1
|
Rivera-González KS, Reynolds PM, Lipinski RJ. Examination of piperonyl butoxide developmental toxicity as a Sonic hedgehog pathway inhibitor targeting limb and palate morphogenesis. Reprod Toxicol 2024; 130:108716. [PMID: 39255949 DOI: 10.1016/j.reprotox.2024.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Piperonyl butoxide (PBO) is a pesticide synergist with widespread use and human exposure that was discovered to inhibit Sonic hedgehog (Shh) signaling, a pathway required for numerous developmental processes. Previous examinations of PBO's potential for developmental toxicity have generated seemingly conflicting results. We investigated the impact of acute PBO exposure targeting Shh pathway activity during palate and limb morphogenesis. Timed-pregnant C57BL/6 J mice were exposed to a single PBO dose (67-1800 mg/kg) at gestational day (GD) 9.75, and litters were collected at GD10.25 and GD10.75 to examine Shh pathway activity or GD17 for phenotypic assessment. PBO exposure induced dose-dependent limb malformations and cleft palate in the highest dose group. Following PBO exposure, reduced expression of the Shh pathway activity markers Gli1 and Ptch1 was observed in the embryonic limb buds and craniofacial processes. These findings provide additional evidence that prenatal PBO exposure targeting Shh pathway activity can result in malformations in mice that parallel common etiologically complex human birth defects.
Collapse
Affiliation(s)
- Kenneth S Rivera-González
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Porsha M Reynolds
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
2
|
Islam KUS, Blaess S. The impact of the mesoprefrontal dopaminergic system on the maturation of interneurons in the murine prefrontal cortex. Front Neurosci 2024; 18:1403402. [PMID: 39035778 PMCID: PMC11257905 DOI: 10.3389/fnins.2024.1403402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
The prefrontal cortex (PFC) undergoes a protracted maturation process. This is true both for local interneurons and for innervation from midbrain dopaminergic (mDA) neurons. In the striatum, dopaminergic (DA) neurotransmission is required for the maturation of medium spiny neurons during a critical developmental period. To investigate whether DA innervation influences the maturation of interneurons in the PFC, we used a conditional knockout (cKO) mouse model in which innervation from mDA neurons to the mPFC (mesoprefrontal innnervation) is not established during development. In this mouse model, the maturation of parvalbumin (PV) and calbindin (CB) interneuron populations in the PFC is dysregulated during a critical period in adolescence with changes persisting into adulthood. PV interneurons are particularly vulnerable to lack of mesoprefrontal input, showing an inability to maintain adequate PV expression with a concomitant decrease in Gad1 expression levels. Interestingly, lack of mesoprefrontal innervation does not appear to induce compensatory changes such as upregulation of DA receptor expression in PFC neurons or increased innervation density of other neuromodulatory (serotonergic and noradrenergic) innervation. In conclusion, our study shows that adolescence is a sensitive period during which mesoprefrontal input plays a critical role in promoting the maturation of specific interneuron subgroups. The results of this study will help to understand how a dysregulated mesoprefrontal DA system contributes to the pathophysiology of neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
McLaughlin MT, Sun MR, Beames TG, Steward AC, Theisen JWM, Chung HM, Everson JL, Moskowitz IP, Sheets MD, Lipinski RJ. Frem1 activity is regulated by Sonic hedgehog signaling in the cranial neural crest mesenchyme during midfacial morphogenesis. Dev Dyn 2023; 252:483-494. [PMID: 36495293 PMCID: PMC10066825 DOI: 10.1002/dvdy.555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/01/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Frem1 has been linked to human face shape variation, dysmorphology, and malformation, but little is known about its regulation and biological role in facial development. RESULTS During midfacial morphogenesis in mice, we observed Frem1 expression in the embryonic growth centers that form the median upper lip, nose, and palate. Expansive spatial gradients of Frem1 expression in the cranial neural crest cell (cNCC) mesenchyme of these tissues suggested transcriptional regulation by a secreted morphogen. Accordingly, Frem1 expression paralleled that of the conserved Sonic Hedgehog (Shh) target gene Gli1 in the cNCC mesenchyme. Suggesting direct transcriptional regulation by Shh signaling, we found that Frem1 expression is induced by SHH ligand stimulation or downstream pathway activation in cNCCs and observed GLI transcription factor binding at the Frem1 transcriptional start site during midfacial morphogenesis. Finally, we found that FREM1 is sufficient to induce cNCC proliferation in a concentration-dependent manner and that Shh pathway antagonism reduces Frem1 expression during pathogenesis of midfacial hypoplasia. CONCLUSIONS By demonstrating that the Shh signaling pathway regulates Frem1 expression in cNCCs, these findings provide novel insight into the mechanisms underlying variation in midfacial morphogenesis.
Collapse
Affiliation(s)
- Matthew T. McLaughlin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Miranda R. Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Tyler G. Beames
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Austin C. Steward
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Joshua W. M. Theisen
- Department of Pediatrics, Pathology, Human Genetics and Genetic Medicine, The University of Chicago, Chicago, IL, United States
| | - Hannah M. Chung
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Joshua L. Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Ivan P. Moskowitz
- Department of Pediatrics, Pathology, Human Genetics and Genetic Medicine, The University of Chicago, Chicago, IL, United States
| | - Michael D. Sheets
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
4
|
Everson JL, Tseng YC, Eberhart JK. High-throughput detection of craniofacial defects in fluorescent zebrafish. Birth Defects Res 2023; 115:371-389. [PMID: 36369674 PMCID: PMC9898129 DOI: 10.1002/bdr2.2127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/14/2022]
Abstract
Losses and malformations of cranial neural crest cell (cNCC) derivatives are a hallmark of several common brain and face malformations. Nevertheless, the etiology of these cNCC defects remains unknown for many cases, suggesting a complex basis involving interactions between genetic and/or environmental factors. However, the sheer number of possible factors (thousands of genes and hundreds of thousands of toxicants) has hindered identification of specific interactions. Here, we develop a high-throughput analysis that will enable faster identification of multifactorial interactions in the genesis of craniofacial defects. Zebrafish embryos expressing a fluorescent marker of cNCCs (fli1:EGFP) were exposed to a pathway inhibitor standard or environmental toxicant, and resulting changes in fluorescence were measured in high-throughput using a fluorescent microplate reader to approximate cNCC losses. Embryos exposed to the environmental Hedgehog pathway inhibitor piperonyl butoxide (PBO), a Hedgehog pathway inhibitor standard, or alcohol (ethanol) exhibited reduced fli1:EGFP fluorescence at one day post fertilization, which corresponded with craniofacial defects at five days post fertilization. Combining PBO and alcohol in a co-exposure paradigm synergistically reduced fluorescence, demonstrating a multifactorial interaction. Using pathway reporter transgenics, we show that the plate reader assay is sensitive at detecting alterations in Hedgehog signaling, a critical regulator of craniofacial development. We go on to demonstrate that this technique readily detects defects in other important cell types, namely neurons. Together, these findings demonstrate this novel in vivo platform can predict developmental abnormalities and multifactorial interactions in high-throughput.
Collapse
Affiliation(s)
- Joshua L. Everson
- Department of Molecular Biosciences, School of Natural Sciences, University of Texas at Austin, Austin, Texas, USA,Waggoner Center for Alcohol and Addiction Research, School of Pharmacy, University of Texas at Austin, Austin, Texas, USA
| | - Yung-Chia Tseng
- Department of Molecular Biosciences, School of Natural Sciences, University of Texas at Austin, Austin, Texas, USA
| | - Johann K. Eberhart
- Department of Molecular Biosciences, School of Natural Sciences, University of Texas at Austin, Austin, Texas, USA,Waggoner Center for Alcohol and Addiction Research, School of Pharmacy, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
5
|
Li X, Gordon PJ, Gaynes JA, Fuller AW, Ringuette R, Santiago CP, Wallace V, Blackshaw S, Li P, Levine EM. Lhx2 is a progenitor-intrinsic modulator of Sonic Hedgehog signaling during early retinal neurogenesis. eLife 2022; 11:e78342. [PMID: 36459481 PMCID: PMC9718532 DOI: 10.7554/elife.78342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
An important question in organogenesis is how tissue-specific transcription factors interact with signaling pathways. In some cases, transcription factors define the context for how signaling pathways elicit tissue- or cell-specific responses, and in others, they influence signaling through transcriptional regulation of signaling components or accessory factors. We previously showed that during optic vesicle patterning, the Lim-homeodomain transcription factor Lhx2 has a contextual role by linking the Sonic Hedgehog (Shh) pathway to downstream targets without regulating the pathway itself. Here, we show that during early retinal neurogenesis in mice, Lhx2 is a multilevel regulator of Shh signaling. Specifically, Lhx2 acts cell autonomously to control the expression of pathway genes required for efficient activation and maintenance of signaling in retinal progenitor cells. The Shh co-receptors Cdon and Gas1 are candidate direct targets of Lhx2 that mediate pathway activation, whereas Lhx2 directly or indirectly promotes the expression of other pathway components important for activation and sustained signaling. We also provide genetic evidence suggesting that Lhx2 has a contextual role by linking the Shh pathway to downstream targets. Through these interactions, Lhx2 establishes the competence for Shh signaling in retinal progenitors and the context for the pathway to promote early retinal neurogenesis. The temporally distinct interactions between Lhx2 and the Shh pathway in retinal development illustrate how transcription factors and signaling pathways adapt to meet stage-dependent requirements of tissue formation.
Collapse
Affiliation(s)
- Xiaodong Li
- Vanderbilt Eye Institute, Vanderbilt University Medical CenterNashvilleUnited States
| | - Patrick J Gordon
- John A. Moran Eye Center, University of UtahSalt Lake CityUnited States
| | - John A Gaynes
- John A. Moran Eye Center, University of UtahSalt Lake CityUnited States
| | - Alexandra W Fuller
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - Randy Ringuette
- Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Clayton P Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Valerie Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health NetworkTorontoCanada
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Pulin Li
- Whitehead Institute of Biomedical Research, Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Edward M Levine
- Vanderbilt Eye Institute, Vanderbilt University Medical CenterNashvilleUnited States
- John A. Moran Eye Center, University of UtahSalt Lake CityUnited States
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
6
|
Nishimura Y, Kurosawa K. Analysis of Gene-Environment Interactions Related to Developmental Disorders. Front Pharmacol 2022; 13:863664. [PMID: 35370658 PMCID: PMC8969575 DOI: 10.3389/fphar.2022.863664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Various genetic and environmental factors are associated with developmental disorders (DDs). It has been suggested that interaction between genetic and environmental factors (G × E) is involved in the etiology of DDs. There are two major approaches to analyze the interaction: genome-wide and candidate gene-based approaches. In this mini-review, we demonstrate how these approaches can be applied to reveal the G × E related to DDs focusing on zebrafish and mouse models. We also discuss novel approaches to analyze the G × E associated with DDs.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Japan
- Department of Clinical Dysmorphology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
7
|
Barratt KS, Drover KA, Thomas ZM, Arkell RM. Patterning of the antero-ventral mammalian brain: Lessons from holoprosencephaly comparative biology in man and mouse. WIREs Mech Dis 2022; 14:e1552. [PMID: 35137563 DOI: 10.1002/wsbm.1552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Adult form and function are dependent upon the activity of specialized signaling centers that act early in development at the embryonic midline. These centers instruct the surrounding cells to adopt a positional fate and to form the patterned structures of the phylotypic embryo. Abnormalities in these processes have devastating consequences for the individual, as exemplified by holoprosencephaly in which anterior midline development fails, leading to structural defects of the brain and/or face. In the 25 years since the first association between human holoprosencephaly and the sonic hedgehog gene, a combination of human and animal genetic studies have enhanced our understanding of the genetic and embryonic causation of this congenital defect. Comparative biology has extended the holoprosencephaly network via the inclusion of gene mutations from multiple signaling pathways known to be required for anterior midline formation. It has also clarified aspects of holoprosencephaly causation, showing that it arises when a deleterious variant is present within a permissive genome, and that environmental factors, as well as embryonic stochasticity, influence the phenotypic outcome of the variant. More than two decades of research can now be distilled into a framework of embryonic and genetic causation. This framework means we are poised to move beyond our current understanding of variants in signaling pathway molecules. The challenges now at the forefront of holoprosencephaly research include deciphering how the mutation of genes involved in basic cell processes can also cause holoprosencephaly, determining the important constituents of the holoprosencephaly permissive genome, and identifying environmental compounds that promote holoprosencephaly. This article is categorized under: Congenital Diseases > Stem Cells and Development Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology Congenital Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Kristen S Barratt
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kyle A Drover
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zoe M Thomas
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ruth M Arkell
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
8
|
Lo HF, Hong M, Krauss RS. Concepts in Multifactorial Etiology of Developmental Disorders: Gene-Gene and Gene-Environment Interactions in Holoprosencephaly. Front Cell Dev Biol 2022; 9:795194. [PMID: 35004690 PMCID: PMC8727999 DOI: 10.3389/fcell.2021.795194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Many common developmental disorders are thought to arise from a complex set of genetic and environmental risk factors. These factors interact with each other to affect the strength and duration of key developmental signaling pathways, thereby increasing the possibility that they fail to achieve the thresholds required for normal embryonic patterning. One such disorder, holoprosencephaly (HPE), serves as a useful model system in understanding various forms of multifactorial etiology. Genomic analysis of HPE cases, epidemiology, and mechanistic studies of animal models have illuminated multiple potential ways that risk factors interact to produce adverse developmental outcomes. Among these are: 1) interactions between driver and modifier genes; 2) oligogenic inheritance, wherein each parent provides predisposing variants in one or multiple distinct loci; 3) interactions between genetic susceptibilities and environmental risk factors that may be insufficient on their own; and 4) interactions of multiple genetic variants with multiple non-genetic risk factors. These studies combine to provide concepts that illuminate HPE and are also applicable to additional disorders with complex etiology, including neural tube defects, congenital heart defects, and oro-facial clefting.
Collapse
Affiliation(s)
- Hsiao-Fan Lo
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
9
|
Burton DF, Boa-Amponsem OM, Dixon MS, Hopkins MJ, Herbin TA, Toney S, Tarpley M, Rodriguez BV, Fish EW, Parnell SE, Cole GJ, Williams KP. Pharmacological activation of the Sonic hedgehog pathway with a Smoothened small molecule agonist ameliorates the severity of alcohol-induced morphological and behavioral birth defects in a zebrafish model of fetal alcohol spectrum disorder. J Neurosci Res 2022; 100:1585-1601. [PMID: 35014067 PMCID: PMC9271529 DOI: 10.1002/jnr.25008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022]
Abstract
Ethanol exposure during the early stages of embryonic development can lead to a range of morphological and behavioral differences termed fetal alcohol spectrum disorders (FASDs). In a zebrafish model, we have shown that acute ethanol exposure at 8-10 hr postfertilization (hpf), a critical time of development, produces birth defects similar to those clinically characterized in FASD. Dysregulation of the Sonic hedgehog (Shh) pathway has been implicated as a molecular basis for many of the birth defects caused by prenatal alcohol exposure. We observed in zebrafish embryos that shh expression was significantly decreased by ethanol exposure at 8-10 hpf, while smo expression was much less affected. Treatment of zebrafish embryos with SAG or purmorphamine, small molecule Smoothened agonists that activate Shh signaling, ameliorated the severity of ethanol-induced developmental malformations including altered eye size and midline brain development. Furthermore, this rescue effect of Smo activation was dose dependent and occurred primarily when treatment was given after ethanol exposure. Markers of Shh signaling (gli1/2) and eye development (pax6a) were restored in embryos treated with SAG post-ethanol exposure. Since embryonic ethanol exposure has been shown to produce later-life neurobehavioral impairments, juvenile zebrafish were examined in the novel tank diving test. Our results further demonstrated that in zebrafish embryos exposed to ethanol, SAG treatment was able to mitigate long-term neurodevelopmental impairments related to anxiety and risk-taking behavior. Our results indicate that pharmacological activation of the Shh pathway at specific developmental timing markedly diminishes the severity of alcohol-induced birth defects.
Collapse
Affiliation(s)
- Derek F Burton
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Oswald M Boa-Amponsem
- Integrated Biosciences PhD Program, North Carolina Central University, Durham, North Carolina, USA.,Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA
| | - Maria S Dixon
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Michael J Hopkins
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Te-Andre Herbin
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Shiquita Toney
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Michael Tarpley
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Blanca V Rodriguez
- Department of Biochemistry, Duke University, Durham, North Carolina, USA
| | - Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gregory J Cole
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA.,Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA.,Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| |
Collapse
|
10
|
Curtis SW, Chang D, Sun MR, Epstein MP, Murray JC, Feingold E, Beaty TH, Weinberg SM, Marazita ML, Lipinski RJ, Carlson JC, Leslie EJ. FAT4 identified as a potential modifier of orofacial cleft laterality. Genet Epidemiol 2021; 45:721-735. [PMID: 34130359 DOI: 10.1002/gepi.22420] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023]
Abstract
Orofacial clefts (OFCs) are common (1 in 700 births) congenital malformations that include a cleft lip (CL) and cleft lip and palate (CLP). These OFC subtypes are also heterogeneous themselves, with the CL occurring on the left, right, or both sides of the upper lip. Unilateral CL and CLP have a 2:1 bias towards left-sided clefts, suggesting a nonrandom process. Here, we performed a study of left- and right-sided clefts within the CL and CLP subtypes to better understand the genetic factors controlling cleft laterality. We conducted genome-wide modifier analyses by comparing cases that had right unilateral CL (RCL; N = 130), left unilateral CL (LCL; N = 216), right unilateral CLP (RCLP; N = 416), or left unilateral CLP (LCLP; N = 638), and identified a candidate region on 4q28, 400 kb downstream from FAT4, that approached genome-wide significance for LCL versus RCL (p = 8.4 × 10-8 ). Consistent with its potential involvement as a genetic modifier of CL, we found that Fat4 exhibits a specific domain of expression in the mesenchyme of the medial nasal processes that form the median upper lip. Overall, these results suggest that the epidemiological similarities in left- to right-sided clefts in CL and CLP are not reflected in the genetic association results.
Collapse
Affiliation(s)
- Sarah W Curtis
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - Daniel Chang
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - Miranda R Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Seth M Weinberg
- Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary L Marazita
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jenna C Carlson
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
11
|
Chen J, Tang W, Lin C, Hong Y, Mao C, Lai Y, Liao C, Lin M, Chen W. Defining the critical period of hedgehog pathway inhibitor-induced cranial base dysplasia in mice. Dev Dyn 2021; 250:527-541. [PMID: 33165989 DOI: 10.1002/dvdy.270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The hedgehog signaling pathway is critical for developmental patterning of the limb, craniofacial and axial skeleton. Disruption of this pathway in mice leads to a series of structural malformations, but the exact role and critical period of the Hh pathway in the early development of the cranial base have been rarely described. RESULTS Embryos exposed to vismodegib from E7.5, E9.5, and E10.5 had a higher percentage of cranial base fenestra. The peak incidence of hypoplasia in sphenoid winglets and severe craniosynostosis in cranial base synchondroses was observed when vismodegib was administered between E9.5 and E10.5. Cranial base craniosynostosis results from accelerating terminal differentiation of chondrocytes and premature osteogenesis. CONCLUSIONS We define the critical periods for the induction of cranial base deformity by vismodegib administration at a meticulous temporal resolution. Our findings suggest that the Hh pathway may play a vital role in the early development of the cranial base. This research also establishes a novel and easy-to-establish mouse model of synostosis in the cranial base using a commercially available pathway-selective inhibitor.
Collapse
Affiliation(s)
- Jiangping Chen
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenbing Tang
- Department of Stomatology, Central Hospital of Guangdong Nongken, Zhanjiang, Guangdong, China
| | - Chengquan Lin
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuhang Hong
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Chuanqing Mao
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Yongzhen Lai
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Caiyu Liao
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Minkui Lin
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Weihui Chen
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Johnson BP, Vitek RA, Morgan MM, Fink DM, Beames TG, Geiger PG, Beebe DJ, Lipinski RJ. A Microphysiological Approach to Evaluate Effectors of Intercellular Hedgehog Signaling in Development. Front Cell Dev Biol 2021; 9:621442. [PMID: 33634122 PMCID: PMC7900501 DOI: 10.3389/fcell.2021.621442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Paracrine signaling in the tissue microenvironment is a central mediator of morphogenesis, and modeling this dynamic intercellular activity in vitro is critical to understanding normal and abnormal development. For example, Sonic Hedgehog (Shh) signaling is a conserved mechanism involved in multiple developmental processes and strongly linked to human birth defects including orofacial clefts of the lip and palate. SHH ligand produced, processed, and secreted from the epithelial ectoderm is shuttled through the extracellular matrix where it binds mesenchymal receptors, establishing a gradient of transcriptional response that drives orofacial morphogenesis. In humans, complex interactions of genetic predispositions and environmental insults acting on diverse molecular targets are thought to underlie orofacial cleft etiology. Consequently, there is a need for tractable in vitro approaches that model this complex cellular and environmental interplay and are sensitive to disruption across the multistep signaling cascade. We developed a microplate-based device that supports an epithelium directly overlaid onto an extracellular matrix-embedded mesenchyme, mimicking the basic tissue architecture of developing orofacial tissues. SHH ligand produced from the epithelium generated a gradient of SHH-driven transcription in the adjacent mesenchyme, recapitulating the gradient of pathway activity observed in vivo. Shh pathway activation was antagonized by small molecule inhibitors of epithelial secretory, extracellular matrix transport, and mesenchymal sensing targets, supporting the use of this approach in high-content chemical screening of the complete Shh pathway. Together, these findings demonstrate a novel and practical microphysiological model with broad utility for investigating epithelial-mesenchymal interactions and environmental signaling disruptions in development.
Collapse
Affiliation(s)
- Brian P Johnson
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States.,Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, United States
| | - Ross A Vitek
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - Molly M Morgan
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - Dustin M Fink
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | - Tyler G Beames
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, United States.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | - Peter G Geiger
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| | - Robert J Lipinski
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, United States.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
13
|
Radecki DZ, Messling HM, Haggerty-Skeans JR, Bhamidipati SK, Clawson ED, Overman CA, Thatcher MM, Salzer JL, Samanta J. Relative Levels of Gli1 and Gli2 Determine the Response of Ventral Neural Stem Cells to Demyelination. Stem Cell Reports 2020; 15:1047-1055. [PMID: 33125874 PMCID: PMC7664046 DOI: 10.1016/j.stemcr.2020.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Enhancing repair of myelin is an important therapeutic goal in many neurological disorders characterized by demyelination. In the healthy adult brain, ventral neural stem cells (vNSCs) in the subventricular zone, marked by GLI1 expression, do not generate oligodendrocytes. However, in response to demyelination, their progeny are recruited to lesions where they differentiate into oligodendrocytes and ablation of GLI1 further enhances remyelination. GLI1 and GLI2 are closely related transcriptional activators but the role of GLI2 in remyelination by vNSCs is not clear. Here, we show that genetic ablation of Gli1 in vNSCs increases GLI2 expression and combined loss of both transcription factors decreases the recruitment and differentiation of their progeny in demyelinated lesions. These results indicate that GLI1 and GLI2 have distinct, non-redundant functions in vNSCs and their relative levels play an essential role in the response to demyelination. Loss of Gli1 increases GLI2 expression in SVZ neural stem cells upon demyelination Loss of Gli1 and Gli2 inhibits recruitment of neural stem cell progeny to the lesion Loss of Gli1 and Gli2 decreases their differentiation into oligodendrocytes
Collapse
Affiliation(s)
- Daniel Z Radecki
- Stem Cell and Regenerative Medicine Center, Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heather M Messling
- Stem Cell and Regenerative Medicine Center, Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James R Haggerty-Skeans
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Sai Krishna Bhamidipati
- Stem Cell and Regenerative Medicine Center, Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth D Clawson
- Stem Cell and Regenerative Medicine Center, Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christian A Overman
- Stem Cell and Regenerative Medicine Center, Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Madison M Thatcher
- Stem Cell and Regenerative Medicine Center, Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James L Salzer
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Jayshree Samanta
- Stem Cell and Regenerative Medicine Center, Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Addissie YA, Troia A, Wong ZC, Everson JL, Kozel BA, Muenke M, Lipinski RJ, Malecki KMC, Kruszka P. Identifying environmental risk factors and gene-environment interactions in holoprosencephaly. Birth Defects Res 2020; 113:63-76. [PMID: 33111505 DOI: 10.1002/bdr2.1834] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Holoprosencephaly is the most common malformation of the forebrain (1 in 250 embryos) with severe consequences for fetal and child development. This study evaluates nongenetic factors associated with holoprosencephaly risk, severity, and gene-environment interactions. METHODS For this retrospective case control study, we developed an online questionnaire focusing on exposures to common and rare toxins/toxicants before and during pregnancy, nutritional factors, maternal health history, and demographic factors. Patients with holoprosencephaly were primarily ascertained from our ongoing genetic and clinical studies of holoprosencephaly. Controls included children with Williams-Beuren syndrome (WBS) ascertained through online advertisements in a WBD support group and fliers. RESULTS Difference in odds of exposures between cases and controls as well as within cases with varying holoprosencephaly severity were studied. Cases included children born with holoprosencephaly (n = 92) and the control group consisted of children with WBS (n = 56). Pregnancy associated risk associated with holoprosencephaly included maternal pregestational diabetes (9.2% of cases and 0 controls, p = .02), higher alcohol consumption (adjusted odds ratio [aOR], 1.73; 95% CI, 0.88-15.71), and exposure to consumer products such as aerosols or sprays including hair sprays (aOR, 2.46; 95% CI, 0.89-7.19). Significant gene-environment interactions were identified including for consumption of cheese (p < .05) and espresso drinks (p = .03). CONCLUSION The study identifies modifiable risk factors and gene-environment interactions that should be considered in future prevention of holoprosencephaly. Studies with larger HPE cohorts will be needed to confirm these findings.
Collapse
Affiliation(s)
- Yonit A Addissie
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Angela Troia
- Cardiovascular & Pulmonary Branch, National Heart, Lung, and Blood Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Zoe C Wong
- Cardiovascular & Pulmonary Branch, National Heart, Lung, and Blood Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua L Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Beth A Kozel
- Cardiovascular & Pulmonary Branch, National Heart, Lung, and Blood Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kristen M C Malecki
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Everson JL, Batchu R, Eberhart JK. Multifactorial Genetic and Environmental Hedgehog Pathway Disruption Sensitizes Embryos to Alcohol-Induced Craniofacial Defects. Alcohol Clin Exp Res 2020; 44:1988-1996. [PMID: 32767777 PMCID: PMC7692922 DOI: 10.1111/acer.14427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) is perhaps the most common environmental cause of human birth defects. These exposures cause a range of structural and neurological defects, including facial dysmorphologies, collectively known as fetal alcohol spectrum disorders (FASD). While PAE causes FASD, phenotypic outcomes vary widely. It is thought that multifactorial genetic and environmental interactions modify the effects of PAE. However, little is known of the nature of these modifiers. Disruption of the Hedgehog (Hh) signaling pathway has been suggested as a modifier of ethanol teratogenicity. In addition to regulating the morphogenesis of craniofacial tissues commonly disrupted in FASD, a core member of the Hh pathway, Smoothened, is susceptible to modulation by structurally diverse chemicals. These include environmentally prevalent teratogens like piperonyl butoxide (PBO), a synergist found in thousands of pesticide formulations. METHODS Here, we characterize multifactorial genetic and environmental interactions using a zebrafish model of craniofacial development. RESULTS We show that loss of a single allele of shha sensitized embryos to both alcohol- and PBO-induced facial defects. Co-exposure of PBO and alcohol synergized to cause more frequent and severe defects. The effects of this co-exposure were even more profound in the genetically susceptible shha heterozygotes. CONCLUSIONS Together, these findings shed light on the multifactorial basis of alcohol-induced craniofacial defects. In addition to further implicating genetic disruption of the Hh pathway in alcohol teratogenicity, our findings suggest that co-exposure to environmental chemicals that perturb Hh signaling may be important variables in FASD and related craniofacial disorders.
Collapse
Affiliation(s)
- Joshua L. Everson
- From the Department of Molecular BiosciencesSchool of Natural SciencesUniversity of Texas at AustinAustinTexasUSA
- Waggoner Center for Alcohol and Addiction ResearchSchool of PharmacyUniversity of Texas at AustinAustinTexasUSA
| | - Rithik Batchu
- From the Department of Molecular BiosciencesSchool of Natural SciencesUniversity of Texas at AustinAustinTexasUSA
| | - Johann K. Eberhart
- From the Department of Molecular BiosciencesSchool of Natural SciencesUniversity of Texas at AustinAustinTexasUSA
- Waggoner Center for Alcohol and Addiction ResearchSchool of PharmacyUniversity of Texas at AustinAustinTexasUSA
| |
Collapse
|
16
|
Demiral M, Demirbilek H, Unal E, Durmaz CD, Ceylaner S, Özbek MN. Ectopic Posterior Pituitary, Polydactyly, Midfacial Hypoplasia and Multiple Pituitary Hormone Deficiency due to a Novel Heterozygous IVS11-2A>C(c.1957-2A>C) Mutation in the GLI2 Gene. J Clin Res Pediatr Endocrinol 2020; 12:319-328. [PMID: 31782289 PMCID: PMC7499131 DOI: 10.4274/jcrpe.galenos.2019.2019.0142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A novel heterozygous IVS11-2A>C(c.1957-2A>C) mutation in the GLI2 gene is reported. There was an extremely distinct phenotypical expression in two siblings and their father. The index case was a boy who developed cholestasis and hypoglycaemia in the neonatal period. He had bilateral postaxial polydactyly, mid-facial hypoplasia, high palatal arch, micropenis, and bilateral cryptorchidism. Laboratory examination revealed a diagnosis of multiple pituitary hormone deficiency. There was severe anterior pituitary hypoplasia, absent pituitary stalk and ectopic posterior pituitary on magnetic resonance imaging which suggested pituitary stalk interruption syndrome with no other midline structural abnormality. Molecular genetic analysis revealed a novel heterozygous splicing IVS11-2A>C(c.1957-2A>C) mutation detected in the GLI2 gene. His father and a six-year-old brother with the identical mutation also had unilateral postaxial polydactyly and mid-facial hypoplasia although there was no pituitary hormone deficiency. This novel heterozygous GLI2 mutation detected appears to present with an extremely variable clinical phenotype, even in related individuals with an identical mutation, suggesting incomplete penetrance of this GLI2 mutation.
Collapse
Affiliation(s)
- Meliha Demiral
- Gazi Yaşargil Training and Research Hospital, Clinics of Paediatric Endocrinology, Diyarbakır, Turkey
| | - Hüseyin Demirbilek
- Hacettepe University Faculty of Medicine, Department of Paediatric Endocrinology, Ankara, Turkey,* Address for Correspondence: Hacettepe University Faculty of Medicine, Department of Paediatric Endocrinology, Ankara, Turkey Phone: +90 312 305 11 24 E-mail:
| | - Edip Unal
- Gazi Yaşargil Training and Research Hospital, Clinics of Paediatric Endocrinology, Diyarbakır, Turkey
| | - Ceren Damla Durmaz
- Gazi Yaşargil Training and Research Hospital, Clinic of Medical Genetics, Diyarbakır, Turkey
| | - Serdar Ceylaner
- Intergen Genetic Diagnosis Center, Clinic of Medical Genetics, Ankara, Turkey
| | - Mehmet Nuri Özbek
- Gazi Yaşargil Training and Research Hospital, Clinics of Paediatric Endocrinology, Diyarbakır, Turkey
| |
Collapse
|
17
|
Fang X, Zhang Y, Cai J, Lu T, Hu J, Yuan F, Chen P. Identification of novel candidate pathogenic genes in pituitary stalk interruption syndrome by whole-exome sequencing. J Cell Mol Med 2020; 24:11703-11717. [PMID: 32864857 PMCID: PMC7579688 DOI: 10.1111/jcmm.15781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/25/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Pituitary stalk interruption syndrome (PSIS) is a type of congenital malformation of the anterior pituitary, which leads to isolated growth hormone deficiency or multiple hypothalamic-pituitary deficiencies. Many genetic factors have been explored, but they only account for a minority of the genetic aetiology. To identify novel PSIS pathogenic genes, we conducted whole-exome sequencing with 59 sporadic PSIS patients, followed by filtering gene panels involved in pituitary development, holoprosencephaly and midline abnormality. A total of 81 heterozygous variants, distributed among 59 genes, were identified in 50 patients, with 31 patients carrying polygenic variants. Fourteen of the 59 pathogenic genes clustered to the Hedgehog pathway. Of them, PTCH1 and PTCH2, inhibitors of Hedgehog signalling, showed the most frequent heterozygous mutations (22%, seven missense and one frameshift mutations were identified in 13 patients). Moreover, five novel heterozygous null variants in genes including PTCH2 (p.S391fs, combined with p.L104P), Hedgehog acyltransferase (p.R280X, de novo), MAPK3 (p.H50fs), EGR4 (p.G22fs, combined with LHX4 p.S263N) and SPG11 (p.Q1624X), which lead to truncated proteins, were identified. In conclusion, genetic mutations in the Hedgehog signalling pathway might underlie the complex polygenic background of PSIS, and the findings of our study could extend the understanding of PSIS pathogenic genes.
Collapse
Affiliation(s)
- Xuqian Fang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwen Zhang
- Department of Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Cai
- Clinical Research Center, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingwei Lu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peizhan Chen
- Clinical Research Center, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Beames TG, Lipinski RJ. Gene-environment interactions: aligning birth defects research with complex etiology. Development 2020; 147:147/21/dev191064. [PMID: 32680836 DOI: 10.1242/dev.191064] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Developmental biologists rely on genetics-based approaches to understand the origins of congenital abnormalities. Recent advancements in genomics have made it easier than ever to investigate the relationship between genes and disease. However, nonsyndromic birth defects often exhibit non-Mendelian inheritance, incomplete penetrance or variable expressivity. The discordance between genotype and phenotype indicates that extrinsic factors frequently impact the severity of genetic disorders and vice versa. Overlooking gene-environment interactions in birth defect etiology limits our ability to identify and eliminate avoidable risks. We present mouse models of sonic hedgehog signaling and craniofacial malformations to illustrate both the importance of and current challenges in resolving gene-environment interactions in birth defects. We then prescribe approaches for overcoming these challenges, including use of genetically tractable and environmentally responsive in vitro systems. Combining emerging technologies with molecular genetics and traditional animal models promises to advance our understanding of birth defect etiology and improve the identification and protection of vulnerable populations.
Collapse
Affiliation(s)
- Tyler G Beames
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.,Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA .,Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
19
|
Bishop MR, Diaz Perez KK, Sun M, Ho S, Chopra P, Mukhopadhyay N, Hetmanski JB, Taub MA, Moreno-Uribe LM, Valencia-Ramirez LC, Restrepo Muñeton CP, Wehby G, Hecht JT, Deleyiannis F, Weinberg SM, Wu-Chou YH, Chen PK, Brand H, Epstein MP, Ruczinski I, Murray JC, Beaty TH, Feingold E, Lipinski RJ, Cutler DJ, Marazita ML, Leslie EJ. Genome-wide Enrichment of De Novo Coding Mutations in Orofacial Cleft Trios. Am J Hum Genet 2020; 107:124-136. [PMID: 32574564 PMCID: PMC7332647 DOI: 10.1016/j.ajhg.2020.05.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/26/2020] [Indexed: 01/05/2023] Open
Abstract
Although de novo mutations (DNMs) are known to increase an individual's risk of congenital defects, DNMs have not been fully explored regarding orofacial clefts (OFCs), one of the most common human birth defects. Therefore, whole-genome sequencing of 756 child-parent trios of European, Colombian, and Taiwanese ancestry was performed to determine the contributions of coding DNMs to an individual's OFC risk. Overall, we identified a significant excess of loss-of-function DNMs in genes highly expressed in craniofacial tissues, as well as genes associated with known autosomal dominant OFC syndromes. This analysis also revealed roles for zinc-finger homeobox domain and SOX2-interacting genes in OFC etiology.
Collapse
Affiliation(s)
- Madison R. Bishop
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kimberly K. Diaz Perez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Miranda Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Samantha Ho
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nandita Mukhopadhyay
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA 15219, USA
| | - Jacqueline B. Hetmanski
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Margaret A. Taub
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lina M. Moreno-Uribe
- Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | - George Wehby
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School and School of Dentistry, UT Health at Houston, Houston, TX 77030, USA
| | | | - Seth M. Weinberg
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA 15219, USA,Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219, USA
| | - Yah Huei Wu-Chou
- Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Philip K. Chen
- Craniofacial Centre, Taipei Medical University Hospital and Taipei Medical University, Taipei, Taiwan
| | - Harrison Brand
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Michael P. Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeffrey C. Murray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Terri H. Beaty
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219, USA
| | - Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - David J. Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mary L. Marazita
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA 15219, USA,Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219, USA
| | - Elizabeth J. Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA,Corresponding author
| |
Collapse
|
20
|
Gregory LC, Dattani MT. The Molecular Basis of Congenital Hypopituitarism and Related Disorders. J Clin Endocrinol Metab 2020; 105:5614788. [PMID: 31702014 DOI: 10.1210/clinem/dgz184] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022]
Abstract
CONTEXT Congenital hypopituitarism (CH) is characterized by the presence of deficiencies in one or more of the 6 anterior pituitary (AP) hormones secreted from the 5 different specialized cell types of the AP. During human embryogenesis, hypothalamo-pituitary (HP) development is controlled by a complex spatio-temporal genetic cascade of transcription factors and signaling molecules within the hypothalamus and Rathke's pouch, the primordium of the AP. EVIDENCE ACQUISITION This mini-review discusses the genes and pathways involved in HP development and how mutations of these give rise to CH. This may present in the neonatal period or later on in childhood and may be associated with craniofacial midline structural abnormalities such as cleft lip/palate, visual impairment due to eye abnormalities such as optic nerve hypoplasia (ONH) and microphthalmia or anophthalmia, or midline forebrain neuroradiological defects including agenesis of the septum pellucidum or corpus callosum or the more severe holoprosencephaly. EVIDENCE SYNTHESIS Mutations give rise to an array of highly variable disorders ranging in severity. There are many known causative genes in HP developmental pathways that are routinely screened in CH patients; however, over the last 5 years this list has rapidly increased due to the identification of variants in new genes and pathways of interest by next-generation sequencing. CONCLUSION The majority of patients with these disorders do not have an identified molecular basis, often making management challenging. This mini-review aims to guide clinicians in making a genetic diagnosis based on patient phenotype, which in turn may impact on clinical management.
Collapse
Affiliation(s)
- Louise Cheryl Gregory
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Mehul Tulsidas Dattani
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
21
|
Chen JL, Chang CH, Tsai JW. Gli2 Rescues Delays in Brain Development Induced by Kif3a Dysfunction. Cereb Cortex 2020; 29:751-764. [PMID: 29342244 DOI: 10.1093/cercor/bhx356] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/23/2017] [Indexed: 01/01/2023] Open
Abstract
The primary cilium in neural stem cells plays distinct roles in different stages during cortical development. Ciliary dysfunctions in human (i.e., ciliopathy) cause developmental defects in multiple organs, including brain developmental delays, which lead to intellectual disabilities and cognitive deficits. However, effective treatment to this devastating developmental disorder is still lacking. Here, we first investigated the effects of ciliopathy on neural stem cells by knocking down Kif3a, a kinesin II motor required for ciliogenesis, in the neurogenic stage of cortical development by in utero electroporation of mouse embryos. Brains electroporated with Kif3a shRNA showed defects in neuronal migration and differentiation, delays in neural stem cell cycle progression, and failures in interkinetic nuclear migration. Interestingly, introduction of Gli1 and Gli2 both can restore the cell cycle progression by elevating cyclin D1 in neural stem cells. Remarkably, enforced Gli2 expression, but not Gli1, partially restored the ability of Kif3a-knockdown neurons to differentiate and move from the germinal ventricular zone to the cortical plate. Moreover, Cyclin D1 knockdown abolished Gli2's rescue effect. These findings suggest Gli2 may rescue neural stem cell proliferation, differentiation and migration through Cyclin D1 pathway and may serve as a potential therapeutic target for human ciliopathy syndromes through modulating the progression of neural stem cell cycle.
Collapse
Affiliation(s)
- Jia-Long Chen
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Hsiang Chang
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Taiwan International Graduate Program (TIGP) in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center (BRC), Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
22
|
Loss-of-Function Variants in PPP1R12A: From Isolated Sex Reversal to Holoprosencephaly Spectrum and Urogenital Malformations. Am J Hum Genet 2020; 106:121-128. [PMID: 31883643 DOI: 10.1016/j.ajhg.2019.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/04/2019] [Indexed: 02/01/2023] Open
Abstract
In two independent ongoing next-generation sequencing projects for individuals with holoprosencephaly and individuals with disorders of sex development, and through international research collaboration, we identified twelve individuals with de novo loss-of-function (LoF) variants in protein phosphatase 1, regulatory subunit 12a (PPP1R12A), an important developmental gene involved in cell migration, adhesion, and morphogenesis. This gene has not been previously reported in association with human disease, and it has intolerance to LoF as illustrated by a very low observed-to-expected ratio of LoF variants in gnomAD. Of the twelve individuals, midline brain malformations were found in five, urogenital anomalies in nine, and a combination of both phenotypes in two. Other congenital anomalies identified included omphalocele, jejunal, and ileal atresia with aberrant mesenteric blood supply, and syndactyly. Six individuals had stop gain variants, five had a deletion or duplication resulting in a frameshift, and one had a canonical splice acceptor site loss. Murine and human in situ hybridization and immunostaining revealed PPP1R12A expression in the prosencephalic neural folds and protein localization in the lower urinary tract at critical periods for forebrain division and urogenital development. Based on these clinical and molecular findings, we propose the association of PPP1R12A pathogenic variants with a congenital malformations syndrome affecting the embryogenesis of the brain and genitourinary systems and including disorders of sex development.
Collapse
|
23
|
Everson JL, Sun MR, Fink DM, Heyne GW, Melberg CG, Nelson KF, Doroodchi P, Colopy LJ, Ulschmid CM, Martin AA, McLaughlin MT, Lipinski RJ. Developmental Toxicity Assessment of Piperonyl Butoxide Exposure Targeting Sonic Hedgehog Signaling and Forebrain and Face Morphogenesis in the Mouse: An in Vitro and in Vivo Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107006. [PMID: 31642701 PMCID: PMC6867268 DOI: 10.1289/ehp5260] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Piperonyl butoxide (PBO) is a pesticide synergist used in residential, commercial, and agricultural settings. PBO was recently found to inhibit Sonic hedgehog (Shh) signaling, a key developmental regulatory pathway. Disruption of Shh signaling is linked to birth defects, including holoprosencephaly (HPE), a malformation of the forebrain and face thought to result from complex gene-environment interactions. OBJECTIVES The impact of PBO on Shh signaling in vitro and forebrain and face development in vivo was examined. METHODS The influence of PBO on Shh pathway transduction was assayed in mouse and human cell lines. To examine its teratogenic potential, a single dose of PBO (22-1,800mg/kg) was administered by oral gavage to C57BL/6J mice at gestational day 7.75, targeting the critical period for HPE. Gene-environment interactions were investigated using Shh+/- mice, which model human HPE-associated genetic mutations. RESULTS PBO attenuated Shh signaling in vitro through a mechanism similar to that of the known teratogen cyclopamine. In utero PBO exposure caused characteristic HPE facial dysmorphology including dose-dependent midface hypoplasia and hypotelorism, with a lowest observable effect level of 67mg/kg. Median forebrain deficiency characteristic of HPE was observed in severely affected animals, whereas all effective doses disrupted development of Shh-dependent transient forebrain structures that generate cortical interneurons. Normally silent heterozygous Shh null mutations exacerbated PBO teratogenicity at all doses tested, including 33mg/kg. DISCUSSION These findings demonstrate that prenatal PBO exposure can cause overt forebrain and face malformations or neurodevelopmental disruptions with subtle or no craniofacial dysmorphology in mice. By targeting Shh signaling as a sensitive mechanism of action and examining gene-environment interactions, this study defined a lowest observable effect level for PBO developmental toxicity in mice more than 30-fold lower than previously recognized. Human exposure to PBO and its potential contribution to etiologically complex birth defects should be rigorously examined. https://doi.org/10.1289/EHP5260.
Collapse
Affiliation(s)
- Joshua L. Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Miranda R. Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dustin M. Fink
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Galen W. Heyne
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cal G. Melberg
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kia F. Nelson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Padydeh Doroodchi
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lydia J. Colopy
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caden M. Ulschmid
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander A. Martin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew T. McLaughlin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
24
|
Kruszka P, Berger SI, Weiss K, Everson JL, Martinez AF, Hong S, Anyane-Yeboa K, Lipinski RJ, Muenke M. A CCR4-NOT Transcription Complex, Subunit 1, CNOT1, Variant Associated with Holoprosencephaly. Am J Hum Genet 2019; 104:990-993. [PMID: 31006510 PMCID: PMC6506867 DOI: 10.1016/j.ajhg.2019.03.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Holoprosencephaly is the incomplete separation of the forebrain during embryogenesis. Both genetic and environmental etiologies have been determined for holoprosencephaly; however, a genetic etiology is not found in most cases. In this report, we present two unrelated individuals with semilobar holoprosencephaly who have the identical de novo missense variant in the gene CCR4-NOT transcription complex, subunit 1 (CNOT1). The variant (c.1603C>T [p.Arg535Cys]) is predicted to be deleterious and is not present in public databases. CNOT1 has not been previously associated with holoprosencephaly or other brain malformations. In situ hybridization analyses of mouse embryos show that Cnot1 is expressed in the prosencephalic neural folds at gestational day 8.25 during the critical period for subsequent forebrain division. Combining human and mouse data, we show that CNOT1 is associated with incomplete forebrain division.
Collapse
Affiliation(s)
- Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seth I Berger
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Rare Disease Institute, Genetics and Metabolism, Children's National Health System, Washington, DC 20036, USA
| | - Karin Weiss
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua L Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwame Anyane-Yeboa
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Grinblat Y, Lipinski RJ. A forebrain undivided: Unleashing model organisms to solve the mysteries of holoprosencephaly. Dev Dyn 2019; 248:626-633. [PMID: 30993762 DOI: 10.1002/dvdy.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022] Open
Abstract
Evolutionary conservation and experimental tractability have made animal model systems invaluable tools in our quest to understand human embryogenesis, both normal and abnormal. Standard genetic approaches, particularly useful in understanding monogenic diseases, are no longer sufficient as research attention shifts toward multifactorial outcomes. Here, we examine this progression through the lens of holoprosencephaly (HPE), a common human malformation involving incomplete forebrain division, and a classic example of an etiologically complex outcome. We relate the basic underpinning of HPE pathogenesis to critical cell-cell interactions and signaling molecules discovered through embryological and genetic approaches in multiple model organisms, and discuss the role of the mouse model in functional examination of HPE-linked genes. We then outline the most critical remaining gaps to understanding human HPE, including the conundrum of incomplete penetrance/expressivity and the role of gene-environment interactions. To tackle these challenges, we outline a strategy that leverages new and emerging technologies in multiple model systems to solve the puzzle of HPE.
Collapse
Affiliation(s)
- Yevgenya Grinblat
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin.,Department of Neuroscience, University of Wisconsin, Madison, Wisconsin.,McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin.,Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
26
|
Everson JL, Fink DM, Chung HM, Sun MR, Lipinski RJ. Identification of sonic hedgehog-regulated genes and biological processes in the cranial neural crest mesenchyme by comparative transcriptomics. BMC Genomics 2018; 19:497. [PMID: 29945554 PMCID: PMC6020285 DOI: 10.1186/s12864-018-4885-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background The evolutionarily conserved Sonic Hedgehog (Shh) signaling pathway is essential for embryogenesis and orofacial development. SHH ligand secreted from the surface ectoderm activates pathway activity in the underlying cranial neural crest cell (cNCC)-derived mesenchyme of the developing upper lip and palate. Disruption of Shh signaling causes orofacial clefts, but the biological action of Shh signaling and the full set of Shh target genes that mediate normal and abnormal orofacial morphogenesis have not been described. Results Using comparative transcriptional profiling, we have defined the Shh-regulated genes of the cNCC-derived mesenchyme. Enrichment analysis demonstrated that in cultured cNCCs, Shh-regulated genes are involved in smooth muscle and chondrocyte differentiation, as well as regulation of the Forkhead family of transcription factors, G1/S cell cycle transition, and angiogenesis. Next, this gene set from Shh-activated cNCCs in vitro was compared to the set of genes dysregulated in the facial primordia in vivo during the initial pathogenesis of Shh pathway inhibitor-induced orofacial clefting. Functional gene annotation enrichment analysis of the 112 Shh-regulated genes with concordant expression changes linked Shh signaling to interdependent and unique biological processes including mesenchyme development, cell adhesion, cell proliferation, cell migration, angiogenesis, perivascular cell markers, and orofacial clefting. Conclusions We defined the Shh-regulated transcriptome of the cNCC-derived mesenchyme by comparing the expression signatures of Shh-activated cNCCs in vitro to primordial midfacial tissues exposed to the Shh pathway inhibitor in vivo. In addition to improving our understanding of cNCC biology by determining the identity and possible roles of cNCC-specific Shh target genes, this study presents novel candidate genes whose examination in the context of human orofacial clefting etiology is warranted. Electronic supplementary material The online version of this article (10.1186/s12864-018-4885-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joshua L Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI, 53706, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dustin M Fink
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI, 53706, USA
| | - Hannah M Chung
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI, 53706, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Miranda R Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI, 53706, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI, 53706, USA. .,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
27
|
Roessler E, Hu P, Muenke M. Holoprosencephaly in the genomics era. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:165-174. [PMID: 29770992 DOI: 10.1002/ajmg.c.31615] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 01/08/2023]
Abstract
Holoprosencephaly (HPE) is the direct consequence of specific genetic and/or environmental insults interrupting the midline specification of the nascent forebrain. Such disturbances can lead to a broad range of phenotypic consequences for the brain and face in humans. This malformation sequence is remarkably common in utero (1 in 250 human fetuses), but 97% typically do not survive to birth. The precise molecular pathogenesis of HPE in these early human embryos remains largely unknown. Here, we outline our current understanding of the principal driving factors leading to HPE pathologies and elaborate our multifactorial integrated genomics approach. Overall, our understanding of the pathogenesis continues to become simpler, rather than more complicated. Genomic technologies now provide unprecedented insight into disease-associated variation, including the overall extent of genetic interactions (coding and noncoding) predicted to explain divergent phenotypes.
Collapse
Affiliation(s)
- Erich Roessler
- Medical Genetics Branch, National Human, Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ping Hu
- Medical Genetics Branch, National Human, Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Maximilian Muenke
- Medical Genetics Branch, National Human, Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
28
|
Martinez AF, Kruszka PS, Muenke M. Extracephalic manifestations of nonchromosomal, nonsyndromic holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:246-257. [PMID: 29761634 DOI: 10.1002/ajmg.c.31616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Nonchromosomal, nonsyndromic holoprosencephaly (NCNS-HPE) has traditionally been considered as a condition of brain and craniofacial maldevelopment. In this review, we present the results of a comprehensive literature search supporting a wide spectrum of extracephalic manifestations identified in patients with NCNS-HPE. These manifestations have been described in case reports and in large cohorts of patients with "single-gene" mutations, suggesting that the NCNS-HPE phenotype can be more complex than traditionally thought. Likely, a complex network of interacting genetic variants and environmental factors is responsible for these systemic abnormalities that deviate from the usual brain and craniofacial findings in NCNS-HPE. In addition to the systemic consequences of pituitary dysfunction (as a direct result of brain midline defects), here we describe a number of extracephalic findings of NCNS-HPE affecting various organ systems. It is our goal to provide a guide of extracephalic features for clinicians given the important clinical implications of these manifestations for the management and care of patients with HPE and their mutation-positive relatives. The health risks associated with some manifestations (e.g., fatty liver disease) may have historically been neglected in affected families.
Collapse
Affiliation(s)
- Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul S Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
29
|
Hong M, Krauss RS. Modeling the complex etiology of holoprosencephaly in mice. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:140-150. [PMID: 29749693 DOI: 10.1002/ajmg.c.31611] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 12/14/2022]
Abstract
Holoprosencephaly (HPE) is a common developmental defect caused by failure to define the midline of the forebrain and/or midface. HPE is associated with heterozygous mutations in Nodal and Sonic hedgehog (SHH) pathway components, but clinical presentation is highly variable, and many mutation carriers are unaffected. It is therefore thought that such mutations interact with more common modifiers, genetic and/or environmental, to produce severe patterning defects. Modifiers are difficult to identify, as their effects are context-dependent and occur within the complex genetic and environmental landscapes that characterize human populations. This has made a full understanding of HPE etiology challenging. We discuss here the use of mice, a genetically tractable model sensitive to teratogens, as a system to address this challenge. Mice carrying mutations in human HPE genes often display wide variations in phenotypic penetrance and expressivity when placed on different genetic backgrounds, demonstrating the existence of silent HPE modifier genes. Studies with mouse lines carrying SHH pathway mutations on appropriate genetic backgrounds have led to identification of both genetic and environmental modifiers that synergize with the mutations to produce a spectrum of HPE phenotypes. These models favor a scenario in which multiple modifying influences-both genetic and environmental, sensitizing and protective-interact with bona fide HPE mutations to grade phenotypic outcomes. Despite the complex interplay of HPE risk factors, mouse models have helped establish some clear concepts in HPE etiology. A combination of mouse and human cohort studies should improve our understanding of this fascinating and medically important issue.
Collapse
Affiliation(s)
- Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
30
|
Common basis for orofacial clefting and cortical interneuronopathy. Transl Psychiatry 2018; 8:8. [PMID: 29317601 PMCID: PMC5802454 DOI: 10.1038/s41398-017-0057-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/11/2017] [Accepted: 10/15/2017] [Indexed: 12/31/2022] Open
Abstract
Orofacial clefts (OFCs) of the lip and/or palate are among the most common human birth defects. Current treatment strategies focus on functional and cosmetic repair but even when this care is available, individuals born with OFCs are at high risk for persistent neurobehavioral problems. In addition to learning disabilities and reduced academic achievement, recent evidence associates OFCs with elevated risk for a constellation of psychiatric outcomes including anxiety disorders, autism spectrum disorder, and schizophrenia. The relationship between these outcomes and OFCs is poorly understood and controversial. Recent neuroimaging studies in humans and mice demonstrate subtle morphological brain abnormalities that co-occur with OFCs but specific molecular and cellular mechanisms have not been investigated. Here, we provide the first evidence directly linking OFC pathogenesis to abnormal development of GABAergic cortical interneurons (cINs). Lineage tracing revealed that the structures that form the upper lip and palate develop in molecular synchrony and spatiotemporal proximity to cINs, suggesting these populations may have shared sensitivity to genetic and/or teratogenic insult. Examination of cIN development in a mouse model of nonsyndromic OFCs revealed significant disruptions in cIN proliferation and migration, culminating in misspecification of the somatostatin-expressing subgroup. These findings reveal a unified developmental basis for orofacial clefting and disrupted cIN development, and may explain the significant overlap in neurobehavioral and psychiatric outcomes associated with OFCs and cIN dysfunction. This emerging mechanistic understanding for increased prevalence of adverse neurobehavioral outcomes in OFC patients is the entry-point for developing evidence-based therapies to improve patient outcomes.
Collapse
|
31
|
Fink DM, Sun MR, Heyne GW, Everson JL, Chung HM, Park S, Sheets MD, Lipinski RJ. Coordinated d-cyclin/Foxd1 activation drives mitogenic activity of the Sonic Hedgehog signaling pathway. Cell Signal 2017; 44:1-9. [PMID: 29284139 DOI: 10.1016/j.cellsig.2017.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/30/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
Abstract
Sonic Hedgehog (Shh) signaling plays key regulatory roles in embryonic development and postnatal homeostasis and repair. Modulation of the Shh pathway is known to cause malformations and malignancies associated with dysregulated tissue growth. However, our understanding of the molecular mechanisms by which Shh regulates cellular proliferation is incomplete. Here, using mouse embryonic fibroblasts, we demonstrate that the Forkhead box gene Foxd1 is transcriptionally regulated by canonical Shh signaling and required for downstream proliferative activity. We show that Foxd1 deletion abrogates the proliferative response to SHH ligand while FOXD1 overexpression alone is sufficient to induce cellular proliferation. The proliferative response to both SHH ligand and FOXD1 overexpression was blocked by pharmacologic inhibition of cyclin-dependent kinase signaling. Time-course experiments revealed that Shh pathway activation of Foxd1 is followed by downregulation of Cdkn1c, which encodes a cyclin-dependent kinase inhibitor. Consistent with a direct transcriptional regulation mechanism, we found that FOXD1 reduces reporter activity of a Fox enhancer sequence in the second intron of Cdkn1c. Supporting the applicability of these findings to specific biological contexts, we show that Shh regulation of Foxd1 and Cdkn1c is recapitulated in cranial neural crest cells and provide evidence that this mechanism is operational during upper lip morphogenesis. These results reveal a novel Shh-Foxd1-Cdkn1c regulatory circuit that drives the mitogenic action of Shh signaling and may have broad implications in development and disease.
Collapse
Affiliation(s)
- Dustin M Fink
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Miranda R Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Galen W Heyne
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Joshua L Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States; Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Hannah M Chung
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States; Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Sookhee Park
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael D Sheets
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States; Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
32
|
Guillen Sacoto MJ, Martinez AF, Abe Y, Kruszka P, Weiss K, Everson JL, Bataller R, Kleiner DE, Ward JM, Sulik KK, Lipinski RJ, Solomon BD, Muenke M. Human germline hedgehog pathway mutations predispose to fatty liver. J Hepatol 2017; 67. [PMID: 28645738 PMCID: PMC5613974 DOI: 10.1016/j.jhep.2017.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease. Activation of hedgehog (Hh) signaling has been implicated in the progression of NAFLD and proposed as a therapeutic target; however, the effects of Hh signaling inhibition have not been studied in humans with germline mutations that affect this pathway. METHODS Patients with holoprosencephaly (HPE), a disorder associated with germline mutations disrupting Sonic hedgehog (SHH) signaling, were clinically evaluated for NAFLD. A combined mouse model of Hh signaling attenuation (Gli2 heterozygous null: Gli2+/-) and diet-induced NAFLD was used to examine aspects of NAFLD and hepatic gene expression profiles, including molecular markers of hepatic fibrosis and inflammation. RESULTS Patients with HPE had a higher prevalence of liver steatosis compared to the general population, independent of obesity. Exposure of Gli2+/- mice to fatty liver-inducing diets resulted in increased liver steatosis compared to wild-type mice. Similar to humans, this effect was independent of obesity in the mutant mice and was associated with decreased expression of pro-fibrotic and pro-inflammatory genes, and increased expression of PPARγ, a potent anti-fibrogenic and anti-inflammatory regulator. Interestingly, tumor suppressors p53 and p16INK4 were found to be downregulated in the Gli2+/- mice exposed to a high-fat diet. CONCLUSIONS Our results indicate that germline mutations disrupting Hh signaling promotes liver steatosis, independent of obesity, with reduced fibrosis. While Hh signaling inhibition has been associated with a better NAFLD prognosis, further studies are required to evaluate the long-term effects of mutations affecting this pathway. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is characterized by excess fat deposition in the liver predominantly due to high calorie intake and a sedentary lifestyle. NAFLD progression is usually accompanied by activation of the Sonic hedgehog (SHH) pathway leading to fibrous buildup (scar tissue) and inflammation of the liver tissue. For the first time patients with holoprosencephaly, a disease caused by SHH signaling mutations, are shown to have increased liver steatosis independent of obesity. This observation was recapitulated in a mouse model of attenuated SHH signaling that also showed increased liver steatosis but with decreased fibrosis and inflammation. While SHH inhibition is associated with a good NAFLD prognosis, this increase in liver fat accumulation in the context of SHH signaling inhibition must be studied prospectively to evaluate its long-term effects, especially in individuals with Western-type dietary habits.
Collapse
Affiliation(s)
| | - Ariel F. Martinez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Yu Abe
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Paul Kruszka
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Karin Weiss
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Joshua L. Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI
| | - Ramon Bataller
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, NC
| | - David E. Kleiner
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | | | - Kathleen K. Sulik
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC,Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC
| | - Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI
| | - Benjamin D. Solomon
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD,Division of Medical Genomics, Inova Translational Medicine Institute, Falls Church, VA; Department of Pediatrics, Inova Children’s Hospital and Virginia Commonwealth University School of Medicine, Falls Church, VA,GeneDx, Gaithersburg, MD
| | - Maximilian Muenke
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
33
|
Geoghegan F, Xavier GM, Birjandi AA, Seppala M, Cobourne MT. Vax1 Plays an Indirect Role in the Etiology of Murine Cleft Palate. J Dent Res 2017; 96:1555-1562. [PMID: 28771384 DOI: 10.1177/0022034517724145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cleft lip with or without palate (CLP) and isolated cleft palate (CP) are common human developmental malformations with a complex etiology that reflects a failure of normal facial development. VAX1 encodes a homeobox-containing transcription factor identified as a candidate gene for CLP in human populations, with targeted deletion in mice associated with multiple anomalies, including disruption of the visual apparatus and basal forebrain, lobar holoprosencephaly, and CP. We have investigated Vax1 function during murine palatogenesis but found no evidence for a direct role in this process. Vax1 is not expressed in the developing palate and mutant palatal shelves elevate above the tongue, demonstrating morphology and proliferation indices indistinguishable from wild type. However, mutant mice did have a large midline cavity originating from the embryonic forebrain situated beneath the floor of the hypothalamus and extending through the nasal cavity to expand this region and prevent approximation of the palatal shelves. Interestingly, despite strong expression of Vax1 in ectoderm of the medial nasal processes, the upper lip remained intact in mutant mice. We found further evidence of disrupted craniofacial morphology in Vax1 mutants, including truncation of the midface associated with reduced cell proliferation in forebrain neuroectoderm and frontonasal mesenchyme. Sonic hedgehog (Shh) signal transduction was downregulated in the mutant forebrain, consistent with a role for Vax1 in mediating transduction of this pathway. However, Shh was also reduced in this region, suggestive of a Shh-Vax1 feedback loop during early development of the forebrain and a likely mechanism for the underlying lobar holoprosencephaly. Despite significant associations between VAX1 and human forms of CLP, we find no evidence of a direct role for this transcription factor in development of this region in a mutant mouse model.
Collapse
Affiliation(s)
- F Geoghegan
- 1 Centre for Craniofacial Development and Regeneration, King's College London Dental Institute, London, UK.,2 Department of Orthodontics, King's College London Dental Institute, London, UK
| | - G M Xavier
- 1 Centre for Craniofacial Development and Regeneration, King's College London Dental Institute, London, UK.,2 Department of Orthodontics, King's College London Dental Institute, London, UK
| | - A A Birjandi
- 1 Centre for Craniofacial Development and Regeneration, King's College London Dental Institute, London, UK
| | - M Seppala
- 1 Centre for Craniofacial Development and Regeneration, King's College London Dental Institute, London, UK.,2 Department of Orthodontics, King's College London Dental Institute, London, UK
| | - M T Cobourne
- 1 Centre for Craniofacial Development and Regeneration, King's College London Dental Institute, London, UK.,2 Department of Orthodontics, King's College London Dental Institute, London, UK
| |
Collapse
|
34
|
Everson JL, Fink DM, Yoon JW, Leslie EJ, Kietzman HW, Ansen-Wilson LJ, Chung HM, Walterhouse DO, Marazita ML, Lipinski RJ. Sonic hedgehog regulation of Foxf2 promotes cranial neural crest mesenchyme proliferation and is disrupted in cleft lip morphogenesis. Development 2017; 144:2082-2091. [PMID: 28506991 DOI: 10.1242/dev.149930] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/24/2017] [Indexed: 01/18/2023]
Abstract
Cleft lip is one of the most common human birth defects, yet our understanding of the mechanisms that regulate lip morphogenesis is limited. Here, we show in mice that sonic hedgehog (Shh)-induced proliferation of cranial neural crest cell (cNCC) mesenchyme is required for upper lip closure. Gene expression profiling revealed a subset of Forkhead box (Fox) genes that are regulated by Shh signaling during lip morphogenesis. During cleft pathogenesis, reduced proliferation in the medial nasal process mesenchyme paralleled the domain of reduced Foxf2 and Gli1 expression. SHH ligand induction of Foxf2 expression was dependent upon Shh pathway effectors in cNCCs, while a functional GLI-binding site was identified downstream of Foxf2 Consistent with the cellular mechanism demonstrated for cleft lip pathogenesis, we found that either SHH ligand addition or FOXF2 overexpression is sufficient to induce cNCC proliferation. Finally, analysis of a large multi-ethnic human population with cleft lip identified clusters of single-nucleotide polymorphisms in FOXF2 These data suggest that direct targeting of Foxf2 by Shh signaling drives cNCC mesenchyme proliferation during upper lip morphogenesis, and that disruption of this sequence results in cleft lip.
Collapse
Affiliation(s)
- Joshua L Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dustin M Fink
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joon Won Yoon
- Northwestern University Feinberg School of Medicine and the Developmental Biology and Cancer Biology Programs of the Stanley Manne Children's Research Institute, Chicago, IL 60611, USA
| | - Elizabeth J Leslie
- School of Dental Medicine, Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Henry W Kietzman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lydia J Ansen-Wilson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hannah M Chung
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David O Walterhouse
- Northwestern University Feinberg School of Medicine and the Developmental Biology and Cancer Biology Programs of the Stanley Manne Children's Research Institute, Chicago, IL 60611, USA
| | - Mary L Marazita
- School of Dental Medicine, Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA .,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
35
|
Heyne GW, Everson JL, Ansen-Wilson LJ, Melberg CG, Fink DM, Parins KF, Doroodchi P, Ulschmid CM, Lipinski RJ. Gli2 gene-environment interactions contribute to the etiological complexity of holoprosencephaly: evidence from a mouse model. Development 2016. [DOI: 10.1242/dev.147652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|