1
|
Zhao X, Shi W, Li Z, Zhang W. Linking reproductive tract microbiota to premature ovarian insufficiency: Pathophysiological mechanisms and therapies. J Reprod Immunol 2024; 166:104325. [PMID: 39265315 DOI: 10.1016/j.jri.2024.104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
Over the past decade, research on the human microbiota has become a hot topic. Among them, the female reproductive tract (FRT) also has a specific microbiota that maintains the body's health and dynamic balance, especially in the reproductive aspect. When the FRT ecosystem is dysregulated, changes in immune and metabolic signals can lead to pathological and physiological changes such as chronic inflammation, epithelial barrier disruption, changes in cell proliferation and apoptosis, and dysregulation of angiogenesis and metabolism, thereby causing disruption of the female endocrine system. Premature ovarian insufficiency (POI), a clinical syndrome of ovarian dysfunction, is primarily influenced by immune, genetic, and environmental factors. New evidence suggests that dysbiosis of the FRT microbiota and/or the presence of specific bacteria may contribute to the occurrence and progression of POI. This influence occurs through both direct and indirect mechanisms, including the regulation of estrogen metabolism. The use of probiotics or microbiota transplantation to regulate the microbiome has also been proven to be beneficial in improving ovarian function and the quality of life in women with premature aging. This article provides an overview of the interrelationships and roles between the FRT microbiome and POI in recent years, to fully understand the risk factors affecting female reproductive health, and to offer insights for the future diagnosis, treatment, and application of the FRT microbiome in POI patients.
Collapse
Affiliation(s)
- Xi Zhao
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| | - Wenying Shi
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| | - Zhengyu Li
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| | - Wei Zhang
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| |
Collapse
|
2
|
Gorczyca K, Kozioł MM, Kimber-Trojnar Ż, Kępa J, Satora M, Rekowska AK, Leszczyńska-Gorzelak B. Premature rupture of membranes and changes in the vaginal microbiome - Probiotics. Reprod Biol 2024; 24:100899. [PMID: 38805904 DOI: 10.1016/j.repbio.2024.100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Preterm birth affects approximately 15 million women worldwide, of which 30 % is due to preterm premature rupture of membranes (PPROM). The reasons for shortening the duration of pregnancy are seen in genetic, hormonal, immunological and socio-economic conditions. Recent years have provided a lot of evidence on the impact of the microbiota and whole microbiome on pregnant women, suggesting that the microorganisms inhabiting the vagina significantly affect the risk of preterm delivery. The aim of the study was to review studies evaluating the composition of the vaginal microflora and its role in the occurrence of preterm labor caused by PPROM, and to evaluate the potential beneficial effect of probiotics on preventing the development of preterm labor. Vaginal microbial dysbiosis is observed in PPROM, which, due to its association with a high risk of prematurity and infection, increases neonatal morbidity and mortality. Further research on biomarkers for screening, early prognosis and diagnosis of PPROM seems advisable. Probiotics as a potential intervention can prevent the development of pathological vaginal flora, reducing the risk of infection in women planning pregnancy and pregnant women.
Collapse
Affiliation(s)
- Kamila Gorczyca
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland
| | - Małgorzata M Kozioł
- Chair and Department of Medical Microbiology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland.
| | - Żaneta Kimber-Trojnar
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland
| | - Joanna Kępa
- Students Scientific Association at the Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland
| | - Małgorzata Satora
- Students Scientific Association at the Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland
| | - Anna K Rekowska
- Students Scientific Association at the Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland
| | - Bożena Leszczyńska-Gorzelak
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland
| |
Collapse
|
3
|
Nasr MA, Aldous A, Daniels J, Joy C, Capozzi E, Yang M, Moriarty P, Emmanuel-Baker V, Malcolm S, Green SJ, Gomez-Lobo V, Ghosh M. Effect of progestin-based contraceptives on HIV-associated vaginal immune biomarkers and microbiome in adolescent girls. PLoS One 2024; 19:e0306237. [PMID: 39008499 PMCID: PMC11249223 DOI: 10.1371/journal.pone.0306237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Adolescent girls bear a disproportionate burden of both the HIV epidemic and unintended pregnancies; yet important questions remain unanswered regarding the effects of hormonal contraceptives on the vaginal immune microenvironment, which can impact HIV susceptibility in this group. Multiple studies report genital immune alterations associated with the progestin-based contraceptive Depot medroxyprogesterone acetate (DMPA) in adult women, but there is little available data in adolescents. The objective of this longitudinal cohort study was to evaluate the effects of short-term use of three progestin-based contraceptives, levonorgestrel intrauterine device (LNG-IUD), subdermal etonogestrel (ETNG), and injectable DMPA, on HIV-associated vaginal immune biomarkers and microbiome in adolescent girls. Fifty-nine sexually active, HIV-uninfected girls aged 15-19, were recruited from the Washington DC metro area and self-selected into Control (condoms only), combined oral contraceptive pills, LNG-IUD, ETNG and DMPA groups. Vaginal swabs were collected at baseline prior to contraceptive use and at 3-month follow-up visit. Vaginal secretions were tested for pro-inflammatory (IL-1α, IL-1β, TNF-α, IL-6, IL-8, MIP-3α, IP-10, RANTES, MIP-1α, MIP-1β) and anti-inflammatory/anti-HIV (Serpin-A1, Elafin, Beta-Defensin-2, SLPI) immune biomarkers using ELISA and for anti-HIV activity using TZM-bl assay. Vaginal microbiome was evaluated using 16S rRNA gene sequencing. Data were analyzed using SAS Version 9. Among the 34 participants who completed both visits, no significant changes in median biomarker concentrations, HIV inhibition and microbiome composition were observed between baseline and follow-up visits for any of the contraceptive groups. IL-8 (p<0.01), MIP-3α (0.02), Elafin (p = 0.03) and RANTES (p<0.01) differed significantly by race whereas IL-6 was significantly different by age (p = 0.03). We conclude that 3-month use of LNG-IUD, ETNG and DMPA have minimal effects on adolescent vaginal immune microenvironment, and therefore unlikely to impact HIV risk. Future studies with larger sample size and longer follow-up are recommended to continue to evaluate effects of contraceptives on the lower genital tract immunity and susceptibility to sexually transmitted infections.
Collapse
Affiliation(s)
- Mélodie A. Nasr
- Department of Epidemiology, George Washington University, Washington, DC, United States of America
| | - Annette Aldous
- Department of Biostatistics and Bioinformatics, George Washington University, Washington, DC, United States of America
| | - Jason Daniels
- Department of Epidemiology, George Washington University, Washington, DC, United States of America
| | - Christopher Joy
- Department of Epidemiology, George Washington University, Washington, DC, United States of America
| | - Eleanor Capozzi
- Department of Epidemiology, George Washington University, Washington, DC, United States of America
| | - Michelle Yang
- Department of Epidemiology, George Washington University, Washington, DC, United States of America
| | - Patricia Moriarty
- MedStar Washington Hospital Center, Washington, DC, United States of America
| | | | - Sharyn Malcolm
- Children’s National Hospital, Washington, DC, United States of America
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL, United States of America
| | - Veronica Gomez-Lobo
- MedStar Washington Hospital Center, Washington, DC, United States of America
- Children’s National Hospital, Washington, DC, United States of America
- National Institute of Child Health and Human Development, National Institutes of Health, Washington, DC, United States of America
| | - Mimi Ghosh
- Department of Epidemiology, George Washington University, Washington, DC, United States of America
| |
Collapse
|
4
|
Silva B, Marques EF, Gomes AC. Recent advances in in vitro models simulating the female genital tract toward more effective intravaginal therapeutic delivery. Expert Opin Drug Deliv 2024; 21:1007-1027. [PMID: 39001669 DOI: 10.1080/17425247.2024.2380338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Intravaginal drug delivery has emerged as a promising avenue for treating a spectrum of systemic and local female genital tract (FGT) conditions, using biomaterials as carriers or scaffolds for targeted and efficient administration. Much effort has been made to understand the natural barriers of this route and improve the delivery system to achieve an efficient therapeutic response. AREAS COVERED In this review, we conducted a comprehensive literature search using multiple databases (PubMed Scopus Web of Science Google Scholar), to discuss the potential of intravaginal therapeutic delivery, as well as the obstacles unique to this route. The in vitro cell models of the FGT and how they can be applied to probing intravaginal drug delivery are then analyzed. We further explore the limitations of the existing models and the possibilities to make them more promising for delivery studies or biomaterial validation. Complementary information is provided by in vitro acellular techniques that may shed light on mucus-drug interaction. EXPERT OPINION Advances in 3D models and cell cultures have enhanced our understanding of the FGT, but they still fail to replicate all variables. Future research should aim to use complementary methods, ensure stability, and develop consistent protocols to improve therapy evaluation and create better predictive in vitro models for women's health.
Collapse
Affiliation(s)
- Bruna Silva
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus of Gualtar, University of Minho, Braga, Portugal
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Eduardo F Marques
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus of Gualtar, University of Minho, Braga, Portugal
| |
Collapse
|
5
|
Busonero F, Lenarduzzi S, Crobu F, Gentile RM, Carta A, Cracco F, Maschio A, Camarda S, Marongiu M, Zanetti D, Conversano C, Di Lorenzo G, Mazzà D, De Seta F, Girotto G, Sanna S. The Women4Health cohort: a unique cohort to study women-specific mechanisms of cardio-metabolic regulation. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae012. [PMID: 38532851 PMCID: PMC10964981 DOI: 10.1093/ehjopen/oeae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Aims Epidemiological research has shown relevant differences between sexes in clinical manifestations, severity, and progression of cardiovascular and metabolic disorders. To date, the mechanisms underlying these differences remain unknown. Given the rising incidence of such diseases, gender-specific research on established and emerging risk factors, such as dysfunction of glycaemic and/or lipid metabolism, of sex hormones and of gut microbiome, is of paramount importance. The relationships between sex hormones, gut microbiome, and host glycaemic and/or lipid metabolism are largely unknown even in the homoeostasis status. Yet this knowledge gap would be pivotal to pinpoint to key mechanisms that are likely to be disrupted in disease context. Methods and results Here we present the Women4Health (W4H) cohort, a unique cohort comprising up to 300 healthy women followed up during a natural menstrual cycle, set up with the primary goal to investigate the combined role of sex hormones and gut microbiota variations in regulating host lipid and glucose metabolism during homoeostasis, using a multi-omics strategy. Additionally, the W4H cohort will take into consideration another ecosystem that is unique to women, the vaginal microbiome, investigating its interaction with gut microbiome and exploring-for the first time-its role in cardiometabolic disorders. Conclusion The W4H cohort study lays a foundation for improving current knowledge of women-specific mechanisms in cardiometabolic regulation. It aspires to transform insights on host-microbiota interactions into prevention and therapeutic approaches for personalized health care.
Collapse
Affiliation(s)
- Fabio Busonero
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), c/o Cittadella Universitaria di Monserrato, SS554 Km 4500, Monserrato, 09042, CA, Italy
| | - Stefania Lenarduzzi
- Institute for Maternal and Child Health—IRCCS ‘Burlo Garofolo’, Via dell'Istria 65/1, Trieste, 34137, TS, Italy
| | - Francesca Crobu
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), c/o Cittadella Universitaria di Monserrato, SS554 Km 4500, Monserrato, 09042, CA, Italy
| | - Roberta Marie Gentile
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazzale Europa 1, Trieste, 34137, TS, Italy
| | - Andrea Carta
- Department of Business and Economics, University of Cagliari, via Università 40, 09124, Cagliari, CA, Italy
| | - Francesco Cracco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazzale Europa 1, Trieste, 34137, TS, Italy
| | - Andrea Maschio
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), c/o Cittadella Universitaria di Monserrato, SS554 Km 4500, Monserrato, 09042, CA, Italy
| | - Silvia Camarda
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazzale Europa 1, Trieste, 34137, TS, Italy
| | - Michele Marongiu
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), c/o Cittadella Universitaria di Monserrato, SS554 Km 4500, Monserrato, 09042, CA, Italy
| | - Daniela Zanetti
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), c/o Cittadella Universitaria di Monserrato, SS554 Km 4500, Monserrato, 09042, CA, Italy
| | - Claudio Conversano
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), c/o Cittadella Universitaria di Monserrato, SS554 Km 4500, Monserrato, 09042, CA, Italy
- Department of Business and Economics, University of Cagliari, via Università 40, 09124, Cagliari, CA, Italy
| | - Giovanni Di Lorenzo
- Institute for Maternal and Child Health—IRCCS ‘Burlo Garofolo’, Via dell'Istria 65/1, Trieste, 34137, TS, Italy
| | - Daniela Mazzà
- Institute for Maternal and Child Health—IRCCS ‘Burlo Garofolo’, Via dell'Istria 65/1, Trieste, 34137, TS, Italy
| | - Francesco De Seta
- Institute for Maternal and Child Health—IRCCS ‘Burlo Garofolo’, Via dell'Istria 65/1, Trieste, 34137, TS, Italy
| | - Giorgia Girotto
- Institute for Maternal and Child Health—IRCCS ‘Burlo Garofolo’, Via dell'Istria 65/1, Trieste, 34137, TS, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazzale Europa 1, Trieste, 34137, TS, Italy
| | - Serena Sanna
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), c/o Cittadella Universitaria di Monserrato, SS554 Km 4500, Monserrato, 09042, CA, Italy
- Department of Genetics, University Medical Center Groningen, Hanzeplein 1, 97123 GZ, Groningen, The Netherlands
| |
Collapse
|
6
|
Das S, Konwar BK. Influence of connatural factors in shaping vaginal microflora and ensuring its health. Arch Gynecol Obstet 2024; 309:871-886. [PMID: 37676318 DOI: 10.1007/s00404-023-07200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Vaginal canal (VC) is exposed to the external environment affected by habitual factors like hygiene and sexual behaviour as well as physiological factors like puberty, menstrual cycle, pregnancy, child birth and menopause. Healthy VC harbours beneficial microflora supported by vaginal epithelium and cervical fluid. Connatural antimicrobial peptide (AMPs) of female reproductive tract (FRT) conjunctly with these beneficial microbes provide protection from a large number of infectious diseases. Such infections may either be caused by native microbes of the VC or transitory microbes like bacteria or virus which are not a part of VC microflora. This review highlight's the role of hormones, enzymes, innate immunological factors, epithelial cells and vaginal mucus that support beneficial microbes over infectious ones thus, helping to maintain homeostasis in VC and further protect the FRT. We also discuss the prospective use of vaginal probiotics and AMPs against pathogens which can serve as a potential cure for vaginal infections.
Collapse
Affiliation(s)
- Shreaya Das
- Department of MBBT, Tezpur University, Napaam, Assam, 784028, India.
| | - Bolin K Konwar
- Department of MBBT, Tezpur University, Napaam, Assam, 784028, India
| |
Collapse
|
7
|
Chu B, Liu Z, Liu Y, Jiang H. The Role of Advanced Parental Age in Reproductive Genetics. Reprod Sci 2023; 30:2907-2919. [PMID: 37171772 PMCID: PMC10556127 DOI: 10.1007/s43032-023-01256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
The increase of parental reproductive age is a worldwide trend in modern society in recent decades. In general, older parents have a significant impact on reproductive genetics and the health of offspring. In particular, advanced parental age contributes to the increase in the risk of adverse neurodevelopmental outcomes in offspring. However, it is currently under debate how and to what extent the health of future generations was affected by the parental age. In this review, we aimed to (i) provide an overview of the effects of age on the fertility and biology of the reproductive organs of the parents, (ii) highlight the candidate biological mechanisms underlying reproductive genetic alterations, and (iii) discuss the relevance of the effect of parental age on offspring between animal experiment and clinical observation. In addition, we think that the impact of environmental factors on cognitive and emotional development of older offspring will be an interesting direction.
Collapse
Affiliation(s)
- Boling Chu
- Department of Biobank, Suining Central Hospital, Suining, 629000, China
| | - Zhi Liu
- Department of Pathology, Suining Central Hospital, Suining, 629000, China
| | - Yihong Liu
- College of Humanities And Management, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Hui Jiang
- Department of Biobank, Suining Central Hospital, Suining, 629000, China.
| |
Collapse
|
8
|
Gill B, Schwecht I, Rahman N, Dhawan T, Verschoor C, Nazli A, Kaushic C. Metabolic signature for a dysbiotic microbiome in the female genital tract: A systematic review and meta-analysis. Am J Reprod Immunol 2023; 90:e13781. [PMID: 37766408 DOI: 10.1111/aji.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/06/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The vaginal microbiome (VMB) is a critical determinant of reproductive health, where a microbial shift towards a dysbiotic environment has implications for susceptibility to, and clinical presentation of sexually transmitted infections (STIs). Metabolomic profiling of the vaginal microenvironment has led to the identification of metabolic responses to clinical conditions of dysbiosis. However, no studies have examined metabolic markers that are common across conditions and can serve as a signature for vaginal dysbiosis. METHOD OF STUDY We have conducted a comprehensive systematic review and meta-analysis to identify consistently deregulated metabolites along with their impact on host and microbial metabolism during dysbiosis. We employed two complementary approaches including a vote counting analysis for all eligible studies identified in the systematic review, in addition to a meta-analysis for a subset of studies with sufficient available data. Significantly deregulated metabolites were then selected for pathway enrichment analysis. RESULTS Our results revealed a total of 502 altered metabolites reported across 10 dysbiotic conditions from 16 studies. Following a rigorous, collective analysis, six metabolites which were consistently downregulated and could be generalized to all dysbiotic conditions were identified. In addition, five downregulated and one upregulated metabolite was identified from a bacterial vaginosis (BV) focused sub-analysis. These metabolites have the potential to serve as a metabolic signature for vaginal dysbiosis. Their role in eight altered metabolic pathways indicates a disruption of amino acid, carbohydrate, and energy metabolism during dysbiosis. CONCLUSION Based on this analysis, we propose a schematic model outlining the common metabolic perturbations associated with vaginal dysbiosis, which can be potential targets for therapeutics and prophylaxis.
Collapse
Affiliation(s)
- Biban Gill
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Ingrid Schwecht
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Nuzhat Rahman
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Tushar Dhawan
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Chris Verschoor
- Health Sciences North Research Institute, Northern Ontario School of Medicine, Sudbury, ON, Canada
| | - Aisha Nazli
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
9
|
Ruiz-Durán S, Tenorio CM, Vico-Zúñiga I, Manzanares S, Puertas-Prieto A, Altmäe S, Vargas E. Microenvironment of the Lower Reproductive Tract: Focus on the Cervical Mucus Plug. Semin Reprod Med 2023; 41:200-208. [PMID: 38262442 DOI: 10.1055/s-0043-1778661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The female lower reproductive tract microbiota is a complex ecosystem comprising various microorganisms that play a pivotal role in maintaining women's reproductive well-being. During pregnancy, the vaginal microbiota undergoes dynamic changes that are important for a successful gestation. This review summarizes the implications of the cervical mucus plug microenvironment and its profound impact on reproductive health. Further, the symbiotic relationship between the vaginal microbiome and the cervical mucus plug is highlighted, with a special emphasis on how this natural barrier serves as a guardian against ascending infections. Understanding this complex host-microbes interplay could pave the way for innovative approaches to improve women's reproductive health and fertility.
Collapse
Affiliation(s)
- Susana Ruiz-Durán
- Department of Obstetrics and Gynaecology, Virgen de las Nieves University Hospital, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Celia M Tenorio
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Irene Vico-Zúñiga
- Department of Obstetrics and Gynaecology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Sebastián Manzanares
- Department of Obstetrics and Gynaecology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Alberto Puertas-Prieto
- Department of Obstetrics and Gynaecology, Virgen de las Nieves University Hospital, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Signe Altmäe
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Eva Vargas
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| |
Collapse
|
10
|
Barczyński B, Frąszczak K, Grywalska E, Kotarski J, Korona-Głowniak I. Vaginal and Cervical Microbiota Composition in Patients with Endometrial Cancer. Int J Mol Sci 2023; 24:ijms24098266. [PMID: 37175971 PMCID: PMC10179515 DOI: 10.3390/ijms24098266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
According to recent data, changes in the vaginal microbiota could affect the risk of gynaecological cancers. Women suffering from endometrial cancer present significant changes in cervicovaginal microbiota composition. The objective of our study was to characterize the cervicovaginal microbiota of women undergoing hysterectomy due to benign disease, atypical hyperplasia, and endometrial cancer; The study included 96 patients, who undergone surgical treatment due to benign uterine disease, precancerous endometrial lesion, and endometrial cancer. Quantitative and qualitative real-time PCR analysis of DNA isolated from vaginal fornix and endocervical canal samples was performed to detect the 19 most commonly identified microorganisms, including different Lactobacillus spp., Atopobium, Bifidobacterium, Chlamydia, and Gardnerella; At least one of the tested microorganisms was identified in 88.5% of vaginal and 83.3% of cervical samples. Lactobacillus iners was significantly more frequent in patients with benign condition, whereas Dialister pneumosintes and Mobiluncus curtisii was more frequent in cancer patients; Mobiluncus curtisi and Dialister pneumosintes, which were identified as significantly more common in endometrial cancer vaginal samples, may be considered as potential endometrial cancer co-factors which promote/stimulate carcinogenesis. However, the exact mechanism of such activity remains unexplained and requires further investigations.
Collapse
Affiliation(s)
- Bartłomiej Barczyński
- 1st Department of Oncological Gynaecology and Gynaecology, Medical University in Lublin, 20-081 Lublin, Poland
| | - Karolina Frąszczak
- 1st Department of Oncological Gynaecology and Gynaecology, Medical University in Lublin, 20-081 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University in Lublin, 20-093 Lublin, Poland
| | - Jan Kotarski
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University in Lublin, 20-093 Lublin, Poland
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University in Lublin, 20-093 Lublin, Poland
| |
Collapse
|
11
|
Pérez-López FR, Fernández-Alonso AM, Mezones-Holguín E, Vieira-Baptista P. Low genitourinary tract risks in women living with the human immunodeficiency virus. Climacteric 2023:1-7. [PMID: 37054721 DOI: 10.1080/13697137.2023.2194528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
This review analyzes the clinical associations between specific low genitourinary tract clinical circumstances in perimenopausal and postmenopausal women living with human immunodeficiency virus (WLHIV). Modern antiretroviral therapy (ART) improves survival and reduces opportunistic infections and HIV transmission. Despite appropriate ART, WLHIV may display menstrual dysfunction, risk of early menopause, vaginal microbiome alterations, vaginal dryness, dyspareunia, vasomotor symptoms and low sexual function as compared to women without the infection. They have increased risks of intraepithelial and invasive cervical, vaginal and vulvar cancers. The reduced immunity capacity may also increase the risk of urinary tract infections, side-effects or toxicity of ARTs, and opportunistic infections. Menstrual dysfunction and early menopause may contribute to the early onset of vascular atherosclerosis and plaque formation, and increased osteoporosis risks requiring specific early interventions. On the other hand, the association between being postmenopausal and having a low sexual function is significant and related to low adherence to ART. WLHIV deserve a specific approach to manage different low genitourinary risks and complications related to hormone dysfunction and early menopause.
Collapse
Affiliation(s)
- F R Pérez-López
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
- Obstetrics and Reproduction, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | | | - E Mezones-Holguín
- Centro de Estudios Económicos y Sociales en Salud, Universidad San Ignacio de Loyola, Lima, Perú
| | - P Vieira-Baptista
- Department of Gynecology-Obstetrics and Pediatrics, Hospital Lusíadas Porto, Porto, Portugal
- Lower Genital Tract Unit, Centro Hospitalar de São João, Porto, Portugal
- Department of Gynecology-Obstetrics and Pediatrics, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Armstrong E, Kaul R, Cohen CR. Optimizing the vaginal microbiome as a potential strategy to reduce heterosexual HIV transmission. J Intern Med 2023; 293:433-444. [PMID: 36544257 DOI: 10.1111/joim.13600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bacterial vaginosis (BV) is a proinflammatory genital condition characterized by high vaginal bacterial diversity and a paucity of Lactobacillus species. BV has been linked to an elevated risk of HIV acquisition among HIV-negative women and of forward HIV transmission to male sex partners among women living with HIV (adjusted hazard ratios of 1.69 and 3.17, respectively), potentially by eliciting genital inflammation in women with BV and their male sex partners. BV is also highly prevalent among women in sub-Saharan Africa, suggesting that BV treatment may have potential as an HIV prevention strategy. BV is typically treated with antibiotics but recurrence rates are high, possibly because treatment does not directly promote Lactobacillus growth. More recently, BV treatment strategies incorporating live biotherapeutic lactobacilli have led to sustained optimization of the vaginal microbiome and a decrease in inflammatory biomarkers previously associated with HIV susceptibility. Future studies are urgently needed to evaluate BV treatment strategies that can optimize the vaginal microbiome in the long term through colonization with H2 O2 -producing vaginal lactobacilli and to assess whether vaginal microbiota optimization is able to reduce the risk of HIV transmission.
Collapse
Affiliation(s)
- Eric Armstrong
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, University Health Network, Toronto, Canada
| | - Craig R Cohen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, USA
| |
Collapse
|
13
|
Nami Y, Haghshenas B, Javanmard A, Samari M, Mohammadi N, Oroojalian F, Mokhtarzadeh A. A critical review of the recent concept of artificial mechanical uterus design in relation to the maternal microbiome: An Update to past researches. J Reprod Immunol 2023; 156:103828. [PMID: 36796148 DOI: 10.1016/j.jri.2023.103828] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The microbiome in the female reproductive tract plays an essential role in immune modulation and reproductive health. However, various microbes become established during pregnancy, the balance of which plays a crucial role in embryonic development and healthy births. The contribution of disturbances in the microbiome profile to embryo health is poorly understood. A better understanding of the relationship between reproductive outcomes and the vaginal microbiota is needed to optimize the chances of healthy births. In this regards, microbiome dysbiosis refers to conditions in which the pathways of communication and balance within the normal microbiome are imbalanced due to the intrusion of pathogenic microorganisms into the reproductive system. This review summarizes the current state of knowledge on the natural human microbiome, with a focus on the natural uterine microbiome, mother-to-child transmission, dysbiosis, and the pattern of microbial change in pregnancy and parturition, and reviews the effects of artificial uterus probiotics during pregnancy. These effects can be studied in the sterile environment of an artificial uterus, and microbes with potential probiotic activity can be studied as a possible therapeutic approach. The artificial uterus is a technological device or biobag used as an incubator, allowing extracorporeal pregnancy. Establishing beneficial microbial communities within the artificial womb using probiotic species could modulate the immune system of both the fetus and the mother. The artificial womb could be used to select the best strains of probiotic species to fight infection with specific pathogens. Questions about the interactions and stability of the most appropriate probiotics, as well as dosage and duration of treatment, need to be answered before probiotics can be a clinical treatment in human pregnancy.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Arash Javanmard
- Animal Genetics and Breeding, Department of Animal Science, Faculty of Agriculture, University of Tabriz, 5166616471 Tabriz, East Azerbaijan, Iran
| | - Mahya Samari
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Nahid Mohammadi
- Animal Genetics and Breeding, Department of Animal Science, Faculty of Agriculture, University of Tabriz, 5166616471 Tabriz, East Azerbaijan, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Candel S, Tyrkalska SD, Pérez-Sanz F, Moreno-Docón A, Esteban Á, Cayuela ML, Mulero V. Analysis of 16S rRNA Gene Sequence of Nasopharyngeal Exudate Reveals Changes in Key Microbial Communities Associated with Aging. Int J Mol Sci 2023; 24:ijms24044127. [PMID: 36835535 PMCID: PMC9960676 DOI: 10.3390/ijms24044127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Functional or compositional perturbations of the microbiome can occur at different sites, of the body and this dysbiosis has been linked to various diseases. Changes in the nasopharyngeal microbiome are associated to patient's susceptibility to multiple viral infections, supporting the idea that the nasopharynx may be playing an important role in health and disease. Most studies on the nasopharyngeal microbiome have focused on a specific period in the lifespan, such as infancy or the old age, or have other limitations such as low sample size. Therefore, detailed studies analyzing the age- and sex-associated changes in the nasopharyngeal microbiome of healthy people across their whole life are essential to understand the relevance of the nasopharynx in the pathogenesis of multiple diseases, particularly viral infections. One hundred twenty nasopharyngeal samples from healthy subjects of all ages and both sexes were analyzed by 16S rRNA sequencing. Nasopharyngeal bacterial alpha diversity did not vary in any case between age or sex groups. Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were the predominant phyla in all the age groups, with several sex-associated. Acinetobacter, Brevundimonas, Dolosigranulum, Finegoldia, Haemophilus, Leptotrichia, Moraxella, Peptoniphilus, Pseudomonas, Rothia, and Staphylococcus were the only 11 bacterial genera that presented significant age-associated differences. Other bacterial genera such as Anaerococcus, Burkholderia, Campylobacter, Delftia, Prevotella, Neisseria, Propionibacterium, Streptococcus, Ralstonia, Sphingomonas, and Corynebacterium appeared in the population with a very high frequency, suggesting that their presence might be biologically relevant. Therefore, in contrast to other anatomical areas such as the gut, bacterial diversity in the nasopharynx of healthy subjects remains stable and resistant to perturbations throughout the whole life and in both sexes. Age-associated abundance changes were observed at phylum, family, and genus levels, as well as several sex-associated changes probably due to the different levels of sex hormones present in both sexes at certain ages. Our results provide a complete and valuable dataset that will be useful for future research aiming for studying the relationship between changes in the nasopharyngeal microbiome and susceptibility to or severity of multiple diseases.
Collapse
Affiliation(s)
- Sergio Candel
- Grupo de Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (S.C.); (V.M.)
| | - Sylwia D. Tyrkalska
- Grupo de Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Fernando Pérez-Sanz
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
| | - Antonio Moreno-Docón
- Servicio de Microbiología, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Grupo de Telomerasa, Cáncer y Envejecimiento, Servicio de Cirugía, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Ángel Esteban
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
| | - María L. Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Victoriano Mulero
- Grupo de Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (S.C.); (V.M.)
| |
Collapse
|
15
|
An Integrative Review of the Relationship Between Intrauterine Devices and Bacterial Vaginosis. Nurs Womens Health 2023; 27:141-151. [PMID: 36803608 DOI: 10.1016/j.nwh.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/19/2022] [Indexed: 02/20/2023]
Abstract
OBJECTIVE To examine the relationship between intrauterine devices (IUDs) and bacterial vaginosis (BV) through an integrative review of the current literature. DATA SOURCES CINAHL, MEDLINE, Health Source, Evidence-Based Medicine's Cochrane Central Registry of Controlled Trials, Embase, and Web of Science databases were searched. STUDY SELECTION Cross-sectional, case-control, cohort, quasi-experimental, and randomized controlled trials examining copper (Cu-IUD) and levonorgestrel (LNG-IUD) use in reproductive- age users with BV occurrence confirmed with Amsel's criteria or Nugent scoring were included. Articles included were published in the past 10 years. DATA EXTRACTION Fifteen studies met criteria, after an initial search identified 1,140 potential titles, and two reviewers assessed 62 full-text articles for inclusion. DATA SYNTHESIS Data were categorized into three groups: retrospective descriptive cross-sectional studies identifying point prevalence of BV among IUD users; prospective analytic studies examining BV incidence and prevalence among Cu-IUD users; and prospective analytic studies examining BV incidence and prevalence among LNG-IUD users. CONCLUSION Synthesis and comparison of studies were difficult because of disparate study designs, sample sizes, comparator groups, and inclusion criteria for individual studies. Synthesis of data from cross-sectional studies showed that all IUD users combined may have an increased point prevalence of BV compared with non-IUD users. These studies did not delineate LNG-IUDs from Cu-IUDs. Findings from cohort and experimental studies suggest a possible increase in BV occurrence among Cu-IUD users. Evidence is lacking to show an association between LNG-IUD use and BV.
Collapse
|
16
|
Karim QA, Archary D, Barré-Sinoussi F, Broliden K, Cabrera C, Chiodi F, Fidler SJ, Gengiah TN, Herrera C, Kharsany ABM, Liebenberg LJP, Mahomed S, Menu E, Moog C, Scarlatti G, Seddiki N, Sivro A, Cavarelli M. Women for science and science for women: Gaps, challenges and opportunities towards optimizing pre-exposure prophylaxis for HIV-1 prevention. Front Immunol 2022; 13:1055042. [PMID: 36561760 PMCID: PMC9763292 DOI: 10.3389/fimmu.2022.1055042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Preventing new HIV infections remains a global challenge. Young women continue to bear a disproportionate burden of infection. Oral pre-exposure prophylaxis (PrEP), offers a novel women-initiated prevention technology and PrEP trials completed to date underscore the importance of their inclusion early in trials evaluating new HIV PrEP technologies. Data from completed topical and systemic PrEP trials highlight the role of gender specific physiological and social factors that impact PrEP uptake, adherence and efficacy. Here we review the past and current developments of HIV-1 prevention options for women with special focus on PrEP considering the diverse factors that can impact PrEP efficacy. Furthermore, we highlight the importance of inclusion of female scientists, clinicians, and community advocates in scientific efforts to further improve HIV prevention strategies.
Collapse
Affiliation(s)
- Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Kristina Broliden
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sarah J. Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London UK and Imperial College NIHR BRC, London, United Kingdom
| | - Tanuja N. Gengiah
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Carolina Herrera
- Department of Infectious Disease, Section of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ayesha B. M. Kharsany
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Lenine J. P. Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Elisabeth Menu
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
- MISTIC Group, Department of Virology, Institut Pasteur, Paris, France
| | - Christiane Moog
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nabila Seddiki
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| |
Collapse
|
17
|
Vento KA, Koskan A, Lynch H, Kavouras S, Johnston C, Wardenaar FC. Effect of increased water intake on uropathogenic bacterial activity of underhydrated menstruating young adult women: A randomized crossover trial. Nutr Health 2022:2601060221129159. [PMID: 36221988 DOI: 10.1177/02601060221129159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Females are prone to urinary tract infections (UTIs) due to estrogen fluctuations affecting vaginal flora. While menstruating, increased fluid consumption to support urination frequency and void volume may be important, as the urethra and urinary tract are more predisposed to bacteria, particularly UTI pathogens. Aim: This study aimed to investigate the impact of hydration on urinary tract health during menstruation among underhydrated premenopausal women. Methods: Thirteen females participated in a 60-day 2 × 2 randomized crossover trial to evaluate the effectiveness of consuming ≥2.2 L of total beverage fluid intake, with 1.9 L being water, (intervention, INT) and maintaining habitual fluid intake (control, CON) on two subsequent menses. Participants completed fluid and urination diaries at days 2 and 5 after the onset of bleeding (day 1) to determine the fluid amount consumed and urination frequency. Urine concentration was assessed in afternoon (days 2 and 5) and uropathogenic bacterial activity in first-morning (days 3 and 6) urinations. General linear models assessed differences in bacterial and hydration outcomes. Results: The intervention led to a 62% mean total fluid increase, INT 3.0 ± 1.1 L and CON 1.9 ± 0.9 L, p < 0.001, η 2 = 0.459. Urination frequency was greater and urine concentration less in the INT to CON, all ps < 0.05, η 2 range = 0.023-0.019. Only four cultures detected uropathogenic bacteria, with no patterns between conditions or days, making it difficult to determine the intervention's effectiveness. Conclusion: Fluid intake increased, and hydration status improved. No differences in uropathogenic bacterial activity were seen between the hydration and control conditions.
Collapse
Affiliation(s)
- Kaila A Vento
- 465849College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Alexis Koskan
- 465849College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Heidi Lynch
- College of Health Sciences, 7116Point Loma Nazarene University, San Diego, CA, USA
| | - Stavros Kavouras
- 465849College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Carol Johnston
- 465849College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Floris C Wardenaar
- 465849College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| |
Collapse
|
18
|
Matar G, Bilen M. Culturomics, a potential approach paving the way toward bacteriotherapy. Curr Opin Microbiol 2022; 69:102194. [PMID: 35994842 DOI: 10.1016/j.mib.2022.102194] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022]
Abstract
The human microbiota has been extensively studied over the past decade to describe its role in health and diseases. Numerous studies showed the presence of bacterial imbalance in a variety of human health conditions, suggesting great potential for the development of bacteriotherapies. Identifying mechanisms involving the human microbiota has been very challenging due to the complex data generated by molecular approaches and the limited number of organisms isolated by culture and described. This review summarizes the efforts done to describe the human microbiota through culturomics and the advancements in culturing the organisms residing at different body sites.
Collapse
Affiliation(s)
- Ghassan Matar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Melhem Bilen
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Gholiof M, Adamson-De Luca E, Wessels JM. The female reproductive tract microbiotas, inflammation, and gynecological conditions. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:963752. [PMID: 36303679 PMCID: PMC9580710 DOI: 10.3389/frph.2022.963752] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
The intricate interactions between the host cells, bacteria, and immune components that reside in the female reproductive tract (FRT) are essential in maintaining reproductive tract homeostasis. Much of our current knowledge surrounding the FRT microbiota relates to the vaginal microbiota, where ‘health’ has long been associated with low bacterial diversity and Lactobacillus dominance. This concept has recently been challenged as women can have a diverse vaginal microbial composition in the absence of symptomatic disease. The structures of the upper FRT (the endocervix, uterus, Fallopian tubes, and ovaries) have distinct, lower biomass microbiotas than the vagina; however, the existence of permanent microbiotas at these sites is disputed. During homeostasis, a balance exists between the FRT bacteria and the immune system that maintains immune quiescence. Alterations in the bacteria, immune system, or local environment may result in perturbances to the FRT microbiota, defined as dysbiosis. The inflammatory signature of a perturbed or “dysbiotic” FRT microbiota is characterized by elevated concentrations of pro-inflammatory cytokines in cervical and vaginal fluid. It appears that vaginal homeostasis can be disrupted by two different mechanisms: first, a shift toward increased bacterial diversity can trigger vaginal inflammation, and second, local immunity is altered in some manner, which disrupts the microbiota in response to an environmental change. FRT dysbiosis can have negative effects on reproductive health. This review will examine the increasing evidence for the involvement of the FRT microbiotas and inflammation in gynecologic conditions such as endometriosis, infertility, and endometrial and ovarian cancer; however, the precise mechanisms by which bacteria are involved in these conditions remains speculative at present. While only in their infancy, the use of antibiotics and probiotics to therapeutically alter the FRT microbiota is being studied and is discussed herein. Our current understanding of the intimate relationship between immunity and the FRT microbiota is in its early days, and more research is needed to deepen our mechanistic understanding of this relationship and to assess how our present knowledge can be harnessed to assist in diagnosis and treatment of gynecologic conditions.
Collapse
Affiliation(s)
- Mahsa Gholiof
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Emma Adamson-De Luca
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
- AIMA Laboratories Inc., Hamilton, ON, Canada
| | - Jocelyn M. Wessels
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
- AIMA Laboratories Inc., Hamilton, ON, Canada
- *Correspondence: Jocelyn M. Wessels
| |
Collapse
|
20
|
Radzey N, Harryparsad R, Meyer B, Chen PL, Gao X, Morrison C, Taku O, Williamson A, Mehou‐Loko C, Lefebvre d'Hellencourt F, Buck G, Smit J, Strauss J, Nanda K, Ahmed K, Beksinska M, Serrano M, Bailey V, Masson L, Deese J. Genital inflammatory status and the innate immune response to contraceptive initiation. Am J Reprod Immunol 2022; 88:e13542. [PMID: 35394678 PMCID: PMC10909525 DOI: 10.1111/aji.13542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
PROBLEM Data on the effects of contraceptives on female genital tract (FGT) immune mediators are inconsistent, possibly in part due to pre-existing conditions that influence immune mediator changes in response to contraceptive initiation. METHODS This study included 161 South African women randomised to injectable depot medroxyprogesterone acetate (DMPA-IM), copper intrauterine device (IUD), or levonorgestrel (LNG) implant in the Evidence for Contraceptive Options and HIV Outcomes (ECHO) trial. We measured thirteen cytokines and antimicrobial peptides previously associated with HIV acquisition in vaginal swabs using Luminex and ELISA, before, and at 1 and 3 months after contraceptive initiation. Women were grouped according to an overall baseline inflammatory profile. We evaluated modification of the relationships between contraceptives and immune mediators by baseline inflammation, demographic, and clinical factors. RESULTS Overall, LNG implant and copper IUD initiation were associated with increases in inflammatory cytokines, while no changes were observed following DMPA-IM initiation. However, when stratifying by baseline inflammatory profile, women with low baseline inflammation in all groups experienced significant increases in inflammatory cytokines, while those with a high baseline inflammatory profile experienced no change or decreases in inflammatory cytokines. CONCLUSION We conclude that pre-contraceptive initiation immune profile modifies the effect of contraceptives on the FGT innate immune response.
Collapse
Affiliation(s)
- Nina Radzey
- Institute of Infectious Disease and Molecular Medicine (IDM)University of Cape TownCape TownSouth Africa
| | - Rushil Harryparsad
- Institute of Infectious Disease and Molecular Medicine (IDM)University of Cape TownCape TownSouth Africa
| | - Bahiah Meyer
- Institute of Infectious Disease and Molecular Medicine (IDM)University of Cape TownCape TownSouth Africa
| | | | | | | | - Ongeziwe Taku
- Institute of Infectious Disease and Molecular Medicine (IDM)University of Cape TownCape TownSouth Africa
| | - Anna‐Lise Williamson
- Institute of Infectious Disease and Molecular Medicine (IDM)University of Cape TownCape TownSouth Africa
| | - Celia Mehou‐Loko
- Institute of Infectious Disease and Molecular Medicine (IDM)University of Cape TownCape TownSouth Africa
| | | | - Gregory Buck
- Virginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jennifer Smit
- MatCH Research Unit (MRU), Department of Obstetrics and GynaecologyUniversity of the WitwatersrandDurbanSouth Africa
| | | | | | - Khatija Ahmed
- Setshaba Research CentreTshwaneSouth Africa
- Department of Medical MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Mags Beksinska
- MatCH Research Unit (MRU), Department of Obstetrics and GynaecologyUniversity of the WitwatersrandDurbanSouth Africa
| | | | | | - Lindi Masson
- Institute of Infectious Disease and Molecular Medicine (IDM)University of Cape TownCape TownSouth Africa
- Disease Elimination Program, Life Sciences DisciplineBurnet InstituteMelbourneAustralia
- Centre for the AIDS Programme of Research in South AfricaDurbanSouth Africa
- Central Clinical SchoolMonash UniversityMelbourneAustralia
| | - Jennifer Deese
- RTI InternationalResearch Triangle ParkNorth CarolinaUSA
| |
Collapse
|
21
|
Shen L, Zhang W, Yuan Y, Zhu W, Shang A. Vaginal microecological characteristics of women in different physiological and pathological period. Front Cell Infect Microbiol 2022; 12:959793. [PMID: 35937699 PMCID: PMC9354832 DOI: 10.3389/fcimb.2022.959793] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
The vaginal microbiota, the host endocrine system, the vaginal anatomy, and the local mucosal immunity comprise the vaginal microbiota, which interacts with each other to maintain the balance of the vaginal microbiota, which maintains female reproductive health. Puberty, menstruation, pregnancy, and menopause are four phases women go through during their reproductive and post-reproductive years. Vaginal microbiota composition and abundance are heavily influenced by estrogen and progesterone, which start at puberty and continue during the reproductive years in a dynamic balance with some fluctuations. Estrogen promotes proliferation of vaginal epithelial cells and increases glycogen storage, while progesterone lyses vaginal epithelial cells, facilitating the release of glycogen to maintain normal pH. This review summarizes the latest national and international evidence on the composition and distribution of vaginal microecology in women during different physiological and pathological periods and proposes a hormone-driven microbial diversity hypothesis to explain the temporal patterns of vaginal microbial diversity during the female reproductive cycle and menopause. A relatively balanced vaginal microecological system has a positive effect on the maintenance of female health. An imbalance in the ratio of flora can lead to susceptibility to infections or reproductive complications. The study of human microecology and its role in the development and progression of human disease is essential for the prevention, diagnosis, and treatment of related obstetric and gynecologic conditions.
Collapse
Affiliation(s)
- Liping Shen
- Department of Obstetrics and Gynecology, Changning Maternity & Infant Health Hospital, Shanghai, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Zhang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Laboratory Medicine, Jiaozuo Fifth People’s Hospital, Jiaozuo, China
| | - Yi Yuan
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weipei Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Anquan Shang, ; Weipei Zhu,
| | - Anquan Shang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Anquan Shang, ; Weipei Zhu,
| |
Collapse
|
22
|
Vickram S, Rohini K, Anbarasu K, Dey N, Jeyanthi P, Thanigaivel S, Issac PK, Arockiaraj J. Semenogelin, a coagulum macromolecule monitoring factor involved in the first step of fertilization: A prospective review. Int J Biol Macromol 2022; 209:951-962. [PMID: 35447263 DOI: 10.1016/j.ijbiomac.2022.04.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
Abstract
Human male infertility affects approximately 1/10 couples worldwide, and its prevalence is found more in developed countries. Along with sperm cells, the secretions of the prostate, seminal vesicle and epididymis plays a major role in proper fertilization. Many studies have proven the functions of seminal vesicle secretions, especially semenogelin protein, as an optimiser for fertilization. Semenogelin provides the structural components for coagulum formation after ejaculation. It binds with eppin and is found to have major functions like motility of sperm, transporting the sperm safely in the immune rich female reproductive tract until the sperm cells reach the egg intact. The capacitation process is essential for proper fertilization and semenogelin involved in mediating capacitation in time. Also, it has control of events towards the first step in the fertilization process. It is a Zn ions binding protein, and Zn ions act as a cofactor that helps in the proper motility of sperm cells. Therefore, any imbalance in protein that automatically affect sperm physiology and fertility status. This review sheds a comprehensive and critical view on the significant functions of semenogelin in fertilization. This review can open up advanced proteomics research on semenogelin towards unravelling molecular mechanisms in fertilization.
Collapse
Affiliation(s)
- Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Karunakaran Rohini
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Krishnan Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Nibedita Dey
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Palanivelu Jeyanthi
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600 062, Tamil Nadu, India
| | - Sundaram Thanigaivel
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
23
|
Bagri P, Anipindi VC, Kaushic C. The Role of IL-17 During Infections in the Female Reproductive Tract. Front Immunol 2022; 13:861444. [PMID: 35493460 PMCID: PMC9046847 DOI: 10.3389/fimmu.2022.861444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/22/2022] [Indexed: 11/15/2022] Open
Abstract
Interleukin-17 (IL-17A) is a cytokine involved in a complex array of both protective and detrimental processes. Although early biological studies focused on the pro-inflammatory function of IL-17 in the context of autoimmune and inflammatory disorders, it has become increasingly evident that the roles of IL-17 are far more nuanced. Recent work has demonstrated that the functions of IL-17 are highly context- and tissue-dependent, and there is a fine balance between the pathogenic and protective functions of IL-17. This is especially evident in mucosal tissues such as the female reproductive tract, where IL-17 has been shown to play an important role in the immune response generated during fungal, bacterial and viral infections associated with protection, but also with inflammation. In this review, we discuss the evolving landscape of IL-17 biology within the context of the vaginal mucosa, focusing on key findings that highlight the importance of this cytokine in genital mucosal immunity.
Collapse
Affiliation(s)
- Puja Bagri
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Varun C. Anipindi
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- *Correspondence: Charu Kaushic,
| |
Collapse
|
24
|
Sherrill-Mix S, Yang M, Aldrovandi GM, Brenchley JM, Bushman FD, Collman RG, Dandekar S, Klatt NR, Lagenaur LA, Landay AL, Paredes R, Tachedjian G, Turpin JA, Serrano-Villar S, Lozupone CA, Ghosh M. A Summary of the Sixth International Workshop on Microbiome in HIV Pathogenesis, Prevention, and Treatment. AIDS Res Hum Retroviruses 2022; 38:173-180. [PMID: 34969255 PMCID: PMC9009592 DOI: 10.1089/aid.2021.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In October of 2020, researchers from around the world met online for the sixth annual International Workshop on Microbiome in HIV Pathogenesis, Prevention, and Treatment. New research was presented on the roles of the microbiome on immune response and HIV transmission and pathogenesis and the potential for alterations in the microbiome to decrease transmission and affect comorbidities. This article presents a summary of the findings reported.
Collapse
Affiliation(s)
- Scott Sherrill-Mix
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Address correspondence to: Scott Sherrill-Mix, Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 424 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Michelle Yang
- Department of Epidemiology, The George Washington University, Washington, District of Columbia, USA
| | - Grace M. Aldrovandi
- Department of Pediatrics, University of California, Los Angeles, California, USA
| | | | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Nichole R. Klatt
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Alan L. Landay
- Division of Gerontology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Roger Paredes
- Institut de Recerca de la SIDA IrsiCaixa i Unitat VIH, Universitat Autònoma de Barcelona, Universitat de Vic, Catalonia, Spain
| | | | - Jim A. Turpin
- Divison of AIDS, NIAID, NIH, Bethesda, Maryland, USA
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | | | - Mimi Ghosh
- Department of Epidemiology, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
25
|
Gressel GM, Usyk M, Frimer M, Kuo DYS, Burk RD. Characterization of the endometrial, cervicovaginal and anorectal microbiota in post-menopausal women with endometrioid and serous endometrial cancers. PLoS One 2021; 16:e0259188. [PMID: 34739493 PMCID: PMC8570463 DOI: 10.1371/journal.pone.0259188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 10/14/2021] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To characterize the microbiota of postmenopausal women undergoing hysterectomy for endometrioid (EAC) or uterine serous cancers (USC) compared to controls with non-malignant conditions. METHODS Endometrial, cervicovaginal and anorectal microbial swabs were obtained from 35 postmenopausal women (10 controls, 14 EAC and 11 USC) undergoing hysterectomy. Extracted DNA was PCR amplified using barcoded 16S rRNA gene V4 primers. Sequenced libraries were processed using QIIME2. Phyloseq was used to calculate α- and β- diversity measures. Biomarkers associated with case status were identified using ANCOM after adjustment for patient age, race and BMI. PICRUSt was used to identify microbial pathways associated with case status. RESULTS Beta-diversity of microbial communities across each niche was significantly different (R2 = 0.25, p < 0.001). Alpha-diversity of the uterine microbiome was reduced in USC (Chao1, p = 0.004 and Fisher, p = 0.007) compared to EAC. Biomarkers from the three anatomical sites allowed samples to be clustered into two distinct clades that distinguished controls from USC cases (p = 0.042). The USC group was defined by 13 bacterial taxa across the three sites (W-stat>10, FDR<0.05) including depletion of cervicovaginal Lactobacillus and elevation of uterine Pseudomonas. PICRUSTt analysis revealed highly significant differences between the USC-associated clades within the cervicovaginal and uterine microbiota. CONCLUSIONS The microbial diversity of anatomic niches in postmenopausal women with EAC and USC is different compared to controls. Multiple bacteria are associated with USC case status including elevated levels of cervicovaginal Lactobacillus, depletion of uterine Pseudomonas, and substantially different functional potentials identified within cervicovaginal and uterine niches.
Collapse
Affiliation(s)
- Gregory M. Gressel
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States of America
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Mykhaylo Usyk
- Department of Pediatrics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States of America
| | - Marina Frimer
- Department of Obstetrics & Gynecology, Karches Center for Oncology Research, Feinstein Institutes at Northwell Health, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
| | - D. Y. S. Kuo
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States of America
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Robert D. Burk
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States of America
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Pediatrics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States of America
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, United States of America
| |
Collapse
|
26
|
Primary HSV-2 Infection in Early Pregnancy Results in Transplacental Viral Transmission and Dose-Dependent Adverse Pregnancy Outcomes in a Novel Mouse Model. Viruses 2021; 13:v13101929. [PMID: 34696359 PMCID: PMC8538385 DOI: 10.3390/v13101929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) infection affects 24 million births annually and is associated with adverse pregnancy outcomes, including neonatal herpes; however, the mechanisms underlying in utero transmission of HSV-2 are largely unknown. We examined the effects of primary HSV-2 infection during early pregnancy on gestational outcomes in a novel, clinically relevant mouse model. Pregnant C57BL/6 mice were infected intravaginally with 102–105 pfu/mL HSV-2 on gestation day (gd) 4.5. Controls were infected, nonpregnant, diestrus-staged mice and pregnant, uninfected mice. Compared to nonpregnant mice, pregnant mice were 100-fold more susceptible to HSV-2 infection. Three days post-inoculation (gd7.5), viral DNA was present in implantation sites, but pregnancy outcomes were largely unaffected by infection. Eight days post-inoculation (gd12.5), HSV-2 DNA persisted in placental tissues, resulting in inflammation and hemorrhage. Fetal and placental weights were reduced and fetal loss was observed with high viral doses. HSV-2 DNA and increased expression of pro-inflammatory mediators were detected in fetal tissues at gd12.5, signifying viral transmission and fetal infection, even with low viral doses. This mouse model shows a dose-dependent effect of primary HSV-2 infection on pregnancy outcomes and suggests that fetal loss may occur due to placental inflammation, thus providing valuable insight into in utero transmission of HSV-2.
Collapse
|
27
|
Astronomo RD, Lemos MP, Narpala SR, Czartoski J, Fleming LB, Seaton KE, Prabhakaran M, Huang Y, Lu Y, Westerberg K, Zhang L, Gross MK, Hural J, Tieu HV, Baden LR, Hammer S, Frank I, Ochsenbauer C, Grunenberg N, Ledgerwood JE, Mayer K, Tomaras G, McDermott AB, McElrath MJ. Rectal tissue and vaginal tissue from intravenous VRC01 recipients show protection against ex vivo HIV-1 challenge. J Clin Invest 2021; 131:e146975. [PMID: 34166231 DOI: 10.1172/jci146975] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
BackgroundVRC01, a potent, broadly neutralizing monoclonal antibody, inhibits simian-HIV infection in animal models. The HVTN 104 study assessed the safety and pharmacokinetics of VRC01 in humans. We extend the clinical evaluation to determine intravenously infused VRC01 distribution and protective function at mucosal sites of HIV-1 entry.MethodsHealthy, HIV-1-uninfected men (n = 7) and women (n = 5) receiving VRC01 every 2 months provided mucosal and serum samples once, 4-13 days after infusion. Eleven male and 8 female HIV-seronegative volunteers provided untreated control samples. VRC01 levels were measured in serum, secretions, and tissue, and HIV-1 inhibition was determined in tissue explants.ResultsMedian VRC01 levels were quantifiable in serum (96.2 μg/mL or 1.3 pg/ng protein), rectal tissue (0.11 pg/ng protein), rectal secretions (0.13 pg/ng protein), vaginal tissue (0.1 pg/ng protein), and cervical secretions (0.44 pg/ng protein) from all recipients. VRC01/IgG ratios in male serum correlated with those in paired rectal tissue (r = 0.893, P = 0.012) and rectal secretions (r = 0.9643, P = 0.003). Ex vivo HIV-1Bal26 challenge infected 4 of 21 rectal explants from VRC01 recipients versus 20 of 22 from controls (P = 0.005); HIV-1Du422.1 infected 20 of 21 rectal explants from VRC01 recipients and 12 of 12 from controls (P = 0.639). HIV-1Bal26 infected 0 of 14 vaginal explants of VRC01 recipients compared with 23 of 28 control explants (P = 0.003).ConclusionIntravenous VRC01 distributes into the female genital and male rectal mucosa and retains anti-HIV-1 functionality, inhibiting a highly neutralization-sensitive but not a highly resistant HIV-1 strain in mucosal tissue. These findings lend insight into VRC01 mucosal infiltration and provide perspective on in vivo protective efficacy.FundingNational Institute of Allergy and Infectious Diseases and Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Rena D Astronomo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Maria P Lemos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sandeep R Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Julie Czartoski
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lamar Ballweber Fleming
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kelly E Seaton
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yiwen Lu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Katharine Westerberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lily Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Mary K Gross
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Lindsey R Baden
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Hammer
- Columbia University Medical Center, New York, New York, USA
| | - Ian Frank
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Nicole Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | - Georgia Tomaras
- Department of Surgery, Duke University, Durham, North Carolina, USA.,Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
28
|
Ayele H, Perner M, McKinnon LR, Birse K, Farr Zuend C, Burgener A. An updated review on the effects of depot medroxyprogesterone acetate on the mucosal biology of the female genital tract. Am J Reprod Immunol 2021; 86:e13455. [PMID: 33991137 PMCID: PMC8459266 DOI: 10.1111/aji.13455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022] Open
Abstract
Background Access to safe, effective, and affordable contraception is important for women’s health and essential to mitigate maternal and fetal mortality rates. The progestin‐based contraceptive depot medroxyprogesterone acetate (DMPA) is a popular contraceptive choice with a low failure rate and convenient administration schedule. Aim In this review, we compiled observational data from human cohorts that examine how DMPA influences the mucosal biology of the female genital tract (FGT) that are essential in maintaining vaginal health, including resident immune cells, pro‐inflammatory cytokines, epithelial barrier function, and the vaginal microbiome Materials and Methods This review focused on the recent published literature published in 2019 and 2020. Results Recent longitudinal studies show that DMPA use associates with an immunosuppressive phenotype, increase in CD4+CCR5+ T cells, and alterations to growth factors. In agreement with previous meta‐analyses, DMPA use is associated with minimal effects of the composition of the vaginal microbiome. Cross‐sectional studies associate a more pro‐inflammatory relationship with DMPA, but these studies are confounded by inherent weaknesses of cross‐sectional studies, including differences in study group sizes, behaviors, and other variables that may affect genital inflammation. Discussion & Conclusion These recent results indicate that the interactions between DMPA and the vaginal mucosa are complex emphasizing the need for comprehensive longitudinal studies that take into consideration the measurement of multiple biological parameters.
Collapse
Affiliation(s)
- Hossaena Ayele
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michelle Perner
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lyle R McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kenzie Birse
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christina Farr Zuend
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - Adam Burgener
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, Manitoba, Canada.,Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Solna, Sweden
| |
Collapse
|
29
|
Bastianelli C, Farris M, Bianchi P, Benagiano G. The effect of different contraceptive methods on the vaginal microbiome. Expert Rev Clin Pharmacol 2021; 14:821-836. [PMID: 33863265 DOI: 10.1080/17512433.2021.1917373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Following a historical overview, the effect of different contraceptive methods on vaginal microbiome has been reviewed and summarized.Areas covered: Effects of combined hormonal contraceptives (oral or vaginal) and of progestin only (injectable and implantable), intrauterine devices/systems (copper- or levonorgestrel-releasing), on vaginal microbiome. In addition, mention is made of vaginal rings releasing antiviral drugs and lactic acid.Expert opinion: The vaginal microbiota (VM) is unique in that it is normally dominated by Lactobacillus species providing a degree of protection against infections; this however may vary, depending on the species and strains of Lactobacillus. Bacterial Vaginosis represents the most common dysbiosis of the VM and its prevalence can be influenced by use of contraception. Available evidence indicates that, under the influence of oral or systemically administered female sex hormones, there is apromotion of vaginal eubiosis, with aprevalence of ahealthy VM in which Lactobacilli predominate.
Collapse
Affiliation(s)
- Carlo Bastianelli
- Department of Maternal & Child Health, Gynecology and Urology, Sapienza, University of Rome, Rome, Italy
| | - Manuela Farris
- Department of Maternal & Child Health, Gynecology and Urology, Sapienza, University of Rome, Rome, Italy.,Italian Association for Demographic Education, AIED, Rome, Italy
| | - Paola Bianchi
- Department of Medico-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Giuseppe Benagiano
- Department of Maternal & Child Health, Gynecology and Urology, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
30
|
Hu T, Wei Z, Ju Q, Chen W. Sexualhormone und Akne: Aktueller Stand. J Dtsch Dermatol Ges 2021; 19:509-516. [PMID: 33861017 DOI: 10.1111/ddg.14426_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/10/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Tingting Hu
- Abteilung Dermatologie, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Ziyu Wei
- Abteilung Dermatologie, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Qiang Ju
- Abteilung Dermatologie, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - WenChieh Chen
- Abteilung Dermatologie und Allergologie, Technische Universität München, München, Germany
| |
Collapse
|
31
|
Zhao H, Zhao L, Wu F, Shen L. Clinical research on traditional Chinese medicine treatment for bacterial vaginosis. Phytother Res 2021; 35:4943-4956. [PMID: 33860974 DOI: 10.1002/ptr.7123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/01/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Bacterial vaginosis (BV) is a common disease among women of reproductive age, with a serious impact on their daily life and health. At present, the most common treatment for BV is to take antibiotics, which results in good short-term treatment effects, but poor long-term effects. Traditional Chinese medicine (TCM) has been used to treat BV for over a millennium, with little risk of triggering drug resistance and adverse effects. Based on syndrome differentiation, there are three oral TCM treatment strategies for BV, including invigorating spleen, clearing dampness and heat, and nourishing kidney. The oral TCM prescriptions, such as Yi Huang decoction, Longdan Xiegan decoction, Zhibai Dihaung decoction, and so on are commonly used. Topical TCM treatment is also popular in China. According to the research results of pharmacological effects of active TCM ingredients, the most potential mechanisms of TCM for BV treatment are immune-enhancement effects, antibacterial activity, and estrogen-liked effects. Nonetheless, the multi-constituent of herbs may result in possible disadvantages to BV treatment, and the pharmacological mechanisms of TCM need further study. Here, we provide an overview of TCM compounds and their preparations used for BV, based on the pathogenesis and the potential therapeutic mechanisms, therefore providing a reference for further studies.
Collapse
Affiliation(s)
- Haiyue Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
32
|
Zhang Y, Liu T, Lin J, Yu F, Hu Z. STROBE-sequencing analysis of the vaginal microecology of 4- to 6-year-old girls in Southwest China. Medicine (Baltimore) 2021; 100:e25362. [PMID: 33787640 PMCID: PMC8021340 DOI: 10.1097/md.0000000000025362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/11/2021] [Indexed: 01/04/2023] Open
Abstract
We investigated the vaginal flora diversity of preschool-aged (ie, 4-6-year-old) girls in southwest China.Fourteen preschool-aged girls were enrolled in this study. The statuses and differences in their vaginal flora were evaluated by Gram staining, bacterial culturing, and sequencing analysis.Gram staining and microbial culturing showed that the main vaginal flora of the preschool-aged girls were Gram-negative bacilli, whereas the main vaginal flora of healthy adult controls were large Gram-positive bacilli such as Lactobacillus crispatus. Shannon and Simpson indexes indicated that the bacterial diversity tended to decrease with age. The species abundance heat map showed that the vaginal microecology of the girls differed slightly at different ages but mainly comprised Pseudomonas, Methylobacterium, Sphingomona,s and Escherichia. The functional abundance heat map indicated that the bacterial functions increased with age.The vaginal microecology of preschool-aged girls differs from that of adults. A comprehensive understanding of the vaginal flora diversity of preschool-aged girls will aid in clinically diagnosing vulvovaginitis in preschool-aged girls.
Collapse
Affiliation(s)
- Yiduo Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jingying Lin
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Fan Yu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Zhengqiang Hu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Balmaganbetova FK, Amanzholkyzy A, Nurgaliyeva RE, Kaldybayeva AT, Zhexenova AN. Comparative Analysis of Vaginal Microbiota in Women with Breast Cancer in Kazakhstan. Asian Pac J Cancer Prev 2021; 22:1313-1318. [PMID: 33906327 PMCID: PMC8325121 DOI: 10.31557/apjcp.2021.22.4.1313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/22/2021] [Indexed: 12/02/2022] Open
Abstract
OBJECT The relevance of the article is that the breast cancer is a leading oncological disease in women in developed countries and has the highest mortality caused by malignant neoplasms in women. The purpose of the study is to evaluate vaginal microbiota in women with various breast cancer subtypes and compared groups. METHODS The study involved 278 women with breast cancer, of whom 174 were patients receiving combination therapy; the control group consisted of 104 patients who had had breast cancer 2-4 years ago. RESULTS It was found that despite a significant decrease in the total number of Lactobacillus spp., there were no statistically significant changes in the numbers of microorganisms in patients with different subtypes of breast cancer. According to the results of the comparative analysis, the representatives of obligate anaerobic flora Peptostreptococcus spp. prevailed in vaginal microbiota in luminal A and luminal B subtypes, and the representative of the facultative anaerobic organisms Staphylococcus spp. - in unfavourable outcomes in Her2/Neu+ and triple-negative subtypes. CONCLUSION The observed features of the vaginal microbiota in women with different subtypes of breast cancer require further studies for preventive purposes. .
Collapse
Affiliation(s)
- Farida K. Balmaganbetova
- Department of Normal Physiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan.
| | - Ainur Amanzholkyzy
- Department of Normal Physiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan.
| | - Roza E. Nurgaliyeva
- Department of Normal Physiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan.
| | - Aiman T. Kaldybayeva
- Department of Normal Physiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan.
| | - Azhar N. Zhexenova
- Department of Phatophysiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan.
| |
Collapse
|
34
|
Rodriguez-Garcia M, Connors K, Ghosh M. HIV Pathogenesis in the Human Female Reproductive Tract. Curr HIV/AIDS Rep 2021; 18:139-156. [PMID: 33721260 PMCID: PMC9273024 DOI: 10.1007/s11904-021-00546-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Women remain disproportionately affected by the HIV/AIDS pandemic. The primary mechanism for HIV acquisition in women is sexual transmission, yet the immunobiological factors that contribute to HIV susceptibility remain poorly characterized. Here, we review current knowledge on HIV pathogenesis in women, focusing on infection and immune responses in the female reproductive tract (FRT). RECENT FINDINGS We describe recent findings on innate immune protection and HIV target cell distribution in the FRT. We also review multiple factors that modify susceptibility to infection, including sex hormones, microbiome, trauma, and how HIV risk changes during women's life cycle. Finally, we review current strategies for HIV prevention and identify barriers for research in HIV infection and pathogenesis in women. A complex network of interrelated biological and sociocultural factors contributes to HIV risk in women and impairs prevention and cure strategies. Understanding how HIV establishes infection in the FRT can provide clues to develop novel interventions to prevent HIV acquisition in women.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, 150 Harrison Ave, Boston, MA, 02111, USA
| | - Kaleigh Connors
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA
| | - Mimi Ghosh
- Department of Epidemiology, Milken Institute School of Public Health and Health Services, The George Washington University, 800 22nd St NW, Washington, DC, 20052, USA.
| |
Collapse
|
35
|
Differences in gut microbiota observed in premenopausal and postmenopausal women associate with HIV infection status. ACTA ACUST UNITED AC 2021; 28:480-481. [PMID: 33739314 DOI: 10.1097/gme.0000000000001770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Abstract
Acquisition and establishment of the oral microbiota occur in a dynamic process over various stages and involve close and continuous interactions with the host and its environment. In the present review, we discuss the stages of this process in chronological order. We start with the prenatal period and address the following questions: ‘Is the fetus exposed to maternal microbiota during pregnancy?’ and ‘If so, what is the potential role of this exposure?’ We comment on recent reports of finding bacterial DNA in placenta during pregnancies, and provide current views on the potential functions of prenatal microbial encounters. Next, we discuss the physiological adaptations that take place in the newborn during the birth process and the effect of this phase of life on the acquisition of the oral microbiota. Is it really just exposure to maternal vaginal microbes that results in the difference between vaginally and Cesarian section‐born infants? Then, we review the postnatal phase, in which we focus on transmission of microbes, the intraoral niche specificity, the effects of the host behavior and environment, as well as the role of genetic background of the host on shaping the oral microbial ecosystem. We discuss the changes in oral microbiota during the transition from deciduous to permanent dentition and during puberty. We also address the finite knowledge on colonization of the oral cavity by microbes other than the bacterial component. Finally, we identify the main outstanding questions that limit our understanding of the acquisition and establishment of a healthy microbiome at an individual level.
Collapse
Affiliation(s)
- A M Marije Kaan
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Dono Kahharova
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Almeida MO, Viana MVC, Cerqueira JC, Aburjaile FF, Junior AAZ, Azevedo V, Carvalho RDO. Novel insights in bacterial vaginosis etiology through genomic approaches. AN ACAD BRAS CIENC 2021; 93:e20200945. [PMID: 33681877 DOI: 10.1590/0001-3765202120200945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/07/2020] [Indexed: 07/26/2024] Open
Abstract
Bacterial vaginosis (BV) has been considered as dysbiosis state whose etiology is not fully understood. This condition affects a large number of women of reproductive age and its study has been highly relevant due to the growing association of BV with and gynecological and obstetric complications and diseases, in addition to a greater susceptibility to sexually transmitted diseases, including HIV. The vaginal microbiota composition presents high variability among different ethnic groups of women, although, generally, the prevalence of lactobacilli species has been reported. Several studies suggest they may play a protective role, especially Lactobacillus crispatus whose population is typically present in low proportions in women with BV. This review article describes the contributions and limitations of genomic approaches in elucidating protective characteristics and mechanisms associated with colonization and persistence of lactobacilli strains. Although some genetic features were associated with resilience of L. crispatus during BV, furher studies are required to uncover their functions.
Collapse
Affiliation(s)
- Marcelle O Almeida
- Universidade Federal de Minas Gerais, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Av. Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Marcus V C Viana
- Universidade Federal de Minas Gerais, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Av. Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil.,Universidade Federal do Pará, Departamento de Genética, Instituto de Ciências Biológicas, Rua Augusto Corrêa, 01, Guamá, 66075-970 Belém, PA, Brazil
| | - JanaÍna C Cerqueira
- Universidade Federal de Minas Gerais, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Av. Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Flavia F Aburjaile
- Universidade Federal de Minas Gerais, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Av. Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil.,Universidade Federal de Pernambuco, Departamento de Genética, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Andrey A Z Junior
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Bol'shaya Pirogovskaya Ulitsa, 19с1, 119991 Moscow, Russia.,Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Ulitsa Leninskiye Gory, 1с40, 119992 Moscow, Russia
| | - Vasco Azevedo
- Universidade Federal de Minas Gerais, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Av. Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Rodrigo D O Carvalho
- Universidade Federal de Minas Gerais, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Av. Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Bol'shaya Pirogovskaya Ulitsa, 19с1, 119991 Moscow, Russia
| |
Collapse
|
38
|
Saba I, Barat C, Chabaud S, Reyjon N, Leclerc M, Jakubowska W, Orabi H, Lachhab A, Pelletier M, Tremblay MJ, Bolduc S. Immunocompetent Human 3D Organ-Specific Hormone-Responding Vaginal Mucosa Model of HIV-1 Infection. Tissue Eng Part C Methods 2021; 27:152-166. [PMID: 33573474 DOI: 10.1089/ten.tec.2020.0333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The lack of appropriate experimental models often limits our ability to investigate the establishment of infections in specific tissues. To reproduce the structural and spatial organization of vaginal mucosae to study human immunodeficiency virus type-1 (HIV-1) infection, we used the self-assembly technique to bioengineer tridimensional vaginal mucosae using human cells extracted from HIV-1-negative healthy pre- and postmenopausal donors. We produced a stroma, free of exogenous material, that can be adapted to generate near-to-native vaginal tissue with the best complexity obtained with seeded epithelial cells on the organ-specific stroma. The autologous engineered tissues had mechanical properties close to native mucosa and shared similar glycogen production, which declined in reconstructed tissues of the postmenopausal donor. The in vitro-engineered tissues were also rendered immune competent by adding human monocyte-derived macrophages (MDMs) on the epithelium or in the stroma layers. The model was infected with HIV-1, and viral replication and transcytosis were observed when immunocompetent reconstructed vaginal mucosa tissue has incorporated MDMs into the stroma and infected with free HIV-1 green fluorescent protein (GFP) viral particles. These data illustrate a natural permissiveness of immunocompetent untransformed human vaginal mucosae to HIV-1 infection. This model offers a physiological tool to explore viral load, HIV-1 transmission in an environment that may contribute to the virus propagation, and new antiviral treatments in vitro. Impact statement This study introduces an innovative immunocompetent three-dimensional human organ-specific vaginal mucosa free of exogenous material for in vitro modeling of human immunodeficiency virus type-1 (HIV-1) infection. The proposed model is histologically close to native tissue, especially by presenting glycogen accumulation in the epithelium's superficial cells, responsive to estrogen, and able to sustain a monocyte-derived macrophage population infected or not by HIV-1 during ∼2 months.
Collapse
Affiliation(s)
- Ingrid Saba
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec City, Canada
| | - Corinne Barat
- Infectious and Immune Diseases, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec City, Canada
| | - Nolan Reyjon
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec City, Canada
| | - Maude Leclerc
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec City, Canada
| | - Weronika Jakubowska
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec City, Canada
| | - Hazem Orabi
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec City, Canada
| | - Asmaa Lachhab
- Infectious and Immune Diseases, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Canada
| | - Michel J Tremblay
- Infectious and Immune Diseases, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec City, Canada.,Department of Surgery, Faculty of Medicine, Université Laval, Québec City, Canada
| |
Collapse
|
39
|
Hu T, Wei Z, Ju Q, Chen W. Sex hormones and acne: State of the art. J Dtsch Dermatol Ges 2021; 19:509-515. [PMID: 33576151 DOI: 10.1111/ddg.14426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/10/2020] [Indexed: 01/13/2023]
Abstract
Acne is an androgen-dependent inflammatory disease of sebaceous follicles. Herein, we reviewed and discussed the underlying pathways of androgen biosynthesis and metabolism, non-genomic regulation of androgen receptor expression and function, posttranslational regulation of androgen excess in acne and acne-associated syndromes, such as polycystic ovary syndrome, and congenital adrenal hyperplasia. We provide insights into the involvement of sex hormones, particularly androgens, in skin homeostasis and acne pathogenesis, including comedogenesis, lipogenesis, microbiota, and inflammation. Advanced understanding of the action mechanisms of classical acne treatment and new development of antiandrogens, both topical and systemic, are also highlighted.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Dermatology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ziyu Wei
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Ju
- Department of Dermatology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - WenChieh Chen
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| |
Collapse
|
40
|
Tuddenham S, Ravel J, Marrazzo JM. Protection and Risk: Male and Female Genital Microbiota and Sexually Transmitted Infections. J Infect Dis 2021; 223:S222-S235. [PMID: 33576776 DOI: 10.1093/infdis/jiaa762] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Unique compositional and functional features of the cervicovaginal microbiota have been associated with protection against and risk for sexually transmitted infections (STI). In men, our knowledge of the interaction between the penile microbiota and STI is less developed. The current state of our understanding of these microbiota and their role in select STIs is briefly reviewed, along with strategies that leverage existing findings to manipulate genital microbiota and optimize protection against STIs. Finally, we focus on major research gaps and present a framework for future studies.
Collapse
Affiliation(s)
- Susan Tuddenham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeanne M Marrazzo
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
41
|
Kumari S, Bhor VM. Association of cervicovaginal dysbiosis mediated HPV infection with cervical intraepithelial neoplasia. Microb Pathog 2021; 152:104780. [PMID: 33545325 DOI: 10.1016/j.micpath.2021.104780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Cellular transformation to malignancy is a multifactorial process strongly linked with microbiome dysbiosis. The female reproductive tract (FRT) is inhabited by specific Lactobacillus spp which play a significant role in maintaining a homeostatic balance and providing resistance to perturbation. Any imbalance in the resident microbiota of the FRT results in cervicovaginal dysbiosis and increased predisposition to viral and bacterial infections. In the present review, we discuss the critical role played by the cervicovaginal microbiome in maintaining cervicovaginal homeostasis. Loss of the mutualistic relationship between cervicovaginal microbiota and the host leads to increased susceptibility to Human papilloma virus (HPV) infection. HPV in coinfection with Chlamydia trachomatis has been linked with increased risk for cellular transformation. The progression to cervical neoplasia is a multistep process regulated by cellular and epigenetic changes mediated by oncogenes and miRNA. Exosomes derived from the infected cells play an important role in the pathological development and progression to cervical neoplasia as they harbor the regulatory molecules like miRNA, proteins and prooncogenic factors which may facilitate cellular transformation.
Collapse
Affiliation(s)
- Seema Kumari
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India.
| | - Vikrant M Bhor
- Department of Molecular Immunology and Microbiology, ICMR-National Institute for Research in Reproductive Health (ICMR-NIRRH), Jehangir Merwanji Street, Parel, Mumbai, 400 012, Maharashtra, India.
| |
Collapse
|
42
|
Abstract
Abstract
Background
Next-generation sequencing isolates culturable and unculturable bacteria from the female reproductive tract. Current literatures surrounding the impact of endometrial microbiome on fertility are reviewed.
Main body
An abnormal endometrial microbiota has been associated with implantation failure pregnancy loss and other gynecological and obstetrical conditions. Identification of endometrial dysbiosis as a new cause of infertility opens a new microbiological field in the evaluation of endometrial factor, highlighting the relevance of assessing the uterine microbiota in infertile patients to restore a favorable endometrial flora in those patients with altered uterine microbiota to improve and personalize the clinical care of infertile patients. Understanding the significance of microbiome in the endometrium may completely change the therapeutic approach in the treatment of this part of the reproductive tract.
Conclusion
Investigation of the endometrial microbiota may be a future tool for improving reproductive outcomes in infertile patients. Further well-designed studies are required to establish its role in the evaluation and treatment of infertile patients
Collapse
|
43
|
A Prime/Boost Vaccine Regimen Alters the Rectal Microbiome and Impacts Immune Responses and Viremia Control Post-Simian Immunodeficiency Virus Infection in Male and Female Rhesus Macaques. J Virol 2020; 94:JVI.01225-20. [PMID: 32967951 DOI: 10.1128/jvi.01225-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
An efficacious human immunodeficiency virus (HIV) vaccine will likely require induction of both mucosal and systemic immune responses. We compared the immunogenicity and protective efficacy of two mucosal/systemic vaccine regimens and investigated their effects on the rectal microbiome. Rhesus macaques were primed twice mucosally with replication-competent adenovirus type 5 host range mutant (Ad5hr)-simian immunodeficiency virus (SIV) recombinants and boosted twice intramuscularly with ALVAC-SIV recombinant plus SIV gp120 protein or with DNA for SIV genes and rhesus interleukin-12 plus SIV gp120 protein. Controls received empty Ad5hr vector and alum adjuvant only. Both regimens elicited strong, comparable mucosal and systemic cellular and humoral immunity. Prevaccination rectal microbiomes of males and females differed and significantly changed over the course of immunization, most strongly in females after Ad5hr immunizations. Following repeated low-dose intrarectal SIV challenges, both vaccine groups exhibited modestly but significantly reduced acute viremia. Male and female controls exhibited similar acute viral loads; however, vaccinated females, but not males, exhibited lower levels of acute viremia, compared to same-sex controls. Few differences in adaptive immune responses were observed between the sexes. Striking differences in correlations of the rectal microbiome of males and females with acute viremia and immune responses associated with protection were seen and point to effects of the microbiome on vaccine-induced immunity and viremia control. Our study clearly demonstrates direct effects of a mucosal SIV vaccine regimen on the rectal microbiome and validates our previously reported SIV vaccine-induced sex bias. Sex and the microbiome are critical factors that should not be overlooked in vaccine design and evaluation.IMPORTANCE Differences in HIV pathogenesis between males and females, including immunity postinfection, have been well documented, as have steroid hormone effects on the microbiome, which is known to influence mucosal immune responses. Few studies have applied this knowledge to vaccine trials. We investigated two SIV vaccine regimens combining mucosal priming immunizations and systemic protein boosting. We again report a vaccine-induced sex bias, with female rhesus macaques but not males displaying significantly reduced acute viremia. The vaccine regimens, especially the mucosal primes, significantly altered the rectal microbiome. The greatest effects were in females. Striking differences between female and male macaques in correlations of prevalent rectal bacteria with viral loads and potentially protective immune responses were observed. Effects of the microbiome on vaccine-induced immunity and viremia control require further study by microbiome transfer. However, the findings presented highlight the critical importance of considering effects of sex and the microbiome in vaccine design and evaluation.
Collapse
|
44
|
Messman RD, Contreras-Correa ZE, Paz HA, Perry G, Lemley CO. Vaginal bacterial community composition and concentrations of estradiol at the time of artificial insemination in Brangus heifers. J Anim Sci 2020; 98:5846190. [PMID: 32515480 DOI: 10.1093/jas/skaa178] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
The knowledge surrounding the bovine vaginal microbiota and its implications on fertility and reproductive traits remains incomplete. The objective of the current study was to characterize the bovine vaginal bacterial community and estradiol concentrations at the time of artificial insemination (AI). Brangus heifers (n = 78) underwent a 7-d Co-Synch + controlled internal drug release estrus synchronization protocol. At AI, a double-guarded uterine culture swab was used to sample the anterior vaginal tract. Immediately after swabbing the vaginal tract, blood samples were collected by coccygeal venipuncture to determine concentrations of estradiol. Heifers were retrospectively classified as pregnant (n = 29) vs. nonpregnant (n = 49) between 41 and 57 d post-AI. Additionally, heifers were classified into low (1.1 to 2.5 pg/mL; n = 21), medium (2.6 to 6.7 pg/mL; n = 30), and high (7.2 to 17.6 pg/mL; n = 27) concentration of estradiol. The vaginal bacterial community composition was determined through sequencing of the V4 region from the 16S rRNA gene using the Illumina Miseq platform. Alpha diversity was compared via ANOVA and beta diversity was compared via PERMANOVA. There were no differences in the Shannon diversity index (alpha diversity; P = 0.336) or Bray-Curtis dissimilarity (beta diversity; P = 0.744) of pregnant vs. nonpregnant heifers. Overall, bacterial community composition in heifers with high, medium, or low concentrations of estradiol did not differ (P = 0.512). While no overall compositional differences were observed, species-level differences were present within pregnancy status and estradiol concentration groups. The implications of these species-level differences are unknown, but these differences could alter the vaginal environment thereby influencing fertility and vaginal health. Therefore, species-level changes could provide better insight rather than overall microbial composition in relation to an animal's reproductive health.
Collapse
Affiliation(s)
- Riley D Messman
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | | | - Henry A Paz
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | - George Perry
- Department of Animal Sciences, South Dakota State University, Brookings, SD
| | - Caleb O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| |
Collapse
|
45
|
Ruiz-Hernández UE, Pelcastre-Rodriguez LI, Cabrero-Martínez OA, Hernández-Cortez C, Castro-Escarpulli G. Analysis of CRISPR-Cas systems in Gardnerella suggests its potential role in the mechanisms of bacterial vaginosis. Comput Biol Chem 2020; 89:107381. [PMID: 33002715 DOI: 10.1016/j.compbiolchem.2020.107381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
Bacterial vaginosis (BV) is the principal cause of vaginal discharge among women, and it can lead to many comorbidities with a negative impact in women's daily activities. Despite the fact that the pathophysiological process of BV remains unclear, great advances had been achieved in determining consequences of the shift in the vaginal community, and it was defined that Gardnerella spp., plays a key role in the pathogenesis of BV. Interactions of vaginal phage communities and bacterial hosts may be relevant in eubiosis/dysbiosis states, so defense mechanisms in Gardnerella spp., against phage infections could be relevant in BV development. In this study, we analyzed CRISPR-Cas systems among the 13 Gardnerella species recently classified, considering that these systems act as prokaryotic immune systems against phages, plasmids, and other mobile genetic elements. In silico analyses for CRISPR-Cas systems mining over the 81 Gardnerella spp., strains genomes analyzed led to the identification of subtypes I-E and II-C. Spacers analyses showed a hypervariable region across species, providing a high resolution level in order to distinguish clonality in strains, which was supported with phylogenomic analyses based on Virtual Genomic Fingerprinting. Moreover, most of the spacers revealed interactions between Gardnerella spp., strains and prophages over the genus. Furthermore, virulence traits of the 13 species showed insights of potential niche specificity in the vaginal microbiome. Overall, our results suggest that the CRISPR-Cas systems in the genus Gardnerella may play an important role in the mechanisms of the development and maintenance of BV, considering that the Gardnerella species occupies different niches in the vaginal community; in addition, spacer sequences can be used for genotyping studies.
Collapse
Affiliation(s)
- Ubaldo Emilio Ruiz-Hernández
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Leda Ivonne Pelcastre-Rodriguez
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Omar Alejandro Cabrero-Martínez
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Cecilia Hernández-Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|
46
|
de Lara LM, Parthasarathy RS, Rodriguez-Garcia M. Mucosal Immunity and HIV Acquisition in Women. CURRENT OPINION IN PHYSIOLOGY 2020; 19:32-38. [PMID: 33103019 DOI: 10.1016/j.cophys.2020.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Women acquire HIV through sexual transmission. Women worldwide represent half of the people living with HIV, but young women in endemic areas are disproportionally affected. Low transmission rates per sexual act in women suggest that local immune protective mechanisms in the genital tract have the potential to prevent infection. However, conditions that induce genital inflammation are known to increase the risk of HIV acquisition. The female genital tract (FGT) is divided into different anatomical compartments with distinct reproductive functions. The immune cells present in each of these compartments are specialized in balancing reproduction and protection against infections, and are the same cells that can encounter and respond to HIV. Understanding the physiological and pathological factors that influence mucosal immune cell presence, susceptibility to HIV-infection and anti-HIV immune responses in the FGT is necessary to develop preventive strategies. Here we review recent advances in our understanding of HIV infection in the human female genital tract, with an emphasis on the characterization of the mucosal cells susceptible to HIV-infection, innate immune responses and mucosal factors that increase genital inflammation and influence susceptibility to HIV acquisition in women.
Collapse
Affiliation(s)
- Laura Moreno de Lara
- Department of Immunology, Tufts University School of Medicine, Boston, MA.,Immunology Unit, Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
| | - Ragav S Parthasarathy
- Department of Immunology, Tufts University School of Medicine, Boston, MA.,Immunology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA.,Immunology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| |
Collapse
|
47
|
García-Velasco JA, Budding D, Campe H, Malfertheiner SF, Hamamah S, Santjohanser C, Schuppe-Koistinen I, Nielsen HS, Vieira-Silva S, Laven J. The reproductive microbiome - clinical practice recommendations for fertility specialists. Reprod Biomed Online 2020; 41:443-453. [PMID: 32753361 DOI: 10.1016/j.rbmo.2020.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023]
Abstract
The interest in and understanding of the human microbiome has grown remarkably over recent years. Advances in molecular techniques have allowed researchers to identify and study the microbiota and also use this information to develop therapeutic solutions for a spectrum of conditions. Alongside the growing interest in the microbiome, societal changes have resulted in many couples looking to start families later in life, therefore increasing the demand for assisted reproductive technologies. Combining these trends, it makes sense that clinicians are eager to understand and exploit the microbiome of their patients, i.e. the reproductive microbiome, in order to help them achieve their goal of becoming parents. This paper aims to provide an overview of the current and future research into the reproductive microbiome in relation to fertility and also share clinical practice recommendations for physicians who are new to this field or unsure about how they can utilise what is known to help their patients.
Collapse
Affiliation(s)
- Juan A García-Velasco
- Department of Reproductive Endocrinology and Infertility, IVI Madrid, Rey Juan Carlos University, Madrid 28023, Spain.
| | | | | | | | - Samir Hamamah
- Centre Hospitalier Universitaire de Montpellier, Service Biologie de la Reproduction, 34295 Montpellier, Inserm U1203, France
| | | | - Ina Schuppe-Koistinen
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Stockholm 171 77, Sweden
| | - Henriette Svarre Nielsen
- Department of Obstetrics and Gynecology, Hvidovre Hospital, Copenhagen University Hospital, Hvidovre 2650, Denmark
| | - Sara Vieira-Silva
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven 3000, Belgium; Center for Microbiology, VIB, Leuven, Belgium
| | - Joop Laven
- Erasmus MC, University Medical Center Rotterdam, Division of Reproductive Medicine, Rotterdam 3015 GD, the Netherlands
| |
Collapse
|
48
|
Alizadehmohajer N, Shojaeifar S, Nedaeinia R, Esparvarinha M, Mohammadi F, Ferns GA, Ghayour-Mobarhan M, Manian M, Balouchi A. Association between the microbiota and women's cancers - Cause or consequences? Biomed Pharmacother 2020; 127:110203. [PMID: 32559847 DOI: 10.1016/j.biopha.2020.110203] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Breast, ovarian and uterine cancers are the most common neoplasms among women. Several mechanisms may be involved in oncogenesis and these include environmental and genetic factors. Bacteria may affect the development of some cancers, with bacterial components, their products and metabolites interacting with susceptible tissues. Commensalism and dysbiosis are important potential mechanisms involved in oncogenesis, and an effective strategy for diagnosis and treatment is required. The purpose of this review was to analyze the complex associations between these cancers in women, and the microbiota, specifically bacterial microbes. However, several cancers have an increased prevalence among individuals with HIV and HPV so the relationship between viral infections and malignancies in women is also referred to. We described how different phylum of bacteria, particularly in the gut, mammary tissue and vaginal microbiome may be involved in carcinogenesis; and we discuss the potential pathways involved: (I), that lead to cell proliferation, (II), immune system perturbation, (III), cell metabolic changes (e.g., hormonal factors), and (IV), DNA damage. Studies investigating the differences between the composition of the bacterial microbiota of healthy women compared to that present in various conditions, and the clinical trials are summarized for the few studies that have addressed the microbiota and related conditions, are also reviewed.
Collapse
Affiliation(s)
- Negin Alizadehmohajer
- Department of Medical Laboratory Science, Faculty of Medicine, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Samaneh Shojaeifar
- Department of Midwifery, Faculty of Nursing and Midwifery, Arak University of Medical Sciences, Arak, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojgan Esparvarinha
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Gordon A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Manian
- Department of Medical Laboratory Science, Faculty of Medicine, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Adele Balouchi
- Department of Biology, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran.
| |
Collapse
|
49
|
Kaur H, Merchant M, Haque MM, Mande SS. Crosstalk Between Female Gonadal Hormones and Vaginal Microbiota Across Various Phases of Women's Gynecological Lifecycle. Front Microbiol 2020; 11:551. [PMID: 32296412 PMCID: PMC7136476 DOI: 10.3389/fmicb.2020.00551] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/13/2020] [Indexed: 01/02/2023] Open
Abstract
Functional equilibrium between vaginal microbiota and the host is important for maintaining gynecological and reproductive health. Apart from host genetics, infections, changes in diet, life-style and hygiene status are known to affect this delicate state of equilibrium. More importantly, the gonadal hormones strongly influence the overall structure and function of vaginal microbiota. Several studies have attempted to understand (a) the composition of vaginal microbiota in specific stages of women's reproductive cycle as well as in menopause (b) their association with gonadal hormones, and their potential role in manifestation of specific health conditions (from the perspective of cause/consequence). However, a single study that places, in context, the structural variations of the vaginal microbiome across the entire life-span of women's reproductive cycle and during various stages of menopause is currently lacking. With the objective to obtain a holistic overview of the community dynamics of vaginal micro-environment 'across' various stages of women's reproductive and post-reproductive life-cycle, we have performed a meta-analysis of approximately 1,000 vaginal microbiome samples representing various stages of the reproductive cycle and menopausal states. Objectives of this analysis included (a) understanding temporal changes in vaginal community taxonomic structure and composition as women pass through various reproductive and menopausal stages (b) exploring correlations between the levels of female sex hormones with vaginal microbiome diversity (c) analyzing changes in the pattern of community diversity in cases of dysbiotic conditions such as bacterial vaginosis, and viewing the analyzed changes in the context of a healthy state. Results reveal interesting temporal trends with respect to vaginal microbial community diversity and its pattern of correlation with host physiology. Results indicate significant differences in alpha-diversity and overall vaginal microbial community members in various reproductive and post-reproductive phases. In addition to reinforcing the known influence/role of gonadal hormones in maintaining gynecological health, results indicate how hormonal level perturbations cause/contribute to imbalances in vaginal microbiota. The nature of resulting dysbiotic state and its influence on vaginal health is also analyzed and discussed. Results also suggest that elevated vaginal microbial diversity in pregnancy does not necessarily indicate a state of bacterial infection. The study puts forward a hormone-level driven microbiome diversity hypothesis for explaining temporal patterns in vaginal microbial diversity during various stages of women's reproductive cycle and at menopause.
Collapse
Affiliation(s)
| | | | | | - Sharmila S. Mande
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services, Pune, India
| |
Collapse
|
50
|
Al-Nasiry S, Ambrosino E, Schlaepfer M, Morré SA, Wieten L, Voncken JW, Spinelli M, Mueller M, Kramer BW. The Interplay Between Reproductive Tract Microbiota and Immunological System in Human Reproduction. Front Immunol 2020; 11:378. [PMID: 32231664 PMCID: PMC7087453 DOI: 10.3389/fimmu.2020.00378] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
In the last decade, the microbiota, i.e., combined populations of microorganisms living inside and on the surface of the human body, has increasingly attracted attention of researchers in the medical field. Indeed, since the completion of the Human Microbiome Project, insight and interest in the role of microbiota in health and disease, also through study of its combined genomes, the microbiome, has been steadily expanding. One less explored field of microbiome research has been the female reproductive tract. Research mainly from the past decade suggests that microbial communities residing in the reproductive tract represent a large proportion of the female microbial network and appear to be involved in reproductive failure and pregnancy complications. Microbiome research is facing technological and methodological challenges, as detection techniques and analysis methods are far from being standardized. A further hurdle is understanding the complex host-microbiota interaction and the confounding effect of a multitude of constitutional and environmental factors. A key regulator of this interaction is the maternal immune system that, during the peri-conceptional stage and even more so during pregnancy, undergoes considerable modulation. This review aims to summarize the current literature on reproductive tract microbiota describing the composition of microbiota in different anatomical locations (vagina, cervix, endometrium, and placenta). We also discuss putative mechanisms of interaction between such microbial communities and various aspects of the immune system, with a focus on the characteristic immunological changes during normal pregnancy. Furthermore, we discuss how abnormal microbiota composition, “dysbiosis,” is linked to a spectrum of clinical disorders related to the female reproductive system and how the maternal immune system is involved. Finally, based on the data presented in this review, the future perspectives in diagnostic approaches, research directions and therapeutic opportunities are explored.
Collapse
Affiliation(s)
- Salwan Al-Nasiry
- Department of Obstetrics and Gynecology, GROW School of Oncology and Developmental Biology, Maastricht University Medical Centre (MUMC), Maastricht, Netherlands
| | - Elena Ambrosino
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Research School GROW (School for Oncology & Developmental Biology), Institute for Public Health Genomics, Maastricht University, Maastricht, Netherlands
| | - Melissa Schlaepfer
- Department of Obstetrics and Gynecology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Servaas A Morré
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Research School GROW (School for Oncology & Developmental Biology), Institute for Public Health Genomics, Maastricht University, Maastricht, Netherlands.,Laboratory of Immunogenetics, Department Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam UMC, Amsterdam, Netherlands
| | - Lotte Wieten
- Tissue Typing Laboratory, Department of Transplantation Immunology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marialuigia Spinelli
- Department of Obstetrics and Gynecology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Martin Mueller
- Department of Obstetrics and Gynecology, University Hospital Bern, University of Bern, Bern, Switzerland.,Department of Pediatrics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|