1
|
Khakurel A, Pokrovskaya I, Aragon‐Ramirez WS, Lupashin VV. Acute GARP Depletion Disrupts Vesicle Transport, Leading to Severe Defects in Sorting, Secretion and O-Glycosylation. Traffic 2025; 26:e70003. [PMID: 40100055 PMCID: PMC11917462 DOI: 10.1111/tra.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
The GARP complex is an evolutionarily conserved protein complex proposed to tether endosome-derived vesicles at the trans-Golgi network. While complete depletion of the GARP leads to severe trafficking and glycosylation defects, the primary defects linked to GARP dysfunction remain unclear. In this study, we utilized the mAID degron strategy to achieve rapid degradation of VPS54 in human cells, acutely disrupting GARP function. This resulted in the partial mislocalization and degradation of a subset of Golgi-resident proteins, including TGN46, ATP7A, TMEM87A, CPD, C1GALT1 and GS15. Enzyme recycling defects led to O-glycosylation abnormalities. Additionally, while fibronectin and cathepsin D secretion were altered, mannose-6-phosphate receptors were largely unaffected. Partial displacement of COPI, AP1 and GGA coats caused a significant accumulation of vesicle-like structures and large vacuoles. Electron microscopy detection of GARP-dependent vesicles and identifying specific cargo proteins provide direct experimental evidence of GARP's role as a vesicular tether. We conclude that the primary defects of GARP dysfunction involve vesicular coat mislocalization, accumulation of GARP-dependent vesicles, degradation and mislocalization of specific Golgi proteins and O-glycosylation defects.
Collapse
Affiliation(s)
- Amrita Khakurel
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Irina Pokrovskaya
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Walter S. Aragon‐Ramirez
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Vladimir V. Lupashin
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
2
|
Khakurel A, Pokrovskaya I, Lupashin1 VV. Acute GARP depletion disrupts vesicle transport, leading to severe defects in sorting, secretion, and O-glycosylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617053. [PMID: 39416116 PMCID: PMC11482758 DOI: 10.1101/2024.10.07.617053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The GARP complex is an evolutionarily conserved protein complex proposed to tether endosome-derived vesicles at the trans-Golgi network. While prolonged depletion of GARP leads to severe trafficking and glycosylation defects, the primary defects linked to GARP dysfunction remain unclear. In this study, we utilized the mAID degron strategy to achieve rapid degradation of VPS54 in human cells, acutely disrupting GARP function. This resulted in the partial mislocalization and degradation of a subset of Golgi-resident proteins, including TGN46, ATP7A, TMEM87A, CPD, C1GALT1, and GS15. Enzyme recycling defects led to the early onset of O-glycosylation abnormalities. Additionally, while the secretion of fibronectin and cathepsin D was altered, mannose-6-phosphate receptors were largely unaffected. Partial displacement of COPI, AP1, and GGA coats caused a significant accumulation of vesicle-like structures and large vacuoles. Electron microscopy detection of GARP-dependent vesicles, along with the identification of specific cargo proteins, provides direct experimental evidence of GARP's role as a vesicular tether. We conclude that the primary defects of GARP dysfunction involve vesicular coat mislocalization, accumulation of GARP-dependent vesicles, degradation and mislocalization of specific Golgi proteins, and O-glycosylation defects.
Collapse
Affiliation(s)
- Amrita Khakurel
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| | - Irina Pokrovskaya
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| | - Vladimir V. Lupashin1
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| |
Collapse
|
3
|
Cattin-Ortolá J, Kaufman JGG, Gillingham AK, Wagstaff JL, Peak-Chew SY, Stevens TJ, Boulanger J, Owen DJ, Munro S. Cargo selective vesicle tethering: The structural basis for binding of specific cargo proteins by the Golgi tether component TBC1D23. SCIENCE ADVANCES 2024; 10:eadl0608. [PMID: 38552021 PMCID: PMC11093223 DOI: 10.1126/sciadv.adl0608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024]
Abstract
The Golgi-localized golgins golgin-97 and golgin-245 capture transport vesicles arriving from endosomes via the protein TBC1D23. The amino-terminal domain of TBC1D23 binds to the golgins, and the carboxyl-terminal domain of TBC1D23 captures the vesicles, but how it recognizes specific vesicles was unclear. A search for binding partners of the carboxyl-terminal domain unexpectedly revealed direct binding to carboxypeptidase D and syntaxin-16, known cargo proteins of the captured vesicles. Binding is via a threonine-leucine-tyrosine (TLY) sequence present in both proteins next to an acidic cluster. A crystal structure reveals how this acidic TLY motif binds to TBC1D23. An acidic TLY motif is also present in the tails of other endosome-to-Golgi cargo, and these also bind TBC1D23. Structure-guided mutations in the carboxyl-terminal domain that disrupt motif binding in vitro also block vesicle capture in vivo. Thus, TBC1D23 attached to golgin-97 and golgin-245 captures vesicles by a previously undescribed mechanism: the recognition of a motif shared by cargo proteins carried by the vesicle.
Collapse
Affiliation(s)
- Jérôme Cattin-Ortolá
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jonathan G. G. Kaufman
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Alison K. Gillingham
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jane L. Wagstaff
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sew-Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Tim J. Stevens
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jérôme Boulanger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David J. Owen
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
4
|
Buser DP, Spang A. Protein sorting from endosomes to the TGN. Front Cell Dev Biol 2023; 11:1140605. [PMID: 36895788 PMCID: PMC9988951 DOI: 10.3389/fcell.2023.1140605] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network is essential for recycling of protein and lipid cargoes to counterbalance anterograde membrane traffic. Protein cargo subjected to retrograde traffic include lysosomal acid-hydrolase receptors, SNARE proteins, processing enzymes, nutrient transporters, a variety of other transmembrane proteins, and some extracellular non-host proteins such as viral, plant, and bacterial toxins. Efficient delivery of these protein cargo molecules depends on sorting machineries selectively recognizing and concentrating them for their directed retrograde transport from endosomal compartments. In this review, we outline the different retrograde transport pathways governed by various sorting machineries involved in endosome-to-TGN transport. In addition, we discuss how this transport route can be analyzed experimentally.
Collapse
Affiliation(s)
| | - Anne Spang
- *Correspondence: Dominik P. Buser, ; Anne Spang,
| |
Collapse
|
5
|
Fricker LD, Lemos Duarte M, Jeltyi A, Lueptow L, Fakira AK, Tashima AK, Hochgeschwender U, Wetsel WC, Devi LA. Mice heterozygous for a null mutation of Cpe show reduced expression of carboxypeptidase E mRNA and enzyme activity but normal physiology, behavior, and levels of neuropeptides. Brain Res 2022; 1789:147951. [PMID: 35618016 DOI: 10.1016/j.brainres.2022.147951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
Abstract
Carboxypeptidase E (CPE) is an essential enzyme that contributes to the biosynthesis of the vast majority of neuropeptides and peptide hormones. There are several reports claiming that small decreases in CPE activity cause physiological changes in animals and/or cultured cells, but these studies did not provide evidence that neuropeptide levels were affected by decreased CPE activity. In the present study, we tested if CPE is a rate-limiting enzyme in neuropeptide production using CpeNeo mice, which contain a neomycin cassette within the Cpe gene that eliminates enzyme expression. Homozygous CpeNeo/Neo mice show defects found in Cpefat/fat and/or Cpe global knockout (KO) mice, including greatly decreased levels of most neuropeptides, severely impaired fertility, depressive-like behavior, adult-onset obesity, and anxiety-like behavior. Removal of the neomycin cassette with Flp recombinase under a germline promoter restored expression of CPE activity and resulted in normal behavioral and physiological properties, including levels of neuropeptides. Mice heterozygous for the CpeNeo allele have greatly reduced levels of Cpe mRNA and CPE-like enzymatic activity. Despite the decreased levels of Cpe expression, heterozygous CpeNeo mice are behaviorally and physiologically identical to wild-type mice, with normal levels of most neuropeptides. These results indicate that CPE is not a rate-limiting enzyme in the production of most neuropeptides, casting doubt upon studies claiming small decreases in CPE activity contribute to obesity or other physiological effects.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461.
| | - Mariana Lemos Duarte
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, 10029.
| | - Andrei Jeltyi
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, 10029.
| | - Lindsay Lueptow
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, 10029.
| | - Amanda K Fakira
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, 10029.
| | - Alexandre K Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo, SP 04023-901, Brazil.
| | | | - William C Wetsel
- Departments of Psychiatry and Behavioral Sciences, Neurobiology, and Cell Biology, Duke University Medical Center, Durham, NC, 27710.
| | - Lakshmi A Devi
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, 10029.
| |
Collapse
|
6
|
Li Y, Wang Y, Yao Y, Lyu J, Qiao Q, Mao J, Xu Z, Ye M. Rapid Enzyme-Mediated Biotinylation for Cell Surface Proteome Profiling. Anal Chem 2021; 93:4542-4551. [PMID: 33660993 DOI: 10.1021/acs.analchem.0c04970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell surface is the primary site for sensing extracellular stimuli. The knowledge of the transient changes on the surfaceome upon a perturbation is very important as the initial changed proteins could be driving molecules for some phenotype. In this study, we report a fast cell surface labeling strategy based on peroxidase-mediated oxidative tyrosine coupling strategy, enabling efficient and selective cell surface labeling within seconds. With a labeling time of 1 min, 2684 proteins, including 1370 (51%) cell surface-annotated proteins (cell surface/plasma membrane/extracellular), 732 transmembrane proteins, and 81 cluster of differentiation antigens, were identified from HeLa cells. By comparison with the negative control experiment using quantitative proteomics, 500 (68%) out of the 731 significantly enriched proteins (p-value < 0.05, ≥2-fold) in positive experimental samples were cell surface-annotated proteins. Finally, this technology was applied to track the dynamic changes of the surfaceome upon insulin stimulation at two time points (5 min and 2 h) in HepG2 cells. Thirty-two proteins, including INSR, CTNNB1, TFRC, IGF2R, and SORT1, were found to be significantly regulated (p-value < 0.01, ≥1.5-fold) after insulin exposure by different mechanisms. We envision that this technique could be a powerful tool to analyze the transient changes of the surfaceome with a good time resolution and to delineate the temporal and spatial regulation of cellular signaling.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Yao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Jiawen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| |
Collapse
|
7
|
Han K, Pierce SE, Li A, Spees K, Anderson GR, Seoane JA, Lo YH, Dubreuil M, Olivas M, Kamber RA, Wainberg M, Kostyrko K, Kelly MR, Yousefi M, Simpkins SW, Yao D, Lee K, Kuo CJ, Jackson PK, Sweet-Cordero A, Kundaje A, Gentles AJ, Curtis C, Winslow MM, Bassik MC. CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities. Nature 2020; 580:136-141. [PMID: 32238925 PMCID: PMC7368463 DOI: 10.1038/s41586-020-2099-x] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 01/10/2020] [Indexed: 12/18/2022]
Abstract
Cancer genomics studies have identified thousands of putative cancer driver genes1. Development of high-throughput and accurate models to define the functions of these genes is a major challenge. Here we devised a scalable cancer-spheroid model and performed genome-wide CRISPR screens in 2D monolayers and 3D lung-cancer spheroids. CRISPR phenotypes in 3D more accurately recapitulated those of in vivo tumours, and genes with differential sensitivities between 2D and 3D conditions were highly enriched for genes that are mutated in lung cancers. These analyses also revealed drivers that are essential for cancer growth in 3D and in vivo, but not in 2D. Notably, we found that carboxypeptidase D is responsible for removal of a C-terminal RKRR motif2 from the α-chain of the insulin-like growth factor 1 receptor that is critical for receptor activity. Carboxypeptidase D expression correlates with patient outcomes in patients with lung cancer, and loss of carboxypeptidase D reduced tumour growth. Our results reveal key differences between 2D and 3D cancer models, and establish a generalizable strategy for performing CRISPR screens in spheroids to reveal cancer vulnerabilities.
Collapse
Affiliation(s)
- Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Sarah E Pierce
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gray R Anderson
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose A Seoane
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuan-Hung Lo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Dubreuil
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Micah Olivas
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Roarke A Kamber
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Wainberg
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Kaja Kostyrko
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Marcus R Kelly
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maryam Yousefi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott W Simpkins
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - David Yao
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Keonil Lee
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter K Jackson
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Andrew J Gentles
- Departments of Medicine and Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Curtis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Program in Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Pauls D, Hamarat Y, Trufasu L, Schendzielorz TM, Gramlich G, Kahnt J, Vanselow JT, Schlosser A, Wegener C. Drosophila carboxypeptidase D (SILVER) is a key enzyme in neuropeptide processing required to maintain locomotor activity levels and survival rate. Eur J Neurosci 2019; 50:3502-3519. [PMID: 31309630 DOI: 10.1111/ejn.14516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/19/2019] [Accepted: 07/05/2019] [Indexed: 11/27/2022]
Abstract
Neuropeptides are processed from larger preproproteins by a dedicated set of enzymes. The molecular and biochemical mechanisms underlying preproprotein processing and the functional importance of processing enzymes are well-characterised in mammals, but little studied outside this group. In contrast to mammals, Drosophila melanogaster lacks a gene for carboxypeptidase E (CPE), a key enzyme for mammalian peptide processing. By combining peptidomics and neurogenetics, we addressed the role of carboxypeptidase D (dCPD) in global neuropeptide processing and selected peptide-regulated behaviours in Drosophila. We found that a deficiency in dCPD results in C-terminally extended peptides across the peptidome, suggesting that dCPD took over CPE function in the fruit fly. dCPD is widely expressed throughout the nervous system, including peptidergic neurons in the mushroom body and neuroendocrine cells expressing adipokinetic hormone. Conditional hypomorphic mutation in the dCPD-encoding gene silver in the larva causes lethality, and leads to deficits in starvation-induced hyperactivity and appetitive gustatory preference, as well as to reduced viability and activity levels in adults. A phylogenomic analysis suggests that loss of CPE is not common to insects, but only occurred in Hymenoptera and Diptera. Our results show that dCPD is a key enzyme for neuropeptide processing and peptide-regulated behaviour in Drosophila. dCPD thus appears as a suitable target to genetically shut down total neuropeptide production in peptidergic neurons. The persistent occurrence of CPD in insect genomes may point to important further CPD functions beyond neuropeptide processing which cannot be fulfilled by CPE.
Collapse
Affiliation(s)
- Dennis Pauls
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Yasin Hamarat
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany.,'Santaka' Valley I Health Telematics Science Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Luisa Trufasu
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Tim M Schendzielorz
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Gertrud Gramlich
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jörg Kahnt
- Max-Planck-Institute of Terrestrial Microbiology, Marburg, Germany
| | - Jens T Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Pimsler ML, Sze S, Saenz S, Fu S, Tomberlin JK, Tarone AM. Gene expression correlates of facultative predation in the blow fly Chrysomya rufifacies (Diptera: Calliphoridae). Ecol Evol 2019; 9:8690-8701. [PMID: 31410272 PMCID: PMC6686648 DOI: 10.1002/ece3.5413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 11/17/2022] Open
Abstract
Effects of intraguild predation (IGP) on omnivores and detritivores are relatively understudied when compared to work on predator guilds. Functional genetic work in IGP is even more limited, but its application can help answer a range of questions related to ultimate and proximate causes of this behavior. Here, we integrate behavioral assays and transcriptomic analysis of facultative predation in a blow fly (Diptera: Calliphoridae) to evaluate the prevalence, effect, and correlated gene expression of facultative predation by the invasive species Chrysomya rufifacies. Field work observing donated human cadavers indicated facultative predation by C. rufifacies on the native blow fly Cochliomyia macellaria was rare under undisturbed conditions, owing in part to spatial segregation between species. Laboratory assays under conditions of starvation showed predation had a direct fitness benefit (i.e., survival) to the predator. As a genome is not available for C. rufifacies, a de novo transcriptome was developed and annotated using sequence similarity to Drosophila melanogaster. Under a variety of assembly parameters, several genes were identified as being differentially expressed between predators and nonpredators of this species, including genes involved in cell-to-cell signaling, osmotic regulation, starvation responses, and dopamine regulation. Results of this work were integrated to develop a model of the processes and genetic regulation controlling facultative predation.
Collapse
Affiliation(s)
- Meaghan L. Pimsler
- Department of EntomologyTexas A&M UniversityCollege StationTexasUSA
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabamaUSA
| | - Sing‐Hoi Sze
- Department of Computer Science and EngineeringTexas A&M UniversityCollege StationTexasUSA
| | - Sunday Saenz
- Department of EntomologyTexas A&M UniversityCollege StationTexasUSA
- Federal Aviation AdministrationFederal Government OfficeTulsaOklahomaUSA
| | - Shuhua Fu
- Department of Biochemistry & BiophysicsTexas A&M UniversityCollege StationTexasUSA
- Department of Developmental BiologyWashington University School of Medicine in St. LouisSt. LouisMissouriUSA
| | | | - Aaron M. Tarone
- Department of EntomologyTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
10
|
Garcia-Pardo J, Tanco S, Díaz L, Dasgupta S, Fernandez-Recio J, Lorenzo J, Aviles FX, Fricker LD. Substrate specificity of human metallocarboxypeptidase D: Comparison of the two active carboxypeptidase domains. PLoS One 2017; 12:e0187778. [PMID: 29131831 PMCID: PMC5683605 DOI: 10.1371/journal.pone.0187778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022] Open
Abstract
Metallocarboxypeptidase D (CPD) is a membrane-bound component of the trans-Golgi network that cycles to the cell surface through exocytic and endocytic pathways. Unlike other members of the metallocarboxypeptidase family, CPD is a multicatalytic enzyme with three carboxypeptidase-like domains, although only the first two domains are predicted to be enzymatically active. To investigate the enzymatic properties of each domain in human CPD, a critical active site Glu in domain I and/or II was mutated to Gln and the protein expressed, purified, and assayed with a wide variety of peptide substrates. CPD with all three domains intact displays >50% activity from pH 5.0 to 7.5 with a maximum at pH 6.5, as does CPD with mutation of domain I. In contrast, the domain II mutant displayed >50% activity from pH 6.5–7.5. CPD with mutations in both domains I and II was completely inactive towards all substrates and at all pH values. A quantitative peptidomics approach was used to compare the activities of CPD domains I and II towards a large number of peptides. CPD cleaved C-terminal Lys or Arg from a subset of the peptides. Most of the identified substrates of domain I contained C-terminal Arg, whereas comparable numbers of Lys- and Arg-containing peptides were substrates of domain II. We also report that some peptides with C-terminal basic residues were not cleaved by either domain I or II, showing the importance of the P1 position for CPD activity. Finally, the preference of domain I for C-terminal Arg was validated through molecular docking experiments. Together with the differences in pH optima, the different substrate specificities of CPD domains I and II allow the enzyme to perform distinct functions in the various locations within the cell.
Collapse
Affiliation(s)
- Javier Garcia-Pardo
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sebastian Tanco
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Lucía Díaz
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Life Sciences Department, Barcelona, Spain
| | - Sayani Dasgupta
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juan Fernandez-Recio
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Life Sciences Department, Barcelona, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Francesc X. Aviles
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- * E-mail: (LDF); (FXA)
| | - Lloyd D. Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (LDF); (FXA)
| |
Collapse
|
11
|
Fricker LD. Carboxypeptidase E and the Identification of Novel Neuropeptides as Potential Therapeutic Targets. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:85-102. [PMID: 29413529 DOI: 10.1016/bs.apha.2017.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptides and small molecules that bind to peptide receptors are important classes of drugs that are used for a wide variety of different applications. The search for novel neuropeptides traditionally involved a time-consuming approach to purify each peptide to homogeneity and determine its amino acid sequence. The discovery in the 1980s of enkephalin convertase/carboxypeptidase E (CPE), and the observation that this enzyme was involved in the production of nearly every known neuropeptide led to the idea for a one-step affinity purification of CPE substrates. This approach was successfully used to isolate hundreds of known neuropeptides in mouse brain, as well as over a dozen novel peptides. Some of the novel peptides found using this approach are among the most abundant peptides present in brain, but had not been previously identified by traditional approaches. Recently, receptors for two of the novel peptides have been identified, confirming their role as neuropeptides that function in cell-cell signaling. Small molecules that bind to one of these receptors have been developed and found to significantly reduce food intake and anxiety-like behavior in an animal model. This review describes the entire project, from discovery of CPE to the novel peptides and their receptors.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
12
|
Bonnemaison ML, Duffy ME, Mains RE, Vogt S, Eipper BA, Ralle M. Copper, zinc and calcium: imaging and quantification in anterior pituitary secretory granules. Metallomics 2016; 8:1012-22. [PMID: 27426256 DOI: 10.1039/c6mt00079g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The anterior pituitary is specialized for the synthesis, storage and release of peptide hormones. The activation of inactive peptide hormone precursors requires a specific set of proteases and other post-translational processing enzymes. High levels of peptidylglycine α-amidating monooxygenase (PAM), an essential peptide processing enzyme, occur in the anterior pituitary. PAM, which converts glycine-extended peptides into amidated products, requires copper and zinc to support its two catalytic activities and calcium for structure. We used X-ray fluorescence microscopy on rat pituitary sections and inductively coupled plasma mass spectrometry on subcellular fractions prepared from rat anterior pituitary to localize and quantify copper, zinc and calcium. X-ray fluorescence microscopy indicated that the calcium concentration in pituitary tissue was about 2.5 mM, 10-times more than zinc and 50-times more than copper. Although no higher than cytosolic levels, secretory granule levels of copper exceeded PAM levels by a factor of 10. Atp7a, which transports copper into the lumen of the secretory pathway, was enriched in endosomes and Golgi, not in secretory granules. If Atp7a transfers copper directly to PAM, this pH-dependent process is likely to occur in Golgi and endosomes.
Collapse
Affiliation(s)
- Mathilde L Bonnemaison
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Thomas LN, Merrimen J, Bell DG, Rendon R, Goffin V, Too CKL. Carboxypeptidase-D is elevated in prostate cancer and its anti-apoptotic activity is abolished by combined androgen and prolactin receptor targeting. Prostate 2014; 74:732-42. [PMID: 24615730 DOI: 10.1002/pros.22793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/28/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Carboxypeptidase-D (CPD) cleaves C-terminal arginine for nitric oxide (NO) production. CPD and NO levels are upregulated by testosterone (T) and prolactin (PRL) to promote survival of prostate cancer (pCa) cells. This study evaluated CPD immunostaining and T/PRL regulation of CPD and NO levels in benign and malignant prostate tissues/cells to determine the role of CPD in pCa. METHODS Immunohistochemistry (IHC) and tissue microarrays (TMA) were used to determine CPD immunostaining in prostate specimens. QPCR and immunoblotting were used to quantify CPD mRNA/protein expression in prostate cells. NO production was measured using 4,5-diaminofluorescein diacetate assay. RESULTS CPD staining increased from 8.9 ± 3.8% (Mean ± SEM, n = 15) of benign epithelial cell area to 30.9 ± 2.9% (n = 30) of tumor cell area in one set of TMAs (P = 0.0008) and from 5.9 ± 0.9% (n = 45) of benign epithelial cell area to 18.8 ± 1.9% (n = 55) of tumor area in another (P < 0.0001). IHC of prostate tissues (≥50 mm(2)) confirmed increased CPD staining, from 13.1 ± 2.9% in benign (n = 16) to 29.5 ± 4.4% in pCa (n = 31, P = 0.0095). T and/or PRL increased CPD expression in several pCa but not benign cell lines. T and PRL acted synergistically to increase NO production, which was abolished only when receptor antagonists flutamide and Δ1-9-G129R-hPRL were used together. CONCLUSIONS CPD immunostaining and T/PRL-stimulated CPD expression were higher in pCa than benign tissues/cells. Elevated CPD increased NO production, which was abolished when both AR and PRLR were inhibited. Our study implicates a critical role for the T/PRL-stimulated CPD-Arg-NO pathway in pCa progression, and suggests that AR+PRLR inhibition is a more effective treatment for pCa.
Collapse
Affiliation(s)
- Lynn N Thomas
- Departments of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Lu L, Hong W. From endosomes to the trans-Golgi network. Semin Cell Dev Biol 2014; 31:30-9. [PMID: 24769370 DOI: 10.1016/j.semcdb.2014.04.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/11/2022]
Abstract
The retrograde trafficking from endosomes to the trans-Golgi network (TGN) is one of the major endocytic pathways to divert proteins and lipids away from lysosomal degradation. Retrograde transported cargos enter the TGN via two itineraries from either the early endosome/recycling endosome or the late endosome and involve various machinery components such as retromer, sorting nexins, clathrin, small GTPases, tethering factors and SNAREs. Recently, the pathway has been recognized for its role in signal transduction, physiology and pathogenesis of human diseases.
Collapse
Affiliation(s)
- Lei Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
15
|
Sapio MR, Fricker LD. Carboxypeptidases in disease: insights from peptidomic studies. Proteomics Clin Appl 2014; 8:327-37. [PMID: 24470285 DOI: 10.1002/prca.201300090] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/10/2013] [Accepted: 10/30/2013] [Indexed: 12/19/2022]
Abstract
Carboxypeptidases (CPs) perform many diverse physiological functions by removing C-terminal amino acids from proteins and peptides. Some CPs function in the degradation of proteins in the digestive tract while other enzymes play biosynthetic roles in the formation of neuropeptides and peptide hormones. Another set of CPs modify tubulin by removing amino acids from the C-terminus and from polyglutamyl side chains, thereby altering the properties of microtubules. This review focuses on three CPs: carboxypeptidase E, carboxypeptidase A6, and cytosolic carboxypeptidase 1. Naturally occurring mutations in all three of these enzymes are associated with disease phenotypes, ranging from obesity to epilepsy to neurodegeneration. Peptidomics is a useful tool to investigate the relationship between these mutations and alterations in peptide levels. This technique has also been used to define the function and characteristics of CPs. Results from peptidomics studies have helped to elucidate the function of CPs and clarify the biological underpinnings of pathologies by identifying peptides altered in disease states. This review describes the use of peptidomic techniques to gain insights into the normal function of CPs and the molecular defects caused by mutations in the enzymes.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
16
|
Tamaki T, Betsuyaku S, Fujiwara M, Fukao Y, Fukuda H, Sawa S. SUPPRESSOR OF LLP1 1-mediated C-terminal processing is critical for CLE19 peptide activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:970-81. [PMID: 24118638 DOI: 10.1111/tpj.12349] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/04/2013] [Accepted: 10/08/2013] [Indexed: 05/05/2023]
Abstract
Cell-to-cell communication is essential for the coordinated development of multicellular organisms. Members of the CLAVATA3/EMBRYO-SURROUNDING REGION-RELATED (CLE) family, a group of small secretory peptides, are involved in these processes in plants. Although post-translational modifications are considered to be indispensable for their activity, the detailed mechanisms governing these modifications are not well understood. Here, we report that SUPPRESSOR OF LLP1 1 (SOL1), a putative Zn²⁺ carboxypeptidase previously isolated as a suppressor of the CLE19 over-expression phenotype, functions in C-terminal processing of the CLE19 proprotein to produce the functional CLE19 peptide. Newly isolated sol1 mutants are resistant to CLE19 over-expression, consistent with the previous report (Casamitjana-Martinez, E., Hofhuis, H.F., Xu, J., Liu, C.M., Heidstra, R. and Scheres, B. (2003) Curr. Biol. 13, 1435-1441). As expected, our experiment using synthetic CLE19 peptide revealed that the sol1 mutation does not compromise CLE signal transduction pathways per se. SOL1 possesses enzymatic activity to remove the C-terminal arginine residue of CLE19 proprotein in vitro, and SOL1-dependent cleavage of the C-terminal arginine residue is necessary for CLE19 activity in vivo. Additionally, the endosomal localization of SOL1 suggests that this processing occurs in endosomes in the secretory pathway. Thus, our data indicate the importance of C-terminal processing of CLE proproteins to ensure CLE activities.
Collapse
Affiliation(s)
- Takayuki Tamaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
This article focuses on drug targeting to specific cellular organelles for therapeutic purposes. Drugs can be delivered to all major organelles of the cell (cytosol, endosome/lysosome, nucleus, nucleolus, mitochondria, endoplasmic reticulum, Golgi apparatus, peroxisomes and proteasomes) where they exert specific effects in those particular subcellular compartments. Delivery can be achieved by chemical (e.g., polymeric) or biological (e.g., signal sequences) means. Unidirectional targeting to individual organelles has proven to be immensely successful for drug therapy. Newer technologies that accommodate multiple signals (e.g., protein switch and virus-like delivery systems) mimic nature and allow for a more sophisticated approach to drug delivery. Harnessing different methods of targeting multiple organelles in a cell will lead to better drug delivery and improvements in disease therapy.
Collapse
|
18
|
|
19
|
Thomas LN, Morehouse TJ, Too CKL. Testosterone and prolactin increase carboxypeptidase-D and nitric oxide levels to promote survival of prostate cancer cells. Prostate 2012; 72:450-60. [PMID: 21688280 DOI: 10.1002/pros.21446] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/31/2011] [Indexed: 11/06/2022]
Abstract
BACKGROUND Plasma-membrane carboxypeptidase-D (CPD) releases arginine from extracellular substrates. Arginine is converted intracellularly to nitric oxide (NO). This study determined the effects of testosterone (T) and prolactin (PRL) on CPD expression, and the role(s) of CPD in NO production and survival of prostate cancer (PCa) cells. METHODS LNCaP cells were treated with T and/or PRL. CPD expression was measured. Regulation by T (low doses) was determined using transfected cells overexpressing 5α-reductase type-1 (5αR1), which converts T to the more potent dihydrotestosterone. The effects of siRNAs targeting CPD (siCPDs) on NO production, cell viability, and apoptosis were determined using DAF2-DA, MTS, and Annexin-V assays. The effects of PRL/T on CPD/NO levels in PC-3, MDA-PCa-2b, and 22Rv1 cells were also evaluated. RESULTS In LNCaP cells, 10 nM T and 10 ng/ml PRL-upregulated CPD mRNA/protein levels. In pTRE-transfectants, 1 nM T-upregulated CPD mRNA levels by ∼2-fold over controls, whereas 0.1 nM T caused similar upregulation in pTRE-5αR1-transfectants. In LNCaP cells cultured in arginine-free medium, addition of furylacryloyl-Ala-Arg (FAR; CPD substrate) increased NO levels. NO production, with FAR, was enhanced by PRL and/or T. siCPDs decreased NO production and cell viability, but increased apoptosis. QPCR analysis showed T/PRL-upregulation of CPD in 22Rv1, MDA-PCa-2b, and PC-3 cells. NO production was doubled by T/PRL in 22Rv1 cells, tripled by T in MDA-PCa-2b cells, and marginally increased by PRL in MDA-PCa-2b and PC-3 cells. CONCLUSIONS T and PRL upregulate CPD and NO levels in PCa cells. CPD increases NO production to promote PCa cell survival.
Collapse
Affiliation(s)
- Lynn N Thomas
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
20
|
Individual carboxypeptidase D domains have both redundant and unique functions in Drosophila development and behavior. Cell Mol Life Sci 2010; 67:2991-3004. [PMID: 20386952 DOI: 10.1007/s00018-010-0369-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/22/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
Abstract
Metallocarboxypeptidase D (CPD) functions in protein and peptide processing. The Drosophila CPD svr gene undergoes alternative splicing, producing forms containing 1-3 active or inactive CP domains. To investigate the function of the various CP domains, we created transgenic flies expressing specific forms of CPD in the embryonic-lethal svr (PG33) mutant. All constructs containing an active CP domain rescued the lethality with varying degrees, and full viability required inactive CP domain-3. Transgenic flies overexpressing active CP domain-1 or -2 were similar to each other and to the viable svr mutants, with pointed wing shape, enhanced ethanol sensitivity, and decreased cold sensitivity. The transgenes fully compensated for a long-term memory deficit observed in the viable svr mutants. Overexpression of CP domain-1 or -2 reduced the levels of Lys/Arg-extended adipokinetic hormone intermediates. These findings suggest that CPD domains-1 and -2 have largely redundant functions in the processing of growth factors, hormones, and neuropeptides.
Collapse
|
21
|
Initiation of duck hepatitis B virus infection requires cleavage by a furin-like protease. J Virol 2010; 84:4569-78. [PMID: 20181690 DOI: 10.1128/jvi.02281-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The entry mechanism of hepatitis B virus (HBV) has not been defined, and this impedes development of antiviral therapies aimed at an early step in the viral life cycle. HBV infection has both host and tissue specificities. For the related duck hepatitis B virus (DHBV), duck carboxypeptidase D (DCPD) has been proposed as the species-specific docking receptor, while glycine decarboxylase (DGD) may serve as a tissue-specific cofactor or secondary receptor. DGD binds to several truncated versions of the viral large envelope protein but not to the full-length protein, suggesting a need for proteolytic cleavage of the envelope protein by a furin-like proprotein convertase. In the present study, we found that transfected DCPD could confer DHBV binding to non-duck cell lines but that this was followed by rapid virus release from cells. Coexpression of furin led to DCPD cleavage and increased virus retention. Treatment of DHBV particles with endosome prepared from duck liver led to cleavage of the large envelope protein, and such viral preparation could generate a small amount of covalently closed circular DNA in LMH cells, a chicken hepatoma cell line resistant to DHBV infection. A furin inhibitor composed of decanoyl-RVKR-chloromethylketone blocked endosomal cleavage of the large envelope protein in vitro and suppressed DHBV infection of primary duck hepatocytes in vivo. These findings suggest that furin or a furin-like proprotein convertase facilitates DHBV infection by cleaving both the docking receptor and the viral large envelope protein.
Collapse
|
22
|
Gelman JS, Sironi J, Castro LM, Ferro ES, Fricker LD. Hemopressins and other hemoglobin-derived peptides in mouse brain: comparison between brain, blood, and heart peptidome and regulation in Cpefat/fat mice. J Neurochem 2010; 113:871-80. [PMID: 20202081 DOI: 10.1111/j.1471-4159.2010.06653.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many hemoglobin-derived peptides are present in mouse brain, and several of these have bioactive properties including the hemopressins, a related series of peptides that bind to cannabinoid CB1 receptors. Although hemoglobin is a major component of red blood cells, it is also present in neurons and glia. To examine whether the hemoglobin-derived peptides in brain are similar to those present in blood and heart, we used a peptidomics approach involving mass spectrometry. Many hemoglobin-derived peptides are found only in brain and not in blood, whereas all hemoglobin-derived peptides found in heart were also seen in blood. Thus, it is likely that the majority of the hemoglobin-derived peptides detected in brain are produced from brain hemoglobin and not erythrocytes. We also examined if the hemopressins and other major hemoglobin-derived peptides were regulated in the Cpe(fat/fat) mouse; previously these mice were reported to have elevated levels of several hemoglobin-derived peptides. Many, but not all of the hemoglobin-derived peptides were elevated in several brain regions of the Cpe(fat/fat) mouse. Taken together, these findings suggest that the post-translational processing of alpha and beta hemoglobin into the hemopressins, as well as other peptides, is up-regulated in some but not all Cpe(fat/fat) mouse brain regions.
Collapse
Affiliation(s)
- Julia S Gelman
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
23
|
At the crossroads of homoeostasis and disease: roles of the PACS proteins in membrane traffic and apoptosis. Biochem J 2009; 421:1-15. [PMID: 19505291 DOI: 10.1042/bj20081016] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The endomembrane system in mammalian cells has evolved over the past two billion years from a simple endocytic pathway in a single-celled primordial ancestor to complex networks supporting multicellular structures that form metazoan tissue and organ systems. The increased organellar complexity of metazoan cells requires additional trafficking machinery absent in yeast or other unicellular organisms to maintain organ homoeostasis and to process the signals that control proliferation, differentiation or the execution of cell death programmes. The PACS (phosphofurin acidic cluster sorting) proteins are one such family of multifunctional membrane traffic regulators that mediate organ homoeostasis and have important roles in diverse pathologies and disease states. This review summarizes our current knowledge of the PACS proteins, including their structure and regulation in cargo binding, their genetics, their roles in secretory and endocytic pathway traffic, interorganellar communication and how cell-death signals reprogramme the PACS proteins to regulate apoptosis. We also summarize our current understanding of how PACS genes are dysregulated in cancer and how viral pathogens ranging from HIV-1 to herpesviruses have evolved to usurp the PACS sorting machinery to promote virus assembly, viral spread and immunoevasion.
Collapse
|
24
|
Zhang X, Che FY, Berezniuk I, Sonmez K, Toll L, Fricker LD. Peptidomics of Cpe(fat/fat) mouse brain regions: implications for neuropeptide processing. J Neurochem 2008; 107:1596-613. [PMID: 19014391 DOI: 10.1111/j.1471-4159.2008.05722.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Quantitative peptidomics was used to compare levels of peptides in wild type (WT) and Cpe(fat/fat) mice, which lack carboxypeptidase E (CPE) activity because of a point mutation. Six different brain regions were analyzed: amygdala, hippocampus, hypothalamus, prefrontal cortex, striatum, and thalamus. Altogether, 111 neuropeptides or other peptides derived from secretory pathway proteins were identified in WT mouse brain extracts by tandem mass spectrometry, and another 47 peptides were tentatively identified based on mass and other criteria. Most secretory pathway peptides were much lower in Cpe(fat/fat) mouse brain, relative to WT mouse brain, indicating that CPE plays a major role in their biosynthesis. Other peptides were only partially reduced in the Cpe(fat/fat) mice, indicating that another enzyme (presumably carboxypeptidase D) contributes to their biosynthesis. Approximately 10% of the secretory pathway peptides were present in the Cpe(fat/fat) mouse brain at levels similar to those in WT mouse brain. Many peptides were greatly elevated in the Cpe(fat/fat) mice; these peptide processing intermediates with C-terminal Lys and/or Arg were generally not detectable in WT mice. Taken together, these results indicate that CPE contributes, either directly or indirectly, to the production of the majority of neuropeptides.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abdelmagid SA, Too CKL. Prolactin and estrogen up-regulate carboxypeptidase-d to promote nitric oxide production and survival of mcf-7 breast cancer cells. Endocrinology 2008; 149:4821-8. [PMID: 18535109 DOI: 10.1210/en.2008-0145] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Carboxypeptidase-D (CPD) and carboxypeptidase-M (CPM) release C-terminal arginine (Arg) from polypeptides, and both are present in the plasma membrane. Cell-surface CPD increases intracellular Arg, which is converted to nitric oxide (NO). We have reported that prolactin (PRL) regulated CPD mRNA levels in MCF-7 breast cancer cells. This study examined PRL/17beta-estradiol (E2) regulation of CPD/CPM expression, and the role of CPD in NO production for survival of MCF-7 cells. We showed that PRL or E2 up-regulated CPD mRNA and protein expression. PRL/E2 increased CPD mRNA levels by 3- to 5-fold but had no effect on CPM. In Arg-free DMEM, exogenous L-Arg or substrate furylacryloyl-Ala-Arg (Fa-Ala-Arg) increased NO levels and cell survival, measured using 4,5-diaminofluorescein diacetate and the MTS assay, respectively. In the presence of Fa-Ala-Arg, NO production was enhanced by PRL and/or E2 but inhibited by CPD/CPM-specific inhibitor, 2-mercaptomethyl-3-guanidinoethylthio-propanoic acid (MGTA). MGTA also decreased MCF-7 cell survival. In Arg-free medium, annexin-V staining showed that apoptotic MCF-7 cells (approximately 60%) were rescued by Fa-Ala-Arg (25%) or diethylamine/NO (10%). Finally, CPD or CPM gene expression was knocked down with small interfering (si) CPD or siCPM, respectively, with nontargeting siNT as controls. In Arg-free DMEM, the stimulatory effect of Fa-Ala-Arg on NO production was inhibited by siCPD only, showing that CPD depletion inhibited Fa-Ala-Arg cleavage. Furthermore, more than 60% of siCPD-transfectants were apoptotic, and L-Arg, not Fa-Ala-Arg, significantly decreased apoptosis to 32% (P<or=0.05). Thus, CPD gene knockdown did not affect L-Arg uptake, which protected cells from apoptosis. In summary, PRL/E2-induced cell-surface CPD released Arg from extracellular substrates, increased intracellular NO, promoted survival and inhibited apoptosis of MCF-7 cells.
Collapse
Affiliation(s)
- Salma A Abdelmagid
- Department of Biochemistry and Molecular Biology, Sir Charles Tupper Medical Building, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | | |
Collapse
|
26
|
Pavelka M, Neumüller J, Ellinger A. Retrograde traffic in the biosynthetic-secretory route. Histochem Cell Biol 2008; 129:277-88. [PMID: 18270728 PMCID: PMC2248610 DOI: 10.1007/s00418-008-0383-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2008] [Indexed: 02/04/2023]
Abstract
In the biosynthetic-secretory route from the rough endoplasmic reticulum, across the pre-Golgi intermediate compartments, the Golgi apparatus stacks, trans Golgi network, and post-Golgi organelles, anterograde transport is accompanied and counterbalanced by retrograde traffic of both membranes and contents. In the physiologic dynamics of cells, retrograde flow is necessary for retrieval of molecules that escaped from their compartments of function, for keeping the compartments' balances, and maintenance of the functional integrities of organelles and compartments along the secretory route, for repeated use of molecules, and molecule repair. Internalized molecules may be transported in retrograde direction along certain sections of the secretory route, and compartments and machineries of the secretory pathway may be misused by toxins. An important example is the toxin of Shigella dysenteriae, which has been shown to travel from the cell surface across endosomes, and the Golgi apparatus en route to the endoplasmic reticulum, and the cytosol, where it exerts its deleterious effects. Most importantly in medical research, knowledge about the retrograde cellular pathways is increasingly being utilized for the development of strategies for targeted delivery of drugs to the interior of cells. Multiple details about the molecular transport machineries involved in retrograde traffic are known; a high number of the molecular constituents have been characterized, and the complicated fine structural architectures of the compartments involved become more and more visible. However, multiple contradictions exist, and already established traffic models again are in question by contradictory results obtained with diverse cell systems, and/or different techniques. Additional problems arise by the fact that the conditions used in the experimental protocols frequently do not reflect the physiologic situations of the cells. Regular and pathologic situations often are intermingled, and experimental treatments by themselves change cell organizations. This review addresses physiologic and pathologic situations, tries to correlate results obtained by different cell biologic techniques, and asks questions, which may be the basis and starting point for further investigations.
Collapse
Affiliation(s)
- Margit Pavelka
- Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, Austria.
| | | | | |
Collapse
|
27
|
Zhang X, Tan F, Zhang Y, Skidgel RA. Carboxypeptidase M and kinin B1 receptors interact to facilitate efficient b1 signaling from B2 agonists. J Biol Chem 2008; 283:7994-8004. [PMID: 18187413 DOI: 10.1074/jbc.m709837200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kinin B1 receptor (B1R) expression is induced by injury or inflammatory mediators, and its signaling produces both beneficial and deleterious effects. Kinins cleaved from kininogen are agonists of the B2R and must be processed by a carboxypeptidase to generate B1R agonists des-Arg(9)-bradykinin or des-Arg(10)-kallidin. Carboxypeptidase M (CPM) is a membrane protein potentially well suited for this function. Here we show that CPM expression is required to generate a B1R-dependent increase in [Ca(2+)](i) in cells stimulated with B2R agonists kallidin or bradykinin. CPM and the B1R interact on the cell membrane, as shown by co-immunoprecipitation, cross-linking, and fluorescence resonance energy transfer analysis. CPM and B1R are also co-localized in lipid raft/caveolin-enriched membrane fractions, as determined by gradient centrifugation. Treatment of cells co-expressing CPM and B1R with methyl-beta-cyclodextrin to disrupt lipid rafts reduced the B1R-dependent increase in [Ca(2+)](i) in response to B2R agonists, whereas cholesterol treatment enhanced the response. A monoclonal antibody to the C-terminal beta-sheet domain of CPM reduced the B1R response to B2R agonists without inhibiting CPM. Cells expressing a novel fusion protein containing CPM at the N terminus of the B1R also increased [Ca(2+)](i) when stimulated with B2R agonists, but the response was not reduced by methyl-beta-cyclodextrin or CPM antibody. A B1R- and CPM-dependent calcium signal in response to B2R agonist bradykinin was also found in endothelial cells that express both proteins. Thus, a close relationship of B1Rs and CPM on the membrane is required for efficiently generating B1R signals, which play important roles in inflammation.
Collapse
Affiliation(s)
- Xianming Zhang
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Neuropeptidomics is the analysis of the neuropeptides present in a tissue extract. Most neuropeptidomic studies use mass spectrometry to detect and identify the peptides, which provides information on the precise posttranslationally modified form of each peptide. Quantitative peptidomics uses isotopic labels to compare the levels of peptides in extracts from two different samples. This technique is ideal for examining neuropeptide levels in a variety of systems and is especially suited for studies of mice lacking peptide-processing enzymes. This review is focused on the neuropeptidomics technique and its application to the analysis of mice with a mutation that inactivates carboxypeptidase E, a critical enzyme in the biosynthesis of many neuroendocrine peptides. Mice without carboxypeptidase E activity are overweight, and a key question is the identification of the peptide or peptides responsible. The quantitative peptidomics approach has provided some insights toward the answer to this question.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| |
Collapse
|
29
|
Rindler MJ, Xu CF, Gumper I, Smith NN, Neubert TA. Proteomic analysis of pancreatic zymogen granules: identification of new granule proteins. J Proteome Res 2007; 6:2978-92. [PMID: 17583932 PMCID: PMC2582026 DOI: 10.1021/pr0607029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The composition of zymogen granules from rat pancreas was determined by LC-MS/MS. Enriched intragranular content, peripheral membrane, and integral membrane protein fractions were analyzed after one-dimensional SDS-PAGE and tryptic digestion of gel slices. A total of 371 proteins was identified with high confidence, including 84 previously identified granule proteins. The 287 remaining proteins included 37 GTP-binding proteins and effectors, 8 tetraspan membrane proteins, and 22 channels and transporters. Seven proteins, pantophysin, cyclic nucleotide phosphodiesterase, carboxypeptidase D, ecto-nucleotide phosphodiesterase 3, aminopeptidase N, ral, and the potassium channel TWIK-2, were confirmed by immunofluorescence microscopy or by immunoblotting to be new zymogen granule membrane proteins.
Collapse
Affiliation(s)
- Michael J Rindler
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | | | |
Collapse
|
30
|
Bonifacino JS, Rojas R. Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol 2006; 7:568-79. [PMID: 16936697 DOI: 10.1038/nrm1985] [Citation(s) in RCA: 489] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A subset of intracellular transmembrane proteins such as acid-hydrolase receptors, processing peptidases and SNAREs, as well as extracellular protein toxins such as Shiga toxin and ricin, undergoes 'retrograde' transport from endosomes to the trans-Golgi network. Here, we discuss recent studies that have begun to unravel the molecular machinery that is involved in this process. We also propose a central role for a 'tubular endosomal network' in sorting to recycling pathways that lead not only to the trans-Golgi network but also to different plasma-membrane domains and to specialized storage vesicles.
Collapse
Affiliation(s)
- Juan S Bonifacino
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
31
|
Harasaki K, Lubben NB, Harbour M, Taylor MJ, Robinson MS. Sorting of major cargo glycoproteins into clathrin-coated vesicles. Traffic 2006; 6:1014-26. [PMID: 16190982 DOI: 10.1111/j.1600-0854.2005.00341.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The AP-1 and AP-2 complexes are the most abundant adaptors in clathrin-coated vesicles (CCVs), but clathrin-mediated trafficking can still occur in the absence of any detectable AP-1 or AP-2. To find out whether adaptor abundance reflects cargo abundance, we used lectin pulldowns to identify the major membrane glycoproteins in CCVs from human placenta and rat liver. Both preparations contained three prominent high molecular-weight proteins: the cation-independent mannose 6-phosphate receptor (CIMPR), carboxypeptidase D (CPD) and low-density lipoprotein receptor-related protein 1 (LRP1). To investigate how these proteins are sorted, we constructed and stably transfected CD8 chimeras into HeLa cells. CD8-CIMPR localized mainly to early/tubular endosomes, CD8-CPD to the trans Golgi network and CD8-LRP1 to late/multivesicular endosomes. All three constructs redistributed to the plasma membrane when clathrin was depleted by siRNA. CD8-CIMPR was also strongly affected by AP-2 depletion. CD8-CPD was moderately affected by AP-2 depletion but strongly affected by depleting AP-1 and AP-2 together. CD8-LRP1 was only slightly affected by AP-2 depletion; however, mutating an NPXY motif in the LRP1 tail caused it to become AP-2 dependent. These results indicate that all three proteins have AP-dependent sorting signals, which may help to explain the relative abundance of AP complexes in CCVs. However, the relatively low abundance of cargo proteins in CCV preparations suggests either that some of the APs may be empty or that the preparations may be dominated by empty coats.
Collapse
Affiliation(s)
- Kouki Harasaki
- University of Cambridge, Department of Clinical Biochemistry, Cambridge Institute for Medical Research, Cambridge CB2 2XY, UK
| | | | | | | | | |
Collapse
|
32
|
Sidyelyeva G, Baker NE, Fricker LD. Characterization of the molecular basis of the Drosophila mutations in carboxypeptidase D. Effect on enzyme activity and expression. J Biol Chem 2006; 281:13844-13852. [PMID: 16556608 DOI: 10.1074/jbc.m513499200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carboxypeptidase D (CPD) functions in the processing of proteins and peptides in the secretory pathway. Drosophila CPD is encoded by the silver gene (svr), which is differentially spliced to produce long transmembrane protein forms with three metallocarboxypeptidase (CP)-like domains and short soluble forms with a single CP domain. Many svr mutants have been reported, but the precise molecular defects have not been previously determined. In the present study, three mutant lines were characterized. svr (PG33) mutants do not survive past the early larval stage. These mutants have a P-element insertion within exon 1B upstream of the initiation ATG, which greatly reduces mRNA levels of all forms of CPD. Both svr (1) and svr (poi) mutants are viable, with a silvery body color and pointed wings. The wing shape is generally similar between these two mutants, although svr (poi) mutants have smaller wings. The svr (1) gene has a three-nucleotide deletion in exon 6, removing a leucine in a region of the protein predicted to function as a folding domain for the second CP-like domain. svr (poi) has a 1072-bp duplication of the gene that introduces a stop codon into the open reading frame, causing the truncation of the protein in the middle of the second CP-like domain. Both deletions eliminate enzyme activity of the second CP-like domain and appear to cause the misfolding of the protein. This greatly reduces the levels of the long forms of CPD protein but do not affect the levels of the short forms. Taken together, these findings suggest that lethal and viable svr alleles differ in which protein forms are affected. Flies that retain the short form are viable, whereas flies that are missing all forms of CPD do not survive past the early larval stages.
Collapse
Affiliation(s)
- Galyna Sidyelyeva
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Nicholas E Baker
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461.
| |
Collapse
|
33
|
Fricker LD, Lim J, Pan H, Che FY. Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues. MASS SPECTROMETRY REVIEWS 2006; 25:327-44. [PMID: 16404746 DOI: 10.1002/mas.20079] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Neuropeptides perform a large variety of functions as intercellular signaling molecules. While most proteomic studies involve digestion of the proteins with trypsin or other proteases, peptidomics studies usually analyze the native peptide forms. Neuropeptides can be studied by using mass spectrometry for identification and quantitation. In many cases, mass spectrometry provides an understanding of the precise molecular form of the native peptide, including post-translational cleavages and other modifications. Quantitative peptidomics studies generally use differential isotopic tags to label two sets of extracted peptides, as done with proteomic studies, except that the Cys-based reagents typically used for quantitation of proteins are not suitable because most peptides lack Cys residues. Instead, a number of amine-specific labels have been created and some of these are useful for peptide quantitation by mass spectrometry. In this review, peptidomics techniques are discussed along with the major findings of many recent studies and future directions for the field.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | |
Collapse
|
34
|
Lim J, Berezniuk I, Che FY, Parikh R, Biswas R, Pan H, Fricker LD. Altered neuropeptide processing in prefrontal cortex of Cpefat/fat mice: implications for neuropeptide discovery. J Neurochem 2006; 96:1169-81. [PMID: 16417576 DOI: 10.1111/j.1471-4159.2005.03614.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biosynthesis of most neuropeptides and peptide hormones requires a carboxypeptidase such as carboxypeptidase E, which is inactive in Cpe(fat/fat) mice due to a naturally occurring point mutation. To assess the role of carboxypeptidase E in the processing of peptides in the prefrontal cortex, we used a quantitative peptidomics approach to examine the relative levels of peptides in Cpe(fat/fat) versus wild-type mice. Peptides representing internal fragments of prohormones and other secretory pathway proteins were decreased two- to 10-fold in the Cpe(fat/fat) mouse prefrontal cortex compared with wild-type tissue. Degradation fragments of cytosolic proteins showed no major differences between Cpe(fat/fat) and wild-type mice. Based on this observation, a search strategy for neuropeptides was performed by screening for peptides that decreased in the Cpe(fat/fat) mouse. Altogether, 32 peptides were identified, of which seven have not been previously reported. The novel peptides include fragments of VGF, procholecystokinin and prohormone convertase 2. Interestingly, several of the peptides do not fit with the consensus sites for prohormone convertase 1 and 2, raising the possibility that another endopeptidase is involved with their biosynthesis. Taken together, these findings support the proposal that carboxypeptidase E is the major, but not the only, peptide-processing carboxypeptidase and also demonstrate the feasibility of searching for novel peptides based on their decrease in Cpe(fat/fat) mice.
Collapse
Affiliation(s)
- Jihyeon Lim
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
O'Malley P, Sangster S, Abdelmagid S, Bearne S, Too C. Characterization of a novel, cytokine-inducible carboxypeptidase D isoform in haematopoietic tumour cells. Biochem J 2006; 390:665-73. [PMID: 15918796 PMCID: PMC1199659 DOI: 10.1042/bj20050025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CPD-N is a cytokine-inducible CPD (carboxypeptidase-D) isoform identified in rat Nb2 T-lymphoma cells. The prototypic CPD (180 kDa) has three CP domains, whereas CPD-N (160 kDa) has an incomplete N-terminal domain I but intact domains II and III. CPD processes polypeptides in the TGN (trans-Golgi network) but the Nb2 CPD-N is nuclear. The present study identified a cryptic exon 1', downstream of exon 1 of the rat CPD gene, as an alternative transcription start site that encodes the N-terminus of CPD-N. Western-blot analysis showed exclusive synthesis of the 160 kDa CPD-N in rat Nb2 and Nb2-Sp lymphoma cells. Several haematopoietic cell lines including human K562 myeloma, Jurkat T-lymphoma and murine CTLL-2 cytotoxic T-cells express a 160 kDa CPD-immunoreactive protein, whereas mEL4 T-lymphoma cells express the 180 kDa CPD. The CPD-immunoreactive protein in hK562 cells is also nuclear and cytokine-inducible. In contrast, MCF-7 breast cancer cells express only the 180 kDa CPD, which is mainly in the TGN. CPD/CPD-N assays using substrate dansyl-L-alanyl-L-arginine show approx. 98% of CPD-N activity in the Nb2 nucleus, whereas MCF-7 CPD activity is enriched in the post-nuclear 10000 g pellet. The K(m) for CPD-N and CPD are 132+/-30 and 63+/-9 microM respectively. Specific activity/K(m) ratios show that dansyl-L-alanyl-L-arginine is a better substrate for CPD-N than for CPD. CPD-N has an optimal pH of 5.6 (due to domain II), whereas CPD has activity peaks at pH 5.6 (domain II) and pH 6.5-7.0 (domain I). CPD and CPD-N are inhibited non-competitively by zinc chelator 1,10-phenanthroline and competitively by peptidomimetic inhibitor DL-2-mercaptomethyl-3-guanidinoethylthiopropanoic acid. The Nb2 CPD-N co-immunoprecipitated with phosphatase PP2A (protein phosphatase 2A) and alpha4 phosphoprotein. In summary, a cytokine-inducible CPD-N is selectively expressed in several haematopoietic tumour cells. Nuclear CPD-N is enzymatically active and interacts with known partners of CPD.
Collapse
Affiliation(s)
- Padraic G. P. O'Malley
- *Department of Biochemistry and Molecular Biology, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | - Shirley M. Sangster
- *Department of Biochemistry and Molecular Biology, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | - Salma A. Abdelmagid
- *Department of Biochemistry and Molecular Biology, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | - Stephen L. Bearne
- *Department of Biochemistry and Molecular Biology, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | - Catherine K. L. Too
- *Department of Biochemistry and Molecular Biology, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
- †Department of Obstetrics and Gynecology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
- To whom correspondence should be addressed (email )
| |
Collapse
|
36
|
Kalinina E, Fontenele-Neto JD, Fricker LD. Drosophila S2 cells produce multiple forms of carboxypeptidase D with different intracellular distributions. J Cell Biochem 2006; 99:770-83. [PMID: 16676361 DOI: 10.1002/jcb.20972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Carboxypeptidase D (CPD) functions in the processing of proteins that transit the secretory pathway, and is present in all vertebrates examined as well as Drosophila. Several forms of CPD mRNA were previously found in Drosophila that resulted from differential splicing of the gene. In the present study, Northern blot, reverse transcriptase PCR, and Western blot analysis showed that each splice variant occurs in a single cell type, the Drosophila-derived Schneider 2 (S2) cell line. The short forms containing a single carboxypeptidase domain were secreted from the S2 cells while the long forms containing three carboxypeptidase domains, a transmembrane domain, and one of two different cytosolic tails were retained in the cell. To investigate the role of the two different C-terminal tail sequences (tail-1 and tail-2) that result from the differential splicing within exon 8, constructs containing a reporter protein (albumin) attached to the transmembrane domain and tail-1 or tail-2 of CPD were expressed in S2 cells and a mouse pituitary cell line (AtT20 cells). Immunofluorescence analysis revealed different intracellular distributions of the two constructs, with the tail-2 construct showing considerable overlap with a Golgi marker. The two C-terminal tail sequences also resulted in different internalization efficiencies from the cell surface in both cell lines. Interestingly, the distribution and routing of the tail-2 form of Drosophila CPD in the AtT20 cells are similar to the previously characterized endogenous mouse CPD protein, indicating that the elements for this trafficking have been conserved between Drosophila and mammals.
Collapse
Affiliation(s)
- Elena Kalinina
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
37
|
Abstract
Neuropeptides serve many important roles in communication between cells and are an attractive target for drug discovery. Neuropeptides are produced from precursor proteins by selective cleavages at specific sites, and are then broken down by further cleavages. In general, the biosynthetic cleavages occur within the cell and the degradative cleavages occur postsecretion, although there are exceptions where intracellular processing leads to inactivation, or extracellular processing leads to activation of a particular neuropeptide. A relatively small number of peptidases are responsible for processing the majority of neuropeptides, both inside and outside of the cell. Thus, inhibition of any one enzyme will lead to a broad effect on several different neuropeptides and this makes it unlikely that such inhibitors would be useful therapeutics. However, studies with mutant animals that lack functional peptide-processing enzymes have facilitated the discovery of novel neuropeptides, many of which may be appropriate targets for therapeutics.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
38
|
Che FY, Biswas R, Fricker LD. Relative quantitation of peptides in wild-type and Cpe(fat/fat) mouse pituitary using stable isotopic tags and mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:227-237. [PMID: 15706630 DOI: 10.1002/jms.742] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cpe(fat/fat) mice have a point mutation in the coding region of the carboxypeptidase E gene that renders the enzyme inactive. As a result, these mice have reduced levels of several neuropeptides and greatly increased levels of the peptide processing intermediates that contain C-terminal basic residues. However, previous studies examined a relatively small number of neuropeptides. In the present study, we used a quantitative peptidomics approach with stable isotopic labels to examine the levels of pituitary peptides in Cpe(fat/fat) mice relative to wild-type mice. Pituitary extracts from mutant and wild type mice were labeled with the stable isotopic label [3-(2,5-dioxopyrrolidin-1-yloxycarbonyl)propyl]trimethylammonium chloride containing nine atoms of hydrogen or deuterium. Then, the two samples were pooled and analyzed by liquid chromatography/mass spectrometry (LC/MS). The relative abundance of peptides was determined from a comparison of the intensities of the heavy and light peaks. Altogether, 72 peptides were detected in the Cpe(fat/fat) and/or wild-type mouse pituitary extracts of which 53 were identified by MS/MS sequencing. Several peptides identified in this analysis represent previously undescribed post-translational processing products of known pituitary prohormones. Of the 72 peptides detected in pituitary, 17 were detected only in the Cpe(fat/fat) mouse extracts; these represent peptide processing intermediates containing C-terminal basic residues. The peptides common to both Cpe(fat/fat) and wild-type mice were generally present at 2-5-fold lower levels in the Cpe(fat/fat) mouse pituitary extracts, although some peptides were present at equal levels and one peptide (acetyl beta-endorphin 1-31) was increased approximately 7-fold in the Cpe(fat/fat) pituitary extracts. In contrast, acetyl beta-endorphin 1-26 was present at approximately 10-fold lower levels in the Cpe(fat/fat) pituitary, compared with wild-type mice. The finding that many peptides are substantially decreased in Cpe(fat/fat) pituitary is consistent with the broad role for carboxypeptidase E in the biosynthesis of numerous neuropeptides.
Collapse
Affiliation(s)
- Fa-Yun Che
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
39
|
Che FY, Yuan Q, Kalinina E, Fricker LD. Peptidomics of Cpe fat/fat mouse hypothalamus: effect of food deprivation and exercise on peptide levels. J Biol Chem 2004; 280:4451-61. [PMID: 15572367 DOI: 10.1074/jbc.m411178200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carboxypeptidase E is a major enzyme in the biosynthesis of numerous neuroendocrine peptides. Previously, we developed a technique for the isolation of neuropeptide-processing intermediates from mice that lack carboxypeptidase E activity (Cpe fat/fat mice) due to a naturally occurring point mutation. In the present study, we used a differential labeling procedure with stable isotopic tags and mass spectrometry to quantitate the relative changes in a number of hypothalamic peptides in Cpe fat/fat mice in two different paradigms that each cause an approximately 10% decrease in body mass. One paradigm involved a 2-day fast under normal sedentary conditions (i.e. standard mouse cages); the other involved giving mice access to an exercise wheel for 4 weeks with free access to food. Approximately 50 peptides were detected in both studies, and over 80 peptides were detected in at least one of the two studies. Twenty-eight peptides were increased >50% by food deprivation, and some of these were increased by 2- to 3-fold. In contrast, only three peptides were increased >50% in the group with exercise wheels, and many peptides showed a slight 15-30% decrease upon exercise. Approximately one-half of the peptides detected in both studies were identified by tandem mass spectrometry. Peptides found to be elevated by food deprivation but not exercise included a number of fragments of proenkephalin, prothyrotropin-releasing hormone, secretogranin II, chromogranin B, and pro-SAAS. Taken together, the differential regulation of these peptides in the two paradigms suggests that the regulation is not due to the lower body weight but to the manner in which the paradigms achieved this lower body weight.
Collapse
Affiliation(s)
- Fa-Yun Che
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
40
|
Wisner TW, Johnson DC. Redistribution of cellular and herpes simplex virus proteins from the trans-golgi network to cell junctions without enveloped capsids. J Virol 2004; 78:11519-35. [PMID: 15479793 PMCID: PMC523281 DOI: 10.1128/jvi.78.21.11519-11535.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Accepted: 06/16/2004] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) and other alphaherpesviruses assemble enveloped virions in the trans-Golgi network (TGN) or endosomes. Enveloped particles are formed when capsids bud into TGN/endosomes and virus particles are subsequently ferried to the plasma membrane in TGN-derived vesicles. Little is known about the last stages of virus egress from the TGN/endosomes to cell surfaces except that the HSV directs transport of nascent virions to specific cell surface domains, i.e., epithelial cell junctions. Previously, we showed that HSV glycoprotein gE/gI accumulates extensively in the TGN at early times after infection and also when expressed without other viral proteins. At late times of infection, gE/gI and a cellular membrane protein, TGN46, were redistributed from the TGN to epithelial cell junctions. We show here that gE/gI and a second glycoprotein, gB, TGN46, and another cellular protein, carboxypeptidase D, all moved to cell junctions after infection with an HSV mutant unable to produce cytoplasmic capsids. This redistribution did not involve L particles. In contrast to TGN membrane proteins, several cellular proteins that normally adhere to the cytoplasmic face of TGN, Golgi, and endosomal membranes remained primarily dispersed throughout the cytoplasm. Therefore, cellular and viral membrane TGN proteins move to cell junctions at late times of HSV infection when the production of enveloped particles is blocked. This is consistent with the hypothesis that there are late HSV proteins that reorganize or redistribute TGN/endosomal compartments to promote virus egress and cell-to-cell spread.
Collapse
Affiliation(s)
- Todd W Wisner
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Mail code L-220, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | | |
Collapse
|
41
|
Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. ACTA ACUST UNITED AC 2004; 165:123-33. [PMID: 15078903 PMCID: PMC2172094 DOI: 10.1083/jcb.200312055] [Citation(s) in RCA: 493] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The cation-independent mannose 6-phosphate receptor (CI-MPR) mediates sorting of lysosomal hydrolase precursors from the TGN to endosomes. After releasing the hydrolase precursors into the endosomal lumen, the unoccupied receptor returns to the TGN for further rounds of sorting. Here, we show that the mammalian retromer complex participates in this retrieval pathway. The hVps35 subunit of retromer interacts with the cytosolic domain of the CI-MPR. This interaction probably occurs in an endosomal compartment, where most of the retromer is localized. In particular, retromer is associated with tubular–vesicular profiles that emanate from early endosomes or from intermediates in the maturation from early to late endosomes. Depletion of retromer by RNA interference increases the lysosomal turnover of the CI-MPR, decreases cellular levels of lysosomal hydrolases, and causes swelling of lysosomes. These observations indicate that retromer prevents the delivery of the CI-MPR to lysosomes, probably by sequestration into endosome-derived tubules from where the receptor returns to the TGN.
Collapse
Affiliation(s)
- Cecilia N Arighi
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
42
|
Kuliawat R, Kalinina E, Bock J, Fricker L, McGraw TE, Kim SR, Zhong J, Scheller R, Arvan P. Syntaxin-6 SNARE involvement in secretory and endocytic pathways of cultured pancreatic beta-cells. Mol Biol Cell 2004; 15:1690-701. [PMID: 14742717 PMCID: PMC379267 DOI: 10.1091/mbc.e03-08-0554] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 12/01/2003] [Accepted: 01/06/2004] [Indexed: 01/16/2023] Open
Abstract
In pancreatic beta-cells, the syntaxin 6 (Syn6) soluble N-ethylmaleimide-sensitive factor attachment protein receptor is distributed in the trans-Golgi network (TGN) (with spillover into immature secretory granules) and endosomes. A possible Syn6 requirement has been suggested in secretory granule biogenesis, but the role of Syn6 in live regulated secretory cells remains unexplored. We have created an ecdysone-inducible gene expression system in the INS-1 beta-cell line and find that induced expression of a membrane-anchorless, cytosolic Syn6 (called Syn6t), but not full-length Syn6, causes a prominent defect in endosomal delivery to lysosomes, and the TGN, in these cells. The defect occurs downstream of the endosomal branchpoint involved in transferrin recycling, and upstream of the steady-state distribution of mannose 6-phosphate receptors. By contrast, neither acquisition of stimulus competence nor the ultimate size of beta-granules is affected. Biosynthetic effects of dominant-interfering Syn6 seem limited to slowed intragranular processing to insulin (achieving normal levels within 2 h) and minor perturbation of sorting of newly synthesized lysosomal proenzymes. We conclude that expression of the Syn6t mutant slows a rate-limiting step in endosomal maturation but provides only modest and potentially indirect interference with regulated and constitutive secretory pathways, and in TGN sorting of lysosomal enzymes.
Collapse
Affiliation(s)
- Regina Kuliawat
- Division of Endocrinology and Department of Developmental/Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Li J, Tong S, Lee HB, Perdigoto AL, Spangenberg HC, Wands JR. Glycine decarboxylase mediates a postbinding step in duck hepatitis B virus infection. J Virol 2004; 78:1873-81. [PMID: 14747552 PMCID: PMC369508 DOI: 10.1128/jvi.78.4.1873-1881.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Envelope protein precursors of many viruses are processed by a basic endopeptidase to generate two molecules, one for receptor binding and the other for membrane fusion. Such a cleavage event has not been demonstrated for the hepatitis B virus family. Two binding partners for duck hepatitis B virus (DHBV) pre-S envelope protein have been identified. Duck carboxypeptidase D (DCPD) interacts with the full-length pre-S protein and is the DHBV docking receptor, while duck glycine decarboxylase (DGD) has the potential to bind several deletion constructs of the pre-S protein in vitro. Interestingly, DGD but not DCPD expression was diminished following prolonged culture of primary duck hepatocytes (PDH), which impaired productive DHBV infection. Introduction of exogenous DGD promoted formation of protein-free viral genome, suggesting restoration of several early events in viral life cycle. Conversely, blocking DGD expression in fresh PDH by antisense RNA abolished DHBV infection. Moreover, addition of DGD antibodies soon after virus binding reduced endogenous DGD protein levels and impaired production of covalently closed circular DNA, the template for DHBV gene expression and genome replication. Our findings implicate this second pre-S binding protein as a critical cellular factor for productive DHBV infection. We hypothesize that DCPD, a molecule cycling between the cell surface and the trans-Golgi network, targets DHBV particles to the secretary pathway for proteolytic cleavage of viral envelope protein. DGD represents the functional equivalent of other virus receptors in its interaction with processed viral particles.
Collapse
Affiliation(s)
- Jisu Li
- The Liver Research Center, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island 02903, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Yoshino A, Bieler BM, Harper DC, Cowan DA, Sutterwala S, Gay DM, Cole NB, McCaffery JM, Marks MS. A role for GRIP domain proteins and/or their ligands in structure and function of the trans Golgi network. J Cell Sci 2003; 116:4441-54. [PMID: 13130094 DOI: 10.1242/jcs.00746] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
tGolgin-1 (golgin-245, trans golgi p230) and golgin-97 are members of a family of peripheral membrane proteins of unknown function that localize to the trans Golgi network (TGN) through a conserved C-terminal GRIP domain. We have probed for GRIP protein function by assessing the consequences of overexpressing isolated GRIP domains. By semi-quantitative immunofluorescence microscopy we found that high level expression of epitope-tagged, GRIP domain-containing fragments of tGolgin-1 or golgin-97 specifically altered the characteristic pericentriolar distribution of TGN integral membrane and coat components. Concomitantly, vesicular transport from the TGN to the plasma membrane and furin-dependent cleavage of substrate proteins in the TGN were inhibited. Mutagenesis of a conserved tyrosine in the tGolgin-1 GRIP domain abolished these effects. GRIP domain overexpression had little effect on the distribution of most Golgi stack resident proteins and no effect on markers of other organelles. Electron microscopy analyses of GRIP domain-overexpressing cells revealed distended perinuclear vacuoles and a proliferation of multivesicular late endosomes to which the TGN resident protein TGN46 was largely mislocalized. These studies, the first to address the function of GRIP domain-containing proteins in higher eukaryotes, suggest that some or all of these proteins and/or their ligands function in maintaining the integrity of the TGN by regulating resident protein localization.
Collapse
Affiliation(s)
- Atsuko Yoshino
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fayad T, Lévesque V, Sirois J, Silversides DW, Lussier JG. Gene expression profiling of differentially expressed genes in granulosa cells of bovine dominant follicles using suppression subtractive hybridization. Biol Reprod 2003; 70:523-33. [PMID: 14568916 DOI: 10.1095/biolreprod.103.021709] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Development of antral follicles beyond 3 to 4 mm in cattle appears as a wave pattern that occurs two to three times during the estrous cycle. Each wave presents a cyclic recruitment of multiple follicles at the 3- to 4-mm stage, followed by the selection of a single follicle that becomes the dominant follicle (DF). The molecular determinants involved in the follicular dominance process remain poorly understood. The objective of the current study was to compare gene expression in granulosa cells (GCs) between growing dominant follicles from Day 5 of the estrous cycle and nonselected small follicles (<or=4 mm) using the suppression subtractive hybridization (SSH) approach to identify candidate genes differentially expressed in GCs of the DF. Small follicle cDNAs were subtracted from DF cDNAs (DF-SF) and used to establish a DF GC-subtracted cDNA library. A total of 42 nonredundant cDNAs were identified. Detection of previously identified genes such as CX43, CYP19, INHBA, and SERPINE2 supported the validity of our experimental model and the use of SSH as the method of analysis. For selected genes such as ApoER2, CPD, CSPG2, 14-3-3 epsilon, NR5A2/SF2, RGN/SMP30, and SERPINE2, gene expression profiles were compared by virtual Northern blot or reverse transcriptase-polymerase chain reaction, and results confirmed an increase or induction of their mRNA in GCs of dominant follicles compared with that of small follicles. We conclude that we have identified novel genes (known and unknown) that are up-regulated in bovine GCs that may affect follicular growth, dominance, or both.
Collapse
Affiliation(s)
- Tania Fayad
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | | | | | | | | |
Collapse
|
46
|
Cooper A, Paran N, Shaul Y. The earliest steps in hepatitis B virus infection. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:89-96. [PMID: 12873769 DOI: 10.1016/s0005-2736(03)00166-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The early steps in hepatitis B virus (HBV) infection, a human hepadnavirus, initiates from cell attachment followed by entry and delivery of the genetic information to the nucleus. Despite the fact that these steps determine the virus-related pathogenesis, their molecular basis is poorly understood. Cumulative data suggest that this process can be divided to cell attachment, endocytosis, membrane fusion and post-fusion consecutive steps. These steps are likely to be regulated by the viral envelope proteins and by the cellular membrane, receptors and extracellular matrix. In the absence of animal model for HBV, the duck hepadnavirus DHBV turned out to be a fruitful animal model. Therefore data concerning the early, post-attachment steps in hepadnaviral entry are largely based on studies performed with DHBV in primary duck liver hepatocytes. These studies are now starting to illuminate the mechanisms of hepadnavirus route of cell entry and to provide some new insights on the molecular basis of the strict species specificity of hepadnavirus infection.
Collapse
Affiliation(s)
- Arik Cooper
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
47
|
Abstract
Neuropeptides are generally produced from precursor proteins by selective cleavage at specific sites, usually involving basic amino acids. Enzymes such as the prohormone convertases and carboxypeptidase E are highly specific for these basic amino acid-containing sites. In addition to this "traditional" pathway, several neuropeptides are known to be cleaved at non-basic sites, and the enzymes responsible for these cleavages have not been conclusively identified. In a recent search for novel members of the metallocarboxypeptidase family, we found three human genes. One of these, named "CPA-5," has a specificity for C-terminal hydrophobic amino acids and mRNA expression in brain, pituitary, and testis. To test whether CPA-5 protein has a distribution pattern in pituitary that is consistent with a role for this enzyme in the non-basic processing of proopiomelanocortin-derived peptides such as beta-endorphin and adrenocorticotropin, we examined the distribution of CPA-5 using immunocytochemistry. In the pituitary, CPA-5 is detected in the neurointermediate lobe and in scattered cells in the anterior lobe. In the AtT-20 corticotroph cell line, CPA-5 has a perinuclear distribution. Taken together, these results are consistent with a role for CPA-5 in the intracellular processing of proopiomelanocortin-derived peptides at non-basic sites.
Collapse
Affiliation(s)
- Suwen Wei
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
48
|
Sangsree S, Brovkovych V, Minshall RD, Skidgel RA. Kininase I-type carboxypeptidases enhance nitric oxide production in endothelial cells by generating bradykinin B1 receptor agonists. Am J Physiol Heart Circ Physiol 2003; 284:H1959-68. [PMID: 12623793 DOI: 10.1152/ajpheart.00036.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Kininase I-type carboxypeptidases convert native kinin agonists for B(2) receptors into B(1) receptor agonists by specifically removing the COOH-terminal Arg residue. The membrane localization of carboxypeptidase M (CPM) and carboxypeptidase D (CPD) make them ideally situated to regulate kinin activity. Nitric oxide (NO) release from human lung microvascular endothelial cells (HLMVEC) was measured directly in real time with a porphyrinic microsensor. Bradykinin (1-100 nM) elicited a transient (5 min) peak of generation of NO that was blocked by the B(2) antagonist HOE 140, whereas B(1) agonist des-Arg(10)-kallidin caused a small linear increase in NO over 20 min. Treatment of HLMVEC with 5 ng/ml interleukin-1beta and 200 U/ml interferon-gamma for 16 h upregulated B(1) receptors as shown by an approximately fourfold increase in prolonged (>20 min) output of NO in response to des-Arg(10)-kallidin, which was blocked by the B(1) antagonist des-Arg(10)-Leu(9)-kallidin. B(2) receptor agonists bradykinin or kallidin also generated prolonged NO production in treated HLMVEC, which was significantly reduced by either a B(1) antagonist or carboxypeptidase inhibitor, and completely abolished with a combination of B(1) and B(2) receptor antagonists. Furthermore, CPM and CPD activities were increased about twofold in membrane fractions of HLMVEC treated with interleukin-1beta and interferon-gamma compared with control cells. Immunostaining localized CPD primarily in a perinuclear/Golgi region, whereas CPM was on the cell membrane. These data show that cellular kininase I-type carboxypeptidases can enhance kinin signaling and NO production by converting B(2) agonists to B(1) agonists, especially in inflammatory conditions.
Collapse
Affiliation(s)
- Sakonwun Sangsree
- Department of Pharmacology, University of Illinois College of Medicine, Chicago 60612, USA
| | | | | | | |
Collapse
|
49
|
Berson JF, Theos AC, Harper DC, Tenza D, Raposo G, Marks MS. Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J Cell Biol 2003; 161:521-33. [PMID: 12732614 PMCID: PMC2172928 DOI: 10.1083/jcb.200302072] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lysosome-related organelles are cell type-specific intracellular compartments with distinct morphologies and functions. The molecular mechanisms governing the formation of their unique structural features are not known. Melanosomes and their precursors are lysosome-related organelles that are characterized morphologically by intralumenal fibrous striations upon which melanins are polymerized. The integral membrane protein Pmel17 is a component of the fibrils and can nucleate their formation in the absence of other pigment cell-specific proteins. Here, we show that formation of intralumenal fibrils requires cleavage of Pmel17 by a furin-like proprotein convertase (PC). As in the generation of amyloid, proper cleavage of Pmel17 liberates a lumenal domain fragment that becomes incorporated into the fibrils; longer Pmel17 fragments generated in the absence of PC activity are unable to form organized fibrils. Our results demonstrate that PC-dependent cleavage regulates melanosome biogenesis by controlling the fibrillogenic activity of a resident protein. Like the pathologic process of amyloidogenesis, the formation of other tissue-specific organelle structures may be similarly dependent on proteolytic activation of physiological fibrillogenic substrates.
Collapse
Affiliation(s)
- Joanne F Berson
- Dept. of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, USA
| | | | | | | | | | | |
Collapse
|
50
|
Kalinina EV, Fricker LD. Palmitoylation of carboxypeptidase D. Implications for intracellular trafficking. J Biol Chem 2003; 278:9244-9. [PMID: 12643288 DOI: 10.1074/jbc.m209379200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Covalent lipid modifications mediate protein-membrane and protein-protein interactions and are often essential for function. The purposes of this study were to examine the Cys residues of the transmembrane domain of metallocarboxypeptidase D (CPD) that could be a target for palmitoylation and to clarify the function of this modification. CPD is an integral membrane protein that cycles between the trans Golgi network and the plasma membrane. We constructed AtT-20 cells stably expressing various constructs carrying a reporter protein (albumin) fused to a transmembrane domain and the CPD cytoplasmic tail. Some of the constructs contained the three Cys residues present in the CPD transmembrane region, while other constructs contained Ala in place of the Cys. Constructs carrying Cys residues were palmitoylated, while those constructs lacking the Cys residues were not. Because palmitoylation of several proteins affects their association with cholesterol and sphingolipid-rich membrane domains or caveolae, we tested endogenous CPD and several of the reporter constructs for resistance to extraction with Triton X-100. A construct containing the Cys residues of the CPD transmembrane domain was soluble in Triton X-100 as was endogenous palmitoylated CPD, indicating that palmitoylation does not target CPD to detergent-resistant membrane rafts. Interestingly, constructs of CPD that lack palmitoylation sites have an increased half-life, a slightly more diffuse steady-state localization, and a slower rate of exit from the Golgi as compared with constructs containing palmitoylation sites. Thus, the covalent attachment of palmitic acid to the Cys residues of CPD has a functional significance in the trafficking of the protein.
Collapse
Affiliation(s)
- Elena V Kalinina
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|