1
|
López-Hidalgo R, Ballestín R, Lorenzo L, Sánchez-Martí S, Blasco-Ibáñez JM, Crespo C, Nacher J, Varea E. Early chronic fasudil treatment rescues hippocampal alterations in the Ts65Dn model for down syndrome. Neurochem Int 2024; 174:105679. [PMID: 38309665 DOI: 10.1016/j.neuint.2024.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Down syndrome (DS) is the most common genetic disorder associated with intellectual disability. To study this syndrome, several mouse models have been developed. Among the most common is the Ts65Dn model, which mimics most of the alterations observed in DS. Ts65Dn mice, as humans with DS, show defects in the structure, density, and distribution of dendritic spines in the cerebral cortex and hippocampus. Fasudil is a potent inhibitor of the RhoA kinase pathway, which is involved in the formation and stabilization of dendritic spines. Our study analysed the effect of early chronic fasudil treatment on the alterations observed in the hippocampus of the Ts65Dn model. We observed that treating Ts65Dn mice with fasudil induced an increase in neural plasticity in the hippocampus: there was an increment in the expression of PSA-NCAM and BDNF, in the dendritic branching and spine density of granule neurons, as well as in cell proliferation and neurogenesis in the subgranular zone. Finally, the treatment reduced the unbalance between excitation and inhibition present in this model. Overall, early chronic treatment with fasudil increases cell plasticity and eliminates differences with euploid animals.
Collapse
Affiliation(s)
- Rosa López-Hidalgo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Raúl Ballestín
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Lorena Lorenzo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Sandra Sánchez-Martí
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - José Miguel Blasco-Ibáñez
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Carlos Crespo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain; CIBERSAM, Spanish National Network for Research in Mental Health, Madrid, Spain; Institute of research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain
| | - Emilio Varea
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain.
| |
Collapse
|
2
|
Martinez JL, Piciw JG, Crockett M, Sorci IA, Makwana N, Sirois CL, Giffin-Rao Y, Bhattacharyya A. Transcriptional consequences of trisomy 21 on neural induction. Front Cell Neurosci 2024; 18:1341141. [PMID: 38357436 PMCID: PMC10865501 DOI: 10.3389/fncel.2024.1341141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Down syndrome, caused by trisomy 21, is a complex developmental disorder associated with intellectual disability and reduced growth of multiple organs. Structural pathologies are present at birth, reflecting embryonic origins. A fundamental unanswered question is how an extra copy of human chromosome 21 contributes to organ-specific pathologies that characterize individuals with Down syndrome, and, relevant to the hallmark intellectual disability in Down syndrome, how trisomy 21 affects neural development. We tested the hypothesis that trisomy 21 exerts effects on human neural development as early as neural induction. Methods Bulk RNA sequencing was performed on isogenic trisomy 21 and euploid human induced pluripotent stem cells (iPSCs) at successive stages of neural induction: embryoid bodies at Day 6, early neuroectoderm at Day 10, and differentiated neuroectoderm at Day 17. Results Gene expression analysis revealed over 1,300 differentially expressed genes in trisomy 21 cells along the differentiation pathway compared to euploid controls. Less than 5% of the gene expression changes included upregulated chromosome 21 encoded genes at every timepoint. Genes involved in specific growth factor signaling pathways (WNT and Notch), metabolism (including oxidative stress), and extracellular matrix were altered in trisomy 21 cells. Further analysis uncovered heterochronic expression of genes. Conclusion Trisomy 21 impacts discrete developmental pathways at the earliest stages of neural development. The results suggest that metabolic dysfunction arises early in embryogenesis in trisomy 21 and may affect development and function more broadly.
Collapse
Affiliation(s)
- José L. Martinez
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Jennifer G. Piciw
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Madeline Crockett
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Isabella A. Sorci
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Nikunj Makwana
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Carissa L. Sirois
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Cukier HN, Duarte CL, Laverde-Paz MJ, Simon SA, Van Booven DJ, Miyares AT, Whitehead PL, Hamilton-Nelson KL, Adams LD, Carney RM, Cuccaro ML, Vance JM, Pericak-Vance MA, Griswold AJ, Dykxhoorn DM. An Alzheimer's disease risk variant in TTC3 modifies the actin cytoskeleton organization and the PI3K-Akt signaling pathway in iPSC-derived forebrain neurons. Neurobiol Aging 2023; 131:182-195. [PMID: 37677864 PMCID: PMC10538380 DOI: 10.1016/j.neurobiolaging.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023]
Abstract
A missense variant in the tetratricopeptide repeat domain 3 (TTC3) gene (rs377155188, p.S1038C, NM_003316.4:c 0.3113C>G) was found to segregate with disease in a multigenerational family with late-onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing, and the resulting isogenic pair of iPSC lines was differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3-dimensional morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant.
Collapse
Affiliation(s)
- Holly N Cukier
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carolina L Duarte
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mayra J Laverde-Paz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shaina A Simon
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek J Van Booven
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amanda T Miyares
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; JJ Vance Memorial Summer Internship in Biological and Computational Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Patrice L Whitehead
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kara L Hamilton-Nelson
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Larry D Adams
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Regina M Carney
- Mental Health & Behavioral Science Service, Bruce W. Carter VA Medical Center, Miami, FL, USA
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffery M Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
4
|
Rusu B, Kukreja B, Wu T, Dan SJ, Feng MY, Kalish BT. Single-Nucleus Profiling Identifies Accelerated Oligodendrocyte Precursor Cell Senescence in a Mouse Model of Down Syndrome. eNeuro 2023; 10:ENEURO.0147-23.2023. [PMID: 37491366 PMCID: PMC10449487 DOI: 10.1523/eneuro.0147-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023] Open
Abstract
Down syndrome (DS), the most common genetic cause of intellectual disability, is associated with lifelong cognitive deficits. However, the mechanisms by which triplication of chromosome 21 genes drive neuroinflammation and cognitive dysfunction are poorly understood. Here, using the Ts65Dn mouse model of DS, we performed an integrated single-nucleus ATAC and RNA-sequencing (snATAC-seq and snRNA-seq) analysis of the adult cortex. We identified cell type-specific transcriptional and chromatin-associated changes in the Ts65Dn cortex, including regulators of neuroinflammation, transcription and translation, myelination, and mitochondrial function. We discovered enrichment of a senescence-associated transcriptional signature in Ts65Dn oligodendrocyte (OL) precursor cells (OPCs) and epigenetic changes consistent with a loss of heterochromatin. We found that senescence is restricted to a subset of OPCs concentrated in deep cortical layers. Treatment of Ts65Dn mice with a senescence-reducing flavonoid rescued cortical OPC proliferation, restored microglial homeostasis, and improved contextual fear memory. Together, these findings suggest that cortical OPC senescence may be an important driver of neuropathology in DS.
Collapse
Affiliation(s)
- Bianca Rusu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Bharti Kukreja
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Taiyi Wu
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Sophie J Dan
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Min Yi Feng
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Brian T Kalish
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
5
|
Greco LA, Reay WR, Dayas CV, Cairns MJ. Exploring opportunities for drug repurposing and precision medicine in cannabis use disorder using genetics. Addict Biol 2023; 28:e13313. [PMID: 37500481 PMCID: PMC10909568 DOI: 10.1111/adb.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023]
Abstract
Cannabis use disorder (CUD) remains a significant public health issue globally, affecting up to one in five adults who use cannabis. Despite extensive research into the molecular underpinnings of the condition, there are no effective pharmacological treatment options available. Therefore, we sought to further explore genetic analyses to prioritise opportunities to repurpose existing drugs for CUD. Specifically, we aimed to identify druggable genes associated with the disorder, integrate transcriptomic/proteomic data and estimate genetic relationships with clinically actionable biochemical traits. Aggregating variants to genes based on genomic position, prioritised the phosphodiesterase gene PDE4B as an interesting target for drug repurposing in CUD. Credible causal PDE4B variants revealed by probabilistic finemapping in and around this locus demonstrated an association with inflammatory and other substance use phenotypes. Gene and protein expression data integrated with the GWAS data revealed a novel CUD associated gene, NPTX1, in whole blood and supported a role for hyaluronidase, a key enzyme in the extracellular matrix in the brain and other tissues. Finally, genetic correlation with biochemical traits revealed a genetic overlap between CUD and immune-related markers such as lymphocyte count, as well as serum triglycerides.
Collapse
Affiliation(s)
- Laura A. Greco
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
- Precision Medicine Research ProgramHunter Medical Research InstituteNew LambtonNew South WalesAustralia
| | - William R. Reay
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
- Precision Medicine Research ProgramHunter Medical Research InstituteNew LambtonNew South WalesAustralia
| | - Christopher V. Dayas
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
| | - Murray J. Cairns
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
- Precision Medicine Research ProgramHunter Medical Research InstituteNew LambtonNew South WalesAustralia
| |
Collapse
|
6
|
Cukier HN, Duarte CL, Laverde-Paz MJ, Simon SA, Van Booven DJ, Miyares AT, Whitehead PL, Hamilton-Nelson KL, Adams LD, Carney RM, Cuccaro ML, Vance JM, Pericak-Vance MA, Griswold AJ, Dykxhoorn DM. An Alzheimer's disease risk variant in TTC3 modifies the actin cytoskeleton organization and the PI3K-Akt signaling pathway in iPSC-derived forebrain neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542316. [PMID: 37292815 PMCID: PMC10246004 DOI: 10.1101/2023.05.25.542316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A missense variant in the tetratricopeptide repeat domain 3 ( TTC3 ) gene (rs377155188, p.S1038C, NM_003316.4:c.3113C>G) was found to segregate with disease in a multigenerational family with late onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing and the resulting isogenic pair of iPSC lines were differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3D morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant. Highlights The AD risk variant TTC3 p.S1038C reduces the expression levels of TTC3 The variant modifies the expression of AD specific genes BACE1 , INPP5F , and UNC5C Neurons with the variant are enriched for genes in the PI3K-Akt pathwayiPSC-derived neurons with the alteration have increased neurite length and branchingThe variant interferes with actin cytoskeleton and is ameliorated by Cytochalasin D.
Collapse
|
7
|
Zhang X, Lou Y, Zheng D, Lu J, Qi D. Quantitative proteomic analysis reveals the effects of mu opioid agonists on HT22 cells. Front Pharmacol 2023; 13:1022449. [PMID: 36699066 PMCID: PMC9868271 DOI: 10.3389/fphar.2022.1022449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction: At present, the mu opioid receptor is the most important neuroaesthetics receptor in anesthesiology research, and the damage that it does to the nervous system is unknown. Methods: We investigated the effects of loperamide, an agonist of the mu opioid receptor, on protein expression in HT22 cells using stable isotope labeling of amino acids in cell culture (SILAC), immobilized metal affinity chromatography (IMAC) enrichment, and high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 7,823 proteins were identified. Results and Discussion: Bioinformatic analysis revealed that mu opioid receptor agonism can induce distinct changes in the proteome of HT22 cells. These findings improve our understanding of narcotic drugs.
Collapse
Affiliation(s)
- Xutong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yani Lou
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dongxu Zheng
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialin Lu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dansi Qi
- Department of Pathology, Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,*Correspondence: Dansi Qi,
| |
Collapse
|
8
|
Potjewyd FM, Axtman AD. Exploration of Aberrant E3 Ligases Implicated in Alzheimer's Disease and Development of Chemical Tools to Modulate Their Function. Front Cell Neurosci 2021; 15:768655. [PMID: 34867205 PMCID: PMC8637409 DOI: 10.3389/fncel.2021.768655] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
The Ubiquitin Proteasome System (UPS) is responsible for the degradation of misfolded or aggregated proteins via a multistep ATP-dependent proteolytic mechanism. This process involves a cascade of ubiquitin (Ub) transfer steps from E1 to E2 to E3 ligase. The E3 ligase transfers Ub to a targeted protein that is brought to the proteasome for degradation. The inability of the UPS to remove misfolded or aggregated proteins due to UPS dysfunction is commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD). UPS dysfunction in AD drives disease pathology and is associated with the common hallmarks such as amyloid-β (Aβ) accumulation and tau hyperphosphorylation, among others. E3 ligases are key members of the UPS machinery and dysfunction or changes in their expression can propagate other aberrant processes that accelerate AD pathology. The upregulation or downregulation of expression or activity of E3 ligases responsible for these processes results in changes in protein levels of E3 ligase substrates, many of which represent key proteins that propagate AD. A powerful way to better characterize UPS dysfunction in AD and the role of individual E3 ligases is via the use of high-quality chemical tools that bind and modulate specific E3 ligases. Furthermore, through combining gene editing with recent advances in 3D cell culture, in vitro modeling of AD in a dish has become more relevant and possible. These cell-based models of AD allow for study of specific pathways and mechanisms as well as characterization of the role E3 ligases play in driving AD. In this review, we outline the key mechanisms of UPS dysregulation linked to E3 ligases in AD and highlight the currently available chemical modulators. We present several key approaches for E3 ligase ligand discovery being employed with respect to distinct classes of E3 ligases. Where possible, specific examples of the use of cultured neurons to delineate E3 ligase biology have been captured. Finally, utilizing the available ligands for E3 ligases in the design of proteolysis targeting chimeras (PROTACs) to degrade aberrant proteins is a novel strategy for AD, and we explore the prospects of PROTACs as AD therapeutics.
Collapse
|
9
|
Sadeghnia H, Shahba S, Ebrahimzadeh-Bideskan A, Mohammadi S, Malvandi AM, Mohammadipour A. Atrazine neural and reproductive toxicity. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1966637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hamidreza Sadeghnia
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Shahba
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Shabnam Mohammadi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Zhou X, Chen X, Hong T, Zhang M, Cai Y, Cui L. TTC3-Mediated Protein Quality Control, A Potential Mechanism for Cognitive Impairment. Cell Mol Neurobiol 2021; 42:1659-1669. [PMID: 33638766 PMCID: PMC9239942 DOI: 10.1007/s10571-021-01060-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/11/2021] [Indexed: 01/14/2023]
Abstract
The tetrapeptide repeat domain 3 (TTC3) gene falls within Down's syndrome (DS) critical region. Cognitive impairment is a common phenotype of DS and Alzheimer’s disease (AD), and overexpression of TTC3 can accelerate cognitive decline, but the specific mechanism is unknown. The TTC3-mediated protein quality control (PQC) mechanism, similar to the PQC system, is divided into three parts: it acts as a cochaperone to assist proteins in folding correctly; it acts as an E3 ubiquitin ligase (E3s) involved in protein degradation processes through the ubiquitin–proteasome system (UPS); and it may also eventually cause autophagy by affecting mitochondrial function. Thus, this article reviews the research progress on the structure, function, and metabolism of TTC3, including the recent research progress on TTC3 in DS and AD; the role of TTC3 in cognitive impairment through PQC in combination with the abovementioned attributes of TTC3; and the potential targets of TTC3 in the treatment of such diseases.
Collapse
Affiliation(s)
- Xu Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China.
| |
Collapse
|
11
|
Zamanian Azodi M, Rezaei Tavirani M, Rezaei Tavirani M, Rostami Nejad M. Bioinformatics Investigation and Contribution of Other Chromosomes Besides Chromosome 21 in the Risk of Down Syndrome Development. Basic Clin Neurosci 2021; 12:79-88. [PMID: 33995930 PMCID: PMC8114864 DOI: 10.32598/bcn.12.1.941.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 12/24/2018] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Down syndrome as a genetic disorder is a popular research topic in molecular studies. One way to study Down syndrome is via bioinformatics. METHODS In this study, a gene expression profile from a microarray study was selected for more investigation. RESULTS The study of Down syndrome patients shows specific genes with differential expression and network centrality properties. These genes are introduced as RHOA, FGF2, FYN, and CD44, and their level of expression is high in these patients. CONCLUSION This study suggests that besides chromosomes 21, there are additional contributing chromosomes to the risk of Down syndrome development. Besides, these genes could be used for clinical studies after more analysis.
Collapse
Affiliation(s)
- Mona Zamanian Azodi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Majid Rezaei Tavirani
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami Nejad
- Research Institute For Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Grenn FP, Kim JJ, Makarious MB, Iwaki H, Illarionova A, Brolin K, Kluss JH, Schumacher‐Schuh AF, Leonard H, Faghri F, Billingsley K, Krohn L, Hall A, Diez‐Fairen M, Periñán MT, Foo JN, Sandor C, Webber C, Fiske BK, Gibbs JR, Nalls MA, Singleton AB, Bandres‐Ciga S, Reed X, Blauwendraat C. The Parkinson's Disease Genome-Wide Association Study Locus Browser. Mov Disord 2020; 35:2056-2067. [PMID: 32864809 PMCID: PMC7754106 DOI: 10.1002/mds.28197] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease with an often complex component identifiable by genome-wide association studies. The most recent large-scale PD genome-wide association studies have identified more than 90 independent risk variants for PD risk and progression across more than 80 genomic regions. One major challenge in current genomics is the identification of the causal gene(s) and variant(s) at each genome-wide association study locus. The objective of the current study was to create a tool that would display data for relevant PD risk loci and provide guidance with the prioritization of causal genes and potential mechanisms at each locus. METHODS We included all significant genome-wide signals from multiple recent PD genome-wide association studies including themost recent PD risk genome-wide association study, age-at-onset genome-wide association study, progression genome-wide association study, and Asian population PD risk genome-wide association study. We gathered data for all genes 1 Mb up and downstream of each variant to allow users to assess which gene(s) are most associated with the variant of interest based on a set of self-ranked criteria. Multiple databases were queried for each gene to collect additional causal data. RESULTS We created a PD genome-wide association study browser tool (https://pdgenetics.shinyapps.io/GWASBrowser/) to assist the PD research community with the prioritization of genes for follow-up functional studies to identify potential therapeutic targets. CONCLUSIONS Our PD genome-wide association study browser tool provides users with a useful method of identifying potential causal genes at all known PD risk loci from large-scale PD genome-wide association studies. We plan to update this tool with new relevant data as sample sizes increase and new PD risk loci are discovered. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Francis P. Grenn
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Jonggeol J. Kim
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Mary B. Makarious
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Hirotaka Iwaki
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
- Data Tecnica InternationalGlen EchoMarylandUSA
| | | | - Kajsa Brolin
- Lund UniversityTranslational Neurogenetics Unit, Department of Experimental Medical ScienceLundSweden
| | - Jillian H. Kluss
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | | | - Hampton Leonard
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
- Data Tecnica InternationalGlen EchoMarylandUSA
| | - Faraz Faghri
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
- Data Tecnica InternationalGlen EchoMarylandUSA
| | - Kimberley Billingsley
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Lynne Krohn
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| | - Ashley Hall
- Department of Molecular and Clinical PharmacologyInstitute of Translational Medicine, University of LiverpoolLiverpoolUK
| | - Monica Diez‐Fairen
- Fundació Docència i Recerca Mútua Terrassa and Movement Disorders Unit, Department of NeurologyUniversity Hospital Mútua TerrassaBarcelonaSpain
| | - Maria Teresa Periñán
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de SevillaHospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevilleSpain
| | - Jia Nee Foo
- Lee Kong Chian School of MedicineNanyang Technological University SingaporeSingaporeSingapore
- Human GeneticsGenome Institute of Singapore, A*STARSingaporeSingapore
| | - Cynthia Sandor
- UK Dementia Research Institute, Cardiff UniversityCardiffUK
| | - Caleb Webber
- UK Dementia Research Institute, Cardiff UniversityCardiffUK
| | - Brian K. Fiske
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central StationNew YorkNYUSA
| | - J. Raphael Gibbs
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Mike A. Nalls
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
- Data Tecnica InternationalGlen EchoMarylandUSA
| | - Andrew B. Singleton
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Sara Bandres‐Ciga
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Xylena Reed
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Cornelis Blauwendraat
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | | |
Collapse
|
13
|
Hu Z, Jiao R, Wang P, Zhu Y, Zhao J, De Jager P, Bennett DA, Jin L, Xiong M. Shared Causal Paths underlying Alzheimer's dementia and Type 2 Diabetes. Sci Rep 2020; 10:4107. [PMID: 32139775 PMCID: PMC7058072 DOI: 10.1038/s41598-020-60682-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
Although Alzheimer's disease (AD) is a central nervous system disease and type 2 diabetes MELLITUS (T2DM) is a metabolic disorder, an increasing number of genetic epidemiological studies show clear link between AD and T2DM. The current approach to uncovering the shared pathways between AD and T2DM involves association analysis; however such analyses lack power to discover the mechanisms of the diseases. As an alternative, we developed novel causal inference methods for genetic studies of AD and T2DM and pipelines for systematic multi-omic casual analysis to infer multilevel omics causal networks for the discovery of common paths from genetic variants to AD and T2DM. The proposed pipelines were applied to 448 individuals from the ROSMAP Project. We identified 13 shared causal genes, 16 shared causal pathways between AD and T2DM, and 754 gene expression and 101 gene methylation nodes that were connected to both AD and T2DM in multi-omics causal networks.
Collapse
Affiliation(s)
- Zixin Hu
- State Key Laboratory of Genetic Engineering and Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Rong Jiao
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Panpan Wang
- State Key Laboratory of Genetic Engineering and Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yun Zhu
- Department of Epidemiology, University of Florida, Florida, USA
| | - Jinying Zhao
- Department of Epidemiology, University of Florida, Florida, USA
| | - Phil De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, 10033, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Momiao Xiong
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
14
|
Riley D, Mantilla-Rojas C, Miller R, Nicholson K, Gill C, Herring A, Riggs P, Sawyer J, Savell J, Sanders J. Genome association of carcass and palatability traits from Bos indicus-Bos taurus crossbred steers within electrical stimulation status and correspondence with steer temperament 3. Aroma and flavor attributes of cooked steaks. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.103943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Escrig A, Canal C, Sanchis P, Fernández-Gayol O, Montilla A, Comes G, Molinero A, Giralt M, Giménez-Llort L, Becker-Pauly C, Rose-John S, Hidalgo J. IL-6 trans-signaling in the brain influences the behavioral and physio-pathological phenotype of the Tg2576 and 3xTgAD mouse models of Alzheimer's disease. Brain Behav Immun 2019; 82:145-159. [PMID: 31401302 DOI: 10.1016/j.bbi.2019.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/09/2019] [Accepted: 08/07/2019] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most commonly diagnosed dementia but its underlying pathological mechanisms still unclear. Neuroinflammation and secretion of cytokines such as interleukin-6 (IL-6) accompany the main hallmarks of the disease: amyloid plaques and neurofibrillary tangles. In this study, we analyzed the role of IL-6 trans-signaling in two mouse models of AD, Tg2576 and 3xTg-AD mice. The inhibition of IL-6 trans-signaling partially rescued the AD-induced mortality in females of both models. Before amyloid plaques deposition, it reversed AD-induced changes in exploration and anxiety (but did not affect locomotion) in Tg2576 female mice. However, after plaque deposition the only behavioral trait affected by the inhibition of IL-6 trans-signaling was locomotion. Results in the Morris water maze suggest that cognitive flexibility was reduced by the blocking of the IL-6 trans-signaling in young and old Tg2576 female mice. The inhibition of IL-6 trans-signaling also decreased amyloid plaque burden in cortex and hippocampus, and Aβ40 and Aβ42 levels in the cortex, of Tg2576 female mice. The aforementioned changes might be correlated with changes in blood vessels and matrix structure and organization rather than changes in neuroinflammation. 3xTgAD mice showed a very mild phenotype regarding amyloid cascade, but results were in accordance with those of Tg2576 mice. These results strongly suggest that the inhibition of the IL-6 trans-signaling could represent a powerful therapeutic target in AD.
Collapse
Affiliation(s)
- Anna Escrig
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Carla Canal
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Paula Sanchis
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Olaya Fernández-Gayol
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Alejandro Montilla
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Gemma Comes
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Amalia Molinero
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Mercedes Giralt
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Lydia Giménez-Llort
- Institute of Neurosciences and Department of Psychiatry and Forensic Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193, Spain
| | - Christoph Becker-Pauly
- Department of Biochemistry, Medical Faculty, Christian-Albrechts-Universität zu Kiel, 24098, Germany
| | - Stefan Rose-John
- Department of Biochemistry, Medical Faculty, Christian-Albrechts-Universität zu Kiel, 24098, Germany
| | - Juan Hidalgo
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain.
| |
Collapse
|
16
|
Alkelai A, Greenbaum L, Heinzen EL, Baugh EH, Teitelbaum A, Zhu X, Strous RD, Tatarskyy P, Zai CC, Tiwari AK, Tampakeras M, Freeman N, Müller DJ, Voineskos AN, Lieberman JA, Delaney SL, Meltzer HY, Remington G, Kennedy JL, Pulver AE, Peabody EP, Levy DL, Lerer B. New insights into tardive dyskinesia genetics: Implementation of whole-exome sequencing approach. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109659. [PMID: 31153890 DOI: 10.1016/j.pnpbp.2019.109659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Tardive dyskinesia (TD) is an adverse movement disorder induced by chronic treatment with antipsychotics drugs. The contribution of common genetic variants to TD susceptibility has been investigated in recent years, but with limited success. The aim of the current study was to investigate the potential contribution of rare variants to TD vulnerability. In order to identify TD risk genes, we performed whole-exome sequencing (WES) and gene-based collapsing analysis focusing on rare (allele frequency < 1%) and putatively deleterious variants (qualifying variants). 82 Jewish schizophrenia patients chronically treated with antipsychotics were included and classified as having severe TD or lack of any abnormal movements based on a rigorous definition of the TD phenotype. First, we performed a case-control, exome-wide collapsing analysis comparing 39 schizophrenia patients with severe TD to 3118 unrelated population controls. Then, we checked the potential top candidate genes among 43 patients without any TD manifestations. All the genes that were found to harbor one or more qualifying variants in patients without any TD features were excluded from the final list of candidate genes. Only one gene, regulating synaptic membrane exocytosis 2 (RIMS2), showed significant enrichment of qualifying variants in TD patients compared with unrelated population controls after correcting for multiple testing (Fisher's exact test p = 5.32E-08, logistic regression p = 2.50E-08). Enrichment was caused by a single variant (rs567070433) due to a frameshift in an alternative transcript of RIMS2. None of the TD negative patients had qualifying variants in this gene. In a validation cohort of 140 schizophrenia patients assessed for TD, the variant was also not detected in any individual. Some potentially suggestive TD genes were detected in the TD cohort and warrant follow-up in future studies. No significant enrichment in previously reported TD candidate genes was identified. To the best of our knowledge, this is the first WES study of TD, demonstrating the potential role of rare loss-of-function variant enrichment in this pharmacogenetic phenotype.
Collapse
Affiliation(s)
- Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA.
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erin L Heinzen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA
| | - Evan H Baugh
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA
| | - Alexander Teitelbaum
- Jerusalem Mental Health Center, Kfar Shaul Psychiatric Hospital, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | - Xiaolin Zhu
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA
| | - Rael D Strous
- Maayenei Hayeshua Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pavel Tatarskyy
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Arun K Tiwari
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Maria Tampakeras
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Natalie Freeman
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Daniel J Müller
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Aristotle N Voineskos
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Jeffrey A Lieberman
- Columbia University, New York State Psychiatric Institute, New York City, NY, USA
| | - Shannon L Delaney
- Columbia University, New York State Psychiatric Institute, New York City, NY, USA
| | - Herbert Y Meltzer
- Psychiatry and Behavioral Sciences, Pharmacology and Physiology, Chemistry of Life Processes Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gary Remington
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Ann E Pulver
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emma P Peabody
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Deborah L Levy
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Bernard Lerer
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
17
|
Gong Y, Wang K, Xiao SP, Mi P, Li W, Shang Y, Dou F. Overexpressed TTC3 Protein Tends to be Cleaved into Fragments and Form Aggregates in the Nucleus. Neuromolecular Med 2019; 21:85-96. [PMID: 30203323 DOI: 10.1007/s12017-018-8509-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/31/2018] [Indexed: 12/01/2022]
Abstract
Human tetratricopeptide repeat domain 3 (TTC3) is a gene on 21q22.2 within the Down syndrome critical region (DSCR). Earlier studies suggest that TTC3 may be an important regulator in individual development, especially in neural development. As an E3 ligase, TTC3 binds to phosphorylated Akt and silence its activity via proteasomal cascade. Several groups also reported the involvement of TTC3 in familial Alzheimer's disease recently. In addition, our previous work shows that TTC3 also regulates the degradation of DNA polymerase gamma and over-expressed TTC3 protein tends to form insoluble aggregates in cells. In this study, we focus on the solubility and intracellular localization of TTC3 protein. Over-expressed TTC3 tends to form insoluble aggregates over time. The proteasome inhibitor MG132 treatment resulted in more TTC3 aggregates in a short period of time. We fused the fluorescent protein to either terminus of the TTC3 protein and found that the intracellular localization of fluorescent signals are different between the N-terminal tagged and C-terminal tagged proteins. Western blotting revealed that the TTC3 protein is cleaved into fragments of different sizes at multiple sites. The N-terminal sub-fragments of TTC3 are prone to from nuclear aggregates and the TTC3 nuclear import is mediated by signals within the N-terminal 1 to 650 residues. Moreover, over-expressed TTC3 induced a considerable degree of cytotoxicity, and its N-terminal sub-fragments are more potent inhibitors of cell proliferation than full-length protein. Considering the prevalent proteostasis dysregulation in neurodegenerative diseases, these findings may relate to the pathology of such diseases.
Collapse
Affiliation(s)
- Yueqing Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Kun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Sheng-Ping Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Panying Mi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Wanjie Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yu Shang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China.
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
18
|
TTC3 contributes to TGF-β 1-induced epithelial-mesenchymal transition and myofibroblast differentiation, potentially through SMURF2 ubiquitylation and degradation. Cell Death Dis 2019; 10:92. [PMID: 30696809 PMCID: PMC6351531 DOI: 10.1038/s41419-019-1308-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/28/2018] [Accepted: 01/04/2019] [Indexed: 01/05/2023]
Abstract
Transforming growth factor-β (TGF-β) acts as a key cytokine in epithelial−mesenchymal transition (EMT) and myofibroblast differentiation, which are important for normal tissue repair and fibrotic diseases. Ubiquitylation and proteasomal degradation of TGF-β signaling proteins acts as a regulatory mechanism for the precise control of TGF-β signaling. SMAD-specific ubiquitin E3 ligase (SMAD ubiquitination regulatory factor 2, SMURF2) controls TGF-β signaling proteins including the TGF-β receptor (TGFR) and SMAD2/3. Here, we report that tetratricopeptide repeat domain 3 (TTC3), a ubiquitin E3 ligase, positively regulates TGF-β1-induced EMT and myofibroblast differentiation, through inducing ubiquitylation and proteasomal degradation of SMURF2. In human bronchial epithelial cells (BEAS-2B) and normal human lung fibroblasts, TTC3 knockdown suppressed TGF-β1-induced EMT and myofibroblast differentiation, respectively. Similarly, when TTC3 expression was suppressed, the TGF-β1-stimulated elevation of p-SMAD2, SMAD2, p-SMAD3, and SMAD3 were inhibited. In contrast, overexpression of TTC3 caused both EMT and myofibroblast differentiation in the absence of TGF-β1 treatment. TGF-β1 reduced SMURF2 levels and TTC3 overexpression led to a further decrease in SMURF2 levels, while TTC3 knockdown inhibited TGF-β1-induced SMURF2 reduction. In cell and in vitro ubiquitylation assays demonstrated TTC3-mediated SMURF2 ubiquitylation, and coimmunoprecipitation assays established the binding between SMURF2 and TTC3. TGF-β1-induced TTC3 expression was inhibited by the knockdown of SMAD2 and SMAD3. Finally, Ttc3 mRNA levels were significantly increased and Smurf2 protein levels were significantly decreased in the lungs of mice treated with bleomycin as compared with the lungs of control mice. Collectively, these data suggest that TTC3 may contribute to TGF-β1-induced EMT and myofibroblast differentiation, potentially through SMURF2 ubiquitylation/proteasomal degradation and subsequent inhibition of SMURF2-mediated suppression of SMAD2 and SMAD3, which in turn induces TTC3 expression.
Collapse
|
19
|
Horzmann KA, Reidenbach LS, Thanki DH, Winchester AE, Qualizza BA, Ryan GA, Egan KE, Hedrick VE, Sobreira TJP, Peterson SM, Weber GJ, Wirbisky-Hershberger SE, Sepúlveda MS, Freeman JL. Embryonic atrazine exposure elicits proteomic, behavioral, and brain abnormalities with developmental time specific gene expression signatures. J Proteomics 2018; 186:71-82. [PMID: 30012420 PMCID: PMC6193558 DOI: 10.1016/j.jprot.2018.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
Atrazine (ATZ), the second most commonly used herbicide in the United States, is an endocrine disrupting chemical linked to cancer and a common drinking water contaminant. This study further investigates ATZ-related developmental toxicity by testing the following hypotheses in zebrafish: the effects of embryonic ATZ exposure are dependent on timing of exposure; embryonic ATZ exposure alters brain development and function; and embryonic ATZ exposure changes protein abundance in carcinogenesis-related pathways. After exposing embryos to 0, 0.3, 3, or 30 parts per billion (ppb) ATZ, we monitored the expression of cytochrome P450 family 17 subfamily A member 1 (cyp17a1), glyoxalase I (glo1), ring finger protein 14 (rnf14), salt inducible kinase 2 (sik2), tetratricopeptide domain 3 (ttc3), and tumor protein D52 like 1 (tpd52l1) at multiple embryonic time points to determine normal expression and if ATZ exposure altered expression. Only cyp17a1 had normal dynamic expression, but ttc3 and tpd52l1 had ATZ-related expression changes before 72 h. Larvae exposed to 0.3 ppb ATZ had increased brain length, while larvae exposed to 30 ppb ATZ were hypoactive. Proteomic analysis identified altered protein abundance in pathways related to cellular function, neurodevelopment, and genital-tract cancer. The results indicate embryonic ATZ toxicity involves interactions of multiple pathways. SIGNIFICANCE This is the first report of proteomic alterations following embryonic exposure to atrazine, an environmentally persistent pesticide and common water contaminant. Although the transcriptomic alterations in larval zebrafish with embryonic atrazine exposure have been reported, neither the time at which gene expression changes occur nor the resulting proteomic changes have been investigated. This study seeks to address these knowledge gaps by evaluating atrazine's effect on gene expression through multiple time points during embryogenesis, and correlating changes in gene expression to pathological alterations in brain length and functional changes in behavior. Finally, pathway analysis of the proteomic alterations identifies connections between the molecular changes and functional outcomes associated with embryonic atrazine exposure.
Collapse
Affiliation(s)
- Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Leeah S Reidenbach
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Devang H Thanki
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Anna E Winchester
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Brad A Qualizza
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Geoffrey A Ryan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Kaitlyn E Egan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Victoria E Hedrick
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN 47907, United States
| | - Tiago J P Sobreira
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN 47907, United States
| | - Samuel M Peterson
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Gregory J Weber
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | | | - Maria S Sepúlveda
- Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
20
|
Bianchi FT, Gai M, Berto GE, Di Cunto F. Of rings and spines: The multiple facets of Citron proteins in neural development. Small GTPases 2017; 11:122-130. [PMID: 29185861 PMCID: PMC7053930 DOI: 10.1080/21541248.2017.1374325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The Citron protein was originally identified for its capability to specifically bind the active form of RhoA small GTPase, leading to the simplistic hypothesis that it may work as a RhoA downstream effector in actin remodeling. More than two decades later, a much more complex picture has emerged. In particular, it has become clear that in animals, and especially in mammals, the functions of the Citron gene (CIT) are intimately linked to many aspects of central nervous system (CNS) development and function, although the gene is broadly expressed. More specifically, CIT encodes two main isoforms, Citron-kinase (CIT-K) and Citron-N (CIT-N), characterized by complementary expression pattern and different functions. Moreover, in many of their activities, CIT proteins act more as upstream regulators than as downstream effectors of RhoA. Finally it has been found that, besides working through actin, CIT proteins have many crucial functional interactions with the microtubule cytoskeleton and may directly affect genome stability. In this review, we will summarize these advances and illustrate their actual or potential relevance for CNS diseases, including microcephaly and psychiatric disorders.
Collapse
Affiliation(s)
- Federico T Bianchi
- Neuroscience Institute Cavalieri Ottolenghi, Regione Golzole 10, Orbassano, TO, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Gaia E Berto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Golzole 10, Orbassano, TO, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Golzole 10, Orbassano, TO, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
21
|
Gong Y, Wang X, Shang X, Xiao SP, Li W, Shang Y, Dou F. Tetratricopeptide repeat domain 3 overexpression tends to form aggregates and inhibit ubiquitination and degradation of DNA polymerase γ. Oncotarget 2017; 8:106475-106485. [PMID: 29290964 PMCID: PMC5739749 DOI: 10.18632/oncotarget.22476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/28/2017] [Indexed: 11/25/2022] Open
Abstract
Tetratricopeptide repeat (TPR) domain 3 (TTC3) is a protein that contains canonical RING finger and TPR motifs. It is encoded by the TTC3 gene located in the Down syndrome critical region (DSCR). In this study, we used a yeast two-hybrid assay to identify several proteins that physically interact with TTC3, including heat shock proteins and DNA polymerase γ (POLG). When TTC3 was overexpressed in mammalian cells, the ubiquitination of POLG was inhibited and its degradation slowed. High TTC3 protein expression led to the development of intracellular TTC3 aggregates, which also contained POLG. Co-expression with Hsp70 or placing the TTC3 gene under control of an inducible promoter alleviated the aggregation and facilitated POLG degradation. As a result of POLG's effects on aging processes, we propose that a copy number variant of the TTC3 may contribute to Down syndrome pathogenesis.
Collapse
Affiliation(s)
- Yueqing Gong
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG, McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China.,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Xiaolan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG, McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China.,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Xuan Shang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG, McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China.,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Sheng Ping Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG, McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China.,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Wanjie Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yu Shang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG, McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China.,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
22
|
Alfieri A, Sorokina O, Adrait A, Angelini C, Russo I, Morellato A, Matteoli M, Menna E, Boeri Erba E, McLean C, Armstrong JD, Ala U, Buxbaum JD, Brusco A, Couté Y, De Rubeis S, Turco E, Defilippi P. Synaptic Interactome Mining Reveals p140Cap as a New Hub for PSD Proteins Involved in Psychiatric and Neurological Disorders. Front Mol Neurosci 2017; 10:212. [PMID: 28713243 PMCID: PMC5492163 DOI: 10.3389/fnmol.2017.00212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/15/2017] [Indexed: 01/21/2023] Open
Abstract
Altered synaptic function has been associated with neurological and psychiatric conditions including intellectual disability, schizophrenia and autism spectrum disorder (ASD). Amongst the recently discovered synaptic proteins is p140Cap, an adaptor that localizes at dendritic spines and regulates their maturation and physiology. We recently showed that p140Cap knockout mice have cognitive deficits, impaired long-term potentiation (LTP) and long-term depression (LTD), and immature, filopodia-like dendritic spines. Only a few p140Cap interacting proteins have been identified in the brain and the molecular complexes and pathways underlying p140Cap synaptic function are largely unknown. Here, we isolated and characterized the p140Cap synaptic interactome by co-immunoprecipitation from crude mouse synaptosomes, followed by mass spectrometry-based proteomics. We identified 351 p140Cap interactors and found that they cluster to sub complexes mostly located in the postsynaptic density (PSD). p140Cap interactors converge on key synaptic processes, including transmission across chemical synapses, actin cytoskeleton remodeling and cell-cell junction organization. Gene co-expression data further support convergent functions: the p140Cap interactors are tightly co-expressed with each other and with p140Cap. Importantly, the p140Cap interactome and its co-expression network show strong enrichment in genes associated with schizophrenia, autism, bipolar disorder, intellectual disability and epilepsy, supporting synaptic dysfunction as a shared biological feature in brain diseases. Overall, our data provide novel insights into the molecular organization of the synapse and indicate that p140Cap acts as a hub for postsynaptic complexes relevant to psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Annalisa Alfieri
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Oksana Sorokina
- The Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, United Kingdom
| | - Annie Adrait
- Université Grenoble Alpes, iRTSV-BGEGrenoble, France.,CEA, iRTSV-BGEGrenoble, France.,Institut National de la Santé et de la Recherche Médicale, BGEGrenoble, France
| | - Costanza Angelini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Isabella Russo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Michela Matteoli
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR)Milan, Italy.,Humanitas Clinical and Research Center, IRCCSRozzano, Italy
| | - Elisabetta Menna
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR)Milan, Italy.,Humanitas Clinical and Research Center, IRCCSRozzano, Italy
| | - Elisabetta Boeri Erba
- Institut de Biologie Structurale, Université Grenoble AlpesGrenoble, France.,CEA, DSV, IBSGrenoble, France.,Centre National de la Recherche Scientifique, IBSGrenoble, France
| | - Colin McLean
- The Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, United Kingdom
| | - J Douglas Armstrong
- The Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, United Kingdom
| | - Ugo Ala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy.,GenoBiToUS-Genomics and Bioinformatics, Università di TorinoTurin, Italy
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount SinaiNew York, NY, United States
| | - Alfredo Brusco
- Department of Medical Sciences, Università di TorinoTurin, Italy.,Medical Genetics Unit, Azienda Ospedaliera Città della Salute e della Scienza di TorinoTurin, Italy
| | - Yohann Couté
- Université Grenoble Alpes, iRTSV-BGEGrenoble, France.,CEA, iRTSV-BGEGrenoble, France.,Institut National de la Santé et de la Recherche Médicale, BGEGrenoble, France
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| |
Collapse
|
23
|
Kirk IK, Weinhold N, Belling K, Skakkebæk NE, Jensen TS, Leffers H, Juul A, Brunak S. Chromosome-wise Protein Interaction Patterns and Their Impact on Functional Implications of Large-Scale Genomic Aberrations. Cell Syst 2017; 4:357-364.e3. [PMID: 28215527 DOI: 10.1016/j.cels.2017.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 10/23/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
Abstract
Gene copy-number changes influence phenotypes through gene-dosage alteration and subsequent changes of protein complex stoichiometry. Human trisomies where gene copy numbers are increased uniformly over entire chromosomes provide generic cases for studying these relationships. In most trisomies, gene and protein level alterations have fatal consequences. We used genome-wide protein-protein interaction data to identify chromosome-specific patterns of protein interactions. We found that some chromosomes encode proteins that interact infrequently with each other, chromosome 21 in particular. We combined the protein interaction data with transcriptome data from human brain tissue to investigate how this pattern of global interactions may affect cellular function. We identified highly connected proteins that also had coordinated gene expression. These proteins were associated with important neurological functions affecting the characteristic phenotypes for Down syndrome and have previously been validated in mouse knockout experiments. Our approach is general and applicable to other gene-dosage changes, such as arm-level amplifications in cancer.
Collapse
Affiliation(s)
- Isa Kristina Kirk
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nils Weinhold
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kirstine Belling
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Niels Erik Skakkebæk
- Department of Growth and Reproduction, Rigshospitalet and University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thomas Skøt Jensen
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Henrik Leffers
- Department of Growth and Reproduction, Rigshospitalet and University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet and University of Copenhagen, 2100 Copenhagen, Denmark
| | - Søren Brunak
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
24
|
Zhang Z, Zheng Y, Zhang X, Liu C, Joyce BT, Kibbe WA, Hou L, Zhang W. Linking short tandem repeat polymorphisms with cytosine modifications in human lymphoblastoid cell lines. Hum Genet 2016; 135:223-32. [PMID: 26714498 PMCID: PMC4715638 DOI: 10.1007/s00439-015-1628-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/17/2015] [Indexed: 01/26/2023]
Abstract
Inter-individual variation in cytosine modifications has been linked to complex traits in humans. Cytosine modification variation is partially controlled by single nucleotide polymorphisms (SNPs), known as modified cytosine quantitative trait loci (mQTL). However, little is known about the role of short tandem repeat polymorphisms (STRPs), a class of structural genetic variants, in regulating cytosine modifications. Utilizing the published data on the International HapMap Project lymphoblastoid cell lines (LCLs), we assessed the relationships between 721 STRPs and the modification levels of 283,540 autosomal CpG sites. Our findings suggest that, in contrast to the predominant cis-acting mode for SNP-based mQTL, STRPs are associated with cytosine modification levels in both cis-acting (local) and trans-acting (distant) modes. In local scans within the ±1 Mb windows of target CpGs, 21, 9, and 21 cis-acting STRP-based mQTL were detected in CEU (Caucasian residents from Utah, USA), YRI (Yoruba people from Ibadan, Nigeria), and the combined samples, respectively. In contrast, 139,420, 76,817, and 121,866 trans-acting STRP-based mQTL were identified in CEU, YRI, and the combined samples, respectively. A substantial proportion of CpG sites detected with local STRP-based mQTL were not associated with SNP-based mQTL, suggesting that STRPs represent an independent class of mQTL. Functionally, genetic variants neighboring CpG-associated STRPs are enriched with genome-wide association study (GWAS) loci for a variety of complex traits and diseases, including cancers, based on the National Human Genome Research Institute (NHGRI) GWAS Catalog. Therefore, elucidating these STRP-based mQTL in addition to SNP-based mQTL can provide novel insights into the genetic architectures of complex traits.
Collapse
Affiliation(s)
- Zhou Zhang
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Suite 1400, Chicago, IL, 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Suite 1400, Chicago, IL, 60611, USA
- Institute for Public Health and Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Xu Zhang
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Cong Liu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Brian Thomas Joyce
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Suite 1400, Chicago, IL, 60611, USA
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Warren A Kibbe
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD, 20850, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Suite 1400, Chicago, IL, 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Suite 1400, Chicago, IL, 60611, USA.
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
25
|
Kohli MA, Cukier HN, Hamilton-Nelson KL, Rolati S, Kunkle BW, Whitehead PL, Züchner SL, Farrer LA, Martin ER, Beecham GW, Haines JL, Vance JM, Cuccaro ML, Gilbert JR, Schellenberg GD, Carney RM, Pericak-Vance MA. Segregation of a rare TTC3 variant in an extended family with late-onset Alzheimer disease. NEUROLOGY-GENETICS 2016; 2:e41. [PMID: 27066578 PMCID: PMC4817909 DOI: 10.1212/nxg.0000000000000041] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/20/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The genetic risk architecture of Alzheimer disease (AD) is complex with single pathogenic mutations leading to early-onset AD, while both rare and common genetic susceptibility variants contribute to the more widespread late-onset AD (LOAD); we sought to discover novel genes contributing to LOAD risk. METHODS Whole-exome sequencing and genome-wide genotyping were performed on 11 affected individuals in an extended family with an apparent autosomal dominant pattern of LOAD. Variants of interest were then evaluated in a large cohort of LOAD cases and aged controls. RESULTS We detected a single rare, nonsynonymous variant shared in all 11 LOAD individuals, a missense change in the tetratricopeptide repeat domain 3 (TTC3) gene. The missense variant, rs377155188 (p.S1038C), is predicted to be damaging. Affecteds-only multipoint linkage analysis demonstrated that this region of TTC3 has a LOD score of 2.66 in this family. CONCLUSION The TTC3 p.S1038C substitution may represent a segregating, rare LOAD risk variant. Previous studies have shown that TTC3 expression is consistently reduced in LOAD patients and negatively correlated with AD neuropathology and that TTC3 is a regulator of Akt signaling, a key pathway disrupted in LOAD. This study demonstrates how utilizing whole-exome sequencing in a large, multigenerational family with a high incidence of LOAD could reveal a novel candidate gene.
Collapse
Affiliation(s)
- Martin A Kohli
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Holly N Cukier
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Kara L Hamilton-Nelson
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Sophie Rolati
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Brian W Kunkle
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Patrice L Whitehead
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Stephan L Züchner
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Lindsay A Farrer
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Eden R Martin
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Gary W Beecham
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Jonathan L Haines
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Jeffery M Vance
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - John R Gilbert
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Gerard D Schellenberg
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Regina M Carney
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
26
|
Berto GE, Iobbi C, Camera P, Scarpa E, Iampietro C, Bianchi F, Gai M, Sgrò F, Cristofani F, Gärtner A, Dotti CG, Di Cunto F. The DCR protein TTC3 affects differentiation and Golgi compactness in neurons through specific actin-regulating pathways. PLoS One 2014; 9:e93721. [PMID: 24695496 PMCID: PMC3973554 DOI: 10.1371/journal.pone.0093721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 03/06/2014] [Indexed: 01/10/2023] Open
Abstract
In neuronal cells, actin remodeling plays a well known role in neurite extension but is also deeply involved in the organization of intracellular structures, such as the Golgi apparatus. However, it is still not very clear which mechanisms may regulate actin dynamics at the different sites. In this report we show that high levels of the TTC3 protein, encoded by one of the genes of the Down Syndrome Critical Region (DCR), prevent neurite extension and disrupt Golgi compactness in differentiating primary neurons. These effects largely depend on the capability of TTC3 to promote actin polymerization through signaling pathways involving RhoA, ROCK, CIT-N and PIIa. However, the functional relationships between these molecules differ significantly if considering the TTC3 activity on neurite extension or on Golgi organization. Finally, our results reveal an unexpected stage-dependent requirement for F-actin in Golgi organization at different stages of neuronal differentiation.
Collapse
Affiliation(s)
- Gaia Elena Berto
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- * E-mail: (GEB); (FDC)
| | - Cristina Iobbi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paola Camera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Scarpa
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Corinne Iampietro
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federico Bianchi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Francesco Sgrò
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Flavio Cristofani
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Annette Gärtner
- VIB Center for the Biology of Disease – VIB, Leuven, Belgium
| | - Carlos G. Dotti
- VIB Center for the Biology of Disease – VIB, Leuven, Belgium
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - Ferdinando Di Cunto
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- * E-mail: (GEB); (FDC)
| |
Collapse
|
27
|
Haas MA, Bell D, Slender A, Lana-Elola E, Watson-Scales S, Fisher EMC, Tybulewicz VLJ, Guillemot F. Alterations to dendritic spine morphology, but not dendrite patterning, of cortical projection neurons in Tc1 and Ts1Rhr mouse models of Down syndrome. PLoS One 2013; 8:e78561. [PMID: 24205261 PMCID: PMC3813676 DOI: 10.1371/journal.pone.0078561] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 09/18/2013] [Indexed: 12/19/2022] Open
Abstract
Down Syndrome (DS) is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines - the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects.
Collapse
Affiliation(s)
- Matilda A. Haas
- Division of Molecular Neurobiology, Medical Research Council National Institute for Medical Research, London, United Kingdom
- * E-mail:
| | - Donald Bell
- Confocal Image Analysis Laboratory, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Amy Slender
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Eva Lana-Elola
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Sheona Watson-Scales
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | | | - Victor L. J. Tybulewicz
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - François Guillemot
- Division of Molecular Neurobiology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
28
|
Marsman RF, Barc J, Beekman L, Alders M, Dooijes D, van den Wijngaard A, Ratbi I, Sefiani A, Bhuiyan ZA, Wilde AAM, Bezzina CR. A mutation in CALM1 encoding calmodulin in familial idiopathic ventricular fibrillation in childhood and adolescence. J Am Coll Cardiol 2013; 63:259-66. [PMID: 24076290 DOI: 10.1016/j.jacc.2013.07.091] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES This study aimed to identify the genetic defect in a family with idiopathic ventricular fibrillation (IVF) manifesting in childhood and adolescence. BACKGROUND Although sudden cardiac death in the young is rare, it frequently presents as the first clinical manifestation of an underlying inherited arrhythmia syndrome. Gene discovery for IVF is important as it enables the identification of individuals at risk, because except for arrhythmia, IVF does not manifest with identifiable clinical abnormalities. METHODS Exome sequencing was carried out on 2 family members who were both successfully resuscitated from a cardiac arrest. RESULTS We characterized a family presenting with a history of ventricular fibrillation (VF) and sudden death without electrocardiographic or echocardiographic abnormalities at rest. Two siblings died suddenly at the ages of 9 and 10 years, and another 2 were resuscitated from out-of-hospital cardiac arrest with documented VF at ages 10 and 16 years, respectively. Exome sequencing identified a missense mutation affecting a highly conserved residue (p.F90L) in the CALM1 gene encoding calmodulin. This mutation was also carried by 1 of the siblings who died suddenly, from whom DNA was available. The mutation was present in the mother and in another sibling, both asymptomatic but displaying a marginally prolonged QT interval during exercise. CONCLUSIONS We identified a mutation in CALM1 underlying IVF manifesting in childhood and adolescence. The causality of the mutation is supported by previous studies demonstrating that F90 mediates the direct interaction of CaM with target peptides. Our approach highlights the utility of exome sequencing in uncovering the genetic defect even in families with a small number of affected individuals.
Collapse
Affiliation(s)
- Roos F Marsman
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Julien Barc
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands; ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| | - Leander Beekman
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands
| | - Dennis Dooijes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Arthur van den Wijngaard
- Department of Clinical Genetics, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ilham Ratbi
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohamed V Souissi, Rabat, Morocco
| | - Abdelaziz Sefiani
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohamed V Souissi, Rabat, Morocco
| | - Zahurul A Bhuiyan
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands; Laboratoire de Génétique Moléculaire, Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands; Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
29
|
Zhao CF, Liu Y, Ni YL, Yang JW, Hui HD, Sun ZB, Liu SJ. SCIRR39 promotes neurite extension via RhoA in NGF-induced PC12 cells. Dev Neurosci 2013; 35:373-83. [PMID: 24021527 DOI: 10.1159/000350715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/17/2013] [Indexed: 11/19/2022] Open
Abstract
SCIRR39 is an identified upregulated gene in rat primary neuron injury and/or regeneration process with roles largely unexplored. Using real-time quantitative PCR, Western blotting and immunofluorescence, SCIRR39 expression was detected in normal PC12 cells and upregulated in differentiated cells. The results of cell proliferation by Cell Counting Kit and cell cycle by flow cytometry indicated that SCIRR39 inhibited cell proliferation and induced the decrease in S phase. Importantly, immunofluorescent and RhoA pull-down assays showed that SCIRR39 strongly affected the neurite extension of NGF-treated PC12 cells through a RhoA-dependent mechanism, but the truncated mutants of SCIRR39 containing a truncation from 141AA to 211AA or from 397AA to 424AA failed to mock the SCIRR39 effect on neurite extension. Moreover, change of SCIRR39 expression in NGF-treated PC12 cells regulated the expression and phosphorylation of Fyn, a regulator of RhoA activity, but not the expression of ROCK II protein. Finally, immunofluorescence and RhoA pull-down assays revealed that obvious inhibition of neurite extension by SCIRR39 shRNA was reversed by RhoA inhibitor C3-transferase. Our results indicated that SCIRR39 increased the neurite extension in NGF-treated PC12 cells via RhoA, suggesting that SCIRR39 contributes to the regeneration of neuron injury by specifically altering the differentiation program.
Collapse
Affiliation(s)
- C F Zhao
- State Key Laboratory of Proteomics, Department of Neurobiology, Institute of Basic Medical Sciences, The Academy of Military Medical Sciences, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
30
|
Kugler JE, Horsch M, Huang D, Furusawa T, Rochman M, Garrett L, Becker L, Bohla A, Hölter SM, Prehn C, Rathkolb B, Racz I, Aguilar-Pimentel JA, Adler T, Adamski J, Beckers J, Busch DH, Eickelberg O, Klopstock T, Ollert M, Stöger T, Wolf E, Wurst W, Yildirim AÖ, Zimmer A, Gailus-Durner V, Fuchs H, Hrabě de Angelis M, Garfinkel B, Orly J, Ovcharenko I, Bustin M. High mobility group N proteins modulate the fidelity of the cellular transcriptional profile in a tissue- and variant-specific manner. J Biol Chem 2013; 288:16690-16703. [PMID: 23620591 DOI: 10.1074/jbc.m113.463315] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclei of most vertebrate cells contain members of the high mobility group N (HMGN) protein family, which bind specifically to nucleosome core particles and affect chromatin structure and function, including transcription. Here, we study the biological role of this protein family by systematic analysis of phenotypes and tissue transcription profiles in mice lacking functional HMGN variants. Phenotypic analysis of Hmgn1(tm1/tm1), Hmgn3(tm1/tm1), and Hmgn5(tm1/tm1) mice and their wild type littermates with a battery of standardized tests uncovered variant-specific abnormalities. Gene expression analysis of four different tissues in each of the Hmgn(tm1/tm1) lines reveals very little overlap between genes affected by specific variants in different tissues. Pathway analysis reveals that loss of an HMGN variant subtly affects expression of numerous genes in specific biological processes. We conclude that within the biological framework of an entire organism, HMGNs modulate the fidelity of the cellular transcriptional profile in a tissue- and HMGN variant-specific manner.
Collapse
Affiliation(s)
- Jamie E Kugler
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Marion Horsch
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Di Huang
- Computational Biology Branch, NCBI, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Takashi Furusawa
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Mark Rochman
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Lillian Garrett
- German Mouse Clinic, Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Department of Neurology, Friedrich-Baur-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alexander Bohla
- German Mouse Clinic, Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Lung Research, Munich, Germany
| | - Sabine M Hölter
- German Mouse Clinic, Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Cornelia Prehn
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ildikó Racz
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Juan Antonio Aguilar-Pimentel
- Center of Allergy and Environment, Technische Universität München, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Dermatology and Allergy, Biederstein, Technische Universität München and Clinical Research Division of Molecular and Clinical Allergotoxicology, Technische Universität München, Munich, Germany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Institute of Medical Microbiology, Immunology, and Hygiene, Technische Universität München, München, Germany
| | - Jerzy Adamski
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Johannes Beckers
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - Dirk H Busch
- Institute of Medical Microbiology, Immunology, and Hygiene, Technische Universität München, München, Germany
| | - Oliver Eickelberg
- German Mouse Clinic, Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Lung Research, Munich, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institut, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Vertigo and Balance Disorders, Technische Universität München, Munich, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen-German Center for Neurodegenerative Diseases, Site Munich, Munich, Germany
| | - Markus Ollert
- Department of Dermatology and Allergy, Biederstein, Technische Universität München and Clinical Research Division of Molecular and Clinical Allergotoxicology, Technische Universität München, Munich, Germany
| | - Tobias Stöger
- German Mouse Clinic, Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Lung Research, Munich, Germany
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Wurst
- German Mouse Clinic, Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen-German Center for Neurodegenerative Diseases, Site Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany; Developmental Genetics, Technische Universität München c/o Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ali Önder Yildirim
- German Mouse Clinic, Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Lung Research, Munich, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany; German Center for Vertigo and Balance Disorders, Technische Universität München, Munich, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Benny Garfinkel
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Joseph Orly
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ivan Ovcharenko
- Computational Biology Branch, NCBI, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
31
|
Solzak JP, Liang Y, Zhou FC, Roper RJ. Commonality in Down and fetal alcohol syndromes. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2013; 97:187-97. [PMID: 23554291 PMCID: PMC4096968 DOI: 10.1002/bdra.23129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND Down syndrome (DS) and Fetal Alcohol Syndrome (FAS) are two leading causes of birth defects with phenotypes ranging from craniofacial abnormalities to cognitive impairment. Despite different origins, we report that in addition to sharing many phenotypes, DS and FAS may have common underlying mechanisms of development. METHODS Literature was surveyed for DS and FAS as well as mouse models. Gene expression and apoptosis were compared in embryonic mouse models of DS and FAS by qPCR, immunohistochemical and immunoflurorescence analyses. The craniometry was examined using MicroCT at postnatal day 21. RESULTS A literature survey revealed over 20 comparable craniofacial and structural deficits in both humans with DS and FAS and corresponding mouse models. Similar phenotypes were experimentally found in pre- and postnatal craniofacial and neurological tissues of DS and FAS mice. Dysregulation of two genes, Dyrk1a and Rcan1, key to craniofacial and neurological precursors of DS, was shared in craniofacial precursors of DS and FAS embryos. Increased cleaved caspase 3 expression was also discovered in comparable regions of the craniofacial and brain precursors of DS and FAS embryos. Further mechanistic studies suggested overexpression of trisomic Ttc3 in DS embyros may influence nuclear pAkt localization and cell survival. CONCLUSIONS This first and initial study indicates that DS and FAS share common dysmorphologies in humans and animal models. This work also suggests common mechanisms at cellular and molecular levels that are disrupted by trisomy or alcohol consumption during pregnancy and lead to craniofacial and neurological phenotypes associated with DS or FAS.
Collapse
Affiliation(s)
- Jeffrey P. Solzak
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Yun Liang
- Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Feng C. Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Randall J. Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
32
|
Baptista MS, Duarte CB, Maciel P. Role of the ubiquitin-proteasome system in nervous system function and disease: using C. elegans as a dissecting tool. Cell Mol Life Sci 2012; 69:2691-715. [PMID: 22382927 PMCID: PMC11115168 DOI: 10.1007/s00018-012-0946-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 01/12/2023]
Abstract
In addition to its central roles in protein quality control, regulation of cell cycle, intracellular signaling, DNA damage response and transcription regulation, the ubiquitin-proteasome system (UPS) plays specific roles in the nervous system, where it contributes to precise connectivity through development, and later assures functionality by regulating a wide spectrum of neuron-specific cellular processes. Aberrations in this system have been implicated in the etiology of neurodevelopmental and neurodegenerative diseases. In this review, we provide an updated view on the UPS and highlight recent findings concerning its role in normal and diseased nervous systems. We discuss the advantages of the model organism Caenorhabditis elegans as a tool to unravel the major unsolved questions concerning this biochemical pathway and its involvement in nervous system function and dysfunction, and expose the new possibilities, using state-of-the-art techniques, to assess UPS function using this model system.
Collapse
Affiliation(s)
- Márcio S Baptista
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | |
Collapse
|
33
|
Suzuki N, Ando S, Sumida K, Horie N, Saito K. Analysis of altered gene expression specific to embryotoxic chemical treatment during embryonic stem cell differentiation into myocardiac and neural cells. J Toxicol Sci 2012; 36:569-85. [PMID: 22008533 DOI: 10.2131/jts.36.569] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Embryonic stem cells (ES cells), pluripotent cells derived from the inner cell mass of blastocysts, differentiate in vitro into a variety of cell types representing all three germ layers. They therefore constitute one of the most promising in vitro tools for developmental toxicology. To assess the developmental toxicity of chemicals using ES cells easily, identification of effective marker genes is a high priority. We report here altered gene expression during ES cell differentiation into myocardiac and neural cells on treatment with some embryotoxic and non-embryotoxic chemicals. Decreases in several undifferentiated markers such as Oct3/4 and Nanog, and elevated expression of genes associated with heart development or the central nervous system, respectively, were found on microarray analysis. Under differentiation of ES cells into myocardic cells, 107 genes were substantially up-regulated. Decrease in the expression of 13 genes of these (Hand1, Pim2, Tbx20, Myl4, Myl7, Hbb-bh1, Hba-a1, Col1a2, Hba-x, Cmya1, Pitx2, Smyd1 and Adam19) was observed specifically by embryotoxic chemicals. Of the 107 genes up-regulated under differentiation into neurons, 22 genes (Map2, Cpe, Marcks, Ptbp2, Sox11, Tubb2b, Vim, Arx, Emx2, Pax6, Basp1, Ddr1, Ndn, Sfrp, Ttc3, Ubqln2, Six3, Dcx, L1cam, Reln, Wnt1 and Nnat) showed reduced expression specifically by embryotoxic chemicals. Almost all gene sets identified in this study are known to be indispensable for differentiation and development of heart and brain tissues, and thus may serve in early detection or prediction of embryotoxicity of chemicals in vitro.
Collapse
Affiliation(s)
- Noriyuki Suzuki
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan.
| | | | | | | | | |
Collapse
|
34
|
Bernardini C, Lattanzi W, Bosco P, Franceschini C, Plazzi G, Michetti F, Ferri R. Genome-wide gene expression profiling of human narcolepsy. Gene Expr 2012; 15:171-81. [PMID: 22783726 PMCID: PMC6043843 DOI: 10.3727/105221612x13372578119652] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The objective of this study was to perform global gene expression profiling of patients affected by narcolepsy with cataplexy (NRLCP). This enabled identifying new potential biomarkers and relevant molecules possibly involved in the disease pathogenesis. In this study 10 NRLCP patients and 10 healthy controls were compared. Total RNA isolated from blood specimens was analyzed using microarray technology followed by statistical data analysis to detect genome-wide differential gene expression between patients and controls. Functional analysis of the gene list was performed in order to interpret the biological significance of the data. One hundred and seventy-three genes showed significant (p < 0.01) differential expression between the two tested conditions. The biological interpretation allowed categorizing differentially expressed genes involved in neurite outgrowth/extension and brain development, which could be possibly regarded as peripheral markers of the disease. Moreover, the NRLCP-related gene expression profiles indicated a dysregulation of metabolic and immune-related mechanisms. In conclusion, the gene expression profile associated to NRLCP suggested that molecular markers of neurological impairment, dysmetabolic and immune-related mechanisms, can be detected in blood of NRLCP patients.
Collapse
Affiliation(s)
- Camilla Bernardini
- Institute of Anatomy and Cell Biology, Catholic University, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Transcript catalogs of human chromosome 21 and orthologous chimpanzee and mouse regions. Mamm Genome 2011; 22:261-71. [PMID: 21400203 DOI: 10.1007/s00335-011-9321-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 02/17/2011] [Indexed: 01/05/2023]
Abstract
A comprehensive representation of the gene content of the long arm of human chromosome 21 (Hsa21q) remains of interest for the study of Down syndrome, its associated phenotypic features, and mouse models. Here we compare transcript catalogs for Hsa21q, chimpanzee chromosome 21 (Ptr21q), and orthologous regions of mouse chromosomes 16, 17, and 10 for open reading frame (ORF) characteristics and conservation. The Hsa21q and mouse catalogs contain 552 and 444 gene models, respectively, of which only 162 are highly conserved. Hsa21q transcripts were used to identify orthologous exons in Ptr21q and assemble 533 putative transcripts. Transcript catalogs for all three organisms are searchable for nucleotide and amino acid sequence features of ORF length, repeat content, experimental support, gene structure, and conservation. For human and mouse comparisons, three additional summaries are provided: (1) the chromosomal distribution of novel ORF transcripts versus potential functional RNAs, (2) the distribution of species-specific transcripts within Hsa21q and mouse models of Down syndrome, and (3) the organization of sense-antisense and putative sense-antisense structures defining potential regulatory mechanisms. Catalogs, summaries, and nucleotide and amino acid sequences of all composite transcripts are available and searchable at http://gfuncpathdb.ucdenver.edu/iddrc/chr21/home.php. These data sets provide comprehensive information useful for evaluation of candidate genes and mouse models of Down syndrome and for identification of potential functional RNA genes and novel regulatory mechanisms involving Hsa21q genes. These catalogs and search tools complement and extend information available from other gene annotation projects.
Collapse
|
36
|
Citron kinase regulates axon growth through a pathway that converges on cofilin downstream of RhoA. Neurobiol Dis 2010; 41:421-9. [PMID: 20971191 DOI: 10.1016/j.nbd.2010.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/29/2010] [Accepted: 10/15/2010] [Indexed: 11/20/2022] Open
Abstract
Axon regeneration in the adult central nervous system (CNS) is prevented by inhibitory molecules present in myelin, which bind to a receptor complex that leads to downstream RhoGTP activation and axon growth cone collapse. Here, we compared expression of Citron kinase (Citron-K), a target molecule of RhoGTP in non-regenerating dorsal root ganglion neurons (DRGN) after dorsal column (DC) injury, and in regenerating DRGN after either sciatic nerve (SN) injury or preconditioning SN+DC lesion models. We show by microarray that Citron-K mRNA levels in DRGN of a non-regenerating DC injury model were elevated 2-fold compared to those of intact control DRGN. Conversely, Citron-K levels were reduced by 2 and 2.4-fold at 10 days post lesion in the regenerating SN and preconditioning SN+DC lesion models, respectively, compared to levels in control intact DRGN. Western blotting and immunohistochemistry confirmed these observations and localised Citron-K immunostaining to both DRGN and satellite glia. In dissociated, adult rat DRG cell cultures, 80% knockdown of Citron-K, in the presence of inhibitory concentrations of CNS myelin extract (CME), promoted significant disinhibited DRGN neurite outgrowth, only when cells were stimulated with neurotrophic factors. The levels of RhoGTP remained unchanged after Citron-K knockdown in the presence of CME while enhanced cofilin levels correlated with disinhibited DRGN neurite outgrowth. This observation suggests that Citron-K plays a role in axon growth downstream of Rho activation. We conclude that Citron-K regulates actin polymerisation downstream of RhoA and may offer a potentially novel therapeutic approach for promoting CNS axon regeneration.
Collapse
|
37
|
Oegema R, de Klein A, Verkerk AJ, Schot R, Dumee B, Douben H, Eussen B, Dubbel L, Poddighe PJ, van der Laar I, Dobyns WB, van der Spek PJ, Lequin MH, de Coo IFM, de Wit MCY, Wessels MW, Mancini GMS. Distinctive Phenotypic Abnormalities Associated with Submicroscopic 21q22 Deletion Including DYRK1A. Mol Syndromol 2010; 1:113-120. [PMID: 21031080 DOI: 10.1159/000320113] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 07/30/2010] [Indexed: 11/19/2022] Open
Abstract
Partial monosomy 21 has been reported, but the phenotypes described are variable with location and size of the deletion. We present 2 patients with a partially overlapping microdeletion of 21q22 and a striking phenotypic resemblance. They both presented with severe psychomotor delay, behavioral problems, no speech, microcephaly, feeding problems with frequent regurgitation, idiopathic thrombocytopenia, obesity, deep set eyes, down turned corners of the mouth, dysplastic ears, and small chin. Brain MRI showed cerebral atrophy mostly evident in frontal and temporal lobes, widened ventricles and thin corpus callosum in both cases, and in one patient evidence of a migration disorder. The first patient also presented with epilepsy and a ventricular septum defect. The second patient had a unilateral Peters anomaly. Microarray analysis showed a partially overlapping microdeletion spanning about 2.5 Mb in the 21q22.1-q22.2 region including the DYRK1A gene and excluding RUNX1. These patients present with a recognizable phenotype specific for this 21q22.1-q22.2 locus. We searched the literature for patients with overlapping deletions including the DYRK1A gene, in order to define other genes responsible for this presentation.
Collapse
Affiliation(s)
- R Oegema
- Department of Clinical Genetics, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chang Y, Paramasivam M, Girgenti MJ, Walikonis RS, Bianchi E, LoTurco JJ. RanBPM regulates the progression of neuronal precursors through M-phase at the surface of the neocortical ventricular zone. Dev Neurobiol 2010; 70:1-15. [PMID: 19790105 DOI: 10.1002/dneu.20750] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Many of the mitoses that produce pyramidal neurons in neocortex occur at the dorsolateral surface of the lateral ventricles in the embryo. RanBPM was found in a yeast two-hybrid screen to potentially interact with citron kinase (CITK), a protein shown previously to localize to the surface of the lateral ventricles and to be essential to neurogenic mitoses. Similar to its localization in epithelia, RanBPM protein is concentrated at the adherens junctions in developing neocortex. The biochemical interaction between CITK and RanBPM was confirmed in coimmunoprecipitation and protein overlay experiments. To test for a functional role of RanPBM in vivo, we used in utero RNAi. RanBPM RNAi decreased the polarization of CITK to the ventricular surface, increased the number of cells in mitosis, and decreased the number of cells in cytokinesis. Finally, the effect of RanBPM knockdown on mitosis was reversed in embryos mutant for CITK. Together, these results indicate that RanBPM, potentially through interaction with CITK, plays a role in the progression of neocortical precursors through M-phase at the ventricular surface.
Collapse
Affiliation(s)
- Yoonjeung Chang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
39
|
Rachidi M, Lopes C. Molecular and cellular mechanisms elucidating neurocognitive basis of functional impairments associated with intellectual disability in Down syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2010; 115:83-112. [PMID: 20441388 DOI: 10.1352/1944-7558-115.2.83] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Accepted: 11/05/2009] [Indexed: 05/29/2023]
Abstract
Down syndrome, the most common genetic cause of intellectual disability, is associated with brain disorders due to chromosome 21 gene overdosage. Molecular and cellular mechanisms involved in the neuromorphological alterations and cognitive impairments are reported herein in a global model. Recent advances in Down syndrome research have lead to the identification of altered molecular pathways involved in intellectual disability, such as Calcineurin/NFATs pathways, that are of crucial importance in understanding the molecular basis of intellectual disability pathogenesis in this syndrome. Potential treatments in mouse models of Down syndrome, including antagonists of NMDA or GABA(A) receptors, and microRNAs provide new avenues to develop treatments of intellectual disability. Nevertheless, understanding the links between molecular pathways and treatment strategies in human beings requires further research.
Collapse
Affiliation(s)
- Mohammed Rachidi
- University of Paris, Denis Diderot Laboratory of Genetic Dysregulation Models: Trisomy 21 and Hyperhomocysteinemia. Tour 54, Paris, France.
| | | |
Collapse
|
40
|
Suizu F, Hiramuki Y, Okumura F, Matsuda M, Okumura AJ, Hirata N, Narita M, Kohno T, Yokota J, Bohgaki M, Obuse C, Hatakeyama S, Obata T, Noguchi M. The E3 Ligase TTC3 Facilitates Ubiquitination and Degradation of Phosphorylated Akt. Dev Cell 2009; 17:800-10. [DOI: 10.1016/j.devcel.2009.09.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 08/22/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
41
|
Ford-Speelman DL, Roche JA, Bowman AL, Bloch RJ. The rho-guanine nucleotide exchange factor domain of obscurin activates rhoA signaling in skeletal muscle. Mol Biol Cell 2009; 20:3905-17. [PMID: 19605563 DOI: 10.1091/mbc.e08-10-1029] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Obscurin is a large ( approximately 800-kDa), modular protein of striated muscle that concentrates around the M-bands and Z-disks of each sarcomere, where it is well positioned to sense contractile activity. Obscurin contains several signaling domains, including a rho-guanine nucleotide exchange factor (rhoGEF) domain and tandem pleckstrin homology domain, consistent with a role in rho signaling in muscle. We investigated the ability of obscurin's rhoGEF domain to interact with and activate small GTPases. Using a combination of in vitro and in vivo approaches, we found that the rhoGEF domain of obscurin binds selectively to rhoA, and that rhoA colocalizes with obscurin at the M-band in skeletal muscle. Other small GTPases, including rac1 and cdc42, neither associate with the rhoGEF domain of obscurin nor concentrate at the level of the M-bands. Furthermore, overexpression of the rhoGEF domain of obscurin in adult skeletal muscle selectively increases rhoA expression and activity in this tissue. Overexpression of obscurin's rhoGEF domain and its effects on rhoA alter the expression of rho kinase and citron kinase, both of which can be activated by rhoA in other tissues. Injuries to rodent hindlimb muscles caused by large-strain lengthening contractions increases rhoA activity and displaces it from the M-bands to Z-disks, similar to the effects of overexpression of obscurin's rhoGEF domain. Our results suggest that obscurin's rhoGEF domain signals at least in part by inducing rhoA expression and activation, and altering the expression of downstream kinases in vitro and in vivo.
Collapse
Affiliation(s)
- Diana L Ford-Speelman
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
42
|
Fenner BJ, Scannell M, Prehn JH. Identification of polyubiquitin binding proteins involved in NF-κB signaling using protein arrays. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1010-6. [DOI: 10.1016/j.bbapap.2009.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
|
43
|
Grange J, Belly A, Dupas S, Trembleau A, Sadoul R, Goldberg Y. Specific interaction between Sam68 and neuronal mRNAs: implication for the activity-dependent biosynthesis of elongation factor eEF1A. J Neurosci Res 2009; 87:12-25. [PMID: 18711726 DOI: 10.1002/jnr.21824] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In cultured hippocampal neurons and in adult brain, the splicing regulatory protein Sam68 is partially relocated to the somatodendritic domain and associates with dendritic polysomes. Transfer to the dendrites is activity-dependent. We have investigated the repertoire of neuronal mRNAs to which Sam68 binds in vivo. By using coimmunoprecipitation and microarray screening techniques, Sam68 was found to associate with a number of plasticity-related mRNA species, including Eef1a1, an activity-responsive mRNA coding for translation elongation factor eEF1A. In cortical neuronal cultures, translation of the Eef1a1 mRNA was strongly induced by neuronal depolarisation and correlated with enhanced association of Sam68 with polysomal mRNAs. The possible function of Sam68 in Eef1a1 mRNA utilization was studied by expressing a dominant-negative, cytoplasmic Sam68 mutant (GFP-Sam68DeltaC) in cultured hippocampal neurons. The level of eEF1A was lower in neurons expressing GFP-Sam68DeltaC than in control neurons, supporting the proposal that endogenous Sam68 may contribute to the translational efficiency of the Eef1a1 mRNA. These findings are discussed in the light of the complex, potentially crucial regulation of eEF1A biosynthesis during long-term synaptic change.
Collapse
Affiliation(s)
- Julien Grange
- Université Joseph Fourier, Grenoble Institute of Neuroscience, Grenoble, France
| | | | | | | | | | | |
Collapse
|
44
|
Basic molecular fingerprinting of immature cerebellar cortical inhibitory interneurons and their precursors. Neuroscience 2008; 159:69-82. [PMID: 19141316 DOI: 10.1016/j.neuroscience.2008.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 12/06/2008] [Accepted: 12/09/2008] [Indexed: 11/21/2022]
Abstract
While the development of cerebellar granule and Purkinje neurons has been extensively studied, little is known about the developmental mechanisms that lead to the generation and diversification of inhibitory GABAergic interneurons of the cerebellar cortex. To address this issue, we compared gene expression in complete, early postnatal murine cerebella to that in cerebella from which immature inhibitory interneurons and their precursors had been stripped based on their expression of green fluorescent protein (GFP) from the Pax2 locus. We identified some 300 candidate genes selectively enriched within immature cerebellar cortical inhibitory interneurons and/or their precursors, many of which were also expressed in their adult descendants and/or the embryonic cerebellar ventricular epithelium that gives rise to these cells. None of the genes identified, among them Tcfap2alpha, Tcfap2beta, Lbxcor1 and Lbx1, was cell-type specific. Rather, gene expression, and also splicing, changed dynamically during development and rather reflects stage of differentiation than lineage. Consistently, cluster analysis of transcriptional regulators and genes specific for adult cerebellar GABAergic cells does not suggest a hierarchical lineage relationship or an early commitment of subtypes of cerebellar cortical inhibitory interneurons. Together, these data support the notion that diversification of cerebellar inhibitory interneurons is highly regulative and subject to local signaling to postmigratory precursors.
Collapse
|
45
|
Bauer CR, Epstein AM, Sweeney SJ, Zarnescu DC, Bosco G. Genetic and systems level analysis of Drosophila sticky/citron kinase and dFmr1 mutants reveals common regulation of genetic networks. BMC SYSTEMS BIOLOGY 2008; 2:101. [PMID: 19032789 PMCID: PMC2610033 DOI: 10.1186/1752-0509-2-101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 11/25/2008] [Indexed: 01/18/2023]
Abstract
Background In Drosophila, the genes sticky and dFmr1 have both been shown to regulate cytoskeletal dynamics and chromatin structure. These genes also genetically interact with Argonaute family microRNA regulators. Furthermore, in mammalian systems, both genes have been implicated in neuronal development. Given these genetic and functional similarities, we tested Drosophila sticky and dFmr1 for a genetic interaction and measured whole genome expression in both mutants to assess similarities in gene regulation. Results We found that sticky mutations can dominantly suppress a dFmr1 gain-of-function phenotype in the developing eye, while phenotypes produced by RNAi knock-down of sticky were enhanced by dFmr1 RNAi and a dFmr1 loss-of-function mutation. We also identified a large number of transcripts that were misexpressed in both mutants suggesting that sticky and dFmr1 gene products similarly regulate gene expression. By integrating gene expression data with a protein-protein interaction network, we found that mutations in sticky and dFmr1 resulted in misexpression of common gene networks, and consequently predicted additional specific phenotypes previously not known to be associated with either gene. Further phenotypic analyses validated these predictions. Conclusion These findings establish a functional link between two previously unrelated genes. Microarray analysis indicates that sticky and dFmr1 are both required for regulation of many developmental genes in a variety of cell types. The diversity of transcripts regulated by these two genes suggests a clear cause of the pleiotropy that sticky and dFmr1 mutants display and provides many novel, testable hypotheses about the functions of these genes. As both of these genes are implicated in the development and function of the mammalian brain, these results have relevance to human health as well as to understanding more general biological processes.
Collapse
Affiliation(s)
- Christopher R Bauer
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Down syndrome (DS) is the most common chromosomal abnormality occurring in humans. Up to 77% of DS children have associated gastrointestinal (GI) abnormalities, which may be structural or functional in nature. Functional disturbances may, in turn, affect the outcome of corrective surgical procedures, prompting to caution. It is becoming clear that the processes affecting the enteric nervous system (ENS) in DS not only affect the micro-anatomy but also nerve function, and there is some histological evidence of ENS variations in both human and DS animal models. This suggests that developmental disorders of the ENS are probably fundamental to the functional GI disturbances encountered in patients with DS. The anomalous brain development, function and resulting intellectual impairment associated with DS appears to result from the genetic imbalance created by the trisomy of chromosome 21. The possible links between the brain, GI and ENS involvement are not as yet entirely clear. Neurotropic factors affecting brain development during embryogenesis are probably interlinked with ENS development, but the precise mechanism of how this occurs has yet to be established. This study explores what is known about the ENS dysfunction in DS and reviews the possible importance of chromosome 21 located and other genes in its etiology. Functional motor disturbances of the esophagus and colon are not uncommon and may be congenital or acquired in nature. The most prominent of these include esophageal dysmotility syndromes (e.g. achalasia, gastroesophageal reflux, dysphagia) as well as a higher incidence of chronic constipation and Hirschsprung's disease (HSCR) (2-15%) occurring in association with DS. Chromosome 21 itself is thought to be the site of a modifier gene for HSCR. Recently identified candidate genetic mechanisms provide unique insights into the genetic background of the neurological and cognitive disorders associated with DS. Although the role of the triplicated chromosome 21 and genetic dosage remain important, the additional role of other chromosome 21 genes in the etiology of ENS developmental anomalies remains undetermined and requires ongoing research.
Collapse
Affiliation(s)
- S W Moore
- Division of Paediatric Surgery, Department of Surgical Sciences, Faculty of Health Sciences, University of Stellenbosch, P.O. Box 19063, Tygerberg, 7505, South Africa.
| |
Collapse
|
47
|
The RhoA-associated protein Citron-N controls dendritic spine maintenance by interacting with spine-associated Golgi compartments. EMBO Rep 2008; 9:384-92. [PMID: 18309323 DOI: 10.1038/embor.2008.21] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 01/18/2008] [Accepted: 01/21/2008] [Indexed: 11/08/2022] Open
Abstract
Dendritic spines are highly dynamic protuberances that are thought to be crucial for learning and memory. Although it is well known that actin filaments and membrane dynamics regulate spine plasticity, how these two events are linked locally is less clear. Here, we provide evidence that Citron-N (CIT-N), a binding partner of the small GTPase RhoA, is associated with the actin filaments and Golgi compartments of dendritic spines. We also show that CIT-N is required for recruiting F-actin and Golgi membranes at spines of in vitro-grown neurons. Studies in knockout mice show that this protein is essential for the maturation of dendritic spines. We suggest that CIT-N might function as a scaffold protein in spine organization through its ability to bind to Golgi membranes and by affecting actin remodelling.
Collapse
|
48
|
Drosophila sticky/citron kinase is a regulator of cell-cycle progression, genetically interacts with Argonaute 1 and modulates epigenetic gene silencing. Genetics 2008; 178:1311-25. [PMID: 18245345 DOI: 10.1534/genetics.107.082511] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The sticky/citron kinase protein is a conserved regulator of cell-cycle progression from invertebrates to humans. While this kinase is essential for completion of cytokinesis, sticky/citron kinase phenotypes disrupting neurogenesis and cell differentiation suggest additional non-cell-cycle functions. However, it is not known whether these phenotypes are an indirect consequence of sticky mutant cell-cycle defects or whether they define a novel function for this kinase. We have isolated a temperature-sensitive allele of the Drosophila sticky gene and we show that sticky/citron kinase is required for histone H3-K9 methylation, HP1 localization, and heterochromatin-mediated gene silencing. sticky genetically interacts with Argonaute 1 and sticky mutants exhibit context-dependent Su(var) and E(var) activity. These observations indicate that sticky/citron kinase functions to regulate both actin-myosin-mediated cytokinesis and epigenetic gene silencing, possibly linking cell-cycle progression to heterochromatin assembly and inheritance of gene expression states.
Collapse
|
49
|
Rachidi M, Lopes C. Mental retardation in Down syndrome: From gene dosage imbalance to molecular and cellular mechanisms. Neurosci Res 2007; 59:349-69. [PMID: 17897742 DOI: 10.1016/j.neures.2007.08.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 08/02/2007] [Accepted: 08/10/2007] [Indexed: 11/25/2022]
Abstract
Down syndrome (DS), the most frequent genetic disorder leading to mental retardation (MR), is caused by three copies of human chromosome 21 (HC21). Trisomic and transgenic mouse models for DS allow genetic dissection of DS neurological and cognitive disorders in view to identify genes responsible for these phenotypes. The effects of the gene dosage imbalance on DS phenotypes are explained by two hypotheses: the "gene dosage effect" hypothesis claims that a DS critical region, containing a subset of dosage-sensitive genes, determines DS phenotypes, and the "amplified developmental instability" hypothesis holds that HC21 trisomy determines general alteration in developmental homeostasis. Transcriptome and expression studies showed different up- or down-expression levels of genes located on HC21 and the other disomic chromosomes. HC21 genes, characterized by their overexpression in brain regions affected in DS patients and by their contribution to neurological and cognitive defects when overexpressed in mouse models, are proposed herein as good candidates for MR. In this article, we propose a new molecular and cellular mechanism explaining MR pathogenesis in DS. In this model, gene dosage imbalance effects on transcriptional variations are described considering the nature of gene products and their functional relationships. These transcriptional variations may affect different aspects of neuronal differentiation and metabolism and finally, determine the brain neuropathologies and mental retardation in DS.
Collapse
|