1
|
Chippalkatti R, Parisi B, Kouzi F, Laurini C, Ben Fredj N, Abankwa DK. RAS isoform specific activities are disrupted by disease associated mutations during cell differentiation. Eur J Cell Biol 2024; 103:151425. [PMID: 38795504 DOI: 10.1016/j.ejcb.2024.151425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024] Open
Abstract
The RAS-MAPK-pathway is aberrantly regulated in cancer and developmental diseases called RASopathies. While typically the impact of Ras on the proliferation of various cancer cell lines is assessed, it is poorly established how Ras affects cellular differentiation. Here we implement the C2C12 myoblast cell line to systematically study the effect of Ras mutants and Ras-pathway drugs on differentiation. We first provide evidence that a minor pool of Pax7+ progenitors replenishes a major pool of transit amplifying cells that are ready to differentiate. Our data indicate that Ras isoforms have distinct roles in the differentiating culture, where K-Ras depletion increases and H-Ras depletion decreases terminal differentiation. This assay could therefore provide significant new insights into Ras biology and Ras-driven diseases. In line with this, we found that all oncogenic Ras mutants block terminal differentiation of transit amplifying cells. By contrast, RASopathy associated K-Ras variants were less able to block differentiation. Profiling of eight targeted Ras-pathway drugs on seven oncogenic Ras mutants revealed their allele-specific activities and distinct abilities to restore normal differentiation as compared to triggering cell death. In particular, the MEK-inhibitor trametinib could broadly restore differentiation, while the mTOR-inhibitor rapamycin broadly suppressed differentiation. We expect that this quantitative assessment of the impact of Ras-pathway mutants and drugs on cellular differentiation has great potential to complement cancer cell proliferation data.
Collapse
Affiliation(s)
- Rohan Chippalkatti
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Bianca Parisi
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Farah Kouzi
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Christina Laurini
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Nesrine Ben Fredj
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Daniel Kwaku Abankwa
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg.
| |
Collapse
|
2
|
Rodríguez-Martín M, Báez-Flores J, Ribes V, Isidoro-García M, Lacal J, Prieto-Matos P. Non-Mammalian Models for Understanding Neurological Defects in RASopathies. Biomedicines 2024; 12:841. [PMID: 38672195 PMCID: PMC11048513 DOI: 10.3390/biomedicines12040841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
RASopathies, a group of neurodevelopmental congenital disorders stemming from mutations in the RAS/MAPK pathway, present a unique opportunity to delve into the intricacies of complex neurological disorders. Afflicting approximately one in a thousand newborns, RASopathies manifest as abnormalities across multiple organ systems, with a pronounced impact on the central and peripheral nervous system. In the pursuit of understanding RASopathies' neurobiology and establishing phenotype-genotype relationships, in vivo non-mammalian models have emerged as indispensable tools. Species such as Danio rerio, Drosophila melanogaster, Caenorhabditis elegans, Xenopus species and Gallus gallus embryos have proven to be invaluable in shedding light on the intricate pathways implicated in RASopathies. Despite some inherent weaknesses, these genetic models offer distinct advantages over traditional rodent models, providing a holistic perspective on complex genetics, multi-organ involvement, and the interplay among various pathway components, offering insights into the pathophysiological aspects of mutations-driven symptoms. This review underscores the value of investigating the genetic basis of RASopathies for unraveling the underlying mechanisms contributing to broader neurological complexities. It also emphasizes the pivotal role of non-mammalian models in serving as a crucial preliminary step for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Vanessa Ribes
- Institut Jacques Monod, Université Paris Cité, CNRS, F-75013 Paris, France;
| | - María Isidoro-García
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
- Clinical Biochemistry Department, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Clinical Rare Diseases Reference Unit DiERCyL, 37007 Castilla y León, Spain
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Pablo Prieto-Matos
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
- Clinical Rare Diseases Reference Unit DiERCyL, 37007 Castilla y León, Spain
- Department of Pediatrics, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Department of Biomedical and Diagnostics Science, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Jindal GA, Bantle AT, Solvason JJ, Grudzien JL, D'Antonio-Chronowska A, Lim F, Le SH, Song BP, Ragsac MF, Klie A, Larsen RO, Frazer KA, Farley EK. Single-nucleotide variants within heart enhancers increase binding affinity and disrupt heart development. Dev Cell 2023; 58:2206-2216.e5. [PMID: 37848026 PMCID: PMC10720985 DOI: 10.1016/j.devcel.2023.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/07/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Transcriptional enhancers direct precise gene expression patterns during development and harbor the majority of variants associated with phenotypic diversity, evolutionary adaptations, and disease. Pinpointing which enhancer variants contribute to changes in gene expression and phenotypes is a major challenge. Here, we find that suboptimal or low-affinity binding sites are necessary for precise gene expression during heart development. Single-nucleotide variants (SNVs) can optimize the affinity of ETS binding sites, causing gain-of-function (GOF) gene expression, cell migration defects, and phenotypes as severe as extra beating hearts in the marine chordate Ciona robusta. In human induced pluripotent stem cell (iPSC)-derived cardiomyocytes, a SNV within a human GATA4 enhancer increases ETS binding affinity and causes GOF enhancer activity. The prevalence of suboptimal-affinity sites within enhancers creates a vulnerability whereby affinity-optimizing SNVs can lead to GOF gene expression, changes in cellular identity, and organismal-level phenotypes that could contribute to the evolution of novel traits or diseases.
Collapse
Affiliation(s)
- Granton A Jindal
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexis T Bantle
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joe J Solvason
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica L Grudzien
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Fabian Lim
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophia H Le
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Benjamin P Song
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michelle F Ragsac
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam Klie
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reid O Larsen
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kelly A Frazer
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emma K Farley
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Shvartsman SY, McFann S, Wühr M, Rubinstein BY. Phase plane dynamics of ERK phosphorylation. J Biol Chem 2023; 299:105234. [PMID: 37690685 PMCID: PMC10616409 DOI: 10.1016/j.jbc.2023.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
The extracellular signal-regulated kinase (ERK) controls multiple critical processes in the cell and is deregulated in human cancers, congenital abnormalities, immune diseases, and neurodevelopmental syndromes. Catalytic activity of ERK requires dual phosphorylation by an upstream kinase, in a mechanism that can be described by two sequential Michaelis-Menten steps. The estimation of individual reaction rate constants from kinetic data in the full mechanism has proved challenging. Here, we present an analytically tractable approach to parameter estimation that is based on the phase plane representation of ERK activation and yields two combinations of six reaction rate constants in the detailed mechanism. These combinations correspond to the ratio of the specificities of two consecutive phosphorylations and the probability that monophosphorylated substrate does not dissociate from the enzyme before the second phosphorylation. The presented approach offers a language for comparing the effects of mutations that disrupt ERK activation and function in vivo. As an illustration, we use phase plane representation to analyze dual phosphorylation under heterozygous conditions, when two enzyme variants compete for the same substrate.
Collapse
Affiliation(s)
- Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; Center for Computational Biology, Flatiron Institute, New York, New York, USA.
| | - Sarah McFann
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
5
|
Patterson V, Ullah F, Bryant L, Griffin JN, Sidhu A, Saliganan S, Blaile M, Saenz MS, Smith R, Ellingwood S, Grange DK, Hu X, Mireguli M, Luo Y, Shen Y, Mulhern M, Zackai E, Ritter A, Izumi K, Hoefele J, Wagner M, Riedhammer KM, Seitz B, Robin NH, Goodloe D, Mignot C, Keren B, Cox H, Jarvis J, Hempel M, Gibson CF, Tran Mau-Them F, Vitobello A, Bruel AL, Sorlin A, Mehta S, Raymond FL, Gilmore K, Powell BC, Weck K, Li C, Vulto-van Silfhout AT, Giacomini T, Mancardi MM, Accogli A, Salpietro V, Zara F, Vora NL, Davis EE, Burdine R, Bhoj E. Abrogation of MAP4K4 protein function causes congenital anomalies in humans and zebrafish. SCIENCE ADVANCES 2023; 9:eade0631. [PMID: 37126546 PMCID: PMC10132768 DOI: 10.1126/sciadv.ade0631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
We report 21 families displaying neurodevelopmental differences and multiple congenital anomalies while bearing a series of rare variants in mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4). MAP4K4 has been implicated in many signaling pathways including c-Jun N-terminal and RAS kinases and is currently under investigation as a druggable target for multiple disorders. Using several zebrafish models, we demonstrate that these human variants are either loss-of-function or dominant-negative alleles and show that decreasing Map4k4 activity causes developmental defects. Furthermore, MAP4K4 can restrain hyperactive RAS signaling in early embryonic stages. Together, our data demonstrate that MAP4K4 negatively regulates RAS signaling in the early embryo and that variants identified in affected humans abrogate its function, establishing MAP4K4 as a causal locus for individuals with syndromic neurodevelopmental differences.
Collapse
Affiliation(s)
- Victoria Patterson
- Princeton University, Princeton, NJ 08544, USA
- Department of Biology, University of York, York, UK
| | - Farid Ullah
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laura Bryant
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John N. Griffin
- University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Alpa Sidhu
- The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | | | - Mackenzie Blaile
- University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Margarita S. Saenz
- University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Rosemarie Smith
- Maine Medical Center, 22 Bramhall St, Portland, ME 04102, USA
| | - Sara Ellingwood
- Maine Medical Center, 22 Bramhall St, Portland, ME 04102, USA
| | - Dorothy K. Grange
- St. Louis Children’s Hospital, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Xuyun Hu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Genetics and Birth Defects Control Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Maimaiti Mireguli
- First Affiliated Hospital of Xinjiang Medical University, Department of Pediatrics, Xinjiang Uygur Autonomous Region, China
| | - Yanfei Luo
- First Affiliated Hospital of Xinjiang Medical University, Department of Pediatrics, Xinjiang Uygur Autonomous Region, China
| | - Yiping Shen
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Maternal and Child Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi, Nanning, China
| | - Maureen Mulhern
- Columbia University Irving Medical Center, 630 W. 168th St, New York, NY 10032, USA
| | - Elaine Zackai
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alyssa Ritter
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kosaki Izumi
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Korbinian M. Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Nathaniel H. Robin
- University of Alabama at Birmingham, 1720 University Blvd, Birmingham, AL 35233, USA
| | - Dana Goodloe
- University of Alabama at Birmingham, 1720 University Blvd, Birmingham, AL 35233, USA
| | - Cyril Mignot
- APHP-Sorbonne Université, GH Pitié-Salpêtrière, Paris, France
| | - Boris Keren
- Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TG, UK
| | - Helen Cox
- Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TG, UK
| | - Joanna Jarvis
- Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TG, UK
| | - Maja Hempel
- University Hospital Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | | | | | - Antonio Vitobello
- UMR1231 GAD, Inserm, Université Bourgogne-Franche-Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | | | | | | | | | - Kelly Gilmore
- Department of Ob/Gyn, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bradford C. Powell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen Weck
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chumei Li
- McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | | | - Thea Giacomini
- Unit of Child Neuropsychiatry, University of Genova, EpiCARE Network, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Andrea Accogli
- Division of Medical Genetics, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Science, University of L’Aquila, 67100 L’Aquila, Italy
| | - Federico Zara
- Department of Biotechnological and Applied Clinical Science, University of L’Aquila, 67100 L’Aquila, Italy
| | - Neeta L. Vora
- Department of Ob/Gyn, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erica E. Davis
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Elizabeth Bhoj
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Neurologic and neurodevelopmental complications in cardiofaciocutaneous syndrome are associated with genotype: A multinational cohort study. Genet Med 2022; 24:1556-1566. [PMID: 35524774 DOI: 10.1016/j.gim.2022.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Dysregulation of RAS or its major effector pathway is the molecular mechanism of RASopathies, a group of multisystemic congenital disorders. Neurologic complications are especially challenging in the management of the rare RASopathy cardiofaciocutaneous (CFC) syndrome. This study evaluated clinical neurologic and neurodevelopmental features and their associations with CFC syndrome gene variants. METHODS A multinational cohort of 138 individuals with CFC syndrome (BRAF = 90, MAP2K1 = 36, MAP2K2 = 10, KRAS = 2) was recruited. Neurologic presentation was captured via clinician review of medical records and caregiver-completed electronic surveys. Validated measures of seizure severity, adaptive function, and gross motor function were obtained. RESULTS The overall frequency of intellectual disability and seizures was 82% and 55%, respectively. The frequency and severity of seizures was higher among individuals with BRAF or MAP2K1 variants than in those with MAP2K2 variants. A disproportionate incidence of severe, treatment-resistant seizures was observed in patients with variants in the catalytic protein kinase domain of BRAF and at the common p.Y130 site of MAP2K1. Neurodevelopmental outcomes were associated with genotype as well as seizure severity. CONCLUSION Molecular genetic testing can aid in prediction of epilepsy and neurodevelopmental phenotypes in CFC syndrome. Study results identified potential CFC syndrome-associated variants in the development of relevant animal models for neurologic, neurocognitive, and motor function impairment.
Collapse
|
7
|
Wilson P, Abdelmoti L, Norcross R, Jang ER, Palayam M, Galperin E. The role of USP7 in the Shoc2-ERK1/2 signaling axis and Noonan-like syndrome with loose anagen hair. J Cell Sci 2021; 134:272259. [PMID: 34553755 DOI: 10.1242/jcs.258922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
The ERK1/2 (also known as MAPK3 and MAPK1, respectively) signaling pathway is critical in organismal development and tissue morphogenesis. Deregulation of this pathway leads to congenital abnormalities with severe developmental dysmorphisms. The core ERK1/2 cascade relies on scaffold proteins, such as Shoc2 to guide and fine-tune its signals. Mutations in SHOC2 lead to the development of the pathology termed Noonan-like Syndrome with Loose Anagen Hair (NSLAH). However, the mechanisms underlying the functions of Shoc2 and its contributions to disease progression remain unclear. Here, we show that ERK1/2 pathway activation triggers the interaction of Shoc2 with the ubiquitin-specific protease USP7. We reveal that, in the Shoc2 module, USP7 functions as a molecular 'switch' that controls the E3 ligase HUWE1 and the HUWE1-induced regulatory feedback loop. We also demonstrate that disruption of Shoc2-USP7 binding leads to aberrant activation of the Shoc2-ERK1/2 axis. Importantly, our studies reveal a possible role for USP7 in the pathogenic mechanisms underlying NSLAH, thereby extending our understanding of how ubiquitin-specific proteases regulate intracellular signaling.
Collapse
Affiliation(s)
- Patricia Wilson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Lina Abdelmoti
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Rebecca Norcross
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Eun Ryoung Jang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Malathy Palayam
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
8
|
Vasic V, Jones MSO, Haslinger D, Knaus LS, Schmeisser MJ, Novarino G, Chiocchetti AG. Translating the Role of mTOR- and RAS-Associated Signalopathies in Autism Spectrum Disorder: Models, Mechanisms and Treatment. Genes (Basel) 2021; 12:genes12111746. [PMID: 34828352 PMCID: PMC8624393 DOI: 10.3390/genes12111746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Mutations affecting mTOR or RAS signaling underlie defined syndromes (the so-called mTORopathies and RASopathies) with high risk for Autism Spectrum Disorder (ASD). These syndromes show a broad variety of somatic phenotypes including cancers, skin abnormalities, heart disease and facial dysmorphisms. Less well studied are the neuropsychiatric symptoms such as ASD. Here, we assess the relevance of these signalopathies in ASD reviewing genetic, human cell model, rodent studies and clinical trials. We conclude that signalopathies have an increased liability for ASD and that, in particular, ASD individuals with dysmorphic features and intellectual disability (ID) have a higher chance for disruptive mutations in RAS- and mTOR-related genes. Studies on rodent and human cell models confirm aberrant neuronal development as the underlying pathology. Human studies further suggest that multiple hits are necessary to induce the respective phenotypes. Recent clinical trials do only report improvements for comorbid conditions such as epilepsy or cancer but not for behavioral aspects. Animal models show that treatment during early development can rescue behavioral phenotypes. Taken together, we suggest investigating the differential roles of mTOR and RAS signaling in both human and rodent models, and to test drug treatment both during and after neuronal development in the available model systems.
Collapse
Affiliation(s)
- Verica Vasic
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (V.V.); (M.J.S.)
| | - Mattson S. O. Jones
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Denise Haslinger
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Lisa S. Knaus
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Michael J. Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (V.V.); (M.J.S.)
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Gaia Novarino
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Andreas G. Chiocchetti
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-6301-80658
| |
Collapse
|
9
|
Revidierte Diagnosekriterien für die Neurofibromatose Typ 1 (NF1) ermöglichen eine frühe präzise differenzialdiagnostische Abgrenzung zu anderen RASopathien und erleichtern die Diagnose. Monatsschr Kinderheilkd 2021. [DOI: 10.1007/s00112-021-01323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Zusammenfassung
Hintergrund
Die Neurofibromatose Typ 1 (NF1) ist eines der häufigsten erblichen Tumorprädispositionssyndrome und zählt zu den RASopathien, einer Gruppe von Erkrankungen mit überlappender Symptomatik, die durch Störungen des RAS-vermittelten Signaltransduktionsweges entstehen. Die diagnostischen Kriterien für NF1 sind 1988 definiert worden. Neue klinische und genetische Erkenntnisse erforderten eine Revision dieser Kriterien. Besonders im frühen Kindesalter ermöglichen die NF1-Diagnosekriterien von 1988 häufig noch keine Diagnose der NF1 und keine differenzialdiagnostische Abgrenzung zu anderen RASopathien wie dem Legius-Syndrom.
Methoden
Es erfolgte eine selektive Literaturrecherche zu Genetik und Symptomatik der NF1. Die Autoren nahmen an einer Delphi-Methode zur Revision der NF1-Diagnosekriterien durch ein internationales Expertengremium teil. Es wurden hierbei auch erstmalig die Diagnosekriterien für das Legius-Syndrom sowie für Mosaikformen beider Erkrankungen erstellt.
Ergebnisse
Die NF1-Diagnosekriterien wurden überarbeitet; dabei wurden neue klinische Merkmale wie choroidale Anomalien aufgenommen, aber auch genetische Befunde wie der Nachweis pathogener NF1-Genvarianten.
Diskussion
Mit den revidierten NF1-Diagnosekriterien und den neu erstellten Diagnosekriterien für das Legius-Syndrom ist es nun möglich, auch bei Kindern die Diagnose einer NF1 mit hoher Sensitivität und Spezifität frühzeitig zu stellen. Diese Diagnosekriterien ermöglichen eine genaue differenzialdiagnostische Abgrenzung von anderen Erkrankungen mit phänotypischen Überlappungen zur NF1, was eine frühe Risikostratifizierung und somit eine zielgerichtete Behandlung und Betreuung der Patienten ermöglicht.
Collapse
|
10
|
Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov 2021; 20:611-628. [PMID: 34117457 PMCID: PMC9210578 DOI: 10.1038/s41573-021-00210-8] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/03/2023]
Abstract
Numerous drug treatments that have recently entered the clinic or clinical trials have their genesis in zebrafish. Zebrafish are well established for their contribution to developmental biology and have now emerged as a powerful preclinical model for human disease, as their disease characteristics, aetiology and progression, and molecular mechanisms are clinically relevant and highly conserved. Zebrafish respond to small molecules and drug treatments at physiologically relevant dose ranges and, when combined with cell-specific or tissue-specific reporters and gene editing technologies, drug activity can be studied at single-cell resolution within the complexity of a whole animal, across tissues and over an extended timescale. These features enable high-throughput and high-content phenotypic drug screening, repurposing of available drugs for personalized and compassionate use, and even the development of new drug classes. Often, drugs and drug leads explored in zebrafish have an inter-organ mechanism of action and would otherwise not be identified through targeted screening approaches. Here, we discuss how zebrafish is an important model for drug discovery, the process of how these discoveries emerge and future opportunities for maximizing zebrafish potential in medical discoveries.
Collapse
Affiliation(s)
- E Elizabeth Patton
- MRC Human Genetics Unit and Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, Western General Hospital Campus, University of Edinburgh, Edinburgh, UK.
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School; Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA.
| | - David M Langenau
- Department of Pathology, Massachusetts General Research Institute, Boston, MA, USA.
- Center of Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Boston, MA, USA.
- Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
Watanabe M. Introduction to the special issue on "RASopathies: Misregulation of signaling". Birth Defects Res 2021; 112:703-707. [PMID: 32558382 DOI: 10.1002/bdr2.1701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Lauri A, Fasano G, Venditti M, Dallapiccola B, Tartaglia M. In vivo Functional Genomics for Undiagnosed Patients: The Impact of Small GTPases Signaling Dysregulation at Pan-Embryo Developmental Scale. Front Cell Dev Biol 2021; 9:642235. [PMID: 34124035 PMCID: PMC8194860 DOI: 10.3389/fcell.2021.642235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022] Open
Abstract
While individually rare, disorders affecting development collectively represent a substantial clinical, psychological, and socioeconomic burden to patients, families, and society. Insights into the molecular mechanisms underlying these disorders are required to speed up diagnosis, improve counseling, and optimize management toward targeted therapies. Genome sequencing is now unveiling previously unexplored genetic variations in undiagnosed patients, which require functional validation and mechanistic understanding, particularly when dealing with novel nosologic entities. Functional perturbations of key regulators acting on signals' intersections of evolutionarily conserved pathways in these pathological conditions hinder the fine balance between various developmental inputs governing morphogenesis and homeostasis. However, the distinct mechanisms by which these hubs orchestrate pathways to ensure the developmental coordinates are poorly understood. Integrative functional genomics implementing quantitative in vivo models of embryogenesis with subcellular precision in whole organisms contribute to answering these questions. Here, we review the current knowledge on genes and mechanisms critically involved in developmental syndromes and pediatric cancers, revealed by genomic sequencing and in vivo models such as insects, worms and fish. We focus on the monomeric GTPases of the RAS superfamily and their influence on crucial developmental signals and processes. We next discuss the effectiveness of exponentially growing functional assays employing tractable models to identify regulatory crossroads. Unprecedented sophistications are now possible in zebrafish, i.e., genome editing with single-nucleotide precision, nanoimaging, highly resolved recording of multiple small molecules activity, and simultaneous monitoring of brain circuits and complex behavioral response. These assets permit accurate real-time reporting of dynamic small GTPases-controlled processes in entire organisms, owning the potential to tackle rare disease mechanisms.
Collapse
Affiliation(s)
- Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | | | | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
13
|
Das TK, Gatto J, Mirmira R, Hourizadeh E, Kaufman D, Gelb BD, Cagan R. Drosophila RASopathy models identify disease subtype differences and biomarkers of drug efficacy. iScience 2021; 24:102306. [PMID: 33855281 PMCID: PMC8026909 DOI: 10.1016/j.isci.2021.102306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/30/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
RASopathies represent a family of mostly autosomal dominant diseases that are caused by missense variants in the rat sarcoma viral oncogene/mitogen activated protein kinase (RAS/MAPK) pathway including KRAS, NRAS, BRAF, RAF1, and SHP2. These variants are associated with overlapping but distinct phenotypes that affect the heart, craniofacial, skeletal, lymphatic, and nervous systems. Here, we report an analysis of 13 Drosophila transgenic lines, each expressing a different human RASopathy isoform. Similar to their human counterparts, each Drosophila line displayed common aspects but also important differences including distinct signaling pathways such as the Hippo and SAPK/JNK signaling networks. We identified multiple classes of clinically relevant drugs-including statins and histone deacetylase inhibitors-that improved viability across most RASopathy lines; in contrast, several canonical RAS pathway inhibitors proved less broadly effective. Overall, our study compares and contrasts a large number of RASopathy-associated variants including their therapeutic responses.
Collapse
Affiliation(s)
- Tirtha K. Das
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York NY, USA
- The Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Jared Gatto
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York NY, USA
- The Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Rupa Mirmira
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Ethan Hourizadeh
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Dalia Kaufman
- The Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Bruce D. Gelb
- The Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Ross Cagan
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York NY, USA
| |
Collapse
|
14
|
Harder A. MEK inhibitors - novel targeted therapies of neurofibromatosis associated benign and malignant lesions. Biomark Res 2021; 9:26. [PMID: 33863389 PMCID: PMC8052700 DOI: 10.1186/s40364-021-00281-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
MAP/ERK kinase 1 and 2 (MEK 1/2) inhibitors (MEKi) are investigated in several trials to treat lesions that arise from pathogenic variants of the Neurofibromatosis type 1 and type 2 genes (NF1, NF2). These trials showed that MEKi are capable to shrink volume of low grade gliomas and plexiform neurofibromas in NF1. Targeting other lesions being associated with a high morbidity in NF1 seems to be promising. Due to involvement of multiple pathways in NF2 associated lesions as well as in malignant tumors, MEKi are also used in combination therapies. This review outlines the current state of MEKi application in neurofibromatosis and associated benign and malignant lesions.
Collapse
Affiliation(s)
- Anja Harder
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 14, 06120, Halle (Saale), Germany. .,Institute of Neuropathology, University Hospital Münster, Münster, Germany. .,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| |
Collapse
|
15
|
Marmion RA, Yang L, Goyal Y, Jindal GA, Wetzel JL, Singh M, Schüpbach T, Shvartsman SY. Molecular mechanisms underlying cellular effects of human MEK1 mutations. Mol Biol Cell 2021; 32:974-983. [PMID: 33476180 PMCID: PMC8108529 DOI: 10.1091/mbc.e20-10-0625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Terminal regions of Drosophila embryos are patterned by signaling through ERK, which is genetically deregulated in multiple human diseases. Quantitative studies of terminal patterning have been recently used to investigate gain-of-function variants of human MEK1, encoding the MEK kinase that directly activates ERK by dual phosphorylation. Unexpectedly, several mutations reduced ERK activation by extracellular signals, possibly through a negative feedback triggered by signal-independent activity of the mutant variants. Here we present experimental evidence supporting this model. Using a MEK variant that combines a mutation within the negative regulatory region with alanine substitutions in the activation loop, we prove that pathogenic variants indeed acquire signal-independent kinase activity. We also demonstrate that signal-dependent activation of these variants is independent of kinase suppressor of Ras, a conserved adaptor that is indispensable for activation of normal MEK. Finally, we show that attenuation of ERK activation by extracellular signals stems from transcriptional induction of Mkp3, a dual specificity phosphatase that deactivates ERK by dephosphorylation. These findings in the Drosophila embryo highlight its power for investigating diverse effects of human disease mutations.
Collapse
Affiliation(s)
- Robert A Marmion
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Liu Yang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Yogesh Goyal
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Granton A Jindal
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544.,Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Joshua L Wetzel
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Computer Science, Princeton University, Princeton, NJ 08540
| | - Mona Singh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Computer Science, Princeton University, Princeton, NJ 08540
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544.,Flatiron Institute, Simons Foundation, New York, NY 10010
| |
Collapse
|
16
|
Abankwa D, Gorfe AA. Mechanisms of Ras Membrane Organization and Signaling: Ras Rocks Again. Biomolecules 2020; 10:E1522. [PMID: 33172116 PMCID: PMC7694788 DOI: 10.3390/biom10111522] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022] Open
Abstract
Ras is the most frequently mutated oncogene and recent drug development efforts have spurred significant new research interest. Here we review progress toward understanding how Ras functions in nanoscale, proteo-lipid signaling complexes on the plasma membrane, called nanoclusters. We discuss how G-domain reorientation is plausibly linked to Ras-nanoclustering and -dimerization. We then look at how these mechanistic features could cooperate in the engagement and activation of RAF by Ras. Moreover, we show how this structural information can be integrated with microscopy data that provide nanoscale resolution in cell biological experiments. Synthesizing the available data, we propose to distinguish between two types of Ras nanoclusters, an active, immobile RAF-dependent type and an inactive/neutral membrane anchor-dependent. We conclude that it is possible that Ras reorientation enables dynamic Ras dimerization while the whole Ras/RAF complex transits into an active state. These transient di/oligomer interfaces of Ras may be amenable to pharmacological intervention. We close by highlighting a number of open questions including whether all effectors form active nanoclusters and whether there is an isoform specific composition of Ras nanocluster.
Collapse
Affiliation(s)
- Daniel Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Alemayehu A. Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
17
|
Haploinsufficiency of RREB1 causes a Noonan-like RASopathy via epigenetic reprogramming of RAS-MAPK pathway genes. Nat Commun 2020; 11:4673. [PMID: 32938917 PMCID: PMC7495420 DOI: 10.1038/s41467-020-18483-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
RAS-MAPK signaling mediates processes critical to normal development including cell proliferation, survival, and differentiation. Germline mutation of RAS-MAPK genes lead to the Noonan-spectrum of syndromes. Here, we present a patient affected by a 6p-interstitial microdeletion with unknown underlying molecular etiology. Examination of 6p-interstitial microdeletion cases reveals shared clinical features consistent with Noonan-spectrum disorders including short stature, facial dysmorphia and cardiovascular abnormalities. We find the RAS-responsive element binding protein-1 (RREB1) is the common deleted gene in multiple 6p-interstitial microdeletion cases. Rreb1 hemizygous mice display orbital hypertelorism and cardiac hypertrophy phenocopying the human syndrome. Rreb1 haploinsufficiency leads to sensitization of MAPK signaling. Rreb1 recruits Sin3a and Kdm1a to control H3K4 methylation at MAPK pathway gene promoters. Haploinsufficiency of SIN3A and mutations in KDM1A cause syndromes similar to RREB1 haploinsufficiency suggesting genetic perturbation of the RREB1-SIN3A-KDM1A complex represents a new category of RASopathy-like syndromes arising through epigenetic reprogramming of MAPK pathway genes.
Collapse
|
18
|
Cattaneo V, San Martin A, Lew SE, Gelb BD, Pagani MR. Repeating or spacing learning sessions are strategies for memory improvement with shared molecular and neuronal components. Neurobiol Learn Mem 2020; 172:107233. [PMID: 32360730 PMCID: PMC7451235 DOI: 10.1016/j.nlm.2020.107233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 03/05/2020] [Accepted: 04/25/2020] [Indexed: 11/21/2022]
Abstract
Intellectual disability is a common feature in genetic disorders with enhanced RAS-ERK1/2 signaling, including neurofibromatosis type 1 (NF1) and Noonan syndrome (NS). Additional training trials and additional spacing between trials, respectively, restores memory deficits in animal models of NF1 and NS. However, the relationship between the underlying mechanisms in these strategies remain obscure. Here, we developed an approach to examine the effect of adding training trials or spacing to a weak training protocol and used genetic and behavioral manipulations in Drosophila to explore such question. We found that repetition and spacing effects are highly related, being equally effective to improve memory in control flies and sharing mechanistic bases, including the requirement of RAS activity in mushroom body neurons and protein synthesis dependence. After spacing or repeating learning trials, memory improvement depends on the formation of long-term memory (LTM). Moreover, a disease-related gain-of-function RasV152G allele impaired LTM. Using minimal training protocols, we established that both learning strategies were also equally effective for memory rescue in the RasV152G mutant and showed non-additive interaction of the spacing and repetition effects. Memory improvement was never detected after Ras inhibition. We conclude that memory improvement by spacing or repeating training trials are two ways of using the same molecular resources, including RAS-ERK1/2-dependent signaling. This evidence supports the concept that learning problems in RAS-related disorders depend on the impaired ability to exploit the repetition and the spacing effect required for long-term memory induction.
Collapse
Affiliation(s)
- Verónica Cattaneo
- IFIBIO-Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET, 2155 Paraguay Street, Buenos Aires, Argentina
| | - Alvaro San Martin
- IFIBIO-Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET, 2155 Paraguay Street, Buenos Aires, Argentina
| | - Sergio E Lew
- Instituto de Ingeniería Biomédica, Facultad de Ingeniería, Universidad de Buenos Aires, Argentina
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mario R Pagani
- IFIBIO-Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET, 2155 Paraguay Street, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Patterson VL, Burdine RD. Swimming toward solutions: Using fish and frogs as models for understanding RASopathies. Birth Defects Res 2020; 112:749-765. [PMID: 32506834 DOI: 10.1002/bdr2.1707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022]
Abstract
The RAS signaling pathway regulates cell growth, survival, and differentiation, and its inappropriate activation is associated with disease in humans. The RASopathies, a set of developmental syndromes, arise when the pathway is overactive during development. Patients share a core set of symptoms, including congenital heart disease, craniofacial anomalies, and neurocognitive delay. Due to the conserved nature of the pathway, animal models are highly informative for understanding disease etiology, and zebrafish and Xenopus are emerging as advantageous model systems. Here we discuss these aquatic models of RASopathies, which recapitulate many of the core symptoms observed in patients. Craniofacial structures become dysmorphic upon expression of disease-associated mutations, resulting in wider heads. Heart defects manifest as delays in cardiac development and changes in heart size, and behavioral deficits are beginning to be explored. Furthermore, early convergence and extension defects cause elongation of developing embryos: this phenotype can be quantitatively assayed as a readout of mutation strength, raising interesting questions regarding the relationship between pathway activation and disease. Additionally, the observation that RAS signaling may be simultaneously hyperactive and attenuated suggests that downregulation of signaling may also contribute to etiology. We propose that models should be characterized using a standardized approach to allow easier comparison between models, and a better understanding of the interplay between mutation and disease presentation.
Collapse
Affiliation(s)
- Victoria L Patterson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
20
|
Ruzzi LR, Schilman PE, San Martin A, Lew SE, Gelb BD, Pagani MR. The Phosphatase CSW Controls Life Span by Insulin Signaling and Metabolism Throughout Adult Life in Drosophila. Front Genet 2020; 11:364. [PMID: 32457793 PMCID: PMC7221067 DOI: 10.3389/fgene.2020.00364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/25/2020] [Indexed: 11/30/2022] Open
Abstract
Noonan syndrome and related disorders are caused by mutations in genes encoding for proteins of the RAS-ERK1/2 signaling pathway, which affect development by enhanced ERK1/2 activity. However, the mutations’ effects throughout adult life are unclear. In this study, we identify that the protein most commonly affected in Noonan syndrome, the phosphatase SHP2, known in Drosophila as corkscrew (CSW), controls life span, triglyceride levels, and metabolism without affecting ERK signaling pathway. We found that CSW loss-of-function mutations extended life span by interacting with components of the insulin signaling pathway and impairing AKT activity in adult flies. By expressing csw-RNAi in different organs, we determined that CSW extended life span by acting in organs that regulate energy availability, including gut, fat body and neurons. In contrast to that in control animals, loss of CSW leads to reduced homeostasis in metabolic rate during activity. Clinically relevant gain-of-function csw allele reduced life span, when expressed in fat body, but not in other tissues. However, overexpression of a wild-type allele did not affect life span, showing a specific effect of the gain-of-function allele independently of a gene dosage effect. We concluded that CSW normally regulates life span and that mutations in SHP2 are expected to have critical effects throughout life by insulin-dependent mechanisms in addition to the well-known RAS-ERK1/2-dependent developmental alterations.
Collapse
Affiliation(s)
- Leonardo R Ruzzi
- Department of Physiology and Biophysics, School of Medicine, National Scientific and Technical Research Council, University of Buenos Aires, Buenos Aires, Argentina
| | - Pablo E Schilman
- Department of Biodiversity and Experimental Biology, Faculty of Exact and Natural Sciences, National Scientific and Technical Research Council, University of Buenos Aires, Buenos Aires, Argentina
| | - Alvaro San Martin
- Department of Physiology and Biophysics, School of Medicine, National Scientific and Technical Research Council, University of Buenos Aires, Buenos Aires, Argentina
| | - Sergio E Lew
- Institute of Biomedical Engineering, Faculty of Engineering, University of Buenos Aires, Buenos Aires, Argentina
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mario R Pagani
- Department of Physiology and Biophysics, School of Medicine, National Scientific and Technical Research Council, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Yeung E, McFann S, Marsh L, Dufresne E, Filippi S, Harrington HA, Shvartsman SY, Wühr M. Inference of Multisite Phosphorylation Rate Constants and Their Modulation by Pathogenic Mutations. Curr Biol 2020; 30:877-882.e6. [PMID: 32059766 PMCID: PMC7085240 DOI: 10.1016/j.cub.2019.12.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/03/2019] [Accepted: 12/16/2019] [Indexed: 01/03/2023]
Abstract
Multisite protein phosphorylation plays a critical role in cell regulation [1-3]. It is widely appreciated that the functional capabilities of multisite phosphorylation depend on the order and kinetics of phosphorylation steps, but kinetic aspects of multisite phosphorylation remain poorly understood [4-6]. Here, we focus on what appears to be the simplest scenario, when a protein is phosphorylated on only two sites in a strict, well-defined order. This scenario describes the activation of ERK, a highly conserved cell-signaling enzyme. We use Bayesian parameter inference in a structurally identifiable kinetic model to dissect dual phosphorylation of ERK by MEK, a kinase that is mutated in a large number of human diseases [7-12]. Our results reveal how enzyme processivity and efficiencies of individual phosphorylation steps are altered by pathogenic mutations. The presented approach, which connects specific mutations to kinetic parameters of multisite phosphorylation mechanisms, provides a systematic framework for closing the gap between studies with purified enzymes and their effects in the living organism.
Collapse
Affiliation(s)
- Eyan Yeung
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Laboratory, Washington Road, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Sarah McFann
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Laboratory, Washington Road, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Engineering Quad, Princeton University, Princeton, NJ 08544, USA
| | - Lewis Marsh
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG, UK
| | - Emilie Dufresne
- Department of Mathematics, James College, Campus West, University of York, York YO10 5DD, UK
| | - Sarah Filippi
- Department of Epidemiology and Biostatistics, Imperial College London, Medical School Building, St Mary's Campus, Norfolk Place, London W2 1PG, UK; Department of Mathematics, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - Heather A Harrington
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG, UK
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Laboratory, Washington Road, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA; Flatiron Institute, Simons Foundation, New York, NY 10010, USA.
| | - Martin Wühr
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Laboratory, Washington Road, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
22
|
Abstract
Terminal regions of the early Drosophila embryo are patterned by the highly conserved ERK cascade, giving rise to the nonsegmented terminal structures of the future larva. In less than an hour, this signaling event establishes several gene expression boundaries and sets in motion a sequence of elaborate morphogenetic events. Genetic studies of terminal patterning discovered signaling components and transcription factors that are involved in numerous developmental contexts and deregulated in human diseases. This review summarizes current understanding of signaling and morphogenesis during terminal patterning and discusses several open questions that can now be rigorously investigated using live imaging, omics, and optogenetic approaches. The anatomical simplicity of the terminal patterning system and its amenability to a broad range of increasingly sophisticated genetic perturbations will continue to make it a premier quantitative model for studying multiple aspects of tissue patterning by dynamically controlled cell signaling pathways.
Collapse
|
23
|
Genetics of Congenital Heart Disease. Biomolecules 2019; 9:biom9120879. [PMID: 31888141 PMCID: PMC6995556 DOI: 10.3390/biom9120879] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Congenital heart disease (CHD) is one of the most common birth defects. Studies in animal models and humans have indicated a genetic etiology for CHD. About 400 genes have been implicated in CHD, encompassing transcription factors, cell signaling molecules, and structural proteins that are important for heart development. Recent studies have shown genes encoding chromatin modifiers, cilia related proteins, and cilia-transduced cell signaling pathways play important roles in CHD pathogenesis. Elucidating the genetic etiology of CHD will help improve diagnosis and the development of new therapies to improve patient outcomes.
Collapse
|
24
|
Kang M, Lee YS. The impact of RASopathy-associated mutations on CNS development in mice and humans. Mol Brain 2019; 12:96. [PMID: 31752929 PMCID: PMC6873535 DOI: 10.1186/s13041-019-0517-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 01/04/2023] Open
Abstract
The RAS signaling pathway is involved in the regulation of developmental processes, including cell growth, proliferation, and differentiation, in the central nervous system (CNS). Germline mutations in the RAS signaling pathway genes are associated with a group of neurodevelopmental disorders, collectively called RASopathy, which includes neurofibromatosis type 1, Noonan syndrome, cardio-facio-cutaneous syndrome, and Costello syndrome. Most mutations associated with RASopathies increase the activity of the RAS-ERK signaling pathway, and therefore, most individuals with RASopathies share common phenotypes, such as a short stature, heart defects, facial abnormalities, and cognitive impairments, which are often accompanied by abnormal CNS development. Recent studies using mouse models of RASopathies demonstrated that particular mutations associated with each disorder disrupt CNS development in a mutation-specific manner. Here, we reviewed the recent literatures that investigated the developmental role of RASopathy-associated mutations using mutant mice, which provided insights into the specific contribution of RAS-ERK signaling molecules to CNS development and the subsequent impact on cognitive function in adult mice.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, South Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, South Korea.
| |
Collapse
|
25
|
Jang H, Oakley E, Forbes-Osborne M, Kesler MV, Norcross R, Morris AC, Galperin E. Hematopoietic and neural crest defects in zebrafish shoc2 mutants: a novel vertebrate model for Noonan-like syndrome. Hum Mol Genet 2019; 28:501-514. [PMID: 30329053 DOI: 10.1093/hmg/ddy366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
The extracellular signal-related kinase 1 and 2 (ERK1/2) pathway is a highly conserved signaling cascade with numerous essential functions in development. The scaffold protein Shoc2 amplifies the activity of the ERK1/2 pathway and is an essential modulator of a variety of signaling inputs. Germline mutations in Shoc2 are associated with the human developmental disease known as the Noonan-like syndrome with loose anagen hair. Clinical manifestations of this disease include congenital heart defects, developmental delays, distinctive facial abnormalities, reduced growth and cognitive deficits along with hair anomalies. The many molecular details of pathogenesis of the Noonan-like syndrome and related developmental disorders, cumulatively called RASopathies, remain poorly understood. Mouse knockouts for Shoc2 are embryonic lethal, emphasizing the need for additional animal models to study the role of Shoc2 in embryonic development. Here, we characterize a zebrafish shoc2 mutant, and show that Shoc2 is essential for development, and that its loss is detrimental for the development of the neural crest and for hematopoiesis. The zebrafish model of the Noonan-like syndrome described here provides a novel system for the study of structure-function analyses and for genetic screens in a tractable vertebrate system.
Collapse
Affiliation(s)
- HyeIn Jang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Erin Oakley
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | | | - Melissa V Kesler
- Division of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Rebecca Norcross
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Ann C Morris
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
26
|
Holter MC, Hewitt LT, Koebele SV, Judd JM, Xing L, Bimonte-Nelson HA, Conrad CD, Araki T, Neel BG, Snider WD, Newbern JM. The Noonan Syndrome-linked Raf1L613V mutation drives increased glial number in the mouse cortex and enhanced learning. PLoS Genet 2019; 15:e1008108. [PMID: 31017896 PMCID: PMC6502435 DOI: 10.1371/journal.pgen.1008108] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 05/06/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022] Open
Abstract
RASopathies are a family of related syndromes caused by mutations in regulators of the RAS/Extracellular Regulated Kinase 1/2 (ERK1/2) signaling cascade that often result in neurological deficits. RASopathy mutations in upstream regulatory components, such as NF1, PTPN11/SHP2, and RAS have been well-characterized, but mutation-specific differences in the pathogenesis of nervous system abnormalities remain poorly understood, especially those involving mutations downstream of RAS. Here, we assessed cellular and behavioral phenotypes in mice expressing a Raf1L613V gain-of-function mutation associated with the RASopathy, Noonan Syndrome. We report that Raf1L613V/wt mutants do not exhibit a significantly altered number of excitatory or inhibitory neurons in the cortex. However, we observed a significant increase in the number of specific glial subtypes in the forebrain. The density of GFAP+ astrocytes was significantly increased in the adult Raf1L613V/wt cortex and hippocampus relative to controls. OLIG2+ oligodendrocyte progenitor cells were also increased in number in mutant cortices, but we detected no significant change in myelination. Behavioral analyses revealed no significant changes in voluntary locomotor activity, anxiety-like behavior, or sociability. Surprisingly, Raf1L613V/wt mice performed better than controls in select aspects of the water radial-arm maze, Morris water maze, and cued fear conditioning tasks. Overall, these data show that increased astrocyte and oligodendrocyte progenitor cell (OPC) density in the cortex coincides with enhanced cognition in Raf1L613V/wt mutants and further highlight the distinct effects of RASopathy mutations on nervous system development and function. The RASopathies are a large and complex family of syndromes caused by mutations in the RAS/MAPK signaling cascade with no known cure. Individuals with these syndromes often present with heart defects, craniofacial differences, and neurological abnormalities, such as developmental delay, cognitive changes, epilepsy, and an increased risk of autism. However, there is wide variation in the extent of intellectual ability between individuals. It is currently unclear how different RASopathy mutations affect brain development. Here, we describe the cellular and behavioral consequences of a mutation in a gene called Raf1 that is associated with a common RASopathy, Noonan Syndrome. We find that mice harboring a mutation in Raf1 show moderate increases in the number of two subsets of glial cells, which is also observed in a number of other RASopathy brain samples. Surprisingly, we found that Raf1 mutant mice show improved performance in several learning and memory tasks. Our work highlights potential mutation-specific changes in RASopathy brain function and helps set the framework for future personalized therapeutic approaches.
Collapse
Affiliation(s)
- Michael C. Holter
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Lauren. T. Hewitt
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Stephanie V. Koebele
- Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
- Arizona Alzheimer’s Consortium, Phoenix, Arizona, United States of America
| | - Jessica M. Judd
- Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
| | - Lei Xing
- Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
- Arizona Alzheimer’s Consortium, Phoenix, Arizona, United States of America
| | - Cheryl D. Conrad
- Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
| | - Toshiyuki Araki
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, United States of America
| | - Benjamin G. Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, United States of America
| | - William D. Snider
- Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
27
|
Baquedano Lobera I, Izquierdo Álvarez S, Oliván Del Cacho MJ. Rasopathies case report: concurrence of two pathogenic variations de novo in NF1 and KRAS genes in a patient. BMC Pediatr 2019; 19:92. [PMID: 30953504 PMCID: PMC6449997 DOI: 10.1186/s12887-019-1463-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/19/2019] [Indexed: 01/11/2023] Open
Abstract
Background Rasopathies are a group of genetic malformative syndromes including neurofibromatosis 1, Noonan, LEOPARD, Costello, cardio-facio-cutaneous, Legius, and capillary malformation-arteriovenous malformation syndromes. Case presentation We present a female newborn that consulted at the emergency department with refusal to eat and sleepiness. A shortened femur, thickened nucal fold and suspect for agenesis of the corpus callosum were observed in prenatal ultrasound. Her phenotype included hypertelorism, antimongoloid obliquity of the palpebral fissure, prominent forehead, long filtrum, thickened nucal fold, separated nipples, widespread thickened skinfolds and café-au-lait spots. She had a systolic murmur due to pulmonary valve stenosis. The NF1 gene testing found the pathogenic variant p.E2586X (c.7756G > T) in exon 53, not described in any international database or scientific publications yet. Also, a mutation in the Kras gene was detected (p.Val14lle), which is associated with mild Noonan phenotype. Both variations were de novo. Conclusions Not all genes and mutations have already been discovered, so it’s important to document new findings, like our patient’s, to enrich and update the international database and broaden all possible knowledge about rasopathies. This is the first case to be described presenting simultaneously two mutations in Kras and NF1 genes, whose possible synergic effect regarding its pathogenicity is unknown, but could be interesting towards therapeutic alternatives.
Collapse
Affiliation(s)
- Irene Baquedano Lobera
- Pediatrics Department, Miguel Servet Children's Hospital, Isabel la Católica Avenue 1-3, 50009, Zaragoza, Spain.
| | - Silvia Izquierdo Álvarez
- Clinical Genetics and Assisted Reproduction, Clinical Biochemistry Department, Miguel Servet Hospital, Padre Arrupe Street, 50009, Zaragoza, Spain
| | - María Jesús Oliván Del Cacho
- Neonatology Department, Miguel Servet Children's Hospital, Isabel la Católica Avenue 1-3, 50009, Zaragoza, Spain
| |
Collapse
|
28
|
Ye XC, van der Lee R, Wasserman WW. Curation and bioinformatic analysis of strabismus genes supports functional heterogeneity and proposes candidate genes with connections to RASopathies. Gene 2019; 697:213-226. [PMID: 30772522 DOI: 10.1016/j.gene.2019.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/03/2019] [Accepted: 02/01/2019] [Indexed: 12/21/2022]
Abstract
Strabismus refers to the misalignment of the eyes and occurs in 2-4% of individuals. The low-resolution label "strabismus" covers a range of heterogeneous defects, which makes it challenging to unravel this condition. Consequently a coherent understanding of the causes is lacking. Here, we attempt to gain a better understanding of the underlying genetics by combining gene curation, diverse bioinformatic analyses (including gene ontology, pathway mapping, expression and network-based methods) and literature review. Through a phenotype-based curation process, we identify high-confidence and permissive sets of 54 and 233 genes potentially involved in strabismus. These genes can be grouped into 10 modules that together span a heterogeneous set of biological and molecular functions, and can be linked to clinical sub-phenotypes. Multiple lines of evidence associate retina and cerebellum biology with the strabismus genes. We further highlight a potential role of the Ras-MAPK pathway. Independently, sets of 11 genes and 15 loci tied to strabismus with definitive genetic basis have been compiled from the literature. We identify strabismus candidate genes for 5 of the 15 reported loci (CHD7; SLC9A6; COL18A1, COL6A2; FRY, BRCA2, SPG20; PARK2). Finally, we synthesize a Strabismus Candidate Gene Collection, which together with our curated gene sets will serve as a resource for future research. The results of this informatics study support the heterogeneity and complexity of strabismus and point to specific biological pathways and brain regions for future focus.
Collapse
Affiliation(s)
- Xin Cynthia Ye
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Robin van der Lee
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
29
|
Neale C, García AE. Methionine 170 is an Environmentally Sensitive Membrane Anchor in the Disordered HVR of K-Ras4B. J Phys Chem B 2018; 122:10086-10096. [PMID: 30351122 DOI: 10.1021/acs.jpcb.8b07919] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ras protein colocalization at the plasma membrane is implicated in the activation of signaling cascades that promote cell growth, survival, and motility. However, the mechanisms that underpin Ras self-association remain unclear. We use molecular dynamics simulations to show how basic and hydrophobic components of the disordered C-terminal membrane tether of K-Ras4B combine to regulate its membrane interactions. Specifically, anionic lipids attract lysine residues to the membrane surface, thereby splitting the peptide population into two states that exchange on the microsecond time scale. These states differ in the membrane insertion of a methionine residue, which is influenced by local membrane composition. As a result, these states may impose context-dependent biases on the disposition of Ras' signaling domain, with possible implications for the accessibility of its effector binding surfaces. We investigate Ras' ability to nanocluster by fly-casting for patches of anionic lipids and find that while anionic lipids promote the intermolecular association of K-Ras4B membrane tethers, at short range this appears to be a passive process in which anionic lipids electrostatically screen these cationic peptides to mitigate their natural repulsion. Together with the sub-microsecond stability of interpeptide contacts, this result suggests that experimentally observed K-Ras4B nanoclustering is not driven by direct intermolecular contact of its membrane tethers.
Collapse
|
30
|
Zoranovic T, Manent J, Willoughby L, Matos de Simoes R, La Marca JE, Golenkina S, Cuiping X, Gruber S, Angjeli B, Kanitz EE, Cronin SJF, Neely GG, Wernitznig A, Humbert PO, Simpson KJ, Mitsiades CS, Richardson HE, Penninger JM. A genome-wide Drosophila epithelial tumorigenesis screen identifies Tetraspanin 29Fb as an evolutionarily conserved suppressor of Ras-driven cancer. PLoS Genet 2018; 14:e1007688. [PMID: 30325918 PMCID: PMC6203380 DOI: 10.1371/journal.pgen.1007688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 10/26/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
Oncogenic mutations in the small GTPase Ras contribute to ~30% of human cancers. However, Ras mutations alone are insufficient for tumorigenesis, therefore it is paramount to identify cooperating cancer-relevant signaling pathways. We devised an in vivo near genome-wide, functional screen in Drosophila and discovered multiple novel, evolutionarily-conserved pathways controlling Ras-driven epithelial tumorigenesis. Human gene orthologs of the fly hits were significantly downregulated in thousands of primary tumors, revealing novel prognostic markers for human epithelial tumors. Of the top 100 candidate tumor suppressor genes, 80 were validated in secondary Drosophila assays, identifying many known cancer genes and multiple novel candidate genes that cooperate with Ras-driven tumorigenesis. Low expression of the confirmed hits significantly correlated with the KRASG12 mutation status and poor prognosis in pancreatic cancer. Among the novel top 80 candidate cancer genes, we mechanistically characterized the function of the top hit, the Tetraspanin family member Tsp29Fb, revealing that Tsp29Fb regulates EGFR signaling, epithelial architecture and restrains tumor growth and invasion. Our functional Drosophila screen uncovers multiple novel and evolutionarily conserved epithelial cancer genes, and experimentally confirmed Tsp29Fb as a key regulator of EGFR/Ras induced epithelial tumor growth and invasion. Cancer involves the cooperative interaction of many gene mutations. The Ras signaling pathway is upregulated in many human cancers, but upregulated Ras signaling alone is not sufficient to induce malignant tumors. We have undertaken a genome-wide genetic screen using a transgenic RNAi library in the vinegar fly, Drosophila melanogaster, to identify tumor suppressor genes that cooperate with the Ras oncogene (RasV12) in conferring overgrown invasive tumors. We stratified the hits by analyzing the expression of human orthologs of these genes in human epithelial cancers, revealing genes that were strongly downregulated in human cancer. By conducting secondary genetic interaction tests, we validated 80 of the top 100 genes. Pathway analysis of these genes revealed that 55 fell into known pathways involved in human cancer, whereas 25 were unique genes. We then confirmed the tumor suppressor properties of one of these genes, Tsp29Fb, encoding a Tetraspanin membrane protein, and showed that Tsp29Fb functions as a tumor suppressor by inhibiting Ras signaling and by maintaining epithelial cell polarity. Altogether, our study has revealed novel Ras-cooperating tumor suppressors in Drosophila and suggests that these genes may also be involved in human cancer.
Collapse
Affiliation(s)
- Tamara Zoranovic
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
| | - Jan Manent
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Lee Willoughby
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ricardo Matos de Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John E. La Marca
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sofya Golenkina
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Xia Cuiping
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
| | - Susanne Gruber
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
| | - Belinda Angjeli
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
| | - Elisabeth Eva Kanitz
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
| | - Shane J. F. Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
| | - G. Gregory Neely
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
- The Charles Perkins Centre, School of Life & Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Patrick O. Humbert
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, Department of Anatomy & Neuroscience, Department of Biochemistry & Molecular Biology, and Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kaylene J. Simpson
- Sir Peter MacCallum Department of Oncology, Department of Anatomy & Neuroscience, Department of Biochemistry & Molecular Biology, and Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Center for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Constantine S. Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Helena E. Richardson
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, Department of Anatomy & Neuroscience, Department of Biochemistry & Molecular Biology, and Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (HER); (JMP)
| | - Josef M. Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Campus Vienna BioCentre, Vienna, Austria
- * E-mail: (HER); (JMP)
| |
Collapse
|
31
|
Tajan M, Paccoud R, Branka S, Edouard T, Yart A. The RASopathy Family: Consequences of Germline Activation of the RAS/MAPK Pathway. Endocr Rev 2018; 39:676-700. [PMID: 29924299 DOI: 10.1210/er.2017-00232] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Noonan syndrome [NS; Mendelian Inheritance in Men (MIM) #163950] and related syndromes [Noonan syndrome with multiple lentigines (formerly called LEOPARD syndrome; MIM #151100), Noonan-like syndrome with loose anagen hair (MIM #607721), Costello syndrome (MIM #218040), cardio-facio-cutaneous syndrome (MIM #115150), type I neurofibromatosis (MIM #162200), and Legius syndrome (MIM #611431)] are a group of related genetic disorders associated with distinctive facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was clinically described more than 50 years ago, and disease genes have been identified throughout the last 3 decades, providing a molecular basis to better understand their physiopathology and identify targets for therapeutic strategies. Most of these genes encode proteins belonging to or regulating the so-called RAS/MAPK signaling pathway, so these syndromes have been gathered under the name RASopathies. In this review, we provide a clinical overview of RASopathies and an update on their genetics. We then focus on the functional and pathophysiological effects of RASopathy-causing mutations and discuss therapeutic perspectives and future directions.
Collapse
Affiliation(s)
- Mylène Tajan
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Romain Paccoud
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Sophie Branka
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Armelle Yart
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| |
Collapse
|
32
|
Goyal Y, Schüpbach T, Shvartsman SY. A quantitative model of developmental RTK signaling. Dev Biol 2018; 442:80-86. [PMID: 30026122 DOI: 10.1016/j.ydbio.2018.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/22/2018] [Accepted: 07/13/2018] [Indexed: 01/06/2023]
Abstract
Receptor tyrosine kinases (RTKs) control a wide range of developmental processes, from the first stages of embryogenesis to postnatal growth and neurocognitive development in the adult. A significant share of our knowledge about RTKs comes from genetic screens in model organisms, which provided numerous examples demonstrating how specific cell fates and morphologies are abolished when RTK activation is either abrogated or significantly reduced. Aberrant activation of such pathways has also been recognized in many forms of cancer. More recently, studies of human developmental syndromes established that excessive activation of RTKs and their downstream signaling effectors, most notably the Ras signaling pathway, can also lead to structural and functional defects. Given that both insufficient and excessive pathway activation can lead to abnormalities, mechanistic analysis of developmental RTK signaling must address quantitative questions about its regulation and function. Patterning events controlled by the RTK Torso in the early Drosophila embryo are well-suited for this purpose. This mini review summarizes current state of knowledge about Torso-dependent Ras activation and discusses its potential to serve as a quantitative model for studying the general principles of Ras signaling in development and disease.
Collapse
Affiliation(s)
- Yogesh Goyal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
33
|
Dard L, Bellance N, Lacombe D, Rossignol R. RAS signalling in energy metabolism and rare human diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:845-867. [PMID: 29750912 DOI: 10.1016/j.bbabio.2018.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/12/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
The RAS pathway is a highly conserved cascade of protein-protein interactions and phosphorylation that is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Recent findings indicate that the RAS pathway plays a role in the regulation of energy metabolism via the control of mitochondrial form and function but little is known on the participation of this effect in RAS-related rare human genetic diseases. Germline mutations that hyperactivate the RAS pathway have been discovered and linked to human developmental disorders that are known as RASopathies. Individuals with RASopathies, which are estimated to affect approximately 1/1000 human birth, share many overlapping characteristics, including cardiac malformations, short stature, neurocognitive impairment, craniofacial dysmorphy, cutaneous, musculoskeletal, and ocular abnormalities, hypotonia and a predisposition to developing cancer. Since the identification of the first RASopathy, type 1 neurofibromatosis (NF1), which is caused by the inactivation of neurofibromin 1, several other syndromes have been associated with mutations in the core components of the RAS-MAPK pathway. These syndromes include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), which was formerly called LEOPARD syndrome, Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS) and capillary malformation-arteriovenous malformation syndrome (CM-AVM). Here, we review current knowledge about the bioenergetics of the RASopathies and discuss the molecular control of energy homeostasis and mitochondrial physiology by the RAS pathway.
Collapse
Affiliation(s)
- L Dard
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France
| | - N Bellance
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France
| | - D Lacombe
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France; CHU de Bordeaux, Service de Génétique Médicale, F-33076 Bordeaux, France
| | - R Rossignol
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France.
| |
Collapse
|
34
|
Aoidi R, Houde N, Landry-Truchon K, Holter M, Jacquet K, Charron L, Krishnaswami SR, Yu BD, Rauen KA, Bisson N, Newbern J, Charron J. Mek1Y130C mice recapitulate aspects of human cardio-facio-cutaneous syndrome. Dis Model Mech 2018; 11:dmm.031278. [PMID: 29590634 PMCID: PMC5897723 DOI: 10.1242/dmm.031278] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 02/07/2018] [Indexed: 12/28/2022] Open
Abstract
The RAS/MAPK signaling pathway is one of the most investigated pathways, owing to its established role in numerous cellular processes and implication in cancer. Germline mutations in genes encoding members of the RAS/MAPK pathway also cause severe developmental syndromes collectively known as RASopathies. These syndromes share overlapping characteristics, including craniofacial dysmorphology, cardiac malformations, cutaneous abnormalities and developmental delay. Cardio-facio-cutaneous syndrome (CFC) is a rare RASopathy associated with mutations in BRAF, KRAS, MEK1 (MAP2K1) and MEK2 (MAP2K2). MEK1 and MEK2 mutations are found in ∼25% of the CFC patients and the MEK1Y130C substitution is the most common one. However, little is known about the origins and mechanisms responsible for the development of CFC. To our knowledge, no mouse model carrying RASopathy-linked Mek1 or Mek2 gene mutations has been reported. To investigate the molecular and developmental consequences of the Mek1Y130C mutation, we generated a mouse line carrying this mutation. Analysis of mice from a Mek1 allelic series revealed that the Mek1Y130C allele expresses both wild-type and Y130C mutant forms of MEK1. However, despite reduced levels of MEK1 protein and the lower abundance of MEK1 Y130C protein than wild type, Mek1Y130C mutants showed increased ERK (MAPK) protein activation in response to growth factors, supporting a role for MEK1 Y130C in hyperactivation of the RAS/MAPK pathway, leading to CFC. Mek1Y130C mutant mice exhibited pulmonary artery stenosis, cranial dysmorphia and neurological anomalies, including increased numbers of GFAP+ astrocytes and Olig2+ oligodendrocytes in regions of the cerebral cortex. These data indicate that the Mek1Y130C mutation recapitulates major aspects of CFC, providing a new animal model to investigate the physiopathology of this RASopathy. This article has an associated First Person interview with the first author of the paper. Summary: A mouse model for cardio-facio-cutaneous syndrome caused by MEK1 Y130C mutant protein reveals the role of hyperactivation of the RAS/MAPK pathway in the development of the syndrome.
Collapse
Affiliation(s)
- Rifdat Aoidi
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Nicolas Houde
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Kim Landry-Truchon
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Michael Holter
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Kevin Jacquet
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Louis Charron
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada
| | - Suguna Rani Krishnaswami
- Institute for Genomic Medicine, Division of Dermatology, University of California San Diego, La Jolla, CA 92093-0761, USA
| | - Benjamin D Yu
- Institute for Genomic Medicine, Division of Dermatology, University of California San Diego, La Jolla, CA 92093-0761, USA.,Interpreta Inc., San Diego, CA 92121, USA
| | - Katherine A Rauen
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Nicolas Bisson
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Jason Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jean Charron
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada .,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
35
|
Impaired Osteogenesis of Disease-Specific Induced Pluripotent Stem Cells Derived from a CFC Syndrome Patient. Int J Mol Sci 2017; 18:ijms18122591. [PMID: 29194391 PMCID: PMC5751194 DOI: 10.3390/ijms18122591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Cardiofaciocutaneous (CFC) syndrome is a rare genetic disorder caused by mutations in the extracellular signal-regulated kinase (ERK) signaling. However, little is known about how aberrant ERK signaling is associated with the defective bone development manifested in most CFC syndrome patients. In this study, induced pluripotent stem cells (iPSCs) were generated from dermal fibroblasts of a CFC syndrome patient having rapidly accelerated fibrosarcoma kinase B (BRAF) gain-of-function mutation. CFC-iPSCs were differentiated into mesenchymal stem cells (CFC-MSCs) and further induced to osteoblasts in vitro. The osteogenic defects of CFC-MSCs were revealed by alkaline phosphatase activity assay, mineralization assay, quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting. Osteogenesis of CFC-MSCs was attenuated compared to wild-type (WT)-MSCs. In addition to activated ERK signaling, increased p-SMAD2 and decreased p-SMAD1 were observed in CFC-MSCs during osteogenesis. The defective osteogenesis of CFC-MSCs was rescued by inhibition of ERK signaling and SMAD2 signaling or activation of SMAD1 signaling. Importantly, activation of ERK signaling and SMAD2 signaling or inhibition of SMAD1 signaling recapitulated the impaired osteogenesis in WT-MSCs. Our findings indicate that SMAD2 signaling and SMAD1 signaling as well as ERK signaling are responsible for defective early bone development in CFC syndrome, providing a novel insight on the pathological mechanism and therapeutic targets.
Collapse
|
36
|
Suppression of RAC1-driven malignant melanoma by group A PAK inhibitors. Oncogene 2017; 37:944-952. [PMID: 29059171 PMCID: PMC5814328 DOI: 10.1038/onc.2017.400] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/28/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022]
Abstract
Activating mutations in the RAC1 gene have recently been discovered as driver events in malignant melanoma. Expression of this gene is associated with melanocyte proliferation, and melanoma cells bearing this mutation are insensitive to BRAF inhibitors such as vemurafenib and dabrafenib, and also may evade immune surveillance due to enhanced expression of PD-L1. Activating mutations in RAC1 are of special interest, as small molecule inhibitors for the RAC effector p21-activated kinase (PAK) are in late-stage clinical development and might impede oncogenic signaling from mutant RAC1. In this work, we explore the effects of PAK inhibition on RAC1P29S signaling in zebrafish embryonic development, in the proliferation, survival, and motility of RAC1P29S-mutant human melanoma cells, and on tumor formation and progression from such cells in mice. We report that RAC1P29S evokes a Rasopathy-like phenotype on zebrafish development that can be blocked by inhibitors of PAK or MEK. We also found and that RAC1 mutant human melanoma cells are resistant to clinical inhibitors of BRAF but are uniquely sensitive to PAK inhibitors. These data suggest that suppressing the PAK pathway might be of therapeutic benefit in this type of melanoma.
Collapse
|
37
|
Keenan SE, Shvartsman SY. Mechanisms and causality in molecular diseases. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2017; 39:35. [PMID: 29038918 PMCID: PMC6445273 DOI: 10.1007/s40656-017-0162-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
How is a disease contracted, and how does it progress through the body? Answers to these questions are fundamental to understanding both basic biology and medicine. Advances in the biomedical sciences continue to provide more tools to address these fundamental questions and to uncover questions that have not been thought of before. Despite these major advances, we are still facing conceptual and technical challenges when learning about the etiology of disease, especially for genetic diseases. In this review, we illustrate this point by discussing the causal links between molecular mechanisms and systems-level phenotypes in molecular diseases. We begin with an examination of sickle cell anemia, and how mechanisms of the disease have been comprehended over the last century. While sickle cell anemia involves a mutation in a single protein in a single cell type, other diseases involve mutations in networks with many protein interactions and in diverse cell types. We introduce the challenges that result from these differences and illustrate the current obstacles by discussing the RASopathies, a recently discovered class of developmental syndromes that result from mutations in signaling networks. Methods to study mutant genotypes that lead to mutant phenotypes are discussed, particularly the use of model organisms and mutant proteins to study protein interactions that may be important for development of disease. These studies will point toward the future of diagnosing and treating genetic disease.
Collapse
Affiliation(s)
- Shannon E Keenan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
38
|
Jindal GA, Goyal Y, Humphreys JM, Yeung E, Tian K, Patterson VL, He H, Burdine RD, Goldsmith EJ, Shvartsman SY. How activating mutations affect MEK1 regulation and function. J Biol Chem 2017; 292:18814-18820. [PMID: 29018093 DOI: 10.1074/jbc.c117.806067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/19/2017] [Indexed: 01/18/2023] Open
Abstract
The MEK1 kinase directly phosphorylates ERK2, after the activation loop of MEK1 is itself phosphorylated by Raf. Studies over the past decade have revealed a large number of disease-related mutations in the MEK1 gene that lead to tumorigenesis and abnormal development. Several of these mutations result in MEK1 constitutive activity, but how they affect MEK1 regulation and function remains largely unknown. Here, we address these questions focusing on two pathogenic variants of the Phe-53 residue, which maps to the well-characterized negative regulatory region of MEK1. We found that these variants are phosphorylated by Raf faster than the wild-type enzyme, and this phosphorylation further increases their enzymatic activity. However, the maximal activities of fully phosphorylated wild-type and mutant enzymes are indistinguishable. On the basis of available structural information, we propose that the activating substitutions destabilize the inactive conformation of MEK1, resulting in its constitutive activity and making it more prone to Raf-mediated phosphorylation. Experiments in zebrafish revealed that the effects of activating variants on embryonic development reflect the joint control of the negative regulatory region and activating phosphorylation. Our results underscore the complexity of the effects of activating mutations on signaling systems, even at the level of a single protein.
Collapse
Affiliation(s)
- Granton A Jindal
- From the Departments of Chemical and Biological Engineering and.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 and.,Molecular Biology
| | - Yogesh Goyal
- From the Departments of Chemical and Biological Engineering and.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 and.,Molecular Biology
| | - John M Humphreys
- the Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | - Eyan Yeung
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 and.,Molecular Biology
| | - Kaijia Tian
- From the Departments of Chemical and Biological Engineering and.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 and
| | - Victoria L Patterson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 and.,Molecular Biology
| | - Haixia He
- the Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | | | - Elizabeth J Goldsmith
- the Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | - Stanislav Y Shvartsman
- From the Departments of Chemical and Biological Engineering and .,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 and.,Molecular Biology
| |
Collapse
|
39
|
Nagel AC, Auer JS, Schulz A, Pfannstiel J, Yuan Z, Collins CE, Kovall RA, Preiss A. Phosphorylation of Suppressor of Hairless impedes its DNA-binding activity. Sci Rep 2017; 7:11820. [PMID: 28928428 PMCID: PMC5605572 DOI: 10.1038/s41598-017-11952-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signalling activity governs cellular differentiation in higher metazoa, where Notch signals are transduced by the transcription factor CSL, called Suppressor of Hairless [Su(H)] in Drosophila. Su(H) operates as molecular switch on Notch target genes: within activator complexes, including intracellular Notch, or within repressor complexes, including the antagonist Hairless. Mass spectrometry identified phosphorylation on Serine 269 in Su(H), potentially serving as a point of cross-regulation by other signalling pathways. To address the biological significance, we generated phospho-deficient [Su(H)S269A] and phospho-mimetic [Su(H)S269D] variants: the latter displayed reduced transcriptional activity despite unaltered protein interactions with co-activators and -repressors. Based on the Su(H) structure, Ser269 phosphorylation may interfere with DNA-binding, which we confirmed by electro-mobility shift assay and isothermal titration calorimetry. Overexpression of Su(H)S269D during fly development demonstrated reduced transcriptional regulatory activity, similar to the previously reported DNA-binding defective mutant Su(H)R266H. As both are able to bind Hairless and Notch proteins, Su(H)S269D and Su(H)R266H provoked dominant negative effects upon overexpression. Our data imply that Ser269 phosphorylation impacts Notch signalling activity by inhibiting DNA-binding of Su(H), potentially affecting both activation and repression. Ser269 is highly conserved in vertebrate CSL homologues, opening the possibility of a general and novel mechanism of modulating Notch signalling activity.
Collapse
Affiliation(s)
- Anja C Nagel
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany.
| | - Jasmin S Auer
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Adriana Schulz
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit University of Hohenheim, 70599, Stuttgart, Germany
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Courtney E Collins
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Anette Preiss
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| |
Collapse
|
40
|
Quintana AM, Hernandez JA, Gonzalez CG. Functional analysis of the zebrafish ortholog of HMGCS1 reveals independent functions for cholesterol and isoprenoids in craniofacial development. PLoS One 2017; 12:e0180856. [PMID: 28686747 PMCID: PMC5501617 DOI: 10.1371/journal.pone.0180856] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
There are 8 different human syndromes caused by mutations in the cholesterol synthesis pathway. A subset of these disorders such as Smith-Lemli-Opitz disorder, are associated with facial dysmorphia. However, the molecular and cellular mechanisms underlying such facial deficits are not fully understood, primarily because of the diverse functions associated with the cholesterol synthesis pathway. Recent evidence has demonstrated that mutation of the zebrafish ortholog of HMGCR results in orofacial clefts. Here we sought to expand upon these data, by deciphering the cholesterol dependent functions of the cholesterol synthesis pathway from the cholesterol independent functions. Moreover, we utilized loss of function analysis and pharmacological inhibition to determine the extent of sonic hedgehog (Shh) signaling in animals with aberrant cholesterol and/or isoprenoid synthesis. Our analysis confirmed that mutation of hmgcs1, which encodes the first enzyme in the cholesterol synthesis pathway, results in craniofacial abnormalities via defects in cranial neural crest cell differentiation. Furthermore targeted pharmacological inhibition of the cholesterol synthesis pathway revealed a novel function for isoprenoid synthesis during vertebrate craniofacial development. Mutation of hmgcs1 had no effect on Shh signaling at 2 and 3 days post fertilization (dpf), but did result in a decrease in the expression of gli1, a known Shh target gene, at 4 dpf, after morphological deficits in craniofacial development and chondrocyte differentiation were observed in hmgcs1 mutants. These data raise the possibility that deficiencies in cholesterol modulate chondrocyte differentiation by a combination of Shh independent and Shh dependent mechanisms. Moreover, our results describe a novel function for isoprenoids in facial development and collectively suggest that cholesterol regulates craniofacial development through versatile mechanisms.
Collapse
Affiliation(s)
- Anita M. Quintana
- Department of Biological Sciences, University of Texas El Paso, El Paso, TX, United States of America
- Border Biomedical Research Center, NeuroModulation Cluster, University of Texas El Paso, El Paso, TX, United States of America
- * E-mail:
| | - Jose A. Hernandez
- Department of Biological Sciences, University of Texas El Paso, El Paso, TX, United States of America
| | - Cesar G. Gonzalez
- Department of Biological Sciences, University of Texas El Paso, El Paso, TX, United States of America
| |
Collapse
|
41
|
Levin M, Pezzulo G, Finkelstein JM. Endogenous Bioelectric Signaling Networks: Exploiting Voltage Gradients for Control of Growth and Form. Annu Rev Biomed Eng 2017; 19:353-387. [PMID: 28633567 PMCID: PMC10478168 DOI: 10.1146/annurev-bioeng-071114-040647] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Living systems exhibit remarkable abilities to self-assemble, regenerate, and remodel complex shapes. How cellular networks construct and repair specific anatomical outcomes is an open question at the heart of the next-generation science of bioengineering. Developmental bioelectricity is an exciting emerging discipline that exploits endogenous bioelectric signaling among many cell types to regulate pattern formation. We provide a brief overview of this field, review recent data in which bioelectricity is used to control patterning in a range of model systems, and describe the molecular tools being used to probe the role of bioelectrics in the dynamic control of complex anatomy. We suggest that quantitative strategies recently developed to infer semantic content and information processing from ionic activity in the brain might provide important clues to cracking the bioelectric code. Gaining control of the mechanisms by which large-scale shape is regulated in vivo will drive transformative advances in bioengineering, regenerative medicine, and synthetic morphology, and could be used to therapeutically address birth defects, traumatic injury, and cancer.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Tufts University, Medford, Massachusetts 02155-4243;
- Allen Discovery Center, Tufts University, Medford, Massachusetts 02155;
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome 00185, Italy;
| | | |
Collapse
|
42
|
Goyal Y, Levario TJ, Mattingly HH, Holmes S, Shvartsman SY, Lu H. Parallel imaging of Drosophila embryos for quantitative analysis of genetic perturbations of the Ras pathway. Dis Model Mech 2017; 10:923-929. [PMID: 28495673 PMCID: PMC5536913 DOI: 10.1242/dmm.030163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023] Open
Abstract
The Ras pathway patterns the poles of the Drosophila embryo by downregulating the levels and activity of a DNA-binding transcriptional repressor Capicua (Cic). We demonstrate that the spatiotemporal pattern of Cic during this signaling event can be harnessed for functional studies of mutations in the Ras pathway in human diseases. Our approach relies on a new microfluidic device that enables parallel imaging of Cic dynamics in dozens of live embryos. We found that although the pattern of Cic in early embryos is complex, it can be accurately approximated by a product of one spatial profile and one time-dependent amplitude. Analysis of these functions of space and time alone reveals the differential effects of mutations within the Ras pathway. Given the highly conserved nature of Ras-dependent control of Cic, our approach provides new opportunities for functional analysis of multiple sequence variants from developmental abnormalities and cancers.
Collapse
Affiliation(s)
- Yogesh Goyal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Thomas J Levario
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Henry H Mattingly
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA .,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
43
|
Goyal Y, Jindal GA, Pelliccia JL, Yamaya K, Yeung E, Futran AS, Burdine RD, Schüpbach T, Shvartsman SY. Divergent effects of intrinsically active MEK variants on developmental Ras signaling. Nat Genet 2017; 49:465-469. [PMID: 28166211 PMCID: PMC5621734 DOI: 10.1038/ng.3780] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2022]
Abstract
Germline mutations in Ras pathway components are associated with a large class of human developmental abnormalities, known as RASopathies, that are characterized by a range of structural and functional phenotypes, including cardiac defects and neurocognitive delays. Although it is generally believed that RASopathies are caused by altered levels of pathway activation, the signaling changes in developing tissues remain largely unknown. We used assays with spatiotemporal resolution in Drosophila melanogaster (fruit fly) and Danio rerio (zebrafish) to quantify signaling changes caused by mutations in MAP2K1 (encoding MEK), a core component of the Ras pathway that is mutated in both RASopathies and cancers in humans. Surprisingly, we discovered that intrinsically active MEK variants can both increase and reduce the levels of pathway activation in vivo. The sign of the effect depends on cellular context, implying that some of the emerging phenotypes in RASopathies may be caused by increased, as well as attenuated, levels of Ras signaling.
Collapse
Affiliation(s)
- Yogesh Goyal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Granton A. Jindal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - José L. Pelliccia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Kei Yamaya
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Eyan Yeung
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Alan S. Futran
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Rebecca D. Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Stanislav Y. Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
44
|
In vivo severity ranking of Ras pathway mutations associated with developmental disorders. Proc Natl Acad Sci U S A 2017; 114:510-515. [PMID: 28049852 DOI: 10.1073/pnas.1615651114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Germ-line mutations in components of the Ras/MAPK pathway result in developmental disorders called RASopathies, affecting about 1/1,000 human births. Rapid advances in genome sequencing make it possible to identify multiple disease-related mutations, but there is currently no systematic framework for translating this information into patient-specific predictions of disease progression. As a first step toward addressing this issue, we developed a quantitative, inexpensive, and rapid framework that relies on the early zebrafish embryo to assess mutational effects on a common scale. Using this assay, we assessed 16 mutations reported in MEK1, a MAPK kinase, and provide a robust ranking of these mutations. We find that mutations found in cancer are more severe than those found in both RASopathies and cancer, which, in turn, are generally more severe than those found only in RASopathies. Moreover, this rank is conserved in other zebrafish embryonic assays and Drosophila-specific embryonic and adult assays, suggesting that our ranking reflects the intrinsic property of the mutant molecule. Furthermore, this rank is predictive of the drug dose needed to correct the defects. This assay can be readily used to test the strengths of existing and newly found mutations in MEK1 and other pathway components, providing the first step in the development of rational guidelines for patient-specific diagnostics and treatment of RASopathies.
Collapse
|
45
|
Grant MG, Patterson VL, Grimes DT, Burdine RD. Modeling Syndromic Congenital Heart Defects in Zebrafish. Curr Top Dev Biol 2017; 124:1-40. [DOI: 10.1016/bs.ctdb.2016.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Zhong J. RAS and downstream RAF-MEK and PI3K-AKT signaling in neuronal development, function and dysfunction. Biol Chem 2016; 397:215-22. [PMID: 26760308 DOI: 10.1515/hsz-2015-0270] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
Abstract
In postmitotic neurons, the activation of RAS family small GTPases regulates survival, growth and differentiation. Dysregulation of RAS or its major effector pathway, the cascade of RAF-, mitogen-activated and extracellular-signal regulated kinase kinases (MEK), and extracellular-signal regulated kinases (ERK) causes the RASopathies, a group of neurodevelopmental disorders whose pathogenic mechanisms are the subject of intense research. I here summarize the functions of RAS-RAF-MEK-ERK signaling in neurons in vivo, and discuss perspectives for harnessing this pathway to enable novel treatments for nervous system injury, the RASopathies, and possibly other neurological conditions.
Collapse
|
47
|
Khrenova MG, Grigorenko BL, Nemukhin AV. Theoretical vibrational spectroscopy of intermediates and the reaction mechanism of the guanosine triphosphate hydrolysis by the protein complex Ras-GAP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 166:68-72. [PMID: 27214270 DOI: 10.1016/j.saa.2016.04.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 04/17/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
The structures and vibrational spectra of the reacting species upon guanosine triphosphate (GTP) hydrolysis to guanosine diphosphate and inorganic phosphate (Pi) trapped inside the protein complex Ras-GAP were analyzed following the results of QM/MM simulations. The frequencies of the phosphate vibrations referring to the reactants and to Pi were compared to those observed in the experimental FTIR studies. A good correlation between the theoretical and experimental vibrational data provides a strong support to the reaction mechanism of GTP hydrolysis by the Ras-GAP enzyme system revealed by the recent QM/MM modeling. Evolution of the vibrational bands associated with the inorganic phosphate Pi during the elementary stages of GTP hydrolysis is predicted.
Collapse
Affiliation(s)
- Maria G Khrenova
- Chemistry Department, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
| | - Bella L Grigorenko
- Chemistry Department, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia; N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia
| | - Alexander V Nemukhin
- Chemistry Department, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia; N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia.
| |
Collapse
|
48
|
Rauch N, Rukhlenko OS, Kolch W, Kholodenko BN. MAPK kinase signalling dynamics regulate cell fate decisions and drug resistance. Curr Opin Struct Biol 2016; 41:151-158. [PMID: 27521656 DOI: 10.1016/j.sbi.2016.07.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/29/2016] [Indexed: 01/21/2023]
Abstract
The RAS/RAF/MEK/MAPK kinase pathway has been extensively studied for more than 25 years, yet we continue to be puzzled by its intricate dynamic control and plasticity. Different spatiotemporal MAPK dynamics bring about distinct cell fate decisions in normal vs cancer cells and developing organisms. Recent modelling and experimental studies provided novel insights in the versatile MAPK dynamics concerted by a plethora of feedforward/feedback regulations and crosstalk on multiple timescales. Multiple cancer types and various developmental disorders arise from persistent alterations of the MAPK dynamics caused by RAS/RAF/MEK mutations. While a key role of the MAPK pathway in multiple diseases made the development of novel RAF/MEK inhibitors a hot topic of drug development, these drugs have unexpected side-effects and resistance inevitably occurs. We review how RAF dimerization conveys drug resistance and recent breakthroughs to overcome this resistance.
Collapse
Affiliation(s)
- Nora Rauch
- Systems Biology Ireland, University College Dublin, Ireland
| | | | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
49
|
Neben CL, Roberts RR, Dipple KM, Merrill AE, Klein OD. Modeling craniofacial and skeletal congenital birth defects to advance therapies. Hum Mol Genet 2016; 25:R86-R93. [PMID: 27346519 DOI: 10.1093/hmg/ddw171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022] Open
Abstract
Craniofacial development is an intricate process of patterning, morphogenesis, and growth that involves many tissues within the developing embryo. Genetic misregulation of these processes leads to craniofacial malformations, which comprise over one-third of all congenital birth defects. Significant advances have been made in the clinical management of craniofacial disorders, but currently very few treatments specifically target the underlying molecular causes. Here, we review recent studies in which modeling of craniofacial disorders in primary patient cells, patient-derived induced pluripotent stem cells (iPSCs), and mice have enhanced our understanding of the etiology and pathophysiology of these disorders while also advancing therapeutic avenues for their prevention.
Collapse
Affiliation(s)
- Cynthia L Neben
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan R Roberts
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Katrina M Dipple
- Departments of Pediatrics and Human Genetics, David Geffen School of Medicine and InterDepartmental Program Biomedical Engineering, Henry Samulei School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
50
|
Rubinstein BY, Mattingly HH, Berezhkovskii AM, Shvartsman SY. Long-term dynamics of multisite phosphorylation. Mol Biol Cell 2016; 27:2331-40. [PMID: 27226482 PMCID: PMC4945148 DOI: 10.1091/mbc.e16-03-0137] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/16/2016] [Indexed: 01/14/2023] Open
Abstract
A systematic framework for exploring the long-term dynamics of a reaction network is applied to a minimal model of ERK regulation that distinguishes both monophosphorylated forms and allows for nonzero enzyme processivity. Bistability and oscillations can be observed at high levels of processivity. Multisite phosphorylation cycles are ubiquitous in cell regulation systems and are studied at multiple levels of complexity, from molecules to organisms, with the ultimate goal of establishing predictive understanding of the effects of genetic and pharmacological perturbations of protein phosphorylation in vivo. Achieving this goal is essentially impossible without mathematical models, which provide a systematic framework for exploring dynamic interactions of multiple network components. Most of the models studied to date do not discriminate between the distinct partially phosphorylated forms and focus on two limiting reaction regimes, distributive and processive, which differ in the number of enzyme–substrate binding events needed for complete phosphorylation or dephosphorylation. Here we use a minimal model of extracellular signal-related kinase regulation to explore the dynamics of a reaction network that includes all essential phosphorylation forms and arbitrary levels of reaction processivity. In addition to bistability, which has been studied extensively in distributive mechanisms, this network can generate periodic oscillations. Both bistability and oscillations can be realized at high levels of reaction processivity. Our work provides a general framework for systematic analysis of dynamics in multisite phosphorylation systems.
Collapse
Affiliation(s)
| | - Henry H Mattingly
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Alexander M Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| |
Collapse
|