of Biology, 1229 University of Oregon, Eugene, OR 97403, USA
| | - Julia Ganz
- Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Jennifer M Bates
- Institute of Molecular Biology, Department of Biology, 1229 University of Oregon, Eugene, OR 97403, USA
| | - W Zac Stephens
- Institute of Molecular Biology, Department of Biology, 1229 University of Oregon, Eugene, OR 97403, USA
| | - Ellie Melancon
- Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | | | - Annemarie H Meijer
- Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands
| | - Martin Distel
- Children's Cancer Research Institute, 1090 Vienna, Austria
| | - Judith S Eisen
- Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Karen Guillemin
- Institute of Molecular Biology, Department of Biology, 1229 University of Oregon, Eugene, OR 97403, USA .,Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8
| |
Collapse
|
50
|
Priyathilaka TT, Bathige SDNK, Lee S, Lee J. Molecular identification and functional analysis of two variants of myeloid differentiation factor 88 (MyD88) from disk abalone (Haliotis discus discus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:113-127. [PMID: 29074103 DOI: 10.1016/j.dci.2017.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a crucial adaptor protein of the Toll-like receptor (TLR)- and interleukin 1 receptor-mediated signaling pathways and is involved in a diverse array of inflammatory responses via NF-κB activation. In the present study, two MyD88 variants were identified from disk abalone (Haliotis discus discus) and designated AbMyD88-2 and AbMyD88-X. The deduced AbMyD88-2 and AbMyD88-X comprised 433 and 354 amino acids with predicted molecular masses of 48.85 kDa and 40.17 kDa, respectively. AbMyD88-2 and AbMyD88-X possessed typical MyD88 domain structural features including an N-terminal death domain (DD) and C-terminal toll interleukin 1 receptor (TIR) domain similar to those in mammals. Expression analysis of AbMyD88-2 and AbMyD88-X mRNA at different early embryonic developmental stages of abalone by qPCR revealed that their constitutive expression at all developmental stages analyzed with the considerably higher values at the 16-cell (AbMyD88-2) and morula stages (AbMyD88-X). In unchallenged disk abalones, AbMyD88-2 was highly expressed in muscles, while AbMyD88-X mRNA was predominantly transcribed in hemocytes. Moreover, AbMyD88-2 and AbMyD88-X mRNA were differentially modulated in abalone hemocytes after a challenge with live bacteria (Vibrio parahaemolyticus, Listeria monocytogenes), virus (viral hemorrhagic septicemia virus), and pathogen-associated molecular patterns (lipopolysaccharides and Poly I:C). Overexpression of AbMyD88-2 and AbMyD88-X in HEK293T cells induced the activation of the NF-κB promoter. AbMyD88-2 and AbMyD88-X involvement in inflammatory responses was characterized by their overexpression in RAW264.7 murine macrophage cells. These results revealed comparatively higher NO (Nitric oxide) production, induction of inflammatory mediator genes (iNOS and COX2), and proinflammatory genes (IL1β, IL6 and TNFα) expression in abalone MyD88s-overexpressing cells than in mock control in the presence or absence of LPS stimulation. Altogether, these results suggest that existence of a MyD88-dependent like signaling pathway in disk abalone and that both AbMyD88-2 and AbMyD88-X might be involved in innate immune and inflammatory responses.
Collapse
Affiliation(s)
- Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama, Sri Lanka
| | - Seongdo Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| |
Collapse
|