1
|
Yu X, Mo Z, Tang X, Gao T, Mao Y. Genome-wide analysis of HSP70 gene superfamily in Pyropia yezoensis (Bangiales, Rhodophyta): identification, characterization and expression profiles in response to dehydration stress. BMC PLANT BIOLOGY 2021; 21:435. [PMID: 34560838 PMCID: PMC8464122 DOI: 10.1186/s12870-021-03213-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/14/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Heat shock proteins (HSPs) perform a fundamental role in protecting plants against abiotic stresses. Individual family members have been analyzed in previous studies, but there has not yet been a comprehensive analysis of the HSP70 gene family in Pyropia yezoensis. RESULTS We investigated 15 putative HSP70 genes in Py. yezoensis. These genes were classified into two sub-families, denoted as DnaK and Hsp110. In each sub-family, there was relative conservation of the gene structure and motif. Synteny-based analysis indicated that seven and three PyyHSP70 genes were orthologous to HSP70 genes in Pyropia haitanensis and Porphyra umbilicalis, respectively. Most PyyHSP70s showed up-regulated expression under different degrees of dehydration stress. PyyHSP70-1 and PyyHSP70-3 were expressed in higher degrees compared with other PyyHSP70s in dehydration treatments, and then expression degrees somewhat decreased in rehydration treatment. Subcellular localization showed PyyHSP70-1-GFP and PyyHSP70-3-GFP were in the cytoplasm and nucleus/cytoplasm, respectively. Similar expression patterns of paired orthologs in Py. yezoensis and Py. haitanensis suggest important roles for HSP70s in intertidal environmental adaptation during evolution. CONCLUSIONS These findings provide insight into the evolution and modification of the PyyHSP70 gene family and will help to determine the functions of the HSP70 genes in Py. yezoensis growth and development.
Collapse
Affiliation(s)
- Xinzi Yu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zhaolan Mo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Tian Gao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Hainan Tropical Ocean University), Ministry of Education, Sanya, 572022, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
2
|
Calvo-Álvarez E, Bonnefoy S, Salles A, Benson FE, McKean PG, Bastin P, Rotureau B. Redistribution of FLAgellar Member 8 during the trypanosome life cycle: Consequences for cell fate prediction. Cell Microbiol 2021; 23:e13347. [PMID: 33896083 PMCID: PMC8459223 DOI: 10.1111/cmi.13347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022]
Abstract
The single flagellum of African trypanosomes is essential in multiple aspects of the parasites' development. The FLAgellar Member 8 protein (FLAM8), localised to the tip of the flagellum in cultured insect forms of Trypanosoma brucei, was identified as a marker of the locking event that controls flagellum length. Here, we investigated whether FLAM8 could also reflect the flagellum maturation state in other parasite cycle stages. We observed that FLAM8 distribution extended along the entire flagellar cytoskeleton in mammalian‐infective forms. Then, a rapid FLAM8 concentration to the distal tip occurs during differentiation into early insect forms, illustrating the remodelling of an existing flagellum. In the tsetse cardia, FLAM8 further localises to the entire length of the new flagellum during an asymmetric division. Strikingly, in parasites dividing in the tsetse midgut and in the salivary glands, the amount and distribution of FLAM8 in the new flagellum were seen to predict the daughter cell fate. We propose and discuss how FLAM8 could be considered a meta‐marker of the flagellum stage and maturation state in trypanosomes.
Collapse
Affiliation(s)
- Estefanía Calvo-Álvarez
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France.,Trypanosome Transmission Group, Institut Pasteur, Paris, France
| | - Serge Bonnefoy
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France
| | - Audrey Salles
- Unit of Technology and Service Photonic BioImaging (UTechS PBI), C2RT, Institut Pasteur, Paris, France
| | - Fiona E Benson
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Paul G McKean
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France
| | - Brice Rotureau
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France.,Trypanosome Transmission Group, Institut Pasteur, Paris, France
| |
Collapse
|
3
|
Central Apparatus, the Molecular Kickstarter of Ciliary and Flagellar Nanomachines. Int J Mol Sci 2021; 22:ijms22063013. [PMID: 33809498 PMCID: PMC7999657 DOI: 10.3390/ijms22063013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Motile cilia and homologous organelles, the flagella, are an early evolutionarily invention, enabling primitive eukaryotic cells to survive and reproduce. In animals, cilia have undergone functional and structural speciation giving raise to typical motile cilia, motile nodal cilia, and sensory immotile cilia. In contrast to other cilia types, typical motile cilia are able to beat in complex, two-phase movements. Moreover, they contain many additional structures, including central apparatus, composed of two single microtubules connected by a bridge-like structure and assembling numerous complexes called projections. A growing body of evidence supports the important role of the central apparatus in the generation and regulation of the motile cilia movement. Here we review data concerning the central apparatus structure, protein composition, and the significance of its components in ciliary beating regulation.
Collapse
|
4
|
Cilia Distal Domain: Diversity in Evolutionarily Conserved Structures. Cells 2019; 8:cells8020160. [PMID: 30769894 PMCID: PMC6406257 DOI: 10.3390/cells8020160] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/25/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic cilia are microtubule-based organelles that protrude from the cell surface to fulfill sensory and motility functions. Their basic structure consists of an axoneme templated by a centriole/basal body. Striking differences in ciliary ultra-structures can be found at the ciliary base, the axoneme and the tip, not only throughout the eukaryotic tree of life, but within a single organism. Defects in cilia biogenesis and function are at the origin of human ciliopathies. This structural/functional diversity and its relationship with the etiology of these diseases is poorly understood. Some of the important events in cilia function occur at their distal domain, including cilia assembly/disassembly, IFT (intraflagellar transport) complexes' remodeling, and signal detection/transduction. How axonemal microtubules end at this domain varies with distinct cilia types, originating different tip architectures. Additionally, they show a high degree of dynamic behavior and are able to respond to different stimuli. The existence of microtubule-capping structures (caps) in certain types of cilia contributes to this diversity. It has been proposed that caps play a role in axoneme length control and stabilization, but their roles are still poorly understood. Here, we review the current knowledge on cilia structure diversity with a focus on the cilia distal domain and caps and discuss how they affect cilia structure and function.
Collapse
|
5
|
Zhu X, Poghosyan E, Rezabkova L, Mehall B, Sakakibara H, Hirono M, Kamiya R, Ishikawa T, Yang P. The roles of a flagellar HSP40 ensuring rhythmic beating. Mol Biol Cell 2018; 30:228-241. [PMID: 30427757 PMCID: PMC6589562 DOI: 10.1091/mbc.e18-01-0047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
HSP40s are regarded as cochaperones, perpetually shuttling client polypeptides to HSP70s for refolding. However, many HSP40s that are central for disparate processes diverge from this paradigm. To elucidate the noncanonical mechanisms, we investigated HSP40 in the radial spoke (RS) complex in flagella. Disruption of the gene by the MRC1 transposon in Chlamydomonas resulted in jerky flagella. Traditional electron microscopy, cryo-electron tomography, and sub-tomogram analysis revealed RSs of various altered morphologies that, unexpectedly, differed between the two RS species. This indicates that HSP40 locks the RS into a functionally rigid conformation, facilitating its interactions with the adjacent central pair apparatus for transducing locally varied mechanical feedback, which permits rhythmic beating. Missing HSP40, like missing RSs, could be restored in a tip-to-base direction when HSP40 mutants fused with a HSP40 donor cell. However, without concomitant de novo RS assembly, the repair was exceedingly slow, suggesting HSP40/RS-coupled intraflagellar trafficking and assembly. Biochemical analysis and modeling uncovered spoke HSP40’s cochaperone traits. On the basis of our data, we propose that HSP40 accompanies its client RS precursor when traveling to the flagellar tip. Upon arrival, both refold in concert to assemble into the mature configuration. HSP40’s roles in chaperoning and structural maintenance shed new light on its versatility and flagellar biology.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Emiliya Poghosyan
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Lenka Rezabkova
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Bridget Mehall
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Hitoshi Sakakibara
- National Institute of Information and Communications Technology (NICT), Advanced ICT Research Institute, Hyogo 651-2492, Japan
| | - Masafumi Hirono
- Department of Frontier Bioscience, Hosei University, Tokyo 184-8584, Japan
| | - Ritsu Kamiya
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Takashi Ishikawa
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
6
|
Seixas C, Gonçalves J, Melo LV, Soares H. Tetrahymena Cilia Cap is Built in a Multi-step Process: A Study by Atomic Force Microscopy. Protist 2017; 168:697-717. [PMID: 29149699 DOI: 10.1016/j.protis.2017.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 09/13/2017] [Accepted: 10/07/2017] [Indexed: 02/02/2023]
Abstract
Cilia are complex and dynamic organelles that have motility and sensory functions. Defects in cilia biogenesis and function are at the origin of human ciliopathies. In motile cilia, a basal body organizes the axoneme composed of nine microtubule doublets surrounding a central pair of singlet microtubules. The distal ends of axonemal microtubules are attached to the membrane by microtubule-capping structures. Little is known about the early steps of cilium assembly. Although cilia grow and resorb from their distal tips, it remains poorly understood where and when the components of the caps are first assembled. By using Atomic Force Microscopy in tapping mode, with resolution at the nanometer range and with minimum sample manipulation, we show that Tetrahymena cilia assembly requires transient assembly of structures, composed of three components that are placed asymmetrically on an early elongating axoneme. In small uncapped axonemes the microtubule central pair was never observed. Additionally, we show that cilia cap assembly is a multi-step process in which structures of different sizes and shapes are put together in close proximity before the axoneme appears capped. We propose that the cap modifies the axoneme microtubule rate of polymerization and present a model for Tetrahymena cilia cap assembly.
Collapse
Affiliation(s)
- Cecília Seixas
- Instituto Gulbenkian de Ciência, Apartado 14, 2781-901 Oeiras, Portugal
| | - João Gonçalves
- Instituto Gulbenkian de Ciência, Apartado 14, 2781-901 Oeiras, Portugal; Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Edifício C8, 1749-016 Lisboa, Portugal
| | - Luís Viseu Melo
- Physics Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; INESC-MN, Rua Alves Redol, 9, 1000-029, Lisboa, Portugal
| | - Helena Soares
- Instituto Gulbenkian de Ciência, Apartado 14, 2781-901 Oeiras, Portugal; Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Edifício C8, 1749-016 Lisboa, Portugal; Escola Superior de Tecnologia da Saúde de Lisboa, 1990-096 Lisboa, Instituto Politécnico de Lisboa, Portugal.
| |
Collapse
|
7
|
Maikova A, Zalutskaya Z, Lapina T, Ermilova E. The HSP70 chaperone machines of Chlamydomonas are induced by cold stress. JOURNAL OF PLANT PHYSIOLOGY 2016; 204:85-91. [PMID: 27543887 DOI: 10.1016/j.jplph.2016.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 05/16/2023]
Abstract
The responses of Chlamydomonas reinhardtii cells to low temperatures have not been extensively studied compared with other stresses. Like other organisms, this green alga has heat shock protein 70s (HSP70s) that are located in chloroplast, mitochondrion and cytosol. To test whether temperature downshifts affected HSP70s synthesis, we used real-time PCR and protein gel blot analysis. C. reinhardtii cells exposed to cold stress show increased HSP70s mRNA levels. Genes encoding other components of HSP70 chaperone machines (e.g. CGE1, CDJ1, HSP90C and HSP90A) are also up-regulated in response to decreased temperature. We demonstrated that the accumulation of all analyzed mRNA occur more slowly and with reduced amplitude in cells exposed to cold than in cells treated with heat. Furthermore, C. reinhardtii cells display the splicing of the CGE1 transcript that was dependent on low temperature. Finally, the transcription regulator of C. reinhardtii HSF1 is also cold-responsive, suggesting its role in the transcriptional regulation of HSP genes at low temperature.
Collapse
Affiliation(s)
- Anna Maikova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia
| | - Zhanneta Zalutskaya
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia
| | - Tatiana Lapina
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia
| | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia.
| |
Collapse
|
8
|
Hristozova N, Tompa P, Kovacs D. A Novel Method for Assessing the Chaperone Activity of Proteins. PLoS One 2016; 11:e0161970. [PMID: 27564234 PMCID: PMC5001627 DOI: 10.1371/journal.pone.0161970] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/15/2016] [Indexed: 12/02/2022] Open
Abstract
Protein chaperones are molecular machines which function both during homeostasis and stress conditions in all living organisms. Depending on their specific function, molecular chaperones are involved in a plethora of cellular processes by playing key roles in nascent protein chain folding, transport and quality control. Among stress protein families-molecules expressed during adverse conditions, infection, and diseases-chaperones are highly abundant. Their molecular functions range from stabilizing stress-susceptible molecules and membranes to assisting the refolding of stress-damaged proteins, thereby acting as protective barriers against cellular damage. Here we propose a novel technique to test and measure the capability for protective activity of known and putative chaperones in a semi-high throughput manner on a plate reader. The current state of the art does not allow the in vitro measurements of chaperone activity in a highly parallel manner with high accuracy or high reproducibility, thus we believe that the method we report will be of significant benefit in this direction. The use of this method may lead to a considerable increase in the number of experimentally verified proteins with such functions, and may also allow the dissection of their molecular mechanism for a better understanding of their function.
Collapse
Affiliation(s)
- Nevena Hristozova
- Structural Biology Department, Flemish Institute of Biotechnology, Brussels, Belgium
- Structural Biology Department, Free University Brussels, Brussels, Belgium
| | - Peter Tompa
- Structural Biology Department, Flemish Institute of Biotechnology, Brussels, Belgium
- Structural Biology Department, Free University Brussels, Brussels, Belgium
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Denes Kovacs
- Structural Biology Department, Flemish Institute of Biotechnology, Brussels, Belgium
- Structural Biology Department, Free University Brussels, Brussels, Belgium
| |
Collapse
|
9
|
Mutations in DNAJB13, Encoding an HSP40 Family Member, Cause Primary Ciliary Dyskinesia and Male Infertility. Am J Hum Genet 2016; 99:489-500. [PMID: 27486783 DOI: 10.1016/j.ajhg.2016.06.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal-recessive disease due to functional or ultra-structural defects of motile cilia. Affected individuals display recurrent respiratory-tract infections; most males are infertile as a result of sperm flagellar dysfunction. The great majority of the PCD-associated genes identified so far encode either components of dynein arms (DAs), which are multiprotein-ATPase complexes essential for ciliary motility, or proteins involved in DA assembly. To identify the molecular basis of a PCD phenotype characterized by central complex (CC) defects but normal DA structure, a phenotype found in ∼15% of cases, we performed whole-exome sequencing in a male individual with PCD and unexplained CC defects. This analysis, combined with whole-genome SNP genotyping, identified a homozygous mutation in DNAJB13 (c.833T>G), a gene encoding a HSP40 co-chaperone whose ortholog in the flagellated alga Chlamydomonas localizes to the radial spokes. In vitro studies showed that this missense substitution (p.Met278Arg), which involves a highly conserved residue of several HSP40 family members, leads to protein instability and triggers proteasomal degradation, a result confirmed by the absence of endogenous DNAJB13 in cilia and sperm from this individual. Subsequent DNAJB13 analyses identified another homozygous mutation in a second family; the study of DNAJB13 transcripts obtained from airway cells showed that this mutation (c.68+1G>C) results in a splicing defect consistent with a loss-of-function mutation. Overall, this study, which establishes mutations in DNAJB13 as a cause of PCD, unveils the key role played by DNAJB13 in the proper formation and function of ciliary and flagellar axonemes in humans.
Collapse
|
10
|
Fukuda Y, Akematsu T, Attiq R, Tada C, Nakai Y, Pearlman RE. Role of the Cytosolic Heat Shock Protein 70 Ssa5 in the Ciliate Protozoan Tetrahymena thermophila. J Eukaryot Microbiol 2015; 62:481-93. [DOI: 10.1111/jeu.12203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/17/2014] [Accepted: 12/08/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Yasuhiro Fukuda
- Department of Biodiversity Science; Division of Biological Resource Science; Graduate School of Agricultural Science; Tohoku University; Osaki Japan
| | | | - Rizwan Attiq
- Department of Biology; York University; Toronto Ontario Canada
| | - Chika Tada
- Department of Biodiversity Science; Division of Biological Resource Science; Graduate School of Agricultural Science; Tohoku University; Osaki Japan
| | - Yutaka Nakai
- Department of Biodiversity Science; Division of Biological Resource Science; Graduate School of Agricultural Science; Tohoku University; Osaki Japan
| | | |
Collapse
|
11
|
Fu G, Nagasato C, Oka S, Cock JM, Motomura T. Proteomics analysis of heterogeneous flagella in brown algae (stramenopiles). Protist 2014; 165:662-75. [PMID: 25150613 DOI: 10.1016/j.protis.2014.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
Abstract
Flagella are conserved organelles among eukaryotes and they are composed of many proteins, which are necessary for flagellar assembly, maintenance and function. Stramenopiles, which include brown algae, diatoms and oomycetes, possess two laterally inserted flagella. The anterior flagellum (AF) extends forward and bears tripartite mastigonemes, whilst the smooth posterior flagellum (PF) often has a paraflagellar body structure. These heterogeneous flagella have served as crucial structures in algal studies especially from a viewpoint of phylogeny. However, the protein compositions of the flagella are still largely unknown. Here we report a LC-MS/MS based proteomics analysis of brown algal flagella. In total, 495 flagellar proteins were identified. Functional annotation of the proteome data revealed that brown algal flagellar proteins were associated with cell motility, signal transduction and various metabolic activities. We separately isolated AF and PF and analyzed their protein compositions. This analysis led to the identification of several AF- and PF-specific proteins. Among the PF-specific proteins, we found a candidate novel blue light receptor protein involved in phototaxis, and named it HELMCHROME because of the steering function of PF. Immunological analysis revealed that this protein was localized along the whole length of the PF and concentrated in the paraflagellar body.
Collapse
Affiliation(s)
- Gang Fu
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Hokkaido, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Hokkaido, Japan
| | - Seiko Oka
- Instrumental Analysis Division, Equipment Management Center, Creative Research Institution, Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - J Mark Cock
- University Pierre et Marie Curie and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, 29682 Roscoff Cedex, France
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Hokkaido, Japan.
| |
Collapse
|
12
|
Subota I, Julkowska D, Vincensini L, Reeg N, Buisson J, Blisnick T, Huet D, Perrot S, Santi-Rocca J, Duchateau M, Hourdel V, Rousselle JC, Cayet N, Namane A, Chamot-Rooke J, Bastin P. Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localization and dynamics. Mol Cell Proteomics 2014; 13:1769-86. [PMID: 24741115 DOI: 10.1074/mcp.m113.033357] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity.
Collapse
Affiliation(s)
- Ines Subota
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Daria Julkowska
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | | | - Nele Reeg
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Johanna Buisson
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Thierry Blisnick
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Diego Huet
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Sylvie Perrot
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Julien Santi-Rocca
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Magalie Duchateau
- §Proteomics Platform, Institut Pasteur, ¶Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur & CNRS UMR3528
| | - Véronique Hourdel
- §Proteomics Platform, Institut Pasteur, ¶Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur & CNRS UMR3528
| | | | - Nadège Cayet
- ‖Imagopole Platform, Institut Pasteur, Paris, France
| | | | - Julia Chamot-Rooke
- §Proteomics Platform, Institut Pasteur, ¶Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur & CNRS UMR3528
| | - Philippe Bastin
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581,
| |
Collapse
|
13
|
Kypri E, Christodoulou A, Maimaris G, Lethan M, Markaki M, Lysandrou C, Lederer CW, Tavernarakis N, Geimer S, Pedersen LB, Santama N. The nucleotide-binding proteins Nubp1 and Nubp2 are negative regulators of ciliogenesis. Cell Mol Life Sci 2014; 71:517-38. [PMID: 23807208 PMCID: PMC11113914 DOI: 10.1007/s00018-013-1401-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 12/12/2022]
Abstract
Nucleotide-binding proteins Nubp1 and Nubp2 are MRP/MinD-type P-loop NTPases with sequence similarity to bacterial division site-determining proteins and are conserved, essential proteins throughout the Eukaryotes. They have been implicated, together with their interacting minus-end directed motor protein KIFC5A, in the regulation of centriole duplication in mammalian cells. Here we show that Nubp1 and Nubp2 are integral components of centrioles throughout the cell cycle, recruited independently of KIFC5A. We further demonstrate their localization at the basal body of the primary cilium in quiescent vertebrate cells or invertebrate sensory cilia, as well as in the motile cilia of mouse cells and in the flagella of Chlamydomonas. RNAi-mediated silencing of nubp-1 in C. elegans causes the formation of morphologically aberrant and additional cilia in sensory neurons. Correspondingly, downregulation of Nubp1 or Nubp2 in mouse quiescent NIH 3T3 cells markedly increases the number of ciliated cells, while knockdown of KIFC5A dramatically reduces ciliogenesis. Simultaneous double silencing of Nubp1 + KIFC5A restores the percentage of ciliated cells to control levels. We document the normal ciliary recruitment, during these silencing regimes, of basal body proteins critical for ciliogenesis, namely CP110, CEP290, cenexin, Chibby, AurA, Rab8, and BBS7. Interestingly, we uncover novel interactions of Nubp1 with several members of the CCT/TRiC molecular chaperone complex, which we find enriched at the basal body and recruited independently of the Nubps or KIFC5A. Our combined results for Nubp1, Nubp2, and KIFC5A and their striking effects on cilium formation suggest a central regulatory role for these proteins, likely involving CCT/TRiC chaperone activity, in ciliogenesis.
Collapse
Affiliation(s)
- Elena Kypri
- Department of Biological Sciences, University of Cyprus, University Avenue 1, 1678 Nicosia, Cyprus
| | - Andri Christodoulou
- Department of Biological Sciences, University of Cyprus, University Avenue 1, 1678 Nicosia, Cyprus
| | - Giannis Maimaris
- Department of Biological Sciences, University of Cyprus, University Avenue 1, 1678 Nicosia, Cyprus
| | - Mette Lethan
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Markaki
- Institute of Molecular Biology and Biotechnology, Crete, Greece
| | - Costas Lysandrou
- Department of Biological Sciences, University of Cyprus, University Avenue 1, 1678 Nicosia, Cyprus
| | | | | | | | - Lotte B. Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Niovi Santama
- Department of Biological Sciences, University of Cyprus, University Avenue 1, 1678 Nicosia, Cyprus
| |
Collapse
|
14
|
Abstract
Cilia and flagella are surface-exposed, finger-like organelles whose core consists of a microtubule (MT)-based axoneme that grows from a modified centriole, the basal body. Cilia are found on the surface of many eukaryotic cells and play important roles in cell motility and in coordinating a variety of signaling pathways during growth, development, and tissue homeostasis. Defective cilia have been linked to a number of developmental disorders and diseases, collectively called ciliopathies. Cilia are dynamic organelles that assemble and disassemble in tight coordination with the cell cycle. In most cells, cilia are assembled during growth arrest in a multistep process involving interaction of vesicles with appendages present on the distal end of mature centrioles, and addition of tubulin and other building blocks to the distal tip of the basal body and growing axoneme; these building blocks are sorted through a region at the cilium base known as the ciliary necklace, and then transported via intraflagellar transport (IFT) along the axoneme toward the tip for assembly. After assembly, the cilium frequently continues to turn over and incorporate tubulin at its distal end in an IFT-dependent manner. Prior to cell division, the cilia are usually resorbed to liberate centrosomes for mitotic spindle pole formation. Here, we present an overview of the main cytoskeletal structures associated with cilia and centrioles with emphasis on the MT-associated appendages, fibers, and filaments at the cilium base and tip. The composition and possible functions of these structures are discussed in relation to cilia assembly, disassembly, and length regulation.
Collapse
Affiliation(s)
- Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
15
|
Parrotta L, Cresti M, Cai G. Heat-shock protein 70 binds microtubules and interacts with kinesin in tobacco pollen tubes. Cytoskeleton (Hoboken) 2013; 70:522-37. [PMID: 24039249 DOI: 10.1002/cm.21134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 08/15/2013] [Accepted: 08/21/2013] [Indexed: 11/11/2022]
Abstract
The heat-shock proteins of 70 kDa are a family of ubiquitously expressed proteins important for protein folding. Heat-shock protein 70 assists other nascent proteins to achieve the spatial structure and ultimately helps the cell to protect against stress factors, such as heat. These proteins are localized in different cellular compartments and are associated with the cytoskeleton. We identified a heat-shock protein 70 isoform in the pollen tube of tobacco that binds to microtubules in an ATP-dependent manner. The heat-shock protein 70 was identified as part of the so-called ATP-MAP (ATP-dependent microtubule-associated protein) fraction, which also includes the 90-kDa kinesin, a mitochondria-associated motor protein. The identity of heat-shock protein 70 was validated by immunological assays and mass spectrometry. Sequence analysis showed that this heat-shock protein 70 is more similar to specific heat-shock proteins of Arabidopsis than to corresponding proteins of tobacco. Two-dimensional electrophoresis indicated that this heat-shock protein 70 isoform only is part of the ATP-MAP fraction and that is associated with the mitochondria of pollen tubes. Sedimentation assays showed that the binding of heat-shock protein 70 to microtubules is not affected by AMPPNP but it increases in the presence of the 90-kDa kinesin. Binding of heat-shock protein 70 to microtubules occurs only partially in the presence of ATP but it does not occur if, in addition to ATP, the 90-kDa kinesin is also present. Data suggest that the binding (but not the release) of heat-shock protein 70 to microtubules is facilitated by the 90-kDa kinesin.
Collapse
Affiliation(s)
- Luigi Parrotta
- Dipartimento di Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| | | | | |
Collapse
|
16
|
Larsen J, Grigoriev I, Akhmanova A, Pedersen LB. Analysis of microtubule plus-end-tracking proteins in cilia. Methods Enzymol 2013; 524:105-22. [PMID: 23498737 DOI: 10.1016/b978-0-12-397945-2.00007-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The microtubule (MT) plus-end-tracking proteins (+TIPs) belonging to the end binding (EB) protein family have been studied extensively in the context of cytoplasmic MTs and were shown to play pivotal roles in regulating MT dynamics and in recruiting other +TIPs to MT ends. Early studies in the green alga Chlamydomonas reinhardtii showed that EB1 localizes to the distal flagellum tip and the basal body, and subsequent studies using green fluorescent protein-tagged fusion proteins have demonstrated similar localization of EBs in other ciliated organisms, including mammalian cells as demonstrated here. Functional analysis of EBs in cultured mammalian cells revealed that EB1 and EB3 are required for biogenesis of primary cilia. Although mammalian EB3 localizes to the tip of some cilia and induces cilium elongation, EBs primarily seem to promote ciliogenesis via MT minus-end anchoring at the basal body, in turn facilitating vesicular trafficking to the cilium base. Moreover, mammalian EBs were shown to interact with several proteins implicated in MT minus-end anchoring and/or vesicular trafficking to cilia. Recent work suggests that apart from EBs, additional +TIPs may be present at the distal tip of cilia where they could regulate axoneme assembly, stability, or disassembly.
Collapse
Affiliation(s)
- Jesper Larsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
17
|
Gupta A, Diener DR, Sivadas P, Rosenbaum JL, Yang P. The versatile molecular complex component LC8 promotes several distinct steps of flagellar assembly. ACTA ACUST UNITED AC 2012; 198:115-26. [PMID: 22753897 PMCID: PMC3392930 DOI: 10.1083/jcb.201111041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
LC8 is present in various molecular complexes. However, its role in these complexes remains unclear. We discovered that although LC8 is a subunit of the radial spoke (RS) complex in Chlamydomonas flagella, it was undetectable in the RS precursor that is converted into the mature RS at the tip of elongating axonemes. Interestingly, LC8 dimers bound in tandem to the N-terminal region of a spoke phosphoprotein, RS protein 3 (RSP3), that docks RSs to axonemes. LC8 enhanced the binding of RSP3 N-terminal fragments to purified axonemes. Likewise, the N-terminal fragments extracted from axonemes contained LC8 and putative spoke-docking proteins. Lastly, perturbations of RSP3's LC8-binding sites resulted in asynchronous flagella with hypophosphorylated RSP3 and defective associations between LC8, RSs, and axonemes. We propose that at the tip of flagella, an array of LC8 dimers binds to RSP3 in RS precursors, triggering phosphorylation, stalk base formation, and axoneme targeting. These multiple effects shed new light on fundamental questions about LC8-containing complexes and axoneme assembly.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | | | | | | | | |
Collapse
|
18
|
O'Toole ET, Giddings TH, Porter ME, Ostrowski LE. Computer-assisted image analysis of human cilia and Chlamydomonas flagella reveals both similarities and differences in axoneme structure. Cytoskeleton (Hoboken) 2012; 69:577-90. [PMID: 22573610 DOI: 10.1002/cm.21035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 01/11/2023]
Abstract
In the past decade, investigations from several different fields have revealed the critical role of cilia in human health and disease. Because of the highly conserved nature of the basic axonemal structure, many different model systems have proven useful for the study of ciliopathies, especially the unicellular, biflagellate green alga Chlamydomonas reinhardtii. Although the basic axonemal structure of cilia and flagella is highly conserved, these organelles often perform specialized functions unique to the cell or tissue in which they are found. These differences in function are likely reflected in differences in structural organization. In this work, we directly compare the structure of isolated axonemes from human cilia and Chlamydomonas flagella to identify similarities and differences that potentially play key roles in determining their functionality. Using transmission electron microscopy and 2D image averaging techniques, our analysis has confirmed the overall structural similarity between these two species, but also revealed clear differences in the structure of the outer dynein arms, the central pair projections, and the radial spokes. We also show how the application of 2D image averaging can clarify the underlying structural defects associated with primary ciliary dyskinesia (PCD). Overall, our results document the remarkable similarity between these two structures separated evolutionarily by over a billion years, while highlighting several significant differences, and demonstrate the potential of 2D image averaging to improve the diagnosis and understanding of PCD.
Collapse
Affiliation(s)
- Eileen T O'Toole
- Boulder Laboratory for 3D Electron Microscopy of Cells, Department of MCD Biology, University of Colorado, Boulder, Colorado, USA
| | | | | | | |
Collapse
|
19
|
Price HP, Hodgkinson MR, Curwen RS, MacLean LM, Brannigan JA, Carrington M, Smith BA, Ashford DA, Stark M, Smith DF. The orthologue of Sjögren's syndrome nuclear autoantigen 1 (SSNA1) in Trypanosoma brucei is an immunogenic self-assembling molecule. PLoS One 2012; 7:e31842. [PMID: 22363749 PMCID: PMC3282761 DOI: 10.1371/journal.pone.0031842] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/12/2012] [Indexed: 11/18/2022] Open
Abstract
Primary Sjögren's Syndrome (PSS) is a highly prevalent autoimmune disease, typically manifesting as lymphocytic infiltration of the exocrine glands leading to chronically impaired lacrimal and salivary secretion. Sjögren's Syndrome nuclear autoantigen 1 (SSNA1 or NA14) is a major specific target for autoantibodies in PSS but the precise function and clinical relevance of this protein are largely unknown. Orthologues of the gene are absent from many of the commonly used model organisms but are present in Chlamyodomonas reinhardtii (in which it has been termed DIP13) and most protozoa. We report the functional characterisation of the orthologue of SSNA1 in the kinetoplastid parasite, Trypanosoma brucei. Both TbDIP13 and human SSNA1 are small coiled-coil proteins which are predicted to be remote homologues of the actin-binding protein tropomyosin. We use comparative proteomic methods to identify potential interacting partners of TbDIP13. We also show evidence that TbDIP13 is able to self-assemble into fibril-like structures both in vitro and in vivo, a property which may contribute to its immunogenicity. Endogenous TbDIP13 partially co-localises with acetylated α-tubulin in the insect procyclic stage of the parasite. However, deletion of the DIP13 gene in cultured bloodstream and procyclic stages of T. brucei has little effect on parasite growth or morphology, indicating either a degree of functional redundancy or a function in an alternative stage of the parasite life cycle.
Collapse
Affiliation(s)
- Helen P Price
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Mutations at the APM1 and APM2 loci in the green alga Chlamydomonas reinhardtii confer resistance to phosphorothioamidate and dinitroaniline herbicides. Genetic interactions between apm1 and apm2 mutations suggest an interaction between the gene products. We identified the APM1 and APM2 genes using a map-based cloning strategy. Genomic DNA fragments containing only the DNJ1 gene encoding a type I Hsp40 protein rescue apm1 mutant phenotypes, conferring sensitivity to the herbicides and rescuing a temperature-sensitive growth defect. Lesions at five apm1 alleles include missense mutations and nucleotide insertions and deletions that result in altered proteins or very low levels of gene expression. The HSP70A gene, encoding a cytosolic Hsp70 protein known to interact with Hsp40 proteins, maps near the APM2 locus. Missense mutations found in three apm2 alleles predict altered Hsp70 proteins. Genomic fragments containing the HSP70A gene rescue apm2 mutant phenotypes. The results suggest that a client of the Hsp70-Hsp40 chaperone complex may function to increase microtubule dynamics in Chlamydomonas cells. Failure of the chaperone system to recognize or fold the client protein(s) results in increased microtubule stability and resistance to the microtubule-destabilizing effect of the herbicides. The lack of redundancy of genes encoding cytosolic Hsp70 and Hsp40 type I proteins in Chlamydomonas makes it a uniquely valuable system for genetic analysis of the function of the Hsp70 chaperone complex.
Collapse
|
21
|
Morita M, Nakajima A, Takemura A, Okuno M. Involvement of redox- and phosphorylation-dependent pathways in osmotic adaptation in sperm cells of euryhaline tilapia. ACTA ACUST UNITED AC 2011; 214:2096-104. [PMID: 21613527 DOI: 10.1242/jeb.053405] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sperm cells involved in fertilisation must tolerate hypo-osmotic and hyper-osmotic environments. Euryhaline tilapia (Oreochromis mossambicus) can acclimatise to and reproduce in freshwater and seawater because its sperm are able to adapt to these differing osmotic environments. In this study, we found that the dephosphorylation of sperm proteins in O. mossambicus correlated with the activation of flagellar motility when sperm were exposed to hypotonic or hypertonic conditions, and that differences in phosphorylation may reflect adaptations to a given osmotic environment. Of the sperm proteins that were dephosphorylated, the phosphorylation pattern of an 18 kDa protein, identified as the superoxide anion scavenger Cu/Zn superoxide dismutase (Cu/Zn SOD), was different in freshwater- and seawater-acclimatised tilapia sperm. Cu/Zn SOD was distributed from the sperm head to the flagellum. Additionally, differences were observed between freshwater and seawater tilapia in the nitration of tyrosine residues (which might be mediated by SOD) in sperm flagellar proteins in response to osmotic shock. These results demonstrate that reactive-oxygen-species-dependent mechanisms contribute to both osmotic tolerance and the activation of flagellar motility.
Collapse
Affiliation(s)
- Masaya Morita
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko, Motobu, Okinawa 907-0227, Japan.
| | | | | | | |
Collapse
|
22
|
Seixas C, Cruto T, Tavares A, Gaertig J, Soares H. CCTalpha and CCTdelta chaperonin subunits are essential and required for cilia assembly and maintenance in Tetrahymena. PLoS One 2010; 5:e10704. [PMID: 20502701 PMCID: PMC2872681 DOI: 10.1371/journal.pone.0010704] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/23/2010] [Indexed: 12/24/2022] Open
Abstract
Background The eukaryotic cytosolic chaperonin CCT is a hetero-oligomeric complex formed by two rings connected back-to-back, each composed of eight distinct subunits (CCTα to CCTζ). CCT complex mediates the folding, of a wide range of newly synthesised proteins including tubulin (α, β and γ) and actin, as quantitatively major substrates. Methodology/Principal Findings We disrupted the genes encoding CCTα and CCTδ subunits in the ciliate Tetrahymena. Cells lacking the zygotic expression of either CCTα or CCTδ showed a loss of cell body microtubules, failed to assemble new cilia and died within 2 cell cycles. We also show that loss of CCT subunit activity leads to axoneme shortening and splaying of tips of axonemal microtubules. An epitope-tagged CCTα rescued the gene knockout phenotype and localized primarily to the tips of cilia. A mutation in CCTα, G346E, at a residue also present in the related protein implicated in the Bardet Biedel Syndrome, BBS6, also caused defects in cilia and impaired CCTα localization in cilia. Conclusions/Significance Our results demonstrate that the CCT subunits are essential and required for ciliary assembly and maintenance of axoneme structure, especially at the tips of cilia.
Collapse
Affiliation(s)
- Cecilia Seixas
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Teresa Cruto
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Helena Soares
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
23
|
New Insights into the Roles of Molecular Chaperones in Chlamydomonas and Volvox. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:75-113. [DOI: 10.1016/b978-0-12-381047-2.00002-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Lechtreck KF, Luro S, Awata J, Witman GB. HA-tagging of putative flagellar proteins in Chlamydomonas reinhardtii identifies a novel protein of intraflagellar transport complex B. ACTA ACUST UNITED AC 2009; 66:469-82. [PMID: 19382199 DOI: 10.1002/cm.20369] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proteomic analysis of flagella from the green alga Chlamydomonas reinhardtii has identified over 600 putative flagellar proteins. The genes encoding nine of these not previously characterized plus the previously described PACRG protein were cloned, inserted into a vector adding a triple-HA tag to the C-terminus of the gene product, and transformed into C. reinhardtii. Expression was confirmed by western blotting. Indirect immunofluorescence located all 10 fusion proteins in the flagellum; PACRG was localized to a subset of outer doublet microtubules. For some proteins, additional signal was observed in the cell body. Among the latter was FAP232-HA, which showed a spotted distribution along the flagella and an accumulation at the basal bodies. This pattern is characteristic for intraflagellar transport (IFT) proteins. FAP232-HA co-localized with the IFT protein IFT46 and co-sedimented with IFT particles in sucrose gradients. Furthermore, it co-immunoprecipitated with IFT complex B protein IFT46, but not with IFT complex A protein IFT139. We conclude that FAP232 is a novel component of IFT complex B and rename it IFT25. Homologues of IFT25 are encoded in the genomes of a subset of organisms that assemble cilia or flagella; C. reinhardtii IFT25 is 37% identical to the corresponding human protein. Genes encoding IFT25 homologues are absent from the genomes of organisms that lack cilia and flagella and, interestingly, also from those of Drosophila melanogaster and Caenorhabditis elegans, suggesting that IFT25 has a specialized role in IFT that is not required for the assembly of cilia or flagella in the worm and fly. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Karl-Ferdinand Lechtreck
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | | | | | | |
Collapse
|
25
|
Vydra N, Winiarski B, Rak-Raszewska A, Piglowski W, Mazurek A, Scieglinska D, Widlak W. The expression pattern of the 70-kDa heat shock protein Hspa2 in mouse tissues. Histochem Cell Biol 2009; 132:319-30. [PMID: 19462178 DOI: 10.1007/s00418-009-0605-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2009] [Indexed: 11/26/2022]
Abstract
The highest expression level of a 70-kDa heat shock protein family member Hspa2 is detected specifically in meiotic and post-meiotic male germ cells, which is reflected by original name of this protein, i.e., testis-specific Hsp70. However, this chaperon protein could be also detected in certain somatic tissues. Here, the extra-testicular expression pattern of mouse Hspa2 was analyzed. We found expression of Hspa2 in various epithelial cells including lining of bronchioles and oviduct, columnar epithelium of endometrium, epithelial reticular cells of thymus, transitional epithelium of the urinary bladder, or ependymal cells covering walls of the ventricular system of the brain. Surprisingly, Hspa2 was a putative secretory protein in intestine, endometrial glands and subcommissural organ. Hspa2 was detected in central and peripheral nervous system: in neuron's bodies and fiber tracts, in the subventricular zone of the lateral ventricles, in the dentate gyrus of the hippocampus, in enteric ganglia of the gastrointestinal tract. Hspa2 was also expressed in smooth muscles and at low level in immune system (in germinal centers associated with B-lymphocyte production). In addition to somatic tissues listed above, Hspa2 was detected in oocytes arrested at diplotene of the first meiotic division.
Collapse
Affiliation(s)
- Natalia Vydra
- Department of Tumor Biology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, 44-101, Gliwice, Poland
| | | | | | | | | | | | | |
Collapse
|
26
|
Bhowmick R, Li M, Sun J, Baker SA, Insinna C, Besharse JC. Photoreceptor IFT complexes containing chaperones, guanylyl cyclase 1 and rhodopsin. Traffic 2009; 10:648-63. [PMID: 19302411 DOI: 10.1111/j.1600-0854.2009.00896.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Intraflagellar transport (IFT) provides a mechanism for the transport of cilium-specific proteins, but the mechanisms for linkage of cargo and IFT proteins have not been identified. Using the sensory outer segments (OS) of photoreceptors, which are derived from sensory cilia, we have identified IFT-cargo complexes containing IFT proteins, kinesin 2 family proteins, two photoreceptor-specific membrane proteins, guanylyl cyclase 1 (GC1, Gucy2e) and rhodopsin (RHO), and the chaperones, mammalian relative of DNAJ, DnajB6 (MRJ), and HSC70 (Hspa8). Analysis of these complexes leads to a model in which MRJ through its binding to IFT88 and GC1 plays a critical role in formation or stabilization of the IFT-cargo complexes. Consistent with the function of MRJ in the activation of HSC70 ATPase activity, Mg-ATP enhances the co-IP of GC1, RHO, and MRJ with IFT proteins. Furthermore, RNAi knockdown of MRJ in IMCD3 cells expressing GC1-green fluorescent protein (GFP) reduces cilium membrane targeting of GC1-GFP without apparent effect on cilium elongation.
Collapse
Affiliation(s)
- Reshma Bhowmick
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
27
|
Guan J, Yuan L. A heat-shock protein 40, DNAJB13, is an axoneme-associated component in mouse spermatozoa. Mol Reprod Dev 2008; 75:1379-86. [DOI: 10.1002/mrd.20874] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
Yang C, Owen HA, Yang P. Dimeric heat shock protein 40 binds radial spokes for generating coupled power strokes and recovery strokes of 9 + 2 flagella. ACTA ACUST UNITED AC 2008; 180:403-15. [PMID: 18227282 PMCID: PMC2213584 DOI: 10.1083/jcb.200705069] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
T-shape radial spokes regulate flagellar beating. However, the precise function and molecular mechanism of these spokes remain unclear. Interestingly, Chlamydomonas reinhardtii flagella lacking a dimeric heat shock protein (HSP) 40 at the spokehead-spokestalk juncture appear normal in length and composition but twitch actively while cells jiggle without procession, resembling a central pair (CP) mutant. HSP40(-) cells begin swimming upon electroporation with recombinant HSP40. Surprisingly, the rescue doesn't require the signature DnaJ domain. Furthermore, the His-Pro-Asp tripeptide that is essential for stimulating HSP70 adenosine triphosphatase diverges in candidate orthologues, including human DnaJB13. Video microscopy reveals hesitance in bend initiation and propagation as well as irregular stalling and stroke switching despite fairly normal waveform. The in vivo evidence suggests that the evolutionarily conserved HSP40 specifically transforms multiple spoke proteins into stable conformation capable of mechanically coupling the CP with dynein motors. This enables 9 + 2 cilia and flagella to bend and switch to generate alternate power strokes and recovery strokes.
Collapse
Affiliation(s)
- Chun Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | | | | |
Collapse
|
29
|
Takaki E, Fujimoto M, Nakahari T, Yonemura S, Miyata Y, Hayashida N, Yamamoto K, Vallee RB, Mikuriya T, Sugahara K, Yamashita H, Inouye S, Nakai A. Heat shock transcription factor 1 is required for maintenance of ciliary beating in mice. J Biol Chem 2007; 282:37285-92. [PMID: 17965413 DOI: 10.1074/jbc.m704562200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock transcription factors (HSFs) maintain protein homeostasis through regulating expression of heat shock proteins, especially in stressed conditions. In addition, HSFs are involved in cellular differentiation and development by regulating development-related genes, as well as heat shock genes. Here, we showed chronic sinusitis and mild hydrocephalus in postnatal HSF1-null mice, which are associated with impaired mucociliary clearance and cerebrospinal flow, respectively. Analysis of ciliary beating revealed that the amplitude of the beating was significantly reduced, and ciliary beat frequencies were lower in the respiratory epithelium, ependymal cells, oviduct, and trachea of HSF1-null mice than those of wild-type mice. Cilia possess a common axonema structure composed of microtubules of alpha- and beta-tubulin. We found a marked reduction in alpha- and ciliary betaiv-tubulin in the HSF1-null cilia, which is developmentally associated with reduced Hsp90 expression in HSF1-null mice. Treatment of the respiratory epithelium with geldanamycin resulted in rapid reduction of ciliary beating in a dose-dependent manner. Furthermore, Hsp90 was physically associated with ciliary betaiv-tubulin, and Hsp90 stabilizes tubulin polymerization in vitro. These results indicate that HSF1 is required to maintain ciliary beating in postnatal mice, probably by regulating constitutive expression of Hsp90 that is important for tubulin polymerization.
Collapse
Affiliation(s)
- Eiichi Takaki
- Biochemistry and Molecular Biology and Otolaryngology, Yamaguchi University School of Medicine, Ube 755-8505, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yang P, Diener DR, Yang C, Kohno T, Pazour GJ, Dienes JM, Agrin NS, King SM, Sale WS, Kamiya R, Rosenbaum JL, Witman GB. Radial spoke proteins of Chlamydomonas flagella. J Cell Sci 2006; 119:1165-74. [PMID: 16507594 PMCID: PMC1973137 DOI: 10.1242/jcs.02811] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The radial spoke is a ubiquitous component of '9+2' cilia and flagella, and plays an essential role in the control of dynein arm activity by relaying signals from the central pair of microtubules to the arms. The Chlamydomonas reinhardtii radial spoke contains at least 23 proteins, only 8 of which have been characterized at the molecular level. Here, we use mass spectrometry to identify 10 additional radial spoke proteins. Many of the newly identified proteins in the spoke stalk are predicted to contain domains associated with signal transduction, including Ca2+-, AKAP- and nucleotide-binding domains. This suggests that the spoke stalk is both a scaffold for signaling molecules and itself a transducer of signals. Moreover, in addition to the recently described HSP40 family member, a second spoke stalk protein is predicted to be a molecular chaperone, implying that there is a sophisticated mechanism for the assembly of this large complex. Among the 18 spoke proteins identified to date, at least 12 have apparent homologs in humans, indicating that the radial spoke has been conserved throughout evolution. The human genes encoding these proteins are candidates for causing primary ciliary dyskinesia, a severe inherited disease involving missing or defective axonemal structures, including the radial spokes.
Collapse
Affiliation(s)
- Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kuwabara H, Yoneda M, Hayasaki H, Nakamura T, Mori H. Glucose regulated proteins 78 and 75 bind to the receptor for hyaluronan mediated motility in interphase microtubules. Biochem Biophys Res Commun 2006; 339:971-6. [PMID: 16329989 DOI: 10.1016/j.bbrc.2005.11.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 11/14/2005] [Indexed: 10/25/2022]
Abstract
The receptor for hyaluronan mediated motility (RHAMM), which is a hyaluronan-binding protein, is a centrosomal and microtubal protein. Here, we have identified two RHAMM-binding proteins, glucose regulated protein (GRP) 78 and GRP75, using co-immunoprecipitation analysis. These two proteins directly bound to glutathione-S-transferase-RHAMM fusion proteins. By double immunostaining, GRP78 and GRP75 colocalized with RHAMM in interphase microtubules, but were separated in mitotic spindles. Prevention of microtubule polymerization by TN-16 and vincristine sulfate induced RHAMM overexpression without a significant change in GRP78/75. Taken together, GRP78/75 and RHAMM complexes may stabilize microtubules in the interphase, associated with a downregulation of RHAMM. These results reveal a new biochemical activity of RHAMM.
Collapse
Affiliation(s)
- Hiroko Kuwabara
- Department of Pathology, Osaka Medical College, 2-7, Takatsuki, Osaka 569-8686, Japan.
| | | | | | | | | |
Collapse
|
32
|
Shapiro J, Ingram J, Johnson KA. Characterization of a molecular chaperone present in the eukaryotic flagellum. EUKARYOTIC CELL 2005; 4:1591-4. [PMID: 16151252 PMCID: PMC1214201 DOI: 10.1128/ec.4.9.1591-1594.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chlamydomonas flagella contain a molecular chaperone now identified as HSP70A, a major cytoplasmic isoform. HSP70A synthesis is upregulated by deflagellation, and its distribution in the flagellum overlaps with the IFT kinesin-II motor FLA10. HSP70A may chaperone flagellar proteins during transport, participating in the assembly and maintenance of the flagellum.
Collapse
Affiliation(s)
- Jessica Shapiro
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, Pennsylvania 19041, USA
| | | | | |
Collapse
|
33
|
Dawe HR, Farr H, Portman N, Shaw MK, Gull K. The Parkin co-regulated gene product, PACRG, is an evolutionarily conserved axonemal protein that functions in outer-doublet microtubule morphogenesis. J Cell Sci 2005; 118:5421-30. [PMID: 16278296 DOI: 10.1242/jcs.02659] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic cilia and flagella are highly conserved structures composed of a canonical 9+2 microtubule axoneme. Comparative genomics of flagellated and non-flagellated eukaryotes provides one way to identify new putative flagellar proteins. We identified the Parkin co-regulated gene, or PACRG, from such a screen. Male mice deficient in PACRG are sterile, but its function has been little explored. The flagellated protozoan parasite Trypanosoma brucei possesses two homologues of PACRG. We performed RNA interference knockdown experiments of the two genes independently and both together. Simultaneous ablation of both proteins produced slow growth and paralysis of the flagellum with consequent effects on organelle segregation. Moreover, using transmission electron microscopy, structural defects were seen in the axoneme, with microtubule doublets missing from the canonical 9+2 formation. The occurrence of missing doublets increased toward the distal end of the flagellum and sequential loss of doublets was observed along individual axonemes. GFP fusion proteins of both PACRG homologues localised along the full length of the axoneme. Our results provide the first evidence for PACRG function within the axoneme, where we suggest that PACRG acts to maintain functional stability of the axonemal outer doublets of both motile and sensory cilia and flagella.
Collapse
Affiliation(s)
- Helen R Dawe
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | | | | | | |
Collapse
|
34
|
Mitchell BF, Pedersen LB, Feely M, Rosenbaum JL, Mitchell DR. ATP production in Chlamydomonas reinhardtii flagella by glycolytic enzymes. Mol Biol Cell 2005; 16:4509-18. [PMID: 16030251 PMCID: PMC1237060 DOI: 10.1091/mbc.e05-04-0347] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 07/06/2005] [Accepted: 07/12/2005] [Indexed: 01/20/2023] Open
Abstract
Eukaryotic cilia and flagella are long, thin organelles, and diffusion from the cytoplasm may not be able to support the high ATP concentrations needed for dynein motor activity. We discovered enzyme activities in the Chlamydomonas reinhardtii flagellum that catalyze three steps of the lower half of glycolysis (phosphoglycerate mutase, enolase, and pyruvate kinase). These enzymes can generate one ATP molecule for every substrate molecule consumed. Flagellar fractionation shows that enolase is at least partially associated with the axoneme, whereas phosphoglycerate mutase and pyruvate kinase primarily reside in the detergent-soluble (membrane + matrix) compartments. We further show that axonemal enolase is a subunit of the CPC1 central pair complex and that reduced flagellar enolase levels in the cpc1 mutant correlate with the reduced flagellar ATP concentrations and reduced in vivo beat frequencies reported previously in the cpc1 strain. We conclude that in situ ATP synthesis throughout the flagellar compartment is essential for normal flagellar motility.
Collapse
Affiliation(s)
- Beth F Mitchell
- Department of Biology, Le Moyne College, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Eukaryotic cilia and flagella are cytoskeletal organelles that are remarkably conserved from protists to mammals. Their basic unit is the axoneme, a well-defined cylindrical structure composed of microtubules and up to 250 associated proteins. These complex organelles are assembled by a dynamic process called intraflagellar transport. Flagella and cilia perform diverse motility and sensitivity functions in many different organisms. Trypanosomes are flagellated protozoa, responsible for various tropical diseases such as sleeping sickness and Chagas disease. In this review, we first describe general knowledge on the flagellum: its occurrence in the living world, its molecular composition, and its mode of assembly, with special emphasis on the exciting developments that followed the discovery of intraflagellar transport. We then present recent progress regarding the characteristics of the trypanosome flagellum, highlighting the original contributions brought by this organism. The most striking phenomenon is the involvement of the flagellum in several aspects of the trypanosome cell cycle, including cell morphogenesis, basal body migration, and cytokinesis.
Collapse
Affiliation(s)
- Linda Kohl
- INSERM U565, CNRS UMR5153, and MNHN USM 0503, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | | |
Collapse
|
36
|
Yang C, Compton MM, Yang P. Dimeric novel HSP40 is incorporated into the radial spoke complex during the assembly process in flagella. Mol Biol Cell 2004; 16:637-48. [PMID: 15563613 PMCID: PMC545900 DOI: 10.1091/mbc.e04-09-0787] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The radial spoke is a stable structural complex in the 9 + 2 axoneme for the control of flagellar motility. However, the spokes in Chlamydomonas mutant pf24 are heterogeneous and unstable, whereas several spoke proteins are reduced differentially. To elucidate the defective mechanism, we clone RSP16, a prominent spoke protein diminished in pf24 axonemes. Unexpectedly, RSP16 is a novel HSP40 member of the DnaJ superfamily that assists chaperones in various protein-folding-related processes. Importantly, RSP16 is uniquely excluded from the 12S spoke precursor complex that is packaged in the cell body and transported toward the flagellar tip to be converted into mature 20S axonemal spokes. Rather, RSP16, transported separately, joins the precursor complex in flagella. Furthermore, RSP16 molecules in vitro and in flagella form homodimers, a characteristic required for the cochaperone activity of HSP40. We postulate that the spoke HSP40 operates as a cochaperone to assist chaperone machinery at the flagellar tip to actively convert the smaller spoke precursor and itself into the mature stable complex; failure of the interaction between the spoke HSP40 and its target polypeptide results in heterogeneous unstable radial spokes in pf24.
Collapse
Affiliation(s)
- Chun Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | | | | |
Collapse
|
37
|
Satouh Y, Padma P, Toda T, Satoh N, Ide H, Inaba K. Molecular characterization of radial spoke subcomplex containing radial spoke protein 3 and heat shock protein 40 in sperm flagella of the ascidian Ciona intestinalis. Mol Biol Cell 2004; 16:626-36. [PMID: 15563603 PMCID: PMC545899 DOI: 10.1091/mbc.e04-09-0784] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Members of the heat-shock protein (HSP)40 regulate the protein folding activity of HSP70 proteins and help the functional specialization of this molecular chaperone system in various types of cellular events. We have recently identified Hsp40 as a component of flagellar axoneme in the ascidian Ciona intestinalis, suggesting a correlation between Hsp40 related chaperone system and flagellar function. In this study, we have found that Ciona 37-kDa Hsp40 is extracted from KCl-treated axonemes with 0.5 M KI solution and comigrates with radial spoke protein (RSP)3 along with several proteins as a complex through gel filtration and ion exchange columns. Peptide mass fingerprinting with matrix-assisted laser desorption ionization/time of flight/mass spectrometry revealed that other proteins in the complex include a homolog of sea urchin spokehead protein (homolog of RSP4/6), a membrane occupation and recognition nexus repeat protein with sequence similarity with meichroacidin, and a functionally unknown 33-kDa protein. A spoke head protein, LRR37, is not included in the complex, suggesting that the complex constructs the stalk of radial spoke. Immunoelectron microscopy indicates that Hsp40 is localized in the distal portion of spoke stalk, possibly at the junction between spoke head and the stalk.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The behavior of the proteome reflects spatial and temporal organization both within and without cells. We propose that various macromolecular entities possessing polyanionic character such as proteoglycans, lipid bilayer surfaces, microtubules, microfilaments, and polynucleotides may provide a functional network that mediates a variety of cellular phenomena. The interaction of proteins with this array of polyanions is characterized by a lower degree of specificity than seen with most commonly recognized macromolecular interactions. In this commentary, potential roles for this polyanion network in diverse functions such as protein/protein interactions, protein folding and stabilization, macromolecular transport, and various disease processes are all considered, as well as the use of polyanions as therapeutic agents. The role of small polyanions in the regulation of protein/polyanion interactions is also postulated. We provide preliminary experimental analysis of the extent to which proteins interact with polyanions inside cells using a combination of two-dimensional chromatographic and electrophoretic methods and antibody arrays. We conclude that many hundreds to thousands of such interactions are present in cells and argue that future understanding of the proteome will require that the "polyanion world" be taken into account.
Collapse
Affiliation(s)
- LaToya S Jones
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-3729, USA
| | | | | |
Collapse
|
39
|
Casano C, Gianguzza F, Roccheri MC, Di Giorgi R, Maenza L, Ragusa MA. Hsp40 is involved in cilia regeneration in sea urchin embryos. J Histochem Cytochem 2004; 51:1581-7. [PMID: 14623926 DOI: 10.1177/002215540305101202] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In a previous paper we demonstrated that, in Paracentrotus lividus embryos, deciliation represents a specific kind of stress that induces an increase in the levels of an acidic protein of about 40 kD (p40). Here we report that deciliation also induces an increase in Hsp40 chaperone levels and enhancement of its ectodermal localization. We suggest that Hsp40 might play a chaperoning role in cilia regeneration.
Collapse
Affiliation(s)
- Caterina Casano
- Dipartimento di Biologia Cellulare e dello Sviluppo Alberto Monroy, Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Seixas C, Casalou C, Melo LV, Nolasco S, Brogueira P, Soares H. Subunits of the chaperonin CCT are associated with Tetrahymena microtubule structures and are involved in cilia biogenesis. Exp Cell Res 2003; 290:303-21. [PMID: 14567989 DOI: 10.1016/s0014-4827(03)00325-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The cytosolic chaperonin CCT is a heterooligomeric complex of about 900 kDa that mediates the folding of cytoskeletal proteins. We observed by indirect immunofluorescence that the Tetrahymena TpCCTalpha, TpCCTdelta, TpCCTepsilon, and TpCCTeta-subunits colocalize with tubulin in cilia, basal bodies, oral apparatus, and contractile vacuole pores. TpCCT-subunits localization was affected during reciliation. These findings combined with atomic force microscopy measurements in reciliating cells indicate that these proteins play a role during cilia biogenesis related to microtubule nucleation, tubulin transport, and/or axoneme assembly. The TpCCT-subunits were also found to be associated with cortex and cytoplasmic microtubules suggesting that they can act as microtubule-associated proteins. The TpCCTdelta being the only subunit found associated with the macronuclear envelope indicates that it has functions outside of the 900 kDa complex. Tetrahymena cytoplasm contains granular/globular-structures of TpCCT-subunits in close association with microtubule arrays. Studies of reciliation and with cycloheximide suggest that these structures may be sites of translation and folding. Combined biochemical techniques revealed that reciliation affects the oligomeric state of TpCCT-subunits being tubulin preferentially associated with smaller CCT oligomeric species in early stages of reciliation. Collectively, these findings indicate that the oligomeric state of CCT-subunits reflects the translation capacity of the cell and microtubules integrity.
Collapse
Affiliation(s)
- Cecília Seixas
- Instituto Gulbenkian de Ciência, Apartado 14, P-2781 Oeiras codex, Portugal
| | | | | | | | | | | |
Collapse
|
41
|
Aguilar-Mahecha A, Hales BF, Robaire B. Acute cyclophosphamide exposure has germ cell specific effects on the expression of stress response genes during rat spermatogenesis. Mol Reprod Dev 2001; 60:302-11. [PMID: 11599041 DOI: 10.1002/mrd.1092] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Exposure of male rats to cyclophosphamide, a commonly used anticancer and immunosuppressive drug, has been shown to alter fertility and progeny outcome in a male germ cell phase-specific manner. The effect of toxicant exposure on male germ cells depends in part on the stress response mechanisms present during the different stages of spermatogenesis. To assess how acute cyclophosphamide exposure affects the expression of stress response genes, we examined the expression of 216 genes, using gene expression arrays, in isolated rat spermatogenic cell types (pachytene spermatocytes, round spermatids, and elongating spermatids). Cyclophosphamide exposure affected gene expression in all cell types but most dramatically in round spermatids. Increased transcript levels were observed for 30 genes in round spermatids compared to seven genes in pachytene spermatocytes and two in elongating spermatids. The expression of genes involved in apoptosis, DNA-damage recognition and repair, transcriptional activation, and in the heat shock protein-chaperone response was most affected by cyclophosphamide in round spermatids. Our results demonstrate that cyclophosphamide alters the expression of stress response genes during spermatogenesis in a germ cell-specific manner. The greater response of round spermatids to cyclophosphamide suggests that this cell type may be more susceptible to the damaging effects induced by this drug, possibly due to the chromatin remodeling that is taking place at this stage of spermatogenesis. This observation is consistent with the reported higher level of abnormal progeny outcome seen when the germ cells were first exposed to cyclophosphamide as round spermatids.
Collapse
Affiliation(s)
- A Aguilar-Mahecha
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec, Canada H3G 1Y6
| | | | | |
Collapse
|
42
|
Stephens RE. Ciliary protein turnover continues in the presence of inhibitors of golgi function: evidence for membrane protein pools and unconventional intracellular membrane dynamics. ACTA ACUST UNITED AC 2001; 289:335-49. [PMID: 11351321 DOI: 10.1002/jez.1015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The intimate association of the Golgi apparatus with cilia suggests a functional alliance. To explore the relationship between the synthesis and processing of membrane constituents and the turnover or regeneration of cilia, parallel cultures of gastrula-stage sea urchin embryos were pulse-chase labeled with (3)H-leucine in the presence of monensin, brefeldin A, or colchicine. Steady-state labeled cilia were isolated, and the embryos were allowed to regenerate cilia, which were then isolated after the equivalent of two normal regeneration times. Regeneration was absent in colchicine, minimal in monensin, and inhibited about 40% by brefeldin A. Both monensin and brefeldin A effectively inhibited the post-translational processing of prominent phosphatidylinositoylated and palmitoylated membrane proteins and the axoneme-associated transmembrane Spec3 protein, yet most other membrane plus matrix and 9+2 axonemal proteins were labeled to levels indistinguishable from untreated controls. However, total protein analysis of the membrane plus matrix fractions showed a substantial increase in glycoproteins and the calsequestrin-like protein ECaSt/PDI after treatment at steady-state with all three inhibitors and after regeneration in brefeldin A. Other constituents of this compartment, such as membrane-associated tubulin, calmodulin, and a 53-kDa calcium-binding protein, were unchanged. Therefore, inhibition of Golgi function via three different mechanisms left 9+2 protein turnover undiminished but resulted in an accumulation, in the cilium, of already-processed membrane pool constituents and a normally ER-resident protein. A disproportionate elevation of HSP70 suggests that a novel stress response may be involved in inhibiting ciliary regeneration or promoting glycoprotein augmentation.
Collapse
Affiliation(s)
- R E Stephens
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| |
Collapse
|
43
|
Takeda T, Yoshihama I, Numata O. Identification of Tetrahymena hsp60 as a 14-nm filament protein/citrate synthase-binding protein and its possible involvement in the oral apparatus formation. Genes Cells 2001; 6:139-49. [PMID: 11260259 DOI: 10.1046/j.1365-2443.2001.00400.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Tetrahymena 14-nm filament protein (14FP) is bifunctional, with roles as a citrate synthase in mitochondria and as a cytoskeletal protein in nuclear events during fertilization and in oral morphogenesis. In this study, to further our understanding of the bifunctional property of 14FP, we attempted to screen 14FP-binding proteins using affinity column chromatography. RESULTS Through the screening of 14FP-binding proteins using 14FP-affinity chromatography, we detected 65 kDa and 70 kDa proteins that bound to 14FP in an ATP dependent manner. From the N-terminal amino acid sequence, these proteins were identified as the Tetrahymena mitochondrial chaperones, hsp60 and mthsp70, respectively. Tetrahymena hsp60 was recognized with a monoclonal antibody raised against human hsp60. Immunofluorescence and immunoelectron microscopy using the monoclonal antibody showed that Tetrahymena hsp60 was localized to mitochondria. Moreover, Tetrahymena hsp60 was also present at extramitochondrial sites including basal bodies of cilia and oral apparatus, and particularly at the developing oral apparatus during cell division. CONCLUSION These results suggest that Tetrahymena hsp60 is localized in basal bodies and is involved in cortical patterning such as the formation of the oral apparatus as well as having a role in the folding of mitochondrial proteins in mitochondria.
Collapse
Affiliation(s)
- T Takeda
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572 Japan
| | | | | |
Collapse
|
44
|
Ersfeld K, Gull K. Targeting of cytoskeletal proteins to the flagellum of Trypanosoma brucei. J Cell Sci 2001; 114:141-148. [PMID: 11112698 DOI: 10.1242/jcs.114.1.141] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eukaryotic flagellum represents one of the most complex macromolecular structures found in any organism and contains more than 250 proteins. Due to the relative ease of genetic manipulation the flagellum of Trypanosoma brucei has emerged as an accessible model system to study the morphogenesis and dynamics of this organelle. We have recently started to characterise the mechanisms by which components of the cytoskeletal fraction of the flagellum, such as the axoneme, the paraflagellar rod and the flagellar attachment zone, are targeted by proteins synthesised in the cytoplasm and assembled. Here, we present the identification of a novel actin-related protein as a component of the axoneme. We show that this protein shares the tripeptid motif histidine-leucine-alanine (HLA) with one of the major proteins of the paraflagellar rod, PFRA. Building on previous work from this lab which showed that a deletion comprising this motif abolished targeting of PFRA to the flagellum we demonstrate in this study that the deletion of the tripeptid motif is sufficient to achieve mistargeting both of the PFRA and the actin-related protein. We propose that this motif represents an essential part of a flagellar targeting machinery in trypanosomes and possibly in other flagellated organisms.
Collapse
Affiliation(s)
- K Ersfeld
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | | |
Collapse
|
45
|
Yamakuchi M, Higuchi I, Masuda S, Ohira Y, Kubo T, Kato Y, Maruyama I, Kitajima I. Type I muscle atrophy caused by microgravity-induced decrease of myocyte enhancer factor 2C (MEF2C) protein expression. FEBS Lett 2000; 477:135-40. [PMID: 10899324 DOI: 10.1016/s0014-5793(00)01715-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To investigate the molecular mechanisms of muscle atrophy under microgravity, the paraspinal muscles of rats after 14 days spaceflight and those of ground-based controls were examined. In the microgravitational environment, expressions of 42 genes changed, and the expressions of heat shock protein 70 and t complex polypeptide 1 increased. In Northern blotting, myocyte-specific enhancer binding factor 2C (MEF2C) and MEF2C-related genes including aldolase A and muscle ankyrin decreased. After 9 days ground recovery, expression of MEF2C increased and it was located mainly on the satellite cells in the muscle regeneration state. MEF2C could be a key transcriptional factor for skeletal muscle atrophy and regeneration under microgravity.
Collapse
Affiliation(s)
- M Yamakuchi
- Department of Molecular Laboratory Medicine, Kagoshima University School of Medicine, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Bastin P, MacRae TH, Francis SB, Matthews KR, Gull K. Flagellar morphogenesis: protein targeting and assembly in the paraflagellar rod of trypanosomes. Mol Cell Biol 1999; 19:8191-200. [PMID: 10567544 PMCID: PMC84903 DOI: 10.1128/mcb.19.12.8191] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1999] [Accepted: 09/13/1999] [Indexed: 11/20/2022] Open
Abstract
The paraflagellar rod (PFR) of the African trypanosome Trypanosoma brucei represents an excellent model to study flagellum assembly. The PFR is an intraflagellar structure present alongside the axoneme and is composed of two major proteins, PFRA and PFRC. By inducible expression of a functional epitope-tagged PFRA protein, we have been able to monitor PFR assembly in vivo. As T. brucei cells progress through their cell cycle, they possess both an old and a new flagellum. The induction of expression of tagged PFRA in trypanosomes growing a new flagellum provided an excellent marker of newly synthesized subunits. This procedure showed two different sites of addition: a major, polar site at the distal tip of the flagellum and a minor, nonpolar site along the length of the partially assembled PFR. Moreover, we have observed turnover of epitope-tagged PFRA in old flagella that takes place throughout the length of the PFR structure. Expression of truncated PFRA mutant proteins identified a sequence necessary for flagellum localization by import or binding. This sequence was not sufficient to confer full flagellum localization to a green fluorescent protein reporter. A second sequence, necessary for the addition of PFRA protein to the distal tip, was also identified. In the absence of this sequence, the mutant PFRA proteins were localized both in the cytosol and in the flagellum where they could still be added along the length of the PFR. This seven-amino-acid sequence is conserved in all PFRA and PFRC proteins and shows homology to a sequence in the flagellar dynein heavy chain of Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- P Bastin
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | | | | | |
Collapse
|
47
|
Bastin P, Gull K. Assembly and function of complex flagellar structures illustrated by the paraflagellar rod of trypanosomes. Protist 1999; 150:113-23. [PMID: 10505412 DOI: 10.1016/s1434-4610(99)70015-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Miller SM, Kirk DL. glsA, a Volvox gene required for asymmetric division and germ cell specification, encodes a chaperone-like protein. Development 1999; 126:649-58. [PMID: 9895313 DOI: 10.1242/dev.126.4.649] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gls genes of Volvox are required for the asymmetric divisions that set apart cells of the germ and somatic lineages during embryogenesis. Here we used transposon tagging to clone glsA, and then showed that it is expressed maximally in asymmetrically dividing embryos, and that it encodes a 748-amino acid protein with two potential protein-binding domains. Site-directed mutagenesis of one of these, the J domain (by which Hsp40-class chaperones bind to and activate specific Hsp70 partners) abolishes the capacity of glsA to rescue mutants. Based on this and other considerations, including the fact that the GlsA protein is associated with the mitotic spindle, we discuss how it might function, in conjunction with an Hsp70-type partner, to shift the division plane in asymmetrically dividing cells.
Collapse
Affiliation(s)
- S M Miller
- Department of Biology, Washington University, St. Louis, MO, USA.
| | | |
Collapse
|
49
|
Roobol A, Sahyoun ZP, Carden MJ. Selected subunits of the cytosolic chaperonin associate with microtubules assembled in vitro. J Biol Chem 1999; 274:2408-15. [PMID: 9891010 DOI: 10.1074/jbc.274.4.2408] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular chaperone activities of the only known chaperonin in the eukaryotic cytosol (cytosolic chaperonin containing T-complex polypeptide 1 (CCT)) appear to be relatively specialized; the main folding substrates in vivo and in vitro are identified as tubulins and actins. CCT is unique among chaperonins in the complexity of its hetero-oligomeric structure, containing eight different, although related, gene products. In addition to their known ability to bind to and promote correct folding of newly synthesized and denatured tubulins, we show here that CCT subunits alpha, gamma, zeta, and theta also associated with in vitro assembled microtubules, i.e. behaved as microtubule-associated proteins. This nucleotide-dependent association between microtubules and CCT polypeptides (Kd approximately 0.1 microM CCT subunit) did not appear to involve whole oligomeric chaperonin particles, but rather free CCT subunits. Removal of the tubulin COOH termini by subtilisin digestion caused all eight CCT subunits to associate with the microtubule polymer, thus highlighting the non-chaperonin nature of the selective CCT subunit association with normal microtubules.
Collapse
Affiliation(s)
- A Roobol
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom.
| | | | | |
Collapse
|
50
|
Abstract
Previous pulse-chase labeling studies have shown that structural proteins incorporate into fully assembled sea urchin embryonic cilia at rates approaching those of full regeneration. When all background ciliogenesis was suppressed by taxol, the turnover of most proteins, including tubulin, continued. The present study utilized chemical dissection to explore the route of tubulin incorporation in the presence of taxol and also in steady-state cilia from prism stage embryos. Surprisingly, in cilia from untreated embryos, the most heavily labeled tubulin was found in the most stable portion of the doublet microtubles, the junctional protofilaments. With taxol, this preferential incorporation was suppressed, although control-level turnover still took place in the remainder of the doublet. This paradoxical result was confirmed by pulse-chase labeling and immediately isolating steady-state cilia, then isolating two additional crops of cilia regenerated, respectively, from pools of high and then decreased label. In each case, the level of label occurring in the tubulin from the junctional protofilaments, compared with that from the remainder of the doublet, correlated with the level of pool label from which it must exchange or assemble. These data indicate that ciliary outer doublet microtubules are dynamic structures and that the junctional region is not inert. Plausible mechanisms of incorporation and turnover of tubulin in fully-assembled, fully-motile cilia can now be assessed with regared to recent discoveries, particularly intraflagellar transport, distal tip incorporation, and treadmilling.
Collapse
Affiliation(s)
- R E Stephens
- Department of Physiology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| |
Collapse
|