1
|
Nashchekin D, Squires I, Prokop A, St Johnston D. The Shot CH1 domain recognises a distinct form of F-actin during Drosophila oocyte determination. Development 2024; 151:dev202370. [PMID: 38564309 PMCID: PMC11058685 DOI: 10.1242/dev.202370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
In Drosophila, only one cell in a multicellular female germline cyst is specified as an oocyte and a similar process occurs in mammals. The symmetry-breaking cue for oocyte selection is provided by the fusome, a tubular structure connecting all cells in the cyst. The Drosophila spectraplakin Shot localises to the fusome and translates its asymmetry into a polarised microtubule network that is essential for oocyte specification, but how Shot recognises the fusome is unclear. Here, we demonstrate that the actin-binding domain (ABD) of Shot is necessary and sufficient to localise Shot to the fusome and mediates Shot function in oocyte specification together with the microtubule-binding domains. The calponin homology domain 1 of the Shot ABD recognises fusomal F-actin and requires calponin homology domain 2 to distinguish it from other forms of F-actin in the cyst. By contrast, the ABDs of utrophin, Fimbrin, Filamin, Lifeact and F-tractin do not recognise fusomal F-actin. We therefore propose that Shot propagates fusome asymmetry by recognising a specific conformational state of F-actin on the fusome.
Collapse
Affiliation(s)
- Dmitry Nashchekin
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Iolo Squires
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester M13 9PT, UK
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
2
|
Hadpech S, Peerapen P, Thongboonkerd V. The upregulation of lamin A/C as a compensatory mechanism during tight junction disruption in renal tubular cells mediated by calcium oxalate crystals. Curr Res Toxicol 2023; 6:100145. [PMID: 38193033 PMCID: PMC10772403 DOI: 10.1016/j.crtox.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Calcium oxalate monohydrate (COM), the most important crystal causing kidney stone disease, upregulates lamin A/C but downregulates zonula occludens-1 (ZO-1) in renal tubular cells. While roles for F-actin and α-tubulin and their association with ZO-1 are known to regulate COM-mediated tight junction (TJ) disruption, roles of lamin A/C and its interplay with ZO-1 in COM kidney stone model remain unclear and are thus the objectives of this study. Lamin A/C was knocked down in MDCK cells by silencing RNA specific for LMNA (siLMNA). Both wild-type (WT) and siLMNA cells were treated with COM for 48-h compared with the untreated (control) cells. Western blotting and immunofluorescence staining revealed upregulated lamin A/C and downregulated ZO-1 in the COM-treated WT cells. siLMNA successfully reduced lamin A/C expression in both control and COM-treated cells. Nonetheless, siLMNA did not reverse the effect of COM on the decreases in ZO-1 and transepithelial resistance, but further reduced their levels in both control and COM-treated cells. Protein-protein interaction analysis demonstrated that two cytoskeletal proteins (actin and tubulin) served as the linkers to connect lamin A/C with ZO-1 and occludin (both of which are the TJ proteins). Altogether, these data implicate that lamin A/C and ZO-1 are indirectly associated to control TJ function, and ZO-1 expression is regulated by lamin A/C. Moreover, COM-induced upregulation of lamin A/C most likely serves as a compensatory mechanism to cope with the downregulation of ZO-1 during COM-mediated TJ disruption.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
3
|
Schmidt S, Wichers-Misterek JS, Behrens HM, Birnbaum J, Henshall IG, Dröge J, Jonscher E, Flemming S, Castro-Peña C, Mesén-Ramírez P, Spielmann T. The Kelch13 compartment contains highly divergent vesicle trafficking proteins in malaria parasites. PLoS Pathog 2023; 19:e1011814. [PMID: 38039338 PMCID: PMC10718435 DOI: 10.1371/journal.ppat.1011814] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/13/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Single amino acid changes in the parasite protein Kelch13 (K13) result in reduced susceptibility of P. falciparum parasites to artemisinin and its derivatives (ART). Recent work indicated that K13 and other proteins co-localising with K13 (K13 compartment proteins) are involved in the endocytic uptake of host cell cytosol (HCCU) and that a reduction in HCCU results in reduced susceptibility to ART. HCCU is critical for parasite survival but is poorly understood, with the K13 compartment proteins among the few proteins so far functionally linked to this process. Here we further defined the composition of the K13 compartment by analysing more hits from a previous BioID, showing that MyoF and MCA2 as well as Kelch13 interaction candidate (KIC) 11 and 12 are found at this site. Functional analyses, tests for ART susceptibility as well as comparisons of structural similarities using AlphaFold2 predictions of these and previously identified proteins showed that vesicle trafficking and endocytosis domains were frequent in proteins involved in resistance or endocytosis (or both), comprising one group of K13 compartment proteins. While this strengthened the link of the K13 compartment to endocytosis, many proteins of this group showed unusual domain combinations and large parasite-specific regions, indicating a high level of taxon-specific adaptation of this process. Another group of K13 compartment proteins did not influence endocytosis or ART susceptibility and lacked detectable vesicle trafficking domains. We here identified the first protein of this group that is important for asexual blood stage development and showed that it likely is involved in invasion. Overall, this work identified novel proteins functioning in endocytosis and at the K13 compartment. Together with comparisons of structural predictions it provides a repertoire of functional domains at the K13 compartment that indicate a high level of adaption of endocytosis in malaria parasites.
Collapse
Affiliation(s)
- Sabine Schmidt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Jakob Birnbaum
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Jana Dröge
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ernst Jonscher
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sven Flemming
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
4
|
Salem D, Fecek RJ. Role of microtubule actin crosslinking factor 1 (MACF1) in bipolar disorder pathophysiology and potential in lithium therapeutic mechanism. Transl Psychiatry 2023; 13:221. [PMID: 37353479 DOI: 10.1038/s41398-023-02483-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
Bipolar affective disorder (BPAD) are life-long disorders that account for significant morbidity in afflicted patients. The etiology of BPAD is complex, combining genetic and environmental factors to increase the risk of disease. Genetic studies have pointed toward cytoskeletal dysfunction as a potential molecular mechanism through which BPAD may arise and have implicated proteins that regulate the cytoskeleton as risk factors. Microtubule actin crosslinking factor 1 (MACF1) is a giant cytoskeletal crosslinking protein that can coordinate the different aspects of the mammalian cytoskeleton with a wide variety of actions. In this review, we seek to highlight the functions of MACF1 in the nervous system and the molecular mechanisms leading to BPAD pathogenesis. We also offer a brief perspective on MACF1 and the role it may be playing in lithium's mechanism of action in treating BPAD.
Collapse
Affiliation(s)
- Deepak Salem
- Lake Erie College of Osteopathic Medicine at Seton Hill, Department of Microbiology, Greensburg, USA
- University of Maryland Medical Center/Sheppard Pratt Psychiatry Residency Program, Baltimore, USA
| | - Ronald J Fecek
- Lake Erie College of Osteopathic Medicine at Seton Hill, Department of Microbiology, Greensburg, USA.
| |
Collapse
|
5
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
6
|
Dorrego-Rivas A, Ezan J, Moreau MM, Poirault-Chassac S, Aubailly N, De Neve J, Blanchard C, Castets F, Fréal A, Battefeld A, Sans N, Montcouquiol M. The core PCP protein Prickle2 regulates axon number and AIS maturation by binding to AnkG and modulating microtubule bundling. SCIENCE ADVANCES 2022; 8:eabo6333. [PMID: 36083912 PMCID: PMC9462691 DOI: 10.1126/sciadv.abo6333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Core planar cell polarity (PCP) genes, which are involved in various neurodevelopmental disorders such as neural tube closure, epilepsy, and autism spectrum disorder, have poorly defined molecular signatures in neurons, mostly synapse-centric. Here, we show that the core PCP protein Prickle-like protein 2 (Prickle2) controls neuronal polarity and is a previously unidentified member of the axonal initial segment (AIS) proteome. We found that Prickle2 is present and colocalizes with AnkG480, the AIS master organizer, in the earliest stages of axonal specification and AIS formation. Furthermore, by binding to and regulating AnkG480, Prickle2 modulates its ability to bundle microtubules, a crucial mechanism for establishing neuronal polarity and AIS formation. Prickle2 depletion alters cytoskeleton organization, and Prickle2 levels determine both axon number and AIS maturation. Last, early Prickle2 depletion produces impaired action potential firing.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
- Corresponding author.
| | - Jerome Ezan
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | - Maïté M Moreau
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | | | | | - Julie De Neve
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | | | - Francis Castets
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, 13288 Marseille Cedex 09, France
| | - Amélie Fréal
- Department of Functional Genomics, Vrije Universiteit (VU), Amsterdam, Netherlands
| | - Arne Battefeld
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Nathalie Sans
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
- Corresponding author.
| | | |
Collapse
|
7
|
Jijumon AS, Bodakuntla S, Genova M, Bangera M, Sackett V, Besse L, Maksut F, Henriot V, Magiera MM, Sirajuddin M, Janke C. Lysate-based pipeline to characterize microtubule-associated proteins uncovers unique microtubule behaviours. Nat Cell Biol 2022; 24:253-267. [PMID: 35102268 DOI: 10.1038/s41556-021-00825-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
The microtubule cytoskeleton forms complex macromolecular assemblies with a range of microtubule-associated proteins (MAPs) that have fundamental roles in cell architecture, division and motility. Determining how an individual MAP modulates microtubule behaviour is an important step in understanding the physiological roles of various microtubule assemblies. To characterize how MAPs control microtubule properties and functions, we developed an approach allowing for medium-throughput analyses of MAPs in cell-free conditions using lysates of mammalian cells. Our pipeline allows for quantitative as well as ultrastructural analyses of microtubule-MAP assemblies. Analysing 45 bona fide and potential mammalian MAPs, we uncovered previously unknown activities that lead to distinct and unique microtubule behaviours such as microtubule coiling or hook formation, or liquid-liquid phase separation along the microtubule lattice that initiates microtubule branching. We have thus established a powerful tool for a thorough characterization of a wide range of MAPs and MAP variants, thus opening avenues for the determination of mechanisms underlying their physiological roles and pathological implications.
Collapse
Affiliation(s)
- A S Jijumon
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Satish Bodakuntla
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Mariya Genova
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Mamata Bangera
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Violet Sackett
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Laetitia Besse
- Institut Curie, Université Paris-Saclay, Centre d'Imagerie Multimodale INSERM US43, CNRS UMS2016, Orsay, France
| | - Fatlinda Maksut
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Veronique Henriot
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Maria M Magiera
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | | | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France.
- Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| |
Collapse
|
8
|
Sanchez AD, Branon TC, Cote LE, Papagiannakis A, Liang X, Pickett MA, Shen K, Jacobs-Wagner C, Ting AY, Feldman JL. Proximity labeling reveals non-centrosomal microtubule-organizing center components required for microtubule growth and localization. Curr Biol 2021; 31:3586-3600.e11. [PMID: 34242576 PMCID: PMC8478408 DOI: 10.1016/j.cub.2021.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/13/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
Microtubules are polarized intracellular polymers that play key roles in the cell, including in transport, polarity, and cell division. Across eukaryotic cell types, microtubules adopt diverse intracellular organization to accommodate these distinct functions coordinated by specific cellular sites called microtubule-organizing centers (MTOCs). Over 50 years of research on MTOC biology has focused mainly on the centrosome; however, most differentiated cells employ non-centrosomal MTOCs (ncMTOCs) to organize their microtubules into diverse arrays, which are critical to cell function. To identify essential ncMTOC components, we developed the biotin ligase-based, proximity-labeling approach TurboID for use in C. elegans. We identified proteins proximal to the microtubule minus end protein PTRN-1/Patronin at the apical ncMTOC of intestinal epithelial cells, focusing on two conserved proteins: spectraplakin protein VAB-10B/MACF1 and WDR-62, a protein we identify as homologous to vertebrate primary microcephaly disease protein WDR62. VAB-10B and WDR-62 do not associate with the centrosome and instead specifically regulate non-centrosomal microtubules and the apical targeting of microtubule minus-end proteins. Depletion of VAB-10B resulted in microtubule mislocalization and delayed localization of a microtubule nucleation complex ɣ-tubulin ring complex (γ-TuRC), while loss of WDR-62 decreased the number of dynamic microtubules and abolished γ-TuRC localization. This regulation occurs downstream of cell polarity and in conjunction with actin. As this is the first report for non-centrosomal roles of WDR62 family proteins, we expand the basic cell biological roles of this important disease protein. Our studies identify essential ncMTOC components and suggest a division of labor where microtubule growth and localization are distinctly regulated.
Collapse
Affiliation(s)
- Ariana D Sanchez
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - Tess C Branon
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Departments of Genetics and Chemistry, Stanford University, Stanford, CA, USA
| | - Lauren E Cote
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | | | - Xing Liang
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Melissa A Pickett
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - Kang Shen
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Christine Jacobs-Wagner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA; Department of Biology and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Alice Y Ting
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Departments of Genetics and Chemistry, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jessica L Feldman
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Modelling Nuclear Morphology and Shape Transformation: A Review. MEMBRANES 2021; 11:membranes11070540. [PMID: 34357190 PMCID: PMC8304582 DOI: 10.3390/membranes11070540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022]
Abstract
As one of the most important cellular compartments, the nucleus contains genetic materials and separates them from the cytoplasm with the nuclear envelope (NE), a thin membrane that is susceptible to deformations caused by intracellular forces. Interestingly, accumulating evidence has also indicated that the morphology change of NE is tightly related to nuclear mechanotransduction and the pathogenesis of diseases such as cancer and Hutchinson–Gilford Progeria Syndrome. Theoretically, with the help of well-designed experiments, significant progress has been made in understanding the physical mechanisms behind nuclear shape transformation in different cellular processes as well as its biological implications. Here, we review different continuum-level (i.e., energy minimization, boundary integral and finite element-based) approaches that have been developed to predict the morphology and shape change of the cell nucleus. Essential gradients, relative advantages and limitations of each model will be discussed in detail, with the hope of sparking a greater research interest in this important topic in the future.
Collapse
|
10
|
Ricolo D, Castro-Ribera J, Araújo SJ. Cytoskeletal players in single-cell branching morphogenesis. Dev Biol 2021; 477:22-34. [PMID: 34004181 DOI: 10.1016/j.ydbio.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022]
Abstract
Branching networks are a very common feature of multicellular animals and underlie the formation and function of numerous organs including the nervous system, the respiratory system, the vasculature and many internal glands. These networks range from subcellular structures such as dendritic trees to large multicellular tissues such as the lungs. The production of branched structures by single cells, so called subcellular branching, which has been better described in neurons and in cells of the respiratory and vascular systems, involves complex cytoskeletal remodelling events. In Drosophila, tracheal system terminal cells (TCs) and nervous system dendritic arborisation (da) neurons are good model systems for these subcellular branching processes. During development, the generation of subcellular branches by single-cells is characterized by extensive remodelling of the microtubule (MT) network and actin cytoskeleton, followed by vesicular transport and membrane dynamics. In this review, we describe the current knowledge on cytoskeletal regulation of subcellular branching, based on the terminal cells of the Drosophila tracheal system, but drawing parallels with dendritic branching and vertebrate vascular subcellular branching.
Collapse
Affiliation(s)
- Delia Ricolo
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine University of Barcelona (IBUB), Barcelona, Spain
| | - Judith Castro-Ribera
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine University of Barcelona (IBUB), Barcelona, Spain
| | - Sofia J Araújo
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine University of Barcelona (IBUB), Barcelona, Spain.
| |
Collapse
|
11
|
Cusseddu R, Robert A, Côté JF. Strength Through Unity: The Power of the Mega-Scaffold MACF1. Front Cell Dev Biol 2021; 9:641727. [PMID: 33816492 PMCID: PMC8012552 DOI: 10.3389/fcell.2021.641727] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/23/2021] [Indexed: 12/26/2022] Open
Abstract
The tight coordination of diverse cytoskeleton elements is required to support several dynamic cellular processes involved in development and tissue homeostasis. The spectraplakin-family of proteins are composed of multiple domains that provide versatility to connect different components of the cytoskeleton, including the actin microfilaments, microtubules and intermediates filaments. Spectraplakins act as orchestrators of precise cytoskeletal dynamic events. In this review, we focus on the prototypical spectraplakin MACF1, a protein scaffold of more than 700 kDa that coordinates the crosstalk between actin microfilaments and microtubules to support cell-cell connections, cell polarity, vesicular transport, proliferation, and cell migration. We will review over two decades of research aimed at understanding the molecular, physiological and pathological roles of MACF1, with a focus on its roles in developmental and cancer. A deeper understanding of MACF1 is currently limited by technical challenges associated to the study of such a large protein and we discuss ideas to advance the field.
Collapse
Affiliation(s)
- Rebecca Cusseddu
- Montreal Clinical Research Institute, Montreal, QC, Canada
- Molecular Biology Programs, Université de Montréal, Montreal, QC, Canada
| | - Amélie Robert
- Montreal Clinical Research Institute, Montreal, QC, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute, Montreal, QC, Canada
- Molecular Biology Programs, Université de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Abstract
Directed cell migration is critical for embryogenesis and organ development, wound healing and the immune response. Microtubules are dynamic polymers that control directional migration through a number of coordinated processes: microtubules are the tracks for long-distance intracellular transport, crucial for delivery of new membrane components and signalling molecules to the leading edge of a migrating cell and the recycling of adhesion receptors. Microtubules act as force generators and compressive elements to support sustained cell protrusions. The assembly and disassembly of microtubules is coupled to Rho GTPase signalling, thereby controlling actin polymerisation, myosin-driven contractility and the turnover of cellular adhesions locally. Cross-talk of actin and microtubule dynamics is mediated through a number of common binding proteins and regulators. Furthermore, cortical microtubule capture sites are physically linked to focal adhesions, facilitating the delivery of secretory vesicles and efficient cross-talk. Here we summarise the diverse functions of microtubules during cell migration, aiming to show how they contribute to the spatially and temporally coordinated sequence of events that permit efficient, directional and persistent migration.
Collapse
|
13
|
McElmurry K, Stone JE, Ma D, Lamoureux P, Zhang Y, Steidemann M, Fix L, Huang F, Miller KE, Suter DM. Dynein-mediated microtubule translocation powering neurite outgrowth in chick and Aplysia neurons requires microtubule assembly. J Cell Sci 2020; 133:133/8/jcs232983. [PMID: 32332091 DOI: 10.1242/jcs.232983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
Previously, we have shown that bulk microtubule (MT) movement correlates with neurite elongation, and blocking either dynein activity or MT assembly inhibits both processes. However, whether the contributions of MT dynamics and dynein activity to neurite elongation are separate or interdependent is unclear. Here, we investigated the underlying mechanism by testing the roles of dynein and MT assembly in neurite elongation of Aplysia and chick neurites using time-lapse imaging, fluorescent speckle microscopy, super-resolution imaging and biophysical analysis. Pharmacologically inhibiting either dynein activity or MT assembly reduced neurite elongation rates as well as bulk and individual MT anterograde translocation. Simultaneously suppressing both processes did not have additive effects, suggesting a shared mechanism of action. Single-molecule switching nanoscopy revealed that inhibition of MT assembly decreased the association of dynein with MTs. Finally, inhibiting MT assembly prevented the rise in tension induced by dynein inhibition. Taken together, our results suggest that MT assembly is required for dynein-driven MT translocation and neurite outgrowth.
Collapse
Affiliation(s)
- Kristi McElmurry
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jessica E Stone
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Donghan Ma
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Phillip Lamoureux
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yueyun Zhang
- Department of Statistics, Purdue University, West Lafayette, IN 47904, USA
| | - Michelle Steidemann
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Lucas Fix
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Fang Huang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Kyle E Miller
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA .,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.,Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA.,Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
14
|
Su P, Yin C, Li D, Yang C, Wang X, Pei J, Tian Y, Qian A. MACF1 promotes preosteoblast migration by mediating focal adhesion turnover through EB1. Biol Open 2020; 9:bio048173. [PMID: 32139394 PMCID: PMC7104863 DOI: 10.1242/bio.048173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/20/2020] [Indexed: 12/25/2022] Open
Abstract
Microtubule actin crosslinking factor 1 (MACF1) is a widely expressed cytoskeletal linker and plays an essential role in various cells' functions by mediating cytoskeleton organization and dynamics. However, the role of MACF1 on preosteoblast migration is not clear. Here, by using MACF1 knockdown and overexpressed MC3T3-E1 cells, we found MACF1 positively regulated preosteoblast migration induced by cell polarization. Furthermore, immunofluorescent staining showed that MACF1 increased end-binding protein (EB1) distribution on microtubule (MT), and decreased EB1 distribution on focal adhesion (FA) complex. Moreover, upregulation of MACF1 activated Src level and enhanced the colocalization of EB1 with activated Src. In addition, MACF1 diminished colocalization of EB1 with adenomatous polyposis coli (APC), which induced EB1 release from FA and promoted FA turnover. These results indicated an important role and mechanism of MACF1 in regulating preosteoblast migration through promoting FA turnover by mediating EB1 colocalization with Src and APC, which inferred that MACF1 might be a potential target for preventing and treating bone disorders.
Collapse
Affiliation(s)
- Peihong Su
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chong Yin
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dijie Li
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chaofei Yang
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xue Wang
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiawei Pei
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ye Tian
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
15
|
Hu L, Huang Z, Wu Z, Ali A, Qian A. Mammalian Plakins, Giant Cytolinkers: Versatile Biological Functions and Roles in Cancer. Int J Mol Sci 2018; 19:ijms19040974. [PMID: 29587367 PMCID: PMC5979291 DOI: 10.3390/ijms19040974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
Cancer is a highly lethal disease that is characterized by aberrant cell proliferation, migration, and adhesion, which are closely related to the dynamic changes of cytoskeletons and cytoskeletal-adhesion. These will further result in cell invasion and metastasis. Plakins are a family of giant cytolinkers that connect cytoskeletal elements with each other and to junctional complexes. With various isoforms composed of different domain structures, mammalian plakins are broadly expressed in numerous tissues. They play critical roles in many cellular processes, including cell proliferation, migration, adhesion, and signaling transduction. As these cellular processes are key steps in cancer development, mammalian plakins have in recent years attracted more and more attention for their potential roles in cancer. Current evidence shows the importance of mammalian plakins in various human cancers and demonstrates mammalian plakins as potential biomarkers for cancer. Here, we introduce the basic characteristics of mammalian plakins, review the recent advances in understanding their biological functions, and highlight their roles in human cancers, based on studies performed by us and others. This will provide researchers with a comprehensive understanding of mammalian plakins, new insights into the development of cancer, and novel targets for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Zizhan Huang
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Zixiang Wu
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Arshad Ali
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
16
|
Microtubule-Actin Crosslinking Factor 1 and Plakins as Therapeutic Drug Targets. Int J Mol Sci 2018; 19:ijms19020368. [PMID: 29373494 PMCID: PMC5855590 DOI: 10.3390/ijms19020368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
Plakins are a family of seven cytoskeletal cross-linker proteins (microtubule-actin crosslinking factor 1 (MACF), bullous pemphigoid antigen (BPAG1) desmoplakin, envoplakin, periplakin, plectin, epiplakin) that network the three major filaments that comprise the cytoskeleton. Plakins have been found to be involved in disorders and diseases of the skin, heart, nervous system, and cancer that are attributed to autoimmune responses and genetic alterations of these macromolecules. Despite their role and involvement across a spectrum of several diseases, there are no current drugs or pharmacological agents that specifically target the members of this protein family. On the contrary, microtubules have traditionally been targeted by microtubule inhibiting agents, used for the treatment of diseases such as cancer, in spite of the deleterious toxicities associated with their clinical utility. The Research Collaboratory for Structural Bioinformatics (RCSB) was used here to identify therapeutic drugs targeting the plakin proteins, particularly the spectraplakins MACF1 and BPAG1, which contain microtubule-binding domains. RCSB analysis revealed that plakin proteins had 329 ligands, of which more than 50% were MACF1 and BPAG1 ligands and 10 were documented, clinically or experimentally, to have several therapeutic applications as anticancer, anti-inflammatory, and antibiotic agents.
Collapse
|
17
|
Voelzmann A, Liew YT, Qu Y, Hahn I, Melero C, Sánchez-Soriano N, Prokop A. Drosophila Short stop as a paradigm for the role and regulation of spectraplakins. Semin Cell Dev Biol 2017; 69:40-57. [DOI: 10.1016/j.semcdb.2017.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
|
18
|
Zhang J, Yue J, Wu X. Spectraplakin family proteins - cytoskeletal crosslinkers with versatile roles. J Cell Sci 2017; 130:2447-2457. [PMID: 28679697 PMCID: PMC5558266 DOI: 10.1242/jcs.196154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The different cytoskeletal networks in a cell are responsible for many fundamental cellular processes. Current studies have shown that spectraplakins, cytoskeletal crosslinkers that combine features of both the spectrin and plakin families of crosslinkers, have a critical role in integrating these different cytoskeletal networks. Spectraplakin genes give rise to a variety of isoforms that have distinct functions. Importantly, all spectraplakin isoforms are uniquely able to associate with all three elements of the cytoskeleton, namely, F-actin, microtubules and intermediate filaments. In this Review, we will highlight recent studies that have unraveled their function in a wide range of different processes, from regulating cell adhesion in skin keratinocytes to neuronal cell migration. Taken together, this work has revealed a diverse and indispensable role for orchestrating the function of different cytoskeletal elements in vivo.
Collapse
Affiliation(s)
- Jamie Zhang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Jiping Yue
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
19
|
Horie M, Yoshioka N, Takebayashi H. BPAG1 in muscles: Structure and function in skeletal, cardiac and smooth muscle. Semin Cell Dev Biol 2017; 69:26-33. [PMID: 28736206 DOI: 10.1016/j.semcdb.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 01/19/2023]
Abstract
BPAG1, also known as Dystonin or BP230, belongs to the plakin family of proteins, which has multiple cytoskeleton-binding domains. Several BPAG1 isoforms are produced by a single BPAG1 genomic locus using different promoters and exons. For example, BPAG1a, BPAG1b, and BPAG1e are predominantly expressed in the nervous system, muscle, and skin, respectively. Among BPAG1 isoforms, BPAG1e is well studied because it was first identified as an autoantigen in patients with bullous pemphigoid, an autoimmune skin disease. BPAG1e is a component of hemidesmosomes, the adhesion complexes that promote dermal-epidermal cohesion. In the nervous system, the role of BPAG1a is also well studied because disruption of BPAG1a results in a phenotype identical to that of Dystonia musculorum (dt) mutants, which show progressive motor disorder. However, the expression and function of BPAG1 in muscles is not well studied. The aim of this review is to provide an overview of and highlight some recent findings on the expression and function of BPAG1 in muscles, which can assist future studies designed to delineate the role and regulation of BPAG1 in the dt mouse phenotype and in human hereditary sensory and autonomic neuropathy type 6 (HSAN6).
Collapse
Affiliation(s)
- Masao Horie
- Division of Neurobiology and Anatomy, Niigata University, Niigata 951-8510, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Niigata University, Niigata 951-8510, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Niigata University, Niigata 951-8510, Japan.
| |
Collapse
|
20
|
Yang C, Wu F, Lu X, Jiang M, Liu W, Yu L, Tian J, Wen H. Growth arrest specific gene 2 in tilapia (Oreochromis niloticus): molecular characterization and functional analysis under low-temperature stress. BMC Mol Biol 2017; 18:18. [PMID: 28716034 PMCID: PMC5514492 DOI: 10.1186/s12867-017-0095-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth arrest specific 2 (gas2) gene is a component of the microfilament system that plays a major role in the cell cycle, regulation of microfilaments, and cell morphology during apoptotic processes. However, little information is available on fish gas2. In this study, the tilapia (Oreochromis niloticus) gas2 gene was cloned and characterized for the first time. RESULTS The open reading frame was 1020 bp, encoding 340 amino acids; the 5'-untranslated region (UTR) was 140 bp and the 3'-UTR was 70 bp, with a poly (A) tail. The highest promoter activity occurred in the regulatory region (-3000 to -2400 bp). The Gas2-GFP fusion protein was distributed within the cytoplasm. Quantitative reverse transcription-polymerase chain reaction and western blot analyses revealed that gas2 gene expression levels in the liver, muscle, and brain were clearly affected by low temperature stress. The results of gas2 RNAi showed decreased expression of the gas2 and P53 genes. CONCLUSION These results suggest that the tilapia gas2 gene may be involved in low temperature stress-induced apoptosis.
Collapse
Affiliation(s)
- ChangGeng Yang
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Fan Wu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Ming Jiang
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Wei Liu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Lijuan Yu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Juan Tian
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Hua Wen
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
21
|
Zhao W, Qian H, Zhang R, Gao X, Gou X. MicroRNA targeting microtubule cross-linked protein (MACF1) would suppress the invasion and metastasis of malignant tumor. Med Hypotheses 2017; 104:25-29. [DOI: 10.1016/j.mehy.2017.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/06/2017] [Indexed: 12/31/2022]
|
22
|
Nashchekin D, Fernandes AR, St Johnston D. Patronin/Shot Cortical Foci Assemble the Noncentrosomal Microtubule Array that Specifies the Drosophila Anterior-Posterior Axis. Dev Cell 2017; 38:61-72. [PMID: 27404359 PMCID: PMC4943857 DOI: 10.1016/j.devcel.2016.06.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/03/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
Noncentrosomal microtubules play an important role in polarizing differentiated cells, but little is known about how these microtubules are organized. Here we identify the spectraplakin, Short stop (Shot), as the cortical anchor for noncentrosomal microtubule organizing centers (ncMTOCs) in the Drosophila oocyte. Shot interacts with the cortex through its actin-binding domain and recruits the microtubule minus-end-binding protein, Patronin, to form cortical ncMTOCs. Shot/Patronin foci do not co-localize with γ-tubulin, suggesting that they do not nucleate new microtubules. Instead, they capture and stabilize existing microtubule minus ends, which then template new microtubule growth. Shot/Patronin foci are excluded from the oocyte posterior by the Par-1 polarity kinase to generate the polarized microtubule network that localizes axis determinants. Both proteins also accumulate apically in epithelial cells, where they are required for the formation of apical-basal microtubule arrays. Thus, Shot/Patronin ncMTOCs may provide a general mechanism for organizing noncentrosomal microtubules in differentiated cells. The Drosophila spectraplakin, Shot, recruits Patronin to form noncentrosomal MTOCs The actin-binding domain of Shot anchors the ncMTOCs to the oocyte cortex Par-1 excludes Shot from the posterior cortex to define the anterior-posterior axis Shot/Patronin ncMTOCs lack γ-tubulin and grow MTs from stabilized minus-end stumps
Collapse
Affiliation(s)
- Dmitry Nashchekin
- The Gurdon Institute and the Department of Genetics, the University of Cambridge, Cambridge CB2 1QN, UK
| | - Artur Ribeiro Fernandes
- The Gurdon Institute and the Department of Genetics, the University of Cambridge, Cambridge CB2 1QN, UK
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, the University of Cambridge, Cambridge CB2 1QN, UK.
| |
Collapse
|
23
|
Ali A, Hu L, Zhao F, Qiu W, Wang P, Ma X, Zhang Y, Chen L, Qian A. BPAG1, a distinctive role in skin and neurological diseases. Semin Cell Dev Biol 2017. [PMID: 28627382 DOI: 10.1016/j.semcdb.2017.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spectraplakins are multifunctional cytoskeletal linker proteins that act as important communicators, connecting cytoskeletal components with each other and to cellular junctions. Bullous pemphigoid antigen 1 (BPAG1)/dystonin is a member of spectraplakin family and expressed in various tissues. Alternative splicing of BPAG1 gene produces various isoforms with unique structure and domains. BPAG1 plays crucial roles in numerous biological processes, such as cytoskeleton organization, cell polarization, cell adhesion, and cell migration as well as signaling transduction. Genetic mutation of BPAG1 isoforms is the miscreant of epidermolysis bullosa and multifarious, destructive neurological diseases. In this review, we summarize the recent advances of BPAG1's role in various biological processes and in skin and neurological diseases.
Collapse
Affiliation(s)
- Arshad Ali
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Fan Zhao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Wuxia Qiu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Pai Wang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Xiaoli Ma
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Yan Zhang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Lei Chen
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China.
| |
Collapse
|
24
|
Lane TR, Fuchs E, Slep KC. Structure of the ACF7 EF-Hand-GAR Module and Delineation of Microtubule Binding Determinants. Structure 2017; 25:1130-1138.e6. [PMID: 28602822 DOI: 10.1016/j.str.2017.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/14/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Spectraplakins are large molecules that cross-link F-actin and microtubules (MTs). Mutations in spectraplakins yield defective cell polarization, aberrant focal adhesion dynamics, and dystonia. We present the 2.8 Å crystal structure of the hACF7 EF1-EF2-GAR MT-binding module and delineate the GAR residues critical for MT binding. The EF1-EF2 and GAR domains are autonomous domains connected by a flexible linker. The EF1-EF2 domain is an EFβ-scaffold with two bound Ca2+ ions that straddle an N-terminal α helix. The GAR domain has a unique α/β sandwich fold that coordinates Zn2+. While the EF1-EF2 domain is not sufficient for MT binding, the GAR domain is and likely enhances EF1-EF2-MT engagement. Residues in a conserved basic patch, distal to the GAR domain's Zn2+-binding site, mediate MT binding.
Collapse
Affiliation(s)
- Thomas R Lane
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Molecular and Cellular Biophysics Program, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA; Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - Kevin C Slep
- Molecular and Cellular Biophysics Program, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
25
|
Moffat JJ, Ka M, Jung EM, Smith AL, Kim WY. The role of MACF1 in nervous system development and maintenance. Semin Cell Dev Biol 2017; 69:9-17. [PMID: 28579452 DOI: 10.1016/j.semcdb.2017.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/12/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
Microtubule-actin crosslinking factor 1 (MACF1), also known as actin crosslinking factor 7 (ACF7), is essential for proper modulation of actin and microtubule cytoskeletal networks. Most MACF1 isoforms are expressed broadly in the body, but some are exclusively found in the nervous system. Consequentially, MACF1 is integrally involved in multiple neural processes during development and in adulthood, including neurite outgrowth and neuronal migration. Furthermore, MACF1 participates in several signaling pathways, including the Wnt/β-catenin and GSK-3 signaling pathways, which regulate key cellular processes, such as proliferation and cell migration. Genetic mutation or dysregulation of the MACF1 gene has been associated with neurodevelopmental and neurodegenerative diseases, specifically schizophrenia and Parkinson's disease. MACF1 may also play a part in neuromuscular disorders and have a neuroprotective role in the optic nerve. In this review, the authors seek to synthesize recent findings relating to the roles of MACF1 within the nervous system and explore potential novel functions of MACF1 not yet examined.
Collapse
Affiliation(s)
- Jeffrey J Moffat
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Minhan Ka
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Eui-Man Jung
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Amanda L Smith
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Woo-Yang Kim
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
26
|
Konietzny A, Bär J, Mikhaylova M. Dendritic Actin Cytoskeleton: Structure, Functions, and Regulations. Front Cell Neurosci 2017; 11:147. [PMID: 28572759 PMCID: PMC5435805 DOI: 10.3389/fncel.2017.00147] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/05/2017] [Indexed: 12/28/2022] Open
Abstract
Actin is a versatile and ubiquitous cytoskeletal protein that plays a major role in both the establishment and the maintenance of neuronal polarity. For a long time, the most prominent roles that were attributed to actin in neurons were the movement of growth cones, polarized cargo sorting at the axon initial segment, and the dynamic plasticity of dendritic spines, since those compartments contain large accumulations of actin filaments (F-actin) that can be readily visualized using electron- and fluorescence microscopy. With the development of super-resolution microscopy in the past few years, previously unknown structures of the actin cytoskeleton have been uncovered: a periodic lattice consisting of actin and spectrin seems to pervade not only the whole axon, but also dendrites and even the necks of dendritic spines. Apart from that striking feature, patches of F-actin and deep actin filament bundles have been described along the lengths of neurites. So far, research has been focused on the specific roles of actin in the axon, while it is becoming more and more apparent that in the dendrite, actin is not only confined to dendritic spines, but serves many additional and important functions. In this review, we focus on recent developments regarding the role of actin in dendrite morphology, the regulation of actin dynamics by internal and external factors, and the role of F-actin in dendritic protein trafficking.
Collapse
Affiliation(s)
- Anja Konietzny
- DFG Emmy Noether Group 'Neuronal Protein Transport,' Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Julia Bär
- DFG Emmy Noether Group 'Neuronal Protein Transport,' Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Marina Mikhaylova
- DFG Emmy Noether Group 'Neuronal Protein Transport,' Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-EppendorfHamburg, Germany
| |
Collapse
|
27
|
Hu L, Su P, Li R, Yin C, Zhang Y, Shang P, Yang T, Qian A. Isoforms, structures, and functions of versatile spectraplakin MACF1. BMB Rep 2016; 49:37-44. [PMID: 26521939 PMCID: PMC4914211 DOI: 10.5483/bmbrep.2016.49.1.185] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 11/20/2022] Open
Abstract
Spectraplakins are crucially important communicators, linking cytoskeletal components to each other and cellular junctions. Microtubule actin crosslinking factor 1 (MACF1), also known as actin crosslinking family 7 (ACF7), is a member of the spectraplakin family. It is expressed in numerous tissues and cells as one extensively studied spectraplakin. MACF1 has several isoforms with unique structures and well-known function to be able to crosslink F-actin and microtubules. MACF1 is one versatile spectraplakin with various functions in cell processes, embryo development, tissue-specific functions, and human diseases. The importance of MACF1 has become more apparent in recent years. Here, we summarize the current knowledge on the presence and function of MACF1 and provide perspectives on future research of MACF1 based on our studies and others. [BMB Reports 2016; 49(1): 37-44]
Collapse
Affiliation(s)
- Lifang Hu
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peihong Su
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Runzhi Li
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chong Yin
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tuanmin Yang
- Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P. R. China
| | - Airong Qian
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
28
|
Voelzmann A, Hahn I, Pearce SP, Sánchez-Soriano N, Prokop A. A conceptual view at microtubule plus end dynamics in neuronal axons. Brain Res Bull 2016; 126:226-237. [PMID: 27530065 PMCID: PMC5090033 DOI: 10.1016/j.brainresbull.2016.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 12/02/2022]
Abstract
Axons are the cable-like protrusions of neurons which wire up the nervous system. Polar bundles of microtubules (MTs) constitute their structural backbones and are highways for life-sustaining transport between proximal cell bodies and distal synapses. Any morphogenetic changes of axons during development, plastic rearrangement, regeneration or degeneration depend on dynamic changes of these MT bundles. A key mechanism for implementing such changes is the coordinated polymerisation and depolymerisation at the plus ends of MTs within these bundles. To gain an understanding of how such regulation can be achieved at the cellular level, we provide here an integrated overview of the extensive knowledge we have about the molecular mechanisms regulating MT de/polymerisation. We first summarise insights gained from work in vitro, then describe the machinery which supplies the essential tubulin building blocks, the protein complexes associating with MT plus ends, and MT shaft-based mechanisms that influence plus end dynamics. We briefly summarise the contribution of MT plus end dynamics to important cellular functions in axons, and conclude by discussing the challenges and potential strategies of integrating the existing molecular knowledge into conceptual understanding at the level of axons.
Collapse
Affiliation(s)
- André Voelzmann
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Ines Hahn
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon P Pearce
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; The University of Manchester, School of Mathematics, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
| | - Natalia Sánchez-Soriano
- University of Liverpool, Institute of Translational Medicine, Department of Cellular and Molecular Physiology, Crown Street, Liverpool, L69 3BX, UK
| | - Andreas Prokop
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
29
|
Hu L, Su P, Li R, Yan K, Chen Z, Shang P, Qian A. Knockdown of microtubule actin crosslinking factor 1 inhibits cell proliferation in MC3T3-E1 osteoblastic cells. BMB Rep 2016; 48:583-8. [PMID: 26277981 PMCID: PMC4911186 DOI: 10.5483/bmbrep.2015.48.10.098] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 01/12/2023] Open
Abstract
Microtubule actin crosslinking factor 1 (MACF1), a widely expressed cytoskeletal linker, plays important roles in various cells by regulating cytoskeleton dynamics. However, its role in osteoblastic cells is not well understood. Based on our previous findings that the association of MACF1 with F-actin and microtubules in osteoblast-like cells was altered under magnetic force conditions, here, by adopting a stable MACF1-knockdown MC3T3-E1 osteoblastic cell line, we found that MACF1 knockdown induced large cells with a binuclear/multinuclear structure. Further, immunofluorescence staining showed disorganization of F-actin and microtubules in MACF1-knockdown cells. Cell counting revealed significant decrease of cell proliferation and cell cycle analysis showed an S phase cell cycle arrest in MACF1-knockdown cells. Moreover and interestingly, MACF1 knockdown showed a potential effect on cellular MTT reduction activity and mitochondrial content, suggesting an impact on cellular metabolic activity. These results together indicate an important role of MACF1 in regulating osteoblastic cell morphology and function. [BMB Reports 2015; 48(10): 583-588]
Collapse
Affiliation(s)
- Lifang Hu
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Peihong Su
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Runzhi Li
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Kun Yan
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Zhihao Chen
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Airong Qian
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| |
Collapse
|
30
|
Khanal I, Elbediwy A, Diaz de la Loza MDC, Fletcher GC, Thompson BJ. Shot and Patronin polarise microtubules to direct membrane traffic and biogenesis of microvilli in epithelia. J Cell Sci 2016; 129:2651-9. [PMID: 27231092 PMCID: PMC4958304 DOI: 10.1242/jcs.189076] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023] Open
Abstract
In epithelial tissues, polarisation of microtubules and actin microvilli occurs along the apical-basal axis of each cell, yet how these cytoskeletal polarisation events are coordinated remains unclear. Here, we examine the hierarchy of events during cytoskeletal polarisation in Drosophila melanogaster epithelia. Core apical-basal polarity determinants polarise the spectrin cytoskeleton to recruit the microtubule-binding proteins Patronin (CAMSAP1, CAMSAP2 and CAMSAP3 in humans) and Shortstop [Shot; MACF1 and BPAG1 (also known as DST) in humans] to the apical membrane domain. Patronin and Shot then act to polarise microtubules along the apical-basal axis to enable apical transport of Rab11 endosomes by the Nuf-Dynein microtubule motor complex. Finally, Rab11 endosomes are transferred to the MyoV (also known as Didum in Drosophila) actin motor to deliver the key microvillar determinant Cadherin 99C to the apical membrane to organise the biogenesis of actin microvilli.
Collapse
Affiliation(s)
- Ichha Khanal
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ahmed Elbediwy
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | - Barry J Thompson
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
31
|
van de Willige D, Hoogenraad CC, Akhmanova A. Microtubule plus-end tracking proteins in neuronal development. Cell Mol Life Sci 2016; 73:2053-77. [PMID: 26969328 PMCID: PMC4834103 DOI: 10.1007/s00018-016-2168-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/04/2016] [Accepted: 02/22/2016] [Indexed: 11/28/2022]
Abstract
Regulation of the microtubule cytoskeleton is of pivotal importance for neuronal development and function. One such regulatory mechanism centers on microtubule plus-end tracking proteins (+TIPs): structurally and functionally diverse regulatory factors, which can form complex macromolecular assemblies at the growing microtubule plus-ends. +TIPs modulate important properties of microtubules including their dynamics and their ability to control cell polarity, membrane transport and signaling. Several neurodevelopmental and neurodegenerative diseases are associated with mutations in +TIPs or with misregulation of these proteins. In this review, we focus on the role and regulation of +TIPs in neuronal development and associated disorders.
Collapse
Affiliation(s)
- Dieudonnée van de Willige
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
32
|
Girdler GC, Applewhite DA, Perry WMG, Rogers SL, Röper K. The Gas2 family protein Pigs is a microtubule +TIP that affects cytoskeleton organisation. J Cell Sci 2016; 129:121-34. [PMID: 26585311 PMCID: PMC4732294 DOI: 10.1242/jcs.176230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022] Open
Abstract
Coordination between different cytoskeletal systems is crucial for many cell biological functions, including cell migration and mitosis, and also plays an important role during tissue morphogenesis. Proteins of the class of cytoskeletal crosslinkers, or cytolinkers, have the ability to interact with more than one cytoskeletal system at a time and are prime candidates to mediate any coordination. One such class comprises the Gas2-like proteins, combining a conserved calponin-homology-type actin-binding domain and a Gas2 domain predicted to bind microtubules (MTs). This domain combination is also found in spectraplakins, huge cytolinkers that play important roles in many tissues in both invertebrates and vertebrates. Here, we dissect the ability of the single Drosophila Gas2-like protein Pigs to interact with both actin and MT cytoskeletons, both in vitro and in vivo, and illustrate complex regulatory interactions that determine the localisation of Pigs to and its effects on the cytoskeleton.
Collapse
Affiliation(s)
- Gemma C Girdler
- MRC-Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Derek A Applewhite
- Department of Biology & Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Campus Box 3280, 422 Fordham Hall, Chapel Hill, NC 27599-3280, USA Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Wick M G Perry
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Stephen L Rogers
- Department of Biology & Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Campus Box 3280, 422 Fordham Hall, Chapel Hill, NC 27599-3280, USA
| | - Katja Röper
- MRC-Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
33
|
Functional and Genetic Analysis of VAB-10 Spectraplakin in Caenorhabditis elegans. Methods Enzymol 2016; 569:407-30. [DOI: 10.1016/bs.mie.2015.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Nuclear deformability and telomere dynamics are regulated by cell geometric constraints. Proc Natl Acad Sci U S A 2015; 113:E32-40. [PMID: 26699462 DOI: 10.1073/pnas.1513189113] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Forces generated by the cytoskeleton can be transmitted to the nucleus and chromatin via physical links on the nuclear envelope and the lamin meshwork. Although the role of these active forces in modulating prestressed nuclear morphology has been well studied, the effect on nuclear and chromatin dynamics remains to be explored. To understand the regulation of nuclear deformability by these active forces, we created different cytoskeletal states in mouse fibroblasts using micropatterned substrates. We observed that constrained and isotropic cells, which lack long actin stress fibers, have more deformable nuclei than elongated and polarized cells. This nuclear deformability altered in response to actin, myosin, formin perturbations, or a transcriptional down-regulation of lamin A/C levels in the constrained and isotropic geometry. Furthermore, to probe the effect of active cytoskeletal forces on chromatin dynamics, we tracked the spatiotemporal dynamics of heterochromatin foci and telomeres. We observed increased dynamics and decreased correlation of the heterochromatin foci and telomere trajectories in constrained and isotropic cell geometry. The observed enhanced dynamics upon treatment with actin depolymerizing reagents in elongated and polarized geometry were regained once the reagent was washed off, suggesting an inherent structural memory in chromatin organization. We conclude that active forces from the cytoskeleton and rigidity from lamin A/C nucleoskeleton can together regulate nuclear and chromatin dynamics. Because chromatin remodeling is a necessary step in transcription control and its memory, genome integrity, and cellular deformability during migration, our results highlight the importance of cell geometric constraints as critical regulators in cell behavior.
Collapse
|
35
|
Gamper I, Fleck D, Barlin M, Spehr M, El Sayad S, Kleine H, Maxeiner S, Schalla C, Aydin G, Hoss M, Litchfield DW, Lüscher B, Zenke M, Sechi A. GAR22β regulates cell migration, sperm motility, and axoneme structure. Mol Biol Cell 2015; 27:277-94. [PMID: 26564797 PMCID: PMC4713131 DOI: 10.1091/mbc.e15-06-0426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/06/2015] [Indexed: 01/24/2023] Open
Abstract
Spatiotemporal cytoskeleton remodeling is crucial for several biological processes. GAR22β interacts with EB1 via a novel noncanonical amino acid sequence and is pivotal for cell motility and focal adhesion turnover. GAR22β is also crucial for generation, motility, and ultrastructural organization of spermatozoa. Spatiotemporal cytoskeleton remodeling is pivotal for cell adhesion and migration. Here we investigated the function of Gas2-related protein on chromosome 22 (GAR22β), a poorly characterized protein that interacts with actin and microtubules. Primary and immortalized GAR22β−/− Sertoli cells moved faster than wild-type cells. In addition, GAR22β−/− cells showed a more prominent focal adhesion turnover. GAR22β overexpression or its reexpression in GAR22β−/− cells reduced cell motility and focal adhesion turnover. GAR22β–actin interaction was stronger than GAR22β–microtubule interaction, resulting in GAR22β localization and dynamics that mirrored those of the actin cytoskeleton. Mechanistically, GAR22β interacted with the regulator of microtubule dynamics end-binding protein 1 (EB1) via a novel noncanonical amino acid sequence, and this GAR22β–EB1 interaction was required for the ability of GAR22β to modulate cell motility. We found that GAR22β is highly expressed in mouse testes, and its absence resulted in reduced spermatozoa generation, lower actin levels in testes, and impaired motility and ultrastructural disorganization of spermatozoa. Collectively our findings identify GAR22β as a novel regulator of cell adhesion and migration and provide a foundation for understanding the molecular basis of diverse cytoskeleton-dependent processes.
Collapse
Affiliation(s)
- Ivonne Gamper
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, D-52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, D-52074 Aachen, Germany
| | - David Fleck
- Institute for Biology II, Department of Chemosensation, RWTH Aachen University, D-52074 Aachen, Germany
| | - Meltem Barlin
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, D-52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, D-52074 Aachen, Germany
| | - Marc Spehr
- Institute for Biology II, Department of Chemosensation, RWTH Aachen University, D-52074 Aachen, Germany
| | - Sara El Sayad
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, D-52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, D-52074 Aachen, Germany
| | - Henning Kleine
- Institute of Biochemistry and Molecular Biology, Uniklinik RWTH Aachen, D-52074 Aachen, Germany
| | - Sebastian Maxeiner
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, D-52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, D-52074 Aachen, Germany
| | - Carmen Schalla
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, D-52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, D-52074 Aachen, Germany
| | - Gülcan Aydin
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, D-52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, D-52074 Aachen, Germany
| | - Mareike Hoss
- Electron Microscopy Facility, Uniklinik RWTH Aachen, D-52074 Aachen, Germany
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Uniklinik RWTH Aachen, D-52074 Aachen, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, D-52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, D-52074 Aachen, Germany
| | - Antonio Sechi
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, D-52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
36
|
Microtubule-Actin Crosslinking Factor 1 Is Required for Dendritic Arborization and Axon Outgrowth in the Developing Brain. Mol Neurobiol 2015; 53:6018-6032. [PMID: 26526844 DOI: 10.1007/s12035-015-9508-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/22/2015] [Indexed: 12/20/2022]
Abstract
Dendritic arborization and axon outgrowth are critical steps in the establishment of neural connectivity in the developing brain. Changes in the connectivity underlie cognitive dysfunction in neurodevelopmental disorders. However, molecules and associated mechanisms that play important roles in dendritic and axon outgrowth in the brain are only partially understood. Here, we show that microtubule-actin crosslinking factor 1 (MACF1) regulates dendritic arborization and axon outgrowth of developing pyramidal neurons by arranging cytoskeleton components and mediating GSK-3 signaling. MACF1 deletion using conditional mutant mice and in utero gene transfer in the developing brain markedly decreased dendritic branching of cortical and hippocampal pyramidal neurons. MACF1-deficient neurons showed reduced density and aberrant morphology of dendritic spines. Also, loss of MACF1 impaired the elongation of callosal axons in the brain. Actin and microtubule arrangement appeared abnormal in MACF1-deficient neurites. Finally, we found that GSK-3 is associated with MACF1-controlled dendritic differentiation. Our findings demonstrate a novel role for MACF1 in neurite differentiation that is critical to the creation of neuronal connectivity in the developing brain.
Collapse
|
37
|
Dubey J, Ratnakaran N, Koushika SP. Neurodegeneration and microtubule dynamics: death by a thousand cuts. Front Cell Neurosci 2015; 9:343. [PMID: 26441521 PMCID: PMC4563776 DOI: 10.3389/fncel.2015.00343] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022] Open
Abstract
Microtubules form important cytoskeletal structures that play a role in establishing and maintaining neuronal polarity, regulating neuronal morphology, transporting cargo, and scaffolding signaling molecules to form signaling hubs. Within a neuronal cell, microtubules are found to have variable lengths and can be both stable and dynamic. Microtubule associated proteins, post-translational modifications of tubulin subunits, microtubule severing enzymes, and signaling molecules are all known to influence both stable and dynamic pools of microtubules. Microtubule dynamics, the process of interconversion between stable and dynamic pools, and the proportions of these two pools have the potential to influence a wide variety of cellular processes. Reduced microtubule stability has been observed in several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), and tauopathies like Progressive Supranuclear Palsy. Hyperstable microtubules, as seen in Hereditary Spastic Paraplegia (HSP), also lead to neurodegeneration. Therefore, the ratio of stable and dynamic microtubules is likely to be important for neuronal function and perturbation in microtubule dynamics might contribute to disease progression.
Collapse
Affiliation(s)
- Jyoti Dubey
- Department of Biological Sciences, Tata Institute of Fundamental Research Mumbai, India ; InStem Bangalore, India
| | - Neena Ratnakaran
- Department of Biological Sciences, Tata Institute of Fundamental Research Mumbai, India
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research Mumbai, India
| |
Collapse
|
38
|
Walter WJ, Machens I, Rafieian F, Diez S. The non-processive rice kinesin-14 OsKCH1 transports actin filaments along microtubules with two distinct velocities. NATURE PLANTS 2015; 1:15111. [PMID: 27250543 DOI: 10.1038/nplants.2015.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/02/2015] [Indexed: 05/28/2023]
Abstract
Microtubules and actin filaments function coordinately in many cellular processes(1-3). Although much of this coordination is mediated by proteins that statically bridge the two cytoskeletal networks(4-6), kinesin-14 motors with an actin binding calponin homology domain (KCHs) have been discovered as putatively dynamic crosslinkers in plants(7,8). OsKCH1, a KCH from rice, interacts with both microtubules and actin filaments in vivo and in vitro(9). However, it has remained unclear whether this interaction is dynamic or if actin binding reduces or even abolishes the motor's motility on microtubules(10,11). Here, we directly show in vitro that OsKCH1 is a non-processive, minus-end-directed motor that transports actin filaments along microtubules. Interestingly, we observe two distinct transport velocities dependent on the relative orientation of the actin filaments with respect to the microtubules. In addition, torsional compliance measurements on individual molecules reveal low flexibility in OsKCH1. We suggest that the orientation-dependent transport velocities emerge from OsKCH1's low torsional compliance combined with an inherently oriented binding to the actin filament. Together, our results imply a central role of OsKCH1 in the polar orientation of actin filaments along microtubules, and thus a contribution to the organization of the cytoskeletal architecture.
Collapse
Affiliation(s)
- Wilhelm J Walter
- Molecular Plant Physiology, Biocentre Klein Flottbek, University of Hamburg, 22609 Hamburg, Germany
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Isabel Machens
- Molecular Plant Physiology, Biocentre Klein Flottbek, University of Hamburg, 22609 Hamburg, Germany
| | - Fereshteh Rafieian
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
39
|
Abstract
The cytoskeleton is a dynamic network of filamentous protein polymers required for virtually all cellular processes. It consists of three major classes, filamentous actin (F-actin), intermediate filaments, and microtubules, all displaying characteristic structural properties, functions, cellular distributions, and sets of interacting regulatory proteins. One unique class of proteins, the spectraplakins, bind, regulate, and integrate the functions of all three classes of cytoskeleton proteins. Spectraplakins are giant, evolutionary conserved multidomain proteins (spanning up to 9000 aa) that are true members of the plakin, spectrin, and Gas2-like protein families. They have OMIM-listed disease links to epidermolysis bullosa and hereditary sensory and autonomic neuropathy. Their role in disease is likely underrepresented since studies in model animal systems have revealed critical roles in polarity, morphogenesis, differentiation and maintenance, migration, signaling, and intracellular trafficking in a variety of tissues. This enormous diversity of spectraplakin function is consistent with the numerous isoforms produced from single genomic loci that combine different sets of functional domains in distinct cellular contexts. To study the broad range of functions and complexity of these proteins, Drosophila is a powerful model. Thus, the fly spectraplakin Short stop (Shot) acts as an actin-microtubule linker and plays important roles in many developmental processes, which provide experimentally amenable and relevant contexts in which to study spectraplakin functions. For these studies, a versatile range of relevant experimental resources that facilitate genetics and transgenic approaches, highly refined genomics tools, and an impressive set of spectraplakin-specific genetic and molecular tools are readily available. Here, we use the example of Shot to illustrate how the various tools and strategies available for Drosophila can be employed to decipher and dissect cellular roles and molecular mechanisms of spectraplakins.
Collapse
|
40
|
Ali O, Cerjak D, Kent JW, James R, Blangero J, Carless MA, Zhang Y. An epigenetic map of age-associated autosomal loci in northern European families at high risk for the metabolic syndrome. Clin Epigenetics 2015; 7:12. [PMID: 25806089 PMCID: PMC4372177 DOI: 10.1186/s13148-015-0048-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/16/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The prevalence of chronic diseases such as cancer, type 2 diabetes, metabolic syndrome (MetS), and cardiovascular disease increases with age in all populations. Epigenetic features are hypothesized to play important roles in the pathophysiology of age-associated diseases, but a map of these markers is lacking. We searched for genome-wide age-associated methylation signatures in peripheral blood of individuals at high risks for MetS by profiling 485,000 CpG sites in 192 individuals of Northern European ancestry using the Illumina HM450 array. Subjects (ages 6-85 years) were part of seven extended families, and 73% of adults and 32% of children were overweight or obese. RESULTS We found 22,122 genome-wide significant age-associated CpG sites (P α=0.05 = 3.65 × 10(-7) after correction for multiple testing) of which 14,155 are positively associated with age while 7,967 are negatively associated. By applying a positional density-based clustering algorithm, we generated a map of epigenetic 'hot-spots' of age-associated genomic segments, which include 290 age-associated differentially methylated CpG clusters (aDMCs), of which 207 are positively associated with age. Gene/pathway enrichment analyses were performed on these clusters using FatiGO. Genes localized to both the positively (n = 241) and negatively (n = 16) age-associated clusters are significantly enriched in specific KEGG pathways and GO terms. The most significantly enriched pathways are the hedgehog signaling pathway (adjusted P = 3.96 × 10(-3)) and maturity-onset diabetes of the young (MODY) (adjusted P = 6.26 × 10(-3)) in the positive aDMCs and type I diabetes mellitus (adjusted P = 3.69 × 10(-7)) in the negative aDMCs. We also identified several epigenetic loci whose age-associated change rates differ between subjects diagnosed with MetS and those without. CONCLUSION We conclude that in a family cohort at high risk for MetS, age-associated epigenetic features enrich in biological pathways important for determining the fate of fat cells and for insulin production. We also observe that several genes known to be related to MetS show differential epigenetic response to age in individuals with and without MetS.
Collapse
Affiliation(s)
- Omar Ali
- />Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin USA
| | - Diana Cerjak
- />TOPS Obesity and Metabolic Research Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin USA
- />Human and Molecular Genetics Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, Wisconsin USA
| | - Jack W Kent
- />Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas USA
| | - Roland James
- />TOPS Obesity and Metabolic Research Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin USA
- />Human and Molecular Genetics Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, Wisconsin USA
| | - John Blangero
- />Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas USA
| | - Melanie A Carless
- />Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas USA
| | - Yi Zhang
- />TOPS Obesity and Metabolic Research Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin USA
- />Human and Molecular Genetics Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, Wisconsin USA
| |
Collapse
|
41
|
Patel DM, Dubash AD, Kreitzer G, Green KJ. Disease mutations in desmoplakin inhibit Cx43 membrane targeting mediated by desmoplakin-EB1 interactions. ACTA ACUST UNITED AC 2014; 206:779-97. [PMID: 25225338 PMCID: PMC4164953 DOI: 10.1083/jcb.201312110] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanisms by which microtubule plus ends interact with regions of cell-cell contact during tissue development and morphogenesis are not fully understood. We characterize a previously unreported interaction between the microtubule binding protein end-binding 1 (EB1) and the desmosomal protein desmoplakin (DP), and demonstrate that DP-EB1 interactions enable DP to modify microtubule organization and dynamics near sites of cell-cell contact. EB1 interacts with a region of the DP N terminus containing a hotspot for pathogenic mutations associated with arrhythmogenic cardiomyopathy (AC). We show that a subset of AC mutations, in addition to a mutation associated with skin fragility/woolly hair syndrome, impair gap junction localization and function by misregulating DP-EB1 interactions and altering microtubule dynamics. This work identifies a novel function for a desmosomal protein in regulating microtubules that affect membrane targeting of gap junction components, and elucidates a mechanism by which DP mutations may contribute to the development of cardiac and cutaneous diseases.
Collapse
Affiliation(s)
- Dipal M Patel
- Department of Pathology and Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Adi D Dubash
- Department of Pathology and Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Geri Kreitzer
- Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, New York, NY 10065
| | - Kathleen J Green
- Department of Pathology and Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 Department of Pathology and Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
42
|
Kapur M, Maloney MT, Wang W, Chen X, Millan I, Mooney T, Yang J, Yang Y. A SxIP motif interaction at the microtubule plus end is important for processive retrograde axonal transport. Cell Mol Life Sci 2014; 71:4043-54. [PMID: 24687423 PMCID: PMC11113670 DOI: 10.1007/s00018-014-1611-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/21/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
The retrograde transport of endosomes within axons proceeds with remarkable uniformity despite having to navigate a discontinuous microtubule network. The mechanisms through which this navigation is achieved remain elusive. In this report, we demonstrate that access of SxIP motif proteins, such as BPAG1n4, to the microtubule plus end is important for the maintenance of processive and sustained retrograde transport along the axon. Disruption of this interaction at the microtubule plus end significantly increases endosome stalling. Our study thus provides strong insight into the role of plus-end-binding proteins in the processive navigation of cargo within the axon.
Collapse
Affiliation(s)
- Mridu Kapur
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 1201 Welch Road, MSLS, P259, Stanford, CA 94305 USA
| | - Michael T. Maloney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 1201 Welch Road, MSLS, P259, Stanford, CA 94305 USA
| | - Wei Wang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 1201 Welch Road, MSLS, P259, Stanford, CA 94305 USA
| | - Xinyu Chen
- Department of Biochemistry and Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ivan Millan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 1201 Welch Road, MSLS, P259, Stanford, CA 94305 USA
| | - Trevor Mooney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 1201 Welch Road, MSLS, P259, Stanford, CA 94305 USA
| | - Jie Yang
- Department of Biochemistry and Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanmin Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 1201 Welch Road, MSLS, P259, Stanford, CA 94305 USA
| |
Collapse
|
43
|
Global profiling of co- and post-translationally N-myristoylated proteomes in human cells. Nat Commun 2014; 5:4919. [PMID: 25255805 PMCID: PMC4200515 DOI: 10.1038/ncomms5919] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 08/05/2014] [Indexed: 02/08/2023] Open
Abstract
Protein N-myristoylation is a ubiquitous co- and post-translational modification that has been implicated in the development and progression of a range of human diseases. Here, we report the global N-myristoylated proteome in human cells determined using quantitative chemical proteomics combined with potent and specific human N-myristoyltransferase (NMT) inhibition. Global quantification of N-myristoylation during normal growth or apoptosis allowed the identification of >100 N-myristoylated proteins, >95% of which are identified for the first time at endogenous levels. Furthermore, quantitative dose response for inhibition of N-myristoylation is determined for >70 substrates simultaneously across the proteome. Small-molecule inhibition through a conserved substrate-binding pocket is also demonstrated by solving the crystal structures of inhibitor-bound NMT1 and NMT2. The presented data substantially expand the known repertoire of co- and post-translational N-myristoylation in addition to validating tools for the pharmacological inhibition of NMT in living cells. Protein N-myristoylation is a ubiquitous modification implicated in the regulation of multiple cellular processes. Here, Thinon et al. report the development of a general method to identify N-myristoylated proteins in human cells and identify over 100 endogenous post- and co-translational substrates of N-myristoyltransferase.
Collapse
|
44
|
Poliakova K, Adebola A, Leung CL, Favre B, Liem RKH, Schepens I, Borradori L. BPAG1a and b associate with EB1 and EB3 and modulate vesicular transport, Golgi apparatus structure, and cell migration in C2.7 myoblasts. PLoS One 2014; 9:e107535. [PMID: 25244344 PMCID: PMC4171495 DOI: 10.1371/journal.pone.0107535] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022] Open
Abstract
BPAG1a and BPAG1b (BPAG1a/b) constitute two major isoforms encoded by the dystonin (Dst) gene and show homology with MACF1a and MACF1b. These proteins are members of the plakin family, giant multi-modular proteins able to connect the intermediate filament, microtubule and microfilament cytoskeletal networks with each other and to distinct cell membrane sites. They also serve as scaffolds for signaling proteins that modulate cytoskeletal dynamics. To gain better insights into the functions of BPAG1a/b, we further characterized their C-terminal region important for their interaction with microtubules and assessed the role of these isoforms in the cytoskeletal organization of C2.7 myoblast cells. Our results show that alternative splicing does not only occur at the 5′ end of Dst and Macf1 pre-mRNAs, as previously reported, but also at their 3′ end, resulting in expression of additional four mRNA variants of BPAG1 and MACF1. These isoform-specific C-tails were able to bundle microtubules and bound to both EB1 and EB3, two microtubule plus end proteins. In the C2.7 cell line, knockdown of BPAG1a/b had no major effect on the organization of the microtubule and microfilament networks, but negatively affected endocytosis and maintenance of the Golgi apparatus structure, which became dispersed. Finally, knockdown of BPAG1a/b caused a specific decrease in the directness of cell migration, but did not impair initial cell adhesion. These data provide novel insights into the complexity of alternative splicing of Dst pre-mRNAs and into the role of BPAG1a/b in vesicular transport, Golgi apparatus structure as well as in migration in C2.7 myoblasts.
Collapse
Affiliation(s)
- Kseniia Poliakova
- Department of Clinical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
- * E-mail:
| | - Adijat Adebola
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Conrad L. Leung
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Bertrand Favre
- Department of Clinical Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ronald K. H. Liem
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Isabelle Schepens
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Luca Borradori
- Department of Clinical Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
45
|
Ferrier A, Sato T, De Repentigny Y, Gibeault S, Bhanot K, O'Meara RW, Lynch-Godrei A, Kornfeld SF, Young KG, Kothary R. Transgenic expression of neuronal dystonin isoform 2 partially rescues the disease phenotype of the dystonia musculorum mouse model of hereditary sensory autonomic neuropathy VI. Hum Mol Genet 2014; 23:2694-710. [PMID: 24381311 PMCID: PMC3990168 DOI: 10.1093/hmg/ddt663] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/23/2013] [Indexed: 01/08/2023] Open
Abstract
A newly identified lethal form of hereditary sensory and autonomic neuropathy (HSAN), designated HSAN-VI, is caused by a homozygous mutation in the bullous pemphigoid antigen 1 (BPAG1)/dystonin gene (DST). The HSAN-VI mutation impacts all major neuronal BPAG1/dystonin protein isoforms: dystonin-a1, -a2 and -a3. Homozygous mutations in the murine Dst gene cause a severe sensory neuropathy termed dystonia musculorum (dt). Phenotypically, dt mice are similar to HSAN-VI patients, manifesting progressive limb contractures, dystonia, dysautonomia and early postnatal death. To obtain a better molecular understanding of disease pathogenesis in HSAN-VI patients and the dt disorder, we generated transgenic mice expressing a myc-tagged dystonin-a2 protein under the regulation of the neuronal prion protein promoter on the dt(Tg4/Tg4) background, which is devoid of endogenous dystonin-a1 and -a2, but does express dystonin-a3. Restoring dystonin-a2 expression in the nervous system, particularly within sensory neurons, prevented the disorganization of organelle membranes and microtubule networks, attenuated the degeneration of sensory neuron subtypes and ameliorated the phenotype and increased life span in these mice. Despite these improvements, complete rescue was not observed likely because of inadequate expression of the transgene. Taken together, this study provides needed insight into the molecular basis of the dt disorder and other peripheral neuropathies including HSAN-VI.
Collapse
Affiliation(s)
- Andrew Ferrier
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, CanadaK1H 8L6
- Department of Cellular and Molecular Medicine and
| | - Tadasu Sato
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, CanadaK1H 8L6
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, CanadaK1H 8L6
| | - Sabrina Gibeault
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, CanadaK1H 8L6
| | - Kunal Bhanot
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, CanadaK1H 8L6
| | - Ryan W. O'Meara
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, CanadaK1H 8L6
- Department of Cellular and Molecular Medicine and
| | - Anisha Lynch-Godrei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, CanadaK1H 8L6
- Department of Cellular and Molecular Medicine and
| | - Samantha F. Kornfeld
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, CanadaK1H 8L6
- Department of Cellular and Molecular Medicine and
| | - Kevin G. Young
- National Research Council of Canada-Human Health Therapeutics, Ottawa, Ontario, CanadaK1A 0R6
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, CanadaK1H 8L6
- Department of Cellular and Molecular Medicine and
- Department of Medicine, University of Ottawa, Ottawa, Ontario, CanadaK1H 8M5
| |
Collapse
|
46
|
Janmey PA, Slochower DR, Wang YH, Wen Q, Cēbers A. Polyelectrolyte properties of filamentous biopolymers and their consequences in biological fluids. SOFT MATTER 2014; 10:1439-49. [PMID: 24651463 PMCID: PMC4009494 DOI: 10.1039/c3sm50854d] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Anionic polyelectrolyte filaments are common in biological cells. DNA, RNA, the cytoskeletal filaments F-actin, microtubules, and intermediate filaments, and polysaccharides such as hyaluronan that form the pericellular matrix all have large net negative charge densities distributed over their surfaces. Several filamentous viruses with diameters and stiffnesses similar to those of cytoskeletal polymers also have similar negative charge densities. Extracellular protein filaments such collagen, fibrin and elastin, in contrast, have notably smaller charge densities and do not behave as highly charged polyelectrolytes in solution. This review summarizes data that demonstrate generic counterion-mediated effects on four structurally unrelated biopolymers of similar charge density: F-actin, vimentin, Pf1 virus, and DNA, and explores the possible biological and pathophysiological consequences of the polyelectrolyte properties of biological filaments.
Collapse
Affiliation(s)
- Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, 1010 Vagelos Laboratories, 3340 Smith Walk, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
47
|
Fackler M, Wolter P, Gaubatz S. The GAR domain of GAS2L3 mediates binding to the chromosomal passenger complex and is required for localization of GAS2L3 to the constriction zone during abscission. FEBS J 2014; 281:2123-35. [PMID: 24571573 DOI: 10.1111/febs.12766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 12/01/2022]
Abstract
GAS2L3 is a recently identified tubulin- and actin-binding protein that regulates cytokinesis and abscission. In this study we show that GAS2L3 interacts with the chromosomal passenger complex (CPC), which plays key roles in mitosis and cytokinesis. Biochemical assays show that GAS2L3 directly interacts with the C-terminus of borealin and the N-terminus of survivin. We find that the interaction between these two CPC subunits and GAS2L3 is mediated by the conserved GAR domain of GAS2L3. We further show that the GAR domain of GAS2L3 is required for localization of GAS2L3 to the constriction zone. Taken together these data suggest that GAS2L3 is a downstream effector of the CPC during cytokinetic abscission.
Collapse
Affiliation(s)
- Marc Fackler
- Theodor Boveri Institute, Biocenter, and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Germany
| | | | | |
Collapse
|
48
|
Abstract
Morphogenesis of the hermaphrodite gonad of Caenorhabditis elegans is directed by the U-shaped migration of the gonadal leader cells, which are called distal tip cells (DTCs). The nuclei of migrating DTCs are always positioned at the leading edge of the cells, even as these cells turn dorsally to contact the hypodermis and intestine. When the DTCs turn dorsally, VAB-10B1/spectraplakin acts in nuclear translocation by regulating the polarized growth of microtubules. The function of spectraplakin in nuclear positioning may be evolutionarily conserved. Here we discuss the possible reason for leading-edge positioning of the DTC nucleus.
Collapse
Affiliation(s)
- Hon-Song Kim
- Department of Bioscience; Kwansei Gakuin University; Sanda, Japan
| | | |
Collapse
|
49
|
Abstract
Nuclear envelope
spectrin-repeat
proteins (Nesprins), are a novel family of
nuclear and cytoskeletal proteins with rapidly expanding roles as intracellular scaffolds
and linkers. Originally described as proteins that localise to the nuclear envelope (NE)
and establish nuclear-cytoskeletal connections, nesprins have now been found to comprise a
diverse spectrum of tissue specific isoforms that localise to multiple sub-cellular
compartments. Here, we describe how nesprins are necessary in maintaining cellular
architecture by acting as essential scaffolds and linkers at both the NE and other
sub-cellular domains. More importantly, we speculate how nesprin mutations may disrupt
tissue specific nesprin scaffolds and explain the tissue specific nature of many
nesprin-associated diseases, including laminopathies.
Collapse
|
50
|
Prokop A, Beaven R, Qu Y, Sánchez-Soriano N. Using fly genetics to dissect the cytoskeletal machinery of neurons during axonal growth and maintenance. J Cell Sci 2013; 126:2331-41. [PMID: 23729743 DOI: 10.1242/jcs.126912] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The extension of long slender axons is a key process of neuronal circuit formation, both during brain development and regeneration. For this, growth cones at the tips of axons are guided towards their correct target cells by signals. Growth cone behaviour downstream of these signals is implemented by their actin and microtubule cytoskeleton. In the first part of this Commentary, we discuss the fundamental roles of the cytoskeleton during axon growth. We present the various classes of actin- and microtubule-binding proteins that regulate the cytoskeleton, and highlight the important gaps in our understanding of how these proteins functionally integrate into the complex machinery that implements growth cone behaviour. Deciphering such machinery requires multidisciplinary approaches, including genetics and the use of simple model organisms. In the second part of this Commentary, we discuss how the application of combinatorial genetics in the versatile genetic model organism Drosophila melanogaster has started to contribute to the understanding of actin and microtubule regulation during axon growth. Using the example of dystonin-linked neuron degeneration, we explain how knowledge acquired by studying axonal growth in flies can also deliver new understanding in other aspects of neuron biology, such as axon maintenance in higher animals and humans.
Collapse
Affiliation(s)
- Andreas Prokop
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | |
Collapse
|