1
|
Calì C, Wang X. Editorial: Advances in volume electron microscopy for brain imaging: methods, applications, and affordability. Front Neurosci 2025; 19:1561852. [PMID: 39975968 PMCID: PMC11835912 DOI: 10.3389/fnins.2025.1561852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Affiliation(s)
- Corrado Calì
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri, Orbassano, Italy
| | | |
Collapse
|
2
|
Xu F, Takiguchi Y, Makabe K, Konno H. Synthesis and evaluation of catecholamine derivatives as amyloid-beta aggregation inhibitors. Bioorg Med Chem Lett 2024; 107:129788. [PMID: 38740144 DOI: 10.1016/j.bmcl.2024.129788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Effectively inhibition of amyloid β (Aβ) aggregation is considered an important method for treatment of the Alzheimer's disease. Herein, inspired by the ability of trans-clovamide to effectively inhibit Aβ aggregation, we synthesized a series of structurally related catecholamine derivatives and tested them as Aβ aggregation inhibitors using the Thioflavin T assay. The results show that they demonstrated a higher inhibitory rate against Aβ aggregation. Furthermore, these compounds exhibited high water solubilities and low cytotoxicities. Additionally, transmission electron microscopy images and dynamic light scattering of their Aβ aggregations were observed. Docking simulations revealed that the catechol moiety of the synthesized compounds can form hydrogen bonds with the key regions of Aβ and thereby inhibit Aβ aggregation.
Collapse
Affiliation(s)
- Fusheng Xu
- Department of Chemistry and Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Yuya Takiguchi
- Department of Chemistry and Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Koki Makabe
- Department of Chemistry and Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroyuki Konno
- Department of Chemistry and Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
3
|
Calì C. Regulated exocytosis from astrocytes: a matter of vesicles? Front Neurosci 2024; 18:1393165. [PMID: 38800570 PMCID: PMC11116621 DOI: 10.3389/fnins.2024.1393165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Corrado Calì
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| |
Collapse
|
4
|
Son R, Yamazawa K, Oguchi A, Suga M, Tamura M, Yanagita M, Murakawa Y, Kume S. Morphomics via next-generation electron microscopy. J Mol Cell Biol 2024; 15:mjad081. [PMID: 38148118 PMCID: PMC11167312 DOI: 10.1093/jmcb/mjad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/02/2022] [Accepted: 12/23/2023] [Indexed: 12/28/2023] Open
Abstract
The living body is composed of innumerable fine and complex structures. Although these structures have been studied in the past, a vast amount of information pertaining to them still remains unknown. When attempting to observe these ultra-structures, the use of electron microscopy (EM) has become indispensable. However, conventional EM settings are limited to a narrow tissue area, which can bias observations. Recently, new trends in EM research have emerged, enabling coverage of far broader, nano-scale fields of view for two-dimensional wide areas and three-dimensional large volumes. Moreover, cutting-edge bioimage informatics conducted via deep learning has accelerated the quantification of complex morphological bioimages. Taken together, these technological and analytical advances have led to the comprehensive acquisition and quantification of cellular morphology, which now arises as a new omics science termed 'morphomics'.
Collapse
Affiliation(s)
- Raku Son
- R IKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kenji Yamazawa
- Advanced Manufacturing Support Team, RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
| | - Akiko Oguchi
- R IKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Mitsuo Suga
- Multimodal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe 650-0047, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba 305-0074, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Yasuhiro Murakawa
- R IKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Satoshi Kume
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
- Center for Health Science Innovation, Osaka City University, Osaka 530-0011, Japan
- Osaka Electro-Communication University, Neyagawa 572-8530, Japan
| |
Collapse
|
5
|
D'Imprima E, Garcia Montero M, Gawrzak S, Ronchi P, Zagoriy I, Schwab Y, Jechlinger M, Mahamid J. Light and electron microscopy continuum-resolution imaging of 3D cell cultures. Dev Cell 2023; 58:616-632.e6. [PMID: 36990090 PMCID: PMC10114294 DOI: 10.1016/j.devcel.2023.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
3D cell cultures, in particular organoids, are emerging models in the investigation of healthy or diseased tissues. Understanding the complex cellular sociology in organoids requires integration of imaging modalities across spatial and temporal scales. We present a multi-scale imaging approach that traverses millimeter-scale live-cell light microscopy to nanometer-scale volume electron microscopy by performing 3D cell cultures in a single carrier that is amenable to all imaging steps. This allows for following organoids' growth, probing their morphology with fluorescent markers, identifying areas of interest, and analyzing their 3D ultrastructure. We demonstrate this workflow on mouse and human 3D cultures and use automated image segmentation to annotate and quantitatively analyze subcellular structures in patient-derived colorectal cancer organoids. Our analyses identify local organization of diffraction-limited cell junctions in compact and polarized epithelia. The continuum-resolution imaging pipeline is thus suited to fostering basic and translational organoid research by simultaneously exploiting the advantages of light and electron microscopy.
Collapse
Affiliation(s)
- Edoardo D'Imprima
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Marta Garcia Montero
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sylwia Gawrzak
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Martin Jechlinger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
6
|
Weiner A. [Tunnel or damage? Fungal pathogens coming into the light]. Med Sci (Paris) 2023; 39:328-330. [PMID: 37094264 DOI: 10.1051/medsci/2023041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Affiliation(s)
- Allon Weiner
- ATIP-Avenir équipe Dynamics, structure and molecular biology of fungal invasion, Sorbonne université, Inserm U1135, CNRS, Centre d'immunologie et des maladies infectieuses, Cimi, 75013 Paris, France
| |
Collapse
|
7
|
Zhu KF, Yuan C, Du YM, Sun KL, Zhang XK, Vogel H, Jia XD, Gao YZ, Zhang QF, Wang DP, Zhang HW. Applications and prospects of cryo-EM in drug discovery. Mil Med Res 2023; 10:10. [PMID: 36872349 PMCID: PMC9986049 DOI: 10.1186/s40779-023-00446-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
Drug discovery is a crucial part of human healthcare and has dramatically benefited human lifespan and life quality in recent centuries, however, it is usually time- and effort-consuming. Structural biology has been demonstrated as a powerful tool to accelerate drug development. Among different techniques, cryo-electron microscopy (cryo-EM) is emerging as the mainstream of structure determination of biomacromolecules in the past decade and has received increasing attention from the pharmaceutical industry. Although cryo-EM still has limitations in resolution, speed and throughput, a growing number of innovative drugs are being developed with the help of cryo-EM. Here, we aim to provide an overview of how cryo-EM techniques are applied to facilitate drug discovery. The development and typical workflow of cryo-EM technique will be briefly introduced, followed by its specific applications in structure-based drug design, fragment-based drug discovery, proteolysis targeting chimeras, antibody drug development and drug repurposing. Besides cryo-EM, drug discovery innovation usually involves other state-of-the-art techniques such as artificial intelligence (AI), which is increasingly active in diverse areas. The combination of cryo-EM and AI provides an opportunity to minimize limitations of cryo-EM such as automation, throughput and interpretation of medium-resolution maps, and tends to be the new direction of future development of cryo-EM. The rapid development of cryo-EM will make it as an indispensable part of modern drug discovery.
Collapse
Affiliation(s)
- Kong-Fu Zhu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Chuang Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
| | - Yong-Ming Du
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Kai-Lei Sun
- Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Hong Kong, 999077 China
| | - Xiao-Kang Zhang
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055 Guangdong China
| | - Horst Vogel
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong China
| | - Xu-Dong Jia
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Yuan-Zhu Gao
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Qin-Fen Zhang
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Da-Ping Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000 Guangdong China
| | - Hua-Wei Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| |
Collapse
|
8
|
Zhu C, Lee CT, Rangamani P. Mem3DG: Modeling membrane mechanochemical dynamics in 3D using discrete differential geometry. BIOPHYSICAL REPORTS 2022; 2:100062. [PMID: 36157269 PMCID: PMC9495267 DOI: 10.1016/j.bpr.2022.100062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Biomembranes adopt varying morphologies that are vital to cellular functions. Many studies use computational modeling to understand how various mechanochemical factors contribute to membrane shape transformations. Compared with approximation-based methods (e.g., finite element method [FEM]), the class of discrete mesh models offers greater flexibility to simulate complex physics and shapes in three dimensions; its formulation produces an efficient algorithm while maintaining coordinate-free geometric descriptions. However, ambiguities in geometric definitions in the discrete context have led to a lack of consensus on which discrete mesh model is theoretically and numerically optimal; a bijective relationship between the terms contributing to both the energy and forces from the discrete and smooth geometric theories remains to be established. We address this and present an extensible framework, Mem3DG, for modeling 3D mechanochemical dynamics of membranes based on discrete differential geometry (DDG) on triangulated meshes. The formalism of DDG resolves the inconsistency and provides a unifying perspective on how to relate the smooth and discrete energy and forces. To demonstrate, Mem3DG is used to model a sequence of examples with increasing mechanochemical complexity: recovering classical shape transformations such as 1) biconcave disk, dumbbell, and unduloid; and 2) spherical bud on spherical, flat-patch membrane; investigating how the coupling of membrane mechanics with protein mobility jointly affects phase and shape transformation. As high-resolution 3D imaging of membrane ultrastructure becomes more readily available, we envision Mem3DG to be applied as an end-to-end tool to simulate realistic cell geometry under user-specified mechanochemical conditions.
Collapse
Affiliation(s)
- Cuncheng Zhu
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla CA 92093
| | - Christopher T. Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla CA 92093
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla CA 92093
| |
Collapse
|
9
|
Parlanti P, Cappello V. Microscopes, tools, probes, and protocols: A guide in the route of correlative microscopy for biomedical investigation. Micron 2021; 152:103182. [PMID: 34801960 DOI: 10.1016/j.micron.2021.103182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/11/2022]
Abstract
In the last decades, the advancements of microscopes technology, together with the development of new imaging approaches, are trying to address some biological questions that have been unresolved in the past: the need to combine in the same analysis temporal, functional and morphological information on the biological sample has become pressing. For this reason, the use of correlative microscopy, in which two or more imaging techniques are combined in the same analysis, is getting increasingly widespread. In fact, correlative microscopy can overcome limitations of a single imaging method, giving access to a larger amount of information from the same specimen. However, correlative microscopy can be challenging, and appropriate protocols for sample preparation and imaging methods must be selected. Here we review the state of the art of correlating electron microscopy with different imaging methods, focusing on sample preparation, tools, and labeling methods, with the aim to provide a comprehensive guide for those scientists who are approaching the field of correlative methods.
Collapse
Affiliation(s)
- Paola Parlanti
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, I-56025, Pontedera (PI), Italy.
| | - Valentina Cappello
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, I-56025, Pontedera (PI), Italy.
| |
Collapse
|
10
|
Sawaguchi A, Kamimura T, Takahashi N, Yamashita A, Asada Y, Imazato H, Aoyama F, Wakui A, Sato T, Choijookhuu N, Hishikawa Y. In situ strategy for biomedical target localization via nanogold nucleation and secondary growth. Commun Biol 2021; 4:710. [PMID: 34112923 PMCID: PMC8192519 DOI: 10.1038/s42003-021-02246-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/19/2021] [Indexed: 01/20/2023] Open
Abstract
Immunocytochemistry visualizes the exact spatial location of target molecules. The most common strategy for ultrastructural immunocytochemistry is the conjugation of nanogold particles to antibodies as probes. However, conventional nanogold labelling requires time-consuming nanogold probe preparation and ultrathin sectioning of cell/tissue samples. Here, we introduce an in situ strategy involving nanogold nucleation in immunoenzymatic products on universal paraffin/cryostat sections and provide unique insight into nanogold development under hot-humid air conditions. Nanogold particles were specifically localized on kidney podocytes to target synaptopodin. Transmission electron microscopy revealed secondary growth and self-assembly that could be experimentally controlled by bovine serum albumin stabilization and phosphate-buffered saline acceleration. Valuable retrospective nanogold labelling for gastric H+/K+-ATPase was achieved on vintage immunoenzymatic deposits after a long lapse of 15 years (i.e., 15-year-old deposits). The present in situ nanogold labelling is anticipated to fill the gap between light and electron microscopy to correlate cell/tissue structure and function.
Collapse
Affiliation(s)
- Akira Sawaguchi
- Division of Ultrastructural Cell Biology, Department of Anatomy, University of Miyazaki, Miyazaki, Japan.
| | | | - Nobuyasu Takahashi
- Division of Ultrastructural Cell Biology, Department of Anatomy, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Yamashita
- Division of Pathophysiology, Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Yujiro Asada
- Division of Pathophysiology, Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Hiroyuki Imazato
- Division of Orthopedic Surgery, Department of Medicine of Sensory and Motor Organs, University of Miyazaki, Miyazaki, Japan
| | - Fumiyo Aoyama
- Division of Ultrastructural Cell Biology, Department of Anatomy, University of Miyazaki, Miyazaki, Japan
| | | | | | - Narantsog Choijookhuu
- Division of Histochemical Cell Biology, Department of Anatomy, University of Miyazaki, Miyazaki, Japan
| | - Yoshitaka Hishikawa
- Division of Histochemical Cell Biology, Department of Anatomy, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
11
|
The importance of ultrastructural analysis of memory. Brain Res Bull 2021; 173:28-36. [PMID: 33984429 DOI: 10.1016/j.brainresbull.2021.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/22/2022]
Abstract
Plasticity of glutamatergic synapses in the hippocampus is believed to underlie learning and memory processes. Surprisingly, very few studies report long-lasting structural changes of synapses induced by behavioral training. It remains, therefore, unclear which synaptic changes in the hippocampus contribute to memory storage. Here, we systematically compare how long-term potentiation of synaptic transmission (LTP) (a primary form of synaptic plasticity and cellular model of memory) and behavioral training affect hippocampal glutamatergic synapses at the ultrastructural level enabled by electron microscopy. The review of the literature indicates that while LTP induces growth of dendritic spines and post-synaptic densities (PSD), that represent postsynaptic part of a glutamatergic synapse, after behavioral training there is transient (< 6 h) synaptogenesis and long-lasting (> 24 h) increase in PSD volume (without a significant change of dendritic spine volume), indicating that training-induced PSD growth may reflect long-term enhancement of synaptic functions. Additionally, formation of multi-innervated spines (MIS), is associated with long-term memory in aged mice and LTP-deficient mutant mice. Since volume of PSD, as well as atypical synapses, can be reliably observed only with electron microscopy, we argue that the ultrastructural level of analysis is required to reveal synaptic changes that are associated with long-term storage of information in the brain.
Collapse
|
12
|
Baena V, Conrad R, Friday P, Fitzgerald E, Kim T, Bernbaum J, Berensmann H, Harned A, Nagashima K, Narayan K. FIB-SEM as a Volume Electron Microscopy Approach to Study Cellular Architectures in SARS-CoV-2 and Other Viral Infections: A Practical Primer for a Virologist. Viruses 2021; 13:v13040611. [PMID: 33918371 PMCID: PMC8066521 DOI: 10.3390/v13040611] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/06/2023] Open
Abstract
The visualization of cellular ultrastructure over a wide range of volumes is becoming possible by increasingly powerful techniques grouped under the rubric “volume electron microscopy” or volume EM (vEM). Focused ion beam scanning electron microscopy (FIB-SEM) occupies a “Goldilocks zone” in vEM: iterative and automated cycles of milling and imaging allow the interrogation of microns-thick specimens in 3-D at resolutions of tens of nanometers or less. This bestows on FIB-SEM the unique ability to aid the accurate and precise study of architectures of virus-cell interactions. Here we give the virologist or cell biologist a primer on FIB-SEM imaging in the context of vEM and discuss practical aspects of a room temperature FIB-SEM experiment. In an in vitro study of SARS-CoV-2 infection, we show that accurate quantitation of viral densities and surface curvatures enabled by FIB-SEM imaging reveals SARS-CoV-2 viruses preferentially located at areas of plasma membrane that have positive mean curvatures.
Collapse
Affiliation(s)
- Valentina Baena
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Ryan Conrad
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Patrick Friday
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Ella Fitzgerald
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Taeeun Kim
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - John Bernbaum
- National Institute of Allergy and Infectious Diseases, Division of Clinical Research, Integrated Research Facility at Fort Detrick (IRF-Frederick), Frederick, MD 21702, USA;
| | - Heather Berensmann
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Adam Harned
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Kunio Nagashima
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
- Correspondence:
| |
Collapse
|
13
|
Nahirney PC, Tremblay ME. Brain Ultrastructure: Putting the Pieces Together. Front Cell Dev Biol 2021; 9:629503. [PMID: 33681208 PMCID: PMC7930431 DOI: 10.3389/fcell.2021.629503] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Unraveling the fine structure of the brain is important to provide a better understanding of its normal and abnormal functioning. Application of high-resolution electron microscopic techniques gives us an unprecedented opportunity to discern details of the brain parenchyma at nanoscale resolution, although identifying different cell types and their unique features in two-dimensional, or three-dimensional images, remains a challenge even to experts in the field. This article provides insights into how to identify the different cell types in the central nervous system, based on nuclear and cytoplasmic features, amongst other unique characteristics. From the basic distinction between neurons and their supporting cells, the glia, to differences in their subcellular compartments, organelles and their interactions, ultrastructural analyses can provide unique insights into the changes in brain function during aging and disease conditions, such as stroke, neurodegeneration, infection and trauma. Brain parenchyma is composed of a dense mixture of neuronal and glial cell bodies, together with their intertwined processes. Intracellular components that vary between cells, and can become altered with aging or disease, relate to the cytoplasmic and nucleoplasmic density, nuclear heterochromatin pattern, mitochondria, endoplasmic reticulum and Golgi complex, lysosomes, neurosecretory vesicles, and cytoskeletal elements (actin, intermediate filaments, and microtubules). Applying immunolabeling techniques to visualize membrane-bound or intracellular proteins in neurons and glial cells gives an even better appreciation of the subtle differences unique to these cells across contexts of health and disease. Together, our observations reveal how simple ultrastructural features can be used to identify specific changes in cell types, their health status, and functional relationships in the brain.
Collapse
|
14
|
Colombo MN, Maiellano G, Putignano S, Scandella L, Francolini M. Comparative 2D and 3D Ultrastructural Analyses of Dendritic Spines from CA1 Pyramidal Neurons in the Mouse Hippocampus. Int J Mol Sci 2021; 22:ijms22031188. [PMID: 33530380 PMCID: PMC7865959 DOI: 10.3390/ijms22031188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/21/2022] Open
Abstract
Three-dimensional (3D) reconstruction from electron microscopy (EM) datasets is a widely used tool that has improved our knowledge of synapse ultrastructure and organization in the brain. Rearrangements of synapse structure following maturation and in synaptic plasticity have been broadly described and, in many cases, the defective architecture of the synapse has been associated to functional impairments. It is therefore important, when studying brain connectivity, to map these rearrangements with the highest accuracy possible, considering the affordability of the different EM approaches to provide solid and reliable data about the structure of such a small complex. The aim of this work is to compare quantitative data from two dimensional (2D) and 3D EM of mouse hippocampal CA1 (apical dendrites), to define whether the results from the two approaches are consistent. We examined asymmetric excitatory synapses focusing on post synaptic density and dendritic spine area and volume as well as spine density, and we compared the results obtained with the two methods. The consistency between the 2D and 3D results questions the need—for many applications—of using volumetric datasets (costly and time consuming in terms of both acquisition and analysis), with respect to the more accessible measurements from 2D EM projections.
Collapse
|
15
|
Abstract
Unraveling the fine structure of the brain is important to provide a better understanding of its normal and abnormal functioning. Application of high-resolution electron microscopic techniques gives us an unprecedented opportunity to discern details of the brain parenchyma at nanoscale resolution, although identifying different cell types and their unique features in two-dimensional, or three-dimensional images, remains a challenge even to experts in the field. This article provides insights into how to identify the different cell types in the central nervous system, based on nuclear and cytoplasmic features, amongst other unique characteristics. From the basic distinction between neurons and their supporting cells, the glia, to differences in their subcellular compartments, organelles and their interactions, ultrastructural analyses can provide unique insights into the changes in brain function during aging and disease conditions, such as stroke, neurodegeneration, infection and trauma. Brain parenchyma is composed of a dense mixture of neuronal and glial cell bodies, together with their intertwined processes. Intracellular components that vary between cells, and can become altered with aging or disease, relate to the cytoplasmic and nucleoplasmic density, nuclear heterochromatin pattern, mitochondria, endoplasmic reticulum and Golgi complex, lysosomes, neurosecretory vesicles, and cytoskeletal elements (actin, intermediate filaments, and microtubules). Applying immunolabeling techniques to visualize membrane-bound or intracellular proteins in neurons and glial cells gives an even better appreciation of the subtle differences unique to these cells across contexts of health and disease. Together, our observations reveal how simple ultrastructural features can be used to identify specific changes in cell types, their health status, and functional relationships in the brain.
Collapse
Affiliation(s)
- Patrick C Nahirney
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Eve Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
16
|
Carrier M, Robert MÈ, González Ibáñez F, Desjardins M, Tremblay MÈ. Imaging the Neuroimmune Dynamics Across Space and Time. Front Neurosci 2020; 14:903. [PMID: 33071723 PMCID: PMC7539119 DOI: 10.3389/fnins.2020.00903] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
The immune system is essential for maintaining homeostasis, as well as promoting growth and healing throughout the brain and body. Considering that immune cells respond rapidly to changes in their microenvironment, they are very difficult to study without affecting their structure and function. The advancement of non-invasive imaging methods greatly contributed to elucidating the physiological roles performed by immune cells in the brain across stages of the lifespan and contexts of health and disease. For instance, techniques like two-photon in vivo microscopy were pivotal for studying microglial functional dynamics in the healthy brain. Through these observations, their interactions with neurons, astrocytes, blood vessels and synapses were uncovered. High-resolution electron microscopy with immunostaining and 3D-reconstruction, as well as super-resolution fluorescence microscopy, provided complementary insights by revealing microglial interventions at synapses (phagocytosis, trogocytosis, synaptic stripping, etc.). In addition, serial block-face scanning electron microscopy has provided the first 3D reconstruction of a microglial cell at nanoscale resolution. This review will discuss the technical toolbox that currently allows to study microglia and other immune cells in the brain, as well as introduce emerging methods that were developed and could be used to increase the spatial and temporal resolution of neuroimmune imaging. A special attention will also be placed on positron emission tomography and the development of selective functional radiotracers for microglia and peripheral macrophages, considering their strong potential for research translation between animals and humans, notably when paired with other imaging modalities such as magnetic resonance imaging.
Collapse
Affiliation(s)
- Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Robert
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Fernando González Ibáñez
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Michèle Desjardins
- Axe Oncologie, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
17
|
Ravi RT, Leung MR, Zeev-Ben-Mordehai T. Looking back and looking forward: contributions of electron microscopy to the structural cell biology of gametes and fertilization. Open Biol 2020; 10:200186. [PMID: 32931719 PMCID: PMC7536082 DOI: 10.1098/rsob.200186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 01/22/2023] Open
Abstract
Mammalian gametes-the sperm and the egg-represent opposite extremes of cellular organization and scale. Studying the ultrastructure of gametes is crucial to understanding their interactions, and how to manipulate them in order to either encourage or prevent their union. Here, we survey the prominent electron microscopy (EM) techniques, with an emphasis on considerations for applying them to study mammalian gametes. We review how conventional EM has provided significant insight into gamete ultrastructure, but also how the harsh sample preparation methods required preclude understanding at a truly molecular level. We present recent advancements in cryo-electron tomography that provide an opportunity to image cells in a near-native state and at unprecedented levels of detail. New and emerging cellular EM techniques are poised to rekindle exploration of fundamental questions in mammalian reproduction, especially phenomena that involve complex membrane remodelling and protein reorganization. These methods will also allow novel lines of enquiry into problems of practical significance, such as investigating unexplained causes of human infertility and improving assisted reproductive technologies for biodiversity conservation.
Collapse
Affiliation(s)
- Ravi Teja Ravi
- Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Miguel Ricardo Leung
- Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands
- Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford OX3 7BN, UK
| | - Tzviya Zeev-Ben-Mordehai
- Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands
- Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
18
|
Hook KA, Fisher HS. Methodological considerations for examining the relationship between sperm morphology and motility. Mol Reprod Dev 2020; 87:633-649. [PMID: 32415812 PMCID: PMC7329573 DOI: 10.1002/mrd.23346] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Sperm cells of all taxa share a common goal to reach and fertilize an ovum, yet sperm are one of the most diverse cell types in nature. While the structural diversity of these cells is well recognized, the functional significance of variation in sperm design remains elusive. An important function of spermatozoa is a need to migrate toward the ova, often over long distances in a foreign environment, which may include a complex and hostile female reproductive tract. Several comparative and experimental studies have attempted to address the link between sperm morphology and motility, yet the conclusions drawn from these studies are often inconsistent, even within the same taxa. Much of what we know about the functional significance of sperm design in internally fertilizing species has been gleaned from in vitro studies, for which experimental parameters often vary among studies. We propose that discordant results from these studies are in part due to a lack of consistency of methods, conditions that do not replicate those of the female reproductive tract, and the overuse of simple linear measures of sperm shape. Within this review, we provide a toolkit for imaging, quantifying, and analyzing sperm morphology and movement patterns for in vitro studies and discuss emerging approaches. Results from studies linking morphology to motility enhance our understanding of the evolution of adaptive sperm traits and the mechanisms that regulate fertility, thus offering new insights into methods used in assisted reproductive technologies in animal science, conservation and public health.
Collapse
Affiliation(s)
- Kristin A. Hook
- Department of Biology, University of Maryland, College Park, U.S.A
| | - Heidi S. Fisher
- Department of Biology, University of Maryland, College Park, U.S.A
| |
Collapse
|
19
|
Lee CT, Laughlin JG, Angliviel de La Beaumelle N, Amaro RE, McCammon JA, Ramamoorthi R, Holst M, Rangamani P. 3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries. PLoS Comput Biol 2020; 16:e1007756. [PMID: 32251448 PMCID: PMC7162555 DOI: 10.1371/journal.pcbi.1007756] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 04/16/2020] [Accepted: 03/01/2020] [Indexed: 12/17/2022] Open
Abstract
Recent advances in electron microscopy have enabled the imaging of single cells in 3D at nanometer length scale resolutions. An uncharted frontier for in silico biology is the ability to simulate cellular processes using these observed geometries. Enabling such simulations requires watertight meshing of electron micrograph images into 3D volume meshes, which can then form the basis of computer simulations of such processes using numerical techniques such as the finite element method. In this paper, we describe the use of our recently rewritten mesh processing software, GAMer 2, to bridge the gap between poorly conditioned meshes generated from segmented micrographs and boundary marked tetrahedral meshes which are compatible with simulation. We demonstrate the application of a workflow using GAMer 2 to a series of electron micrographs of neuronal dendrite morphology explored at three different length scales and show that the resulting meshes are suitable for finite element simulations. This work is an important step towards making physical simulations of biological processes in realistic geometries routine. Innovations in algorithms to reconstruct and simulate cellular length scale phenomena based on emerging structural data will enable realistic physical models and advance discovery at the interface of geometry and cellular processes. We posit that a new frontier at the intersection of computational technologies and single cell biology is now open.
Collapse
Affiliation(s)
- Christopher T. Lee
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Justin G. Laughlin
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Nils Angliviel de La Beaumelle
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Ravi Ramamoorthi
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Michael Holst
- Department of Mathematics, University of California, San Diego, La Jolla, California, United States of America
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
20
|
Schneider JP, Wrede C, Mühlfeld C. The Three-Dimensional Ultrastructure of the Human Alveolar Epithelium Revealed by Focused Ion Beam Electron Microscopy. Int J Mol Sci 2020; 21:ijms21031089. [PMID: 32041332 PMCID: PMC7038159 DOI: 10.3390/ijms21031089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Thin type 1 alveolar epithelial (AE1) and surfactant producing type 2 alveolar epithelial (AE2) cells line the alveoli in the lung and are essential for normal lung function. Function is intimately interrelated to structure, so that detailed knowledge of the epithelial ultrastructure can significantly enhance our understanding of its function. The basolateral surface of the cells or the epithelial contact sites are of special interest, because they play an important role in intercellular communication or stabilizing the epithelium. The latter is in particular important for the lung with its variable volume. The aim of the present study was to investigate the three-dimensional (3D) ultrastructure of the human alveolar epithelium focusing on contact sites and the basolateral cell membrane of AE2 cells using focused ion beam electron microscopy and subsequent 3D reconstructions. The study provides detailed surface reconstructions of two AE1 cell domains and two AE2 cells, showing AE1/AE1, AE1/AE2 and AE2/AE2 contact sites, basolateral microvilli pits at AE2 cells and small AE1 processes beneath AE2 cells. Furthermore, we show reconstructions of a surfactant secretion pore, enlargements of the apical AE1 cell surface and long folds bordering grooves on the basal AE1 cell surface. The functional implications of our findings are discussed. These findings may lay the structural basis for further molecular investigations.
Collapse
Affiliation(s)
- Jan Philipp Schneider
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (C.W.); (C.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Correspondence:
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (C.W.); (C.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (C.W.); (C.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
21
|
Kunishima N, Takeda Y, Hirose R, Kalasová D, Šalplachta J, Omote K. Visualization of internal 3D structure of small live seed on germination by laboratory-based X-ray microscopy with phase contrast computed tomography. PLANT METHODS 2020; 16:7. [PMID: 32021643 PMCID: PMC6995115 DOI: 10.1186/s13007-020-0557-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/22/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND The visualization of internal 3D-structure of tissues at micron resolutions without staining by contrast reagents is desirable in plant researches, and it can be achieved by an X-ray computed tomography (CT) with a phase-retrieval technique. Recently, a laboratory-based X-ray microscope adopting the phase contrast CT was developed as a powerful tool for the observation of weakly absorbing biological samples. Here we report the observation of unstained pansy seeds using the laboratory-based X-ray phase-contrast CT. RESULTS A live pansy seed within 2 mm in size was simply mounted inside a plastic tube and irradiated by in-house X-rays to collect projection images using a laboratory-based X-ray microscope. The phase-retrieval technique was applied to enhance contrasts in the projection images. In addition to a dry seed, wet seeds on germination with the poorer contrasts were tried. The phase-retrieved tomograms from both the dry and the wet seeds revealed a cellular level of spatial resolutions that were enough to resolve cells in the seeds, and provided enough contrasts to delineate the boundary of embryos manually. The manual segmentation allowed a 3D rendering of embryos at three different stages in the germination, which visualized an overall morphological change of the embryo upon germination as well as a spatial arrangement of cells inside the embryo. CONCLUSIONS Our results confirmed an availability of the laboratory-based X-ray phase-contrast CT for a 3D-structural study on the development of small seeds. The present method may provide a unique way to observe live plant tissues at micron resolutions without structural perturbations due to the sample preparation.
Collapse
Affiliation(s)
- Naoki Kunishima
- X-Ray Research Laboratory, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666 Japan
| | - Yoshihiro Takeda
- X-Ray Research Laboratory, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666 Japan
| | - Raita Hirose
- X-Ray Research Laboratory, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666 Japan
| | - Dominika Kalasová
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Jakub Šalplachta
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Kazuhiko Omote
- X-Ray Research Laboratory, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666 Japan
| |
Collapse
|
22
|
3D cellular reconstruction of cortical glia and parenchymal morphometric analysis from Serial Block-Face Electron Microscopy of juvenile rat. Prog Neurobiol 2019; 183:101696. [PMID: 31550514 DOI: 10.1016/j.pneurobio.2019.101696] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 01/04/2023]
Abstract
With the rapid evolution in the automation of serial electron microscopy in life sciences, the acquisition of terabyte-sized datasets is becoming increasingly common. High resolution serial block-face imaging (SBEM) of biological tissues offers the opportunity to segment and reconstruct nanoscale structures to reveal spatial features previously inaccessible with simple, single section, two-dimensional images. In particular, we focussed here on glial cells, whose reconstruction efforts in literature are still limited, compared to neurons. We imaged a 750,000 cubic micron volume of the somatosensory cortex from a juvenile P14 rat, with 20 nm accuracy. We recognized a total of 186 cells using their nuclei, and classified them as neuronal or glial based on features of the soma and the processes. We reconstructed for the first time 4 almost complete astrocytes and neurons, 4 complete microglia and 4 complete pericytes, including their intracellular mitochondria, 186 nuclei and 213 myelinated axons. We then performed quantitative analysis on the three-dimensional models. Out of the data that we generated, we observed that neurons have larger nuclei, which correlated with their lesser density, and that astrocytes and pericytes have a higher surface to volume ratio, compared to other cell types. All reconstructed morphologies represent an important resource for computational neuroscientists, as morphological quantitative information can be inferred, to tune simulations that take into account the spatial compartmentalization of the different cell types.
Collapse
|
23
|
Weiner A, Enninga J. The Pathogen–Host Interface in Three Dimensions: Correlative FIB/SEM Applications. Trends Microbiol 2019; 27:426-439. [DOI: 10.1016/j.tim.2018.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
|
24
|
High-Resolution 3D Imaging of Megakaryocytes Using Focused Ion Beam-Scanning Electron Microscopy. Methods Mol Biol 2019; 1812:217-231. [PMID: 30171581 DOI: 10.1007/978-1-4939-8585-2_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this chapter, we describe the study of bone marrow megakaryocytes (MKs) using a high-resolution 3D imaging approach known as focused ion beam-scanning electron microscopy (FIB-SEM). The apparatus consists of a scanning electron microscope equipped with a focused gallium ion beam, used to sequentially mill away the sample surface, and an electron beam, used to image the milled surfaces. This produces a series of ultrastructural images which can be computationally reconstructed into three-dimensional (3D) volume images. Using this approach it is possible to characterize the 3D ultrastructure of MKs in their native bone marrow environment, to study subcellular organelle interactions in the context of a complete cell and to quantify specific features. This chapter provides protocols for sample preparation, image acquisition and 3D reconstruction, the whole procedure requiring about 7-8 days. It also describes a method combining light microscopy (LM) with FIB-SEM, a procedure called correlative light electron microscopy (CLEM), which allows the site-specific 3D imaging of MKs in tissues.
Collapse
|
25
|
Borczyk M, Śliwińska MA, Caly A, Bernas T, Radwanska K. Neuronal plasticity affects correlation between the size of dendritic spine and its postsynaptic density. Sci Rep 2019; 9:1693. [PMID: 30737431 PMCID: PMC6368589 DOI: 10.1038/s41598-018-38412-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 11/19/2018] [Indexed: 01/23/2023] Open
Abstract
Structural plasticity of dendritic spines is thought to underlie memory formation. Size of a dendritic spine is considered proportional to the size of its postsynaptic density (PSD), number of glutamate receptors and synaptic strength. However, whether this correlation is true for all dendritic spine volumes, and remains stable during synaptic plasticity, is largely unknown. In this study, we take advantage of 3D electron microscopy and reconstruct dendritic spines and cores of PSDs from the stratum radiatum of the area CA1 of organotypic hippocampal slices. We observe that approximately 1/3 of dendritic spines, in a range of medium sizes, fail to reach significant correlation between dendritic spine volume and PSD surface area or PSD-core volume. During NMDA receptor-dependent chemical long-term potentiation (NMDAR-cLTP) dendritic spines and their PSD not only grow, but also PSD area and PSD-core volume to spine volume ratio is increased, and the correlation between the sizes of these two is tightened. Further analysis specified that only spines that contain smooth endoplasmic reticulum (SER) grow during cLTP, while PSD-cores grow irrespectively of the presence of SER in the spine. Dendritic spines with SER also show higher correlation of the volumetric parameters than spines without SER, and this correlation is further increased during cLTP only in the spines that contain SER. Overall, we found that correlation between PSD surface area and spine volume is not consistent across all spine volumes, is modified and tightened during synaptic plasticity and regulated by SER.
Collapse
Affiliation(s)
- Malgorzata Borczyk
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, ul. L. Pasteura 3, Warsaw, 02-093, Poland
| | - Małgorzata Alicja Śliwińska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, ul. L. Pasteura 3, Warsaw, 02-093, Poland.,Laboratory of Imaging Tissue Structure and Function, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, ul. L. Pasteura 3, Warsaw, 02-093, Poland
| | - Anna Caly
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, ul. L. Pasteura 3, Warsaw, 02-093, Poland
| | - Tytus Bernas
- Laboratory of Imaging Tissue Structure and Function, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, ul. L. Pasteura 3, Warsaw, 02-093, Poland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, ul. L. Pasteura 3, Warsaw, 02-093, Poland.
| |
Collapse
|
26
|
Vidotto M, De Momi E, Gazzara M, Mattos LS, Ferrigno G, Moccia S. FCNN-based axon segmentation for convection-enhanced delivery optimization. Int J Comput Assist Radiol Surg 2019; 14:493-499. [PMID: 30613910 DOI: 10.1007/s11548-018-01911-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 12/30/2018] [Indexed: 11/25/2022]
Abstract
PURPOSE Glioblastoma multiforme treatment is a challenging task in clinical oncology. Convection- enhanced delivery (CED) is showing encouraging but still suboptimal results due to drug leakages. Numerical models can predict drug distribution within the brain, but require retrieving brain physical properties, such as the axon diameter distribution (ADD), through axon architecture analysis. The goal of this work was to provide an automatic, accurate and fast method for axon segmentation in electronic microscopy images based on fully convolutional neural network (FCNN) as to allow automatic ADD computation. METHODS The segmentation was performed using a residual FCNN inspired by U-Net and Resnet. The FCNN training was performed exploiting mini-batch gradient descent and the Adam optimizer. The Dice coefficient was chosen as loss function. RESULTS The proposed segmentation method achieved results comparable with already existing methods for axon segmentation in terms of Information Theoretic Scoring ([Formula: see text]) with a faster training (5 h on the deployed GPU) and without requiring heavy post-processing (testing time was 0.2 s with a non-optimized code). The ADDs computed from the segmented and ground-truth images were statistically equivalent. CONCLUSIONS The algorithm proposed in this work allowed fast and accurate axon segmentation and ADD computation, showing promising performance for brain microstructure analysis for CED delivery optimization.
Collapse
Affiliation(s)
- Marco Vidotto
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milan, MI, Italy
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milan, MI, Italy
| | - Michele Gazzara
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milan, MI, Italy
| | - Leonardo S Mattos
- Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia, Via Morego 30, 16136, Genoa, GE, Italy
| | - Giancarlo Ferrigno
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milan, MI, Italy
| | - Sara Moccia
- Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia, Via Morego 30, 16136, Genoa, GE, Italy. .,Department of Information Engineering (DII), Università Politecnica delle Marche, Via Brecce Bianche, 12, 60131, Ancona, AN, Italy.
| |
Collapse
|
27
|
Pacey A. Studying the nuts and bolts of spermatozoa. ACTA ACUST UNITED AC 2018; 24:565-566. [DOI: 10.1093/molehr/gay047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Allan Pacey
- Department of Oncology and Metabolism, University of Sheffield, Level 4, The Jessop Wing, Tree Root Walk, Sheffield, UK
| |
Collapse
|
28
|
Coggan JS, Calì C, Keller D, Agus M, Boges D, Abdellah M, Kare K, Lehväslaiho H, Eilemann S, Jolivet RB, Hadwiger M, Markram H, Schürmann F, Magistretti PJ. A Process for Digitizing and Simulating Biologically Realistic Oligocellular Networks Demonstrated for the Neuro-Glio-Vascular Ensemble. Front Neurosci 2018; 12:664. [PMID: 30319342 PMCID: PMC6171468 DOI: 10.3389/fnins.2018.00664] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023] Open
Abstract
One will not understand the brain without an integrated exploration of structure and function, these attributes being two sides of the same coin: together they form the currency of biological computation. Accordingly, biologically realistic models require the re-creation of the architecture of the cellular components in which biochemical reactions are contained. We describe here a process of reconstructing a functional oligocellular assembly that is responsible for energy supply management in the brain and creating a computational model of the associated biochemical and biophysical processes. The reactions that underwrite thought are both constrained by and take advantage of brain morphologies pertaining to neurons, astrocytes and the blood vessels that deliver oxygen, glucose and other nutrients. Each component of this neuro-glio-vasculature ensemble (NGV) carries-out delegated tasks, as the dynamics of this system provide for each cell-type its own energy requirements while including mechanisms that allow cooperative energy transfers. Our process for recreating the ultrastructure of cellular components and modeling the reactions that describe energy flow uses an amalgam of state-of the-art techniques, including digital reconstructions of electron micrographs, advanced data analysis tools, computational simulations and in silico visualization software. While we demonstrate this process with the NGV, it is equally well adapted to any cellular system for integrating multimodal cellular data in a coherent framework.
Collapse
Affiliation(s)
- Jay S Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Corrado Calì
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Marco Agus
- Visual Computing Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,CRS4, Center of Research and Advanced Studies in Sardinia, Visual Computing, Pula, Italy
| | - Daniya Boges
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Marwan Abdellah
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Kalpana Kare
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heikki Lehväslaiho
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,CSC - IT Center for Science, Espoo, Finland
| | - Stefan Eilemann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Renaud Blaise Jolivet
- Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva, Switzerland.,The European Organization for Nuclear Research, Geneva, Switzerland
| | - Markus Hadwiger
- Visual Computing Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Felix Schürmann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Pierre J Magistretti
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
29
|
Fortun D, Guichard P, Hamel V, Sorzano COS, Banterle N, Gonczy P, Unser M. Reconstruction From Multiple Particles for 3D Isotropic Resolution in Fluorescence Microscopy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1235-1246. [PMID: 29727286 DOI: 10.1109/tmi.2018.2795464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The imaging of proteins within macromolecular complexes has been limited by the low axial resolution of optical microscopes. To overcome this problem, we propose a novel computational reconstruction method that yields isotropic resolution in fluorescence imaging. The guiding principle is to reconstruct a single volume from the observations of multiple rotated particles. Our new operational framework detects particles, estimates their orientation, and reconstructs the final volume. The main challenge comes from the absence of initial template and a priori knowledge about the orientations. We formulate the estimation as a blind inverse problem, and propose a block-coordinate stochastic approach to solve the associated non-convex optimization problem. The reconstruction is performed jointly in multiple channels. We demonstrate that our method is able to reconstruct volumes with 3D isotropic resolution on simulated data. We also perform isotropic reconstructions from real experimental data of doubly labeled purified human centrioles. Our approach revealed the precise localization of the centriolar protein Cep63 around the centriole microtubule barrel. Overall, our method offers new perspectives for applications in biology that require the isotropic mapping of proteins within macromolecular assemblies.
Collapse
|
30
|
Reifarth M, Hoeppener S, Schubert US. Uptake and Intracellular Fate of Engineered Nanoparticles in Mammalian Cells: Capabilities and Limitations of Transmission Electron Microscopy-Polymer-Based Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29325211 DOI: 10.1002/adma.201703704] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/14/2017] [Indexed: 06/07/2023]
Abstract
In order to elucidate mechanisms of nanoparticle (NP)-cell interactions, a detailed knowledge about membrane-particle interactions, intracellular distributions, and nucleus penetration capabilities, etc. becomes indispensable. The utilization of NPs as additives in many consumer products, as well as the increasing interest of tailor-made nanoobjects as novel therapeutic and diagnostic platforms, makes it essential to gain deeper insights about their biological effects. Transmission electron microscopy (TEM) represents an outstanding method to study the uptake and intracellular fate of NPs, since this technique provides a resolution far better than the particle size. Additionally, its capability to highlight ultrastructural details of the cellular interior as well as membrane features is unmatched by other approaches. Here, a summary is provided on studies utilizing TEM to investigate the uptake and mode-of-action of tailor-made polymer nanoparticles in mammalian cells. For this purpose, the capabilities as well as limitations of TEM investigations are discussed to provide a detailed overview on uptake studies of common nanoparticle systems supported by TEM investigations. Furthermore, methodologies that can, in particular, address low-contrast materials in electron microscopy, i.e., polymeric and polymer-modified nanoparticles, are highlighted.
Collapse
Affiliation(s)
- Martin Reifarth
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
31
|
Fredlund J, Santos JC, Stévenin V, Weiner A, Latour-Lambert P, Rechav K, Mallet A, Krijnse-Locker J, Elbaum M, Enninga J. The entry ofSalmonellain a distinct tight compartment revealed at high temporal and ultrastructural resolution. Cell Microbiol 2018; 20. [DOI: 10.1111/cmi.12816] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jennifer Fredlund
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| | - José Carlos Santos
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| | - Virginie Stévenin
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| | - Allon Weiner
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| | | | - Katya Rechav
- Department of Interfaces; The Weizmann Institute of Sciences; Rehovot Israel
| | | | | | - Michael Elbaum
- Department of Interfaces; The Weizmann Institute of Sciences; Rehovot Israel
| | - Jost Enninga
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| |
Collapse
|
32
|
Kothary MH, Gopinath GR, Gangiredla J, Rallabhandi PV, Harrison LM, Yan QQ, Chase HR, Lee B, Park E, Yoo Y, Chung T, Finkelstein SB, Negrete FJ, Patel IR, Carter L, Sathyamoorthy V, Fanning S, Tall BD. Analysis and Characterization of Proteins Associated with Outer Membrane Vesicles Secreted by Cronobacter spp. Front Microbiol 2017; 8:134. [PMID: 28232819 PMCID: PMC5299011 DOI: 10.3389/fmicb.2017.00134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/19/2017] [Indexed: 02/02/2023] Open
Abstract
Little is known about secretion of outer membrane vesicles (OMVs) by Cronobacter. In this study, OMVs isolated from Cronobacter sakazakii, Cronobacter turicensis, and Cronobacter malonaticus were examined by electron microscopy (EM) and their associated outer membrane proteins (OMP) and genes were analyzed by SDS-PAGE, protein sequencing, BLAST, PCR, and DNA microarray. EM of stained cells revealed that the OMVs are secreted as pleomorphic micro-vesicles which cascade from the cell's surface. SDS-PAGE analysis identified protein bands with molecular weights of 18 kDa to >100 kDa which had homologies to OMPs such as GroEL; OmpA, C, E, F, and X; MipA proteins; conjugative plasmid transfer protein; and an outer membrane auto-transporter protein (OMATP). PCR analyses showed that most of the OMP genes were present in all seven Cronobacter species while a few genes (OMATP gene, groEL, ompC, mipA, ctp, and ompX) were absent in some phylogenetically-related species. Microarray analysis demonstrated sequence divergence among the OMP genes that was not captured by PCR. These results support previous findings that OmpA and OmpX may be involved in virulence of Cronobacter, and are packaged within secreted OMVs. These results also suggest that other OMV-packaged OMPs may be involved in roles such as stress response, cell wall and plasmid maintenance, and extracellular transport.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Q Yan
- Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, WHO Collaborating Centre for Cronobacter, University College, Dublin Dublin, Ireland
| | | | - Boram Lee
- U. S. Food and Drug Administration Laurel, MD, USA
| | - Eunbi Park
- U. S. Food and Drug Administration Laurel, MD, USA
| | - YeonJoo Yoo
- U. S. Food and Drug Administration Laurel, MD, USA
| | | | | | | | - Isha R Patel
- U. S. Food and Drug Administration Laurel, MD, USA
| | | | | | - Séamus Fanning
- Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, WHO Collaborating Centre for Cronobacter, University College, Dublin Dublin, Ireland
| | - Ben D Tall
- U. S. Food and Drug Administration Laurel, MD, USA
| |
Collapse
|
33
|
Nano-Resolution Connectomics Using Large-Volume Electron Microscopy. Appl Microsc 2016. [DOI: 10.9729/am.2016.46.4.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Pereira AF, Hageman DJ, Garbowski T, Riedesel C, Knothe U, Zeidler D, Knothe Tate ML. Creating High-Resolution Multiscale Maps of Human Tissue Using Multi-beam SEM. PLoS Comput Biol 2016; 12:e1005217. [PMID: 27870847 PMCID: PMC5117996 DOI: 10.1371/journal.pcbi.1005217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 10/20/2016] [Indexed: 12/30/2022] Open
Abstract
Multi-beam scanning electron microscopy (mSEM) enables high-throughput, nano-resolution imaging of macroscopic tissue samples, providing an unprecedented means for structure-function characterization of biological tissues and their cellular inhabitants, seamlessly across multiple length scales. Here we describe computational methods to reconstruct and navigate a multitude of high-resolution mSEM images of the human hip. We calculated cross-correlation shift vectors between overlapping images and used a mass-spring-damper model for optimal global registration. We utilized the Google Maps API to create an interactive map and provide open access to our reconstructed mSEM datasets to both the public and scientific communities via our website www.mechbio.org. The nano- to macro-scale map reveals the tissue’s biological and material constituents. Living inhabitants of the hip bone (e.g. osteocytes) are visible in their local extracellular matrix milieu (comprising collagen and mineral) and embedded in bone’s structural tissue architecture, i.e. the osteonal structures in which layers of mineralized tissue are organized in lamellae around a central blood vessel. Multi-beam SEM and our presented methodology enable an unprecedented, comprehensive understanding of health and disease from the molecular to organ length scale. Until recently, the assessment of organ and tissue health relied on site-sampling (biopsy) of micro-scale regions and was fraught with sampling errors. Overcoming these limitations requires a means for seamless imaging of organs, from their cellular inhabitants to whole organs, akin to charting a map of the organ and its resident cells. Map navigation necessitates the capacity to zoom in and out of regions of interest, with high precision, as well as to analyze relationships between cells, tissue degeneration and organ (patho-)physiology. Here we describe the process, in technical detail, based on a world-first case study of a human hip sample and its resident cell population. We acquired 55,000 nm-resolution images of the hip using multi-beam scanning electron microscopy (mSEM). To reconstruct the entire dataset, we developed stitching algorithms to maximize map precision at smallest length scales, and rendered them using the Google Maps API. This enabled the exploration of the hip and its inhabitants in a seamless manner, from a global to a high-resolution local view of a single cell. The resulting navigable maps are available for research teams and the public alike to explore and to elucidate the cellular basis of tissue degeneration and organ failure (mechbio.org).
Collapse
Affiliation(s)
- André F. Pereira
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Daniel J. Hageman
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | | | | | - Ulf Knothe
- Orthopaedic and Rheumatologic Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- TissuTex Pty. Ltd., Wentworth Falls, New South Wales, Australia
| | | | - Melissa L. Knothe Tate
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
35
|
Shami GJ, Cheng D, Huynh M, Vreuls C, Wisse E, Braet F. 3-D EM exploration of the hepatic microarchitecture - lessons learned from large-volume in situ serial sectioning. Sci Rep 2016; 6:36744. [PMID: 27834401 PMCID: PMC5105151 DOI: 10.1038/srep36744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022] Open
Abstract
To-date serial block-face scanning electron microscopy (SBF-SEM) dominates as the premier technique for generating three-dimensional (3-D) data of resin-embedded biological samples at an unprecedented depth volume. Given the infancy of the technique, limited literature is currently available regarding the applicability of SBF-SEM for the ultrastructural investigation of tissues. Herein, we provide a comprehensive and rigorous appraisal of five different SBF-SEM sample preparation protocols for the large-volume exploration of the hepatic microarchitecture at an unparalleled X, Y and Z resolution. In so doing, we qualitatively and quantitatively validate the use of a comprehensive SBF-SEM sample preparation protocol, based on the application of heavy metal fixatives, stains and mordanting agents. Employing the best-tested SBF-SEM approach, enabled us to assess large-volume morphometric data on murine parenchymal cells, sinusoids and bile canaliculi. Finally, we integrated the validated SBF-SEM protocol with a correlative light and electron microscopy (CLEM) approach. The combination of confocal scanning laser microscopy and SBF-SEM provided a novel way to picture subcellular detail. We appreciate that this multidimensional approach will aid the subsequent research of liver tissue under relevant experimental and disease conditions.
Collapse
Affiliation(s)
- Gerald John Shami
- School of Medical Sciences (Discipline of Anatomy and Histology) – The Bosch Institute, The University of Sydney, NSW 2006, Australia
| | - Delfine Cheng
- School of Medical Sciences (Discipline of Anatomy and Histology) – The Bosch Institute, The University of Sydney, NSW 2006, Australia
| | - Minh Huynh
- Australian Centre for Microscopy and Microanalysis (ACMM), The University of Sydney, NSW 2006, Australia
| | - Celien Vreuls
- Department of Pathology, Amphia Hospital, Breda, The Netherlands
| | - Eddie Wisse
- Australian Centre for Microscopy and Microanalysis (ACMM), The University of Sydney, NSW 2006, Australia
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, University of Maastricht, 6200 MD Maastricht, The Netherlands
- Department of Internal Medicine, University of Maastricht, 6200, MD Maastricht, The Netherlands
| | - Filip Braet
- School of Medical Sciences (Discipline of Anatomy and Histology) – The Bosch Institute, The University of Sydney, NSW 2006, Australia
- Australian Centre for Microscopy and Microanalysis (ACMM), The University of Sydney, NSW 2006, Australia
- Cellular Imaging Facility, Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
36
|
Büsse S, Hörnschemeyer T, Fischer C. Three-dimensional reconstruction on cell level: case study elucidates the ultrastructure of the spinning apparatus of Embia sp. (Insecta: Embioptera). ROYAL SOCIETY OPEN SCIENCE 2016; 3:160563. [PMID: 27853574 PMCID: PMC5098999 DOI: 10.1098/rsos.160563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/09/2016] [Indexed: 06/06/2023]
Abstract
Spinning is a phenomenon not only present in spiders, but also in many other arthropods. The functional morphology and complexity of spinning organs is often poorly understood. Their elements are minute and studying them poses substantial methodological difficulties. This study presents a three-dimensional reconstruction of a silk gland of Embia sp. on cellular level, based on serial sections acquired with serial block-face scanning electron microscopy (SBFSEM) to showcase the power of this method. Previous studies achieved either high resolution to elucidate the ultrastructure or satisfying three-dimensional representations. The high-resolution achieved by SBFSEM can be easily used to reconstruct the three-dimensional ultrastructural organization of cellular structures. The herein investigated spinning apparatus of Embioptera can be taken as an example demonstrating the potential of this method. It was possible to reconstruct a multinucleated silk gland containing 63 nuclei. We focused on the applicability of this method in the field of morphological research and provide a step-by-step guide to the methodology. This will help in applying the method to other arthropod taxa and will help significantly in adapting the method to other animals, animal parts and tissues.
Collapse
Affiliation(s)
- Sebastian Büsse
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1–9, 24118 Kiel, Germany
- Department of Morphology, Systematics and Evolutionary Biology, J.- F.- Blumenbach Institute for Zoology and Anthropology, Georg-August-Universität Göttingen, Berliner Strasse 28, 37073 Göttingen, Germany
| | - Thomas Hörnschemeyer
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt, Germany
- Department of Morphology, Systematics and Evolutionary Biology, J.- F.- Blumenbach Institute for Zoology and Anthropology, Georg-August-Universität Göttingen, Berliner Strasse 28, 37073 Göttingen, Germany
| | - Christian Fischer
- Department of Morphology, Systematics and Evolutionary Biology, J.- F.- Blumenbach Institute for Zoology and Anthropology, Georg-August-Universität Göttingen, Berliner Strasse 28, 37073 Göttingen, Germany
| |
Collapse
|
37
|
Ochs M, Knudsen L, Hegermann J, Wrede C, Grothausmann R, Mühlfeld C. Using electron microscopes to look into the lung. Histochem Cell Biol 2016; 146:695-707. [PMID: 27688057 DOI: 10.1007/s00418-016-1502-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
Abstract
In the nineteenth century, there was a dispute about the existence of a lung alveolar epithelium which remained unsolved until the invention of electron microscopy (EM) and its application to the lung. From the early 1960s, Ewald Weibel became the master of lung EM. He showed that the alveolar epithelium is covered with a lining layer containing surfactant. Weibel also explained the phenomenon of "non-nucleated plates" observed already in 1881 by Albert Kölliker. Weibel's most significant contribution was to the development of stereological methods. Therefore, quantitative characterization of lung structure revealing structure-function relationships became possible. Today, the spectrum of EM methods to study the fine structure of the lung has been extended significantly. Cryo-preparation techniques are available which are necessary for immunogold labeling of molecules. Energy-filtering techniques can be used for the detection of elements. There have also been major improvements in stereology, thus providing a very versatile toolbox for quantitative lung phenotype analyses. A new dimension was added by 3D EM techniques. Depending on the desired sample size and resolution, the spectrum ranges from array tomography via serial block face scanning EM and focused ion beam scanning EM to electron tomography. These 3D datasets provide new insights into lung ultrastructure. Biomedical EM is an ever-developing field. Its high resolution remains unparalleled. Moreover, EM has the unique advantage of providing an "open view" into cells and tissues within their full architectural context. Therefore, EM will remain an indispensable tool for a better understanding of the lung's functional design.
Collapse
Affiliation(s)
- Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany. .,REBIRTH Cluster of Excellence, Hannover, Germany.
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Roman Grothausmann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| |
Collapse
|
38
|
Begemann I, Galic M. Correlative Light Electron Microscopy: Connecting Synaptic Structure and Function. Front Synaptic Neurosci 2016; 8:28. [PMID: 27601992 PMCID: PMC4993758 DOI: 10.3389/fnsyn.2016.00028] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/12/2016] [Indexed: 11/20/2022] Open
Abstract
Many core paradigms of contemporary neuroscience are based on information obtained by electron or light microscopy. Intriguingly, these two imaging techniques are often viewed as complementary, yet separate entities. Recent technological advancements in microscopy techniques, labeling tools, and fixation or preparation procedures have fueled the development of a series of hybrid approaches that allow correlating functional fluorescence microscopy data and ultrastructural information from electron micrographs from a singular biological event. As correlative light electron microscopy (CLEM) approaches become increasingly accessible, long-standing neurobiological questions regarding structure-function relation are being revisited. In this review, we will survey what developments in electron and light microscopy have spurred the advent of correlative approaches, highlight the most relevant CLEM techniques that are currently available, and discuss its potential and limitations with respect to neuronal and synapse-specific applications.
Collapse
Affiliation(s)
- Isabell Begemann
- DFG Cluster of Excellence 'Cells in Motion', (EXC 1003), University of Muenster, MuensterGermany; Institute of Medical Physics and Biophysics, University Hospital Münster, University of Muenster, MuensterGermany
| | - Milos Galic
- DFG Cluster of Excellence 'Cells in Motion', (EXC 1003), University of Muenster, MuensterGermany; Institute of Medical Physics and Biophysics, University Hospital Münster, University of Muenster, MuensterGermany
| |
Collapse
|
39
|
Titze B, Genoud C. Volume scanning electron microscopy for imaging biological ultrastructure. Biol Cell 2016; 108:307-323. [DOI: 10.1111/boc.201600024] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Benjamin Titze
- Friedrich Miescher Institute for Biomedical Research; Basel Switzerland
| | - Christel Genoud
- Friedrich Miescher Institute for Biomedical Research; Basel Switzerland
| |
Collapse
|
40
|
Weiner A, Mellouk N, Lopez-Montero N, Chang YY, Souque C, Schmitt C, Enninga J. Macropinosomes are Key Players in Early Shigella Invasion and Vacuolar Escape in Epithelial Cells. PLoS Pathog 2016; 12:e1005602. [PMID: 27182929 PMCID: PMC4868309 DOI: 10.1371/journal.ppat.1005602] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/05/2016] [Indexed: 01/30/2023] Open
Abstract
Intracellular pathogens include all viruses, many bacteria and parasites capable of invading and surviving within host cells. Key to survival is the subversion of host cell pathways by the pathogen for the purpose of propagation and evading the immune system. The intracellular bacterium Shigella flexneri, the causative agent of bacillary dysentery, invades host cells in a vacuole that is subsequently ruptured to allow growth of the pathogen within the host cytoplasm. S. flexneri invasion has been classically described as a macropinocytosis-like process, however the underlying details and the role of macropinosomes in the intracellular bacterial lifestyle have remained elusive. We applied dynamic imaging and advanced large volume correlative light electron microscopy (CLEM) to study the highly transient events of S. flexneri's early invasion into host epithelial cells and elucidate some of its fundamental features. First, we demonstrate a clear distinction between two compartments formed during the first step of invasion: the bacterial containing vacuole and surrounding macropinosomes, often considered identical. Next, we report a functional link between macropinosomes and the process of vacuolar rupture, demonstrating that rupture timing is dependent on the availability of macropinosomes as well as the activity of the small GTPase Rab11 recruited directly to macropinosomes. We go on to reveal that the bacterial containing vacuole and macropinosomes come into direct contact at the onset of vacuolar rupture. Finally, we demonstrate that S. flexneri does not subvert pre-existing host endocytic vesicles during the invasion steps leading to vacuolar rupture, and propose that macropinosomes are the major compartment involved in these events. These results provide the basis for a new model of the early steps of S. flexneri epithelial cell invasion, establishing a different view of the enigmatic process of cytoplasmic access by invasive bacterial pathogens.
Collapse
Affiliation(s)
- Allon Weiner
- Institut Pasteur, Dynamics of Host-Pathogen interactions Unit, Paris, France
- * E-mail: (AW); (JE)
| | - Nora Mellouk
- Institut Pasteur, Dynamics of Host-Pathogen interactions Unit, Paris, France
| | | | - Yuen-Yan Chang
- Institut Pasteur, Dynamics of Host-Pathogen interactions Unit, Paris, France
| | - Célia Souque
- Institut Pasteur, Dynamics of Host-Pathogen interactions Unit, Paris, France
| | | | - Jost Enninga
- Institut Pasteur, Dynamics of Host-Pathogen interactions Unit, Paris, France
- * E-mail: (AW); (JE)
| |
Collapse
|
41
|
Chang L, Hu J, Chen F, Chen Z, Shi J, Yang Z, Li Y, Lee LJ. Nanoscale bio-platforms for living cell interrogation: current status and future perspectives. NANOSCALE 2016; 8:3181-3206. [PMID: 26745513 DOI: 10.1039/c5nr06694h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The living cell is a complex entity that dynamically responds to both intracellular and extracellular environments. Extensive efforts have been devoted to the understanding intracellular functions orchestrated with mRNAs and proteins in investigation of the fate of a single-cell, including proliferation, apoptosis, motility, differentiation and mutations. The rapid development of modern cellular analysis techniques (e.g. PCR, western blotting, immunochemistry, etc.) offers new opportunities in quantitative analysis of RNA/protein expression up to a single cell level. The recent entries of nanoscale platforms that include kinds of methodologies with high spatial and temporal resolution have been widely employed to probe the living cells. In this tutorial review paper, we give insight into background introduction and technical innovation of currently reported nanoscale platforms for living cell interrogation. These highlighted technologies are documented in details within four categories, including nano-biosensors for label-free detection of living cells, nanodevices for living cell probing by intracellular marker delivery, high-throughput platforms towards clinical current, and the progress of microscopic imaging platforms for cell/tissue tracking in vitro and in vivo. Perspectives for system improvement were also discussed to solve the limitations remains in current techniques, for the purpose of clinical use in future.
Collapse
Affiliation(s)
- Lingqian Chang
- NSF Nanoscale Science and Engineering Center (NSEC), The Ohio State University, Columbus, OH 43212, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
BORRETT S, HUGHES L. Reporting methods for processing and analysis of data from serial block face scanning electron microscopy. J Microsc 2016; 263:3-9. [DOI: 10.1111/jmi.12377] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/09/2015] [Indexed: 01/13/2023]
Affiliation(s)
- S. BORRETT
- Sir William Dunn School of Pathology, South Parks Road; University of Oxford; Oxford OX1 3RE U.K
| | - L. HUGHES
- Department of Biological & Medical Sciences, Gipsy Lane; Oxford Brookes University; Oxford OX3 0BP U.K
| |
Collapse
|
43
|
Belevich I, Joensuu M, Kumar D, Vihinen H, Jokitalo E. Microscopy Image Browser: A Platform for Segmentation and Analysis of Multidimensional Datasets. PLoS Biol 2016; 14:e1002340. [PMID: 26727152 PMCID: PMC4699692 DOI: 10.1371/journal.pbio.1002340] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the structure-function relationship of cells and organelles in their natural context requires multidimensional imaging. As techniques for multimodal 3-D imaging have become more accessible, effective processing, visualization, and analysis of large datasets are posing a bottleneck for the workflow. Here, we present a new software package for high-performance segmentation and image processing of multidimensional datasets that improves and facilitates the full utilization and quantitative analysis of acquired data, which is freely available from a dedicated website. The open-source environment enables modification and insertion of new plug-ins to customize the program for specific needs. We provide practical examples of program features used for processing, segmentation and analysis of light and electron microscopy datasets, and detailed tutorials to enable users to rapidly and thoroughly learn how to use the program.
Collapse
Affiliation(s)
- Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Merja Joensuu
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Darshan Kumar
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Bert W, Slos D, Leroux O, Claeys M. Cryo-fixation and associated developments in transmission electron microscopy: a cool future for nematology. NEMATOLOGY 2016. [DOI: 10.1163/15685411-00002943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
At present, the importance of sample preparation equipment for electron microscopy represents the driving force behind major breakthroughs in microscopy and cell biology. In this paper we present an introduction to the most commonly used cryo-fixation techniques, with special attention paid towards high-pressure freezing followed by freeze substitution. Techniques associated with cryo-fixation, such as immunolocalisation, cryo-sectioning, and correlative light and electron microscopy, are also highlighted. For studies that do not require high resolution, high quality results, or the immediate arrest of certain processes, conventional methods will provide answers to many questions. For some applications, such as immunocytochemistry, three-dimensional reconstruction of serial sections or electron tomography, improved preservation of the ultrastructure is required. This review of nematode cryo-fixation highlights that cryo-fixation not only results in a superior preservation of fine structural details, but also underlines the fact that some observations based on results solely obtained through conventional fixation approaches were either incorrect, or otherwise had severe limitations. Although the use of cryo-fixation has hitherto been largely restricted to model organisms, the advantages of cryo-fixation are sufficiently self-evident that we must conclude that the cryo-fixation method is highly likely to become the standard for nematode fixation in the near future.
Collapse
Affiliation(s)
- Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Dieter Slos
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Olivier Leroux
- Pteridology Research Group, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Myriam Claeys
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
45
|
Ou HD, Deerinck TJ, Bushong E, Ellisman MH, O'Shea CC. Visualizing viral protein structures in cells using genetic probes for correlated light and electron microscopy. Methods 2015; 90:39-48. [PMID: 26066760 PMCID: PMC4655137 DOI: 10.1016/j.ymeth.2015.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 01/08/2023] Open
Abstract
Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication.
Collapse
Affiliation(s)
- Horng D Ou
- Molecular and Cell Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Eric Bushong
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mark H Ellisman
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Neurosciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Clodagh C O'Shea
- Molecular and Cell Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
46
|
Burette A, Collman F, Micheva KD, Smith SJ, Weinberg RJ. Knowing a synapse when you see one. Front Neuroanat 2015; 9:100. [PMID: 26283929 PMCID: PMC4517447 DOI: 10.3389/fnana.2015.00100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/10/2015] [Indexed: 11/22/2022] Open
Abstract
Recent years have seen a rapidly growing recognition of the complexity and diversity of the myriad individual synaptic connections that define brain synaptic networks. It has also become increasingly apparent that the synapses themselves are a major key to understanding the development, function and adaptability of those synaptic networks. In spite of this growing appreciation, the molecular, structural and functional characteristics of individual synapses and the patterning of their diverse characteristics across functional networks have largely eluded quantitative study with available imaging technologies. Here we offer an overview of new computational imaging methods that promise to bring single-synapse analysis of synaptic networks to the fore. We focus especially on the challenges and opportunities associated with quantitative detection of individual synapses and with measuring individual synapses across network scale populations in mammalian brain.
Collapse
Affiliation(s)
- Alain Burette
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | | | - Kristina D Micheva
- Department of Molecular and Cellular Physiology, Stanford University Stanford, CA, USA
| | | | - Richard J Weinberg
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| |
Collapse
|
47
|
|
48
|
Mourik MJ, Faas FGA, Zimmermann H, Eikenboom J, Koster AJ. Towards the imaging of Weibel-Palade body biogenesis by serial block face-scanning electron microscopy. J Microsc 2015; 259:97-104. [PMID: 25644989 PMCID: PMC4670698 DOI: 10.1111/jmi.12222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/23/2014] [Indexed: 12/25/2022]
Abstract
Electron microscopy is used in biological research to study the ultrastructure at high resolution to obtain information on specific cellular processes. Serial block face-scanning electron microscopy is a relatively novel electron microscopy imaging technique that allows three-dimensional characterization of the ultrastructure in both tissues and cells by measuring volumes of thousands of cubic micrometres yet at nanometre-scale resolution. In the scanning electron microscope, repeatedly an image is acquired followed by the removal of a thin layer resin embedded biological material by either a microtome or a focused ion beam. In this way, each recorded image contains novel structural information which can be used for three-dimensional analysis. Here, we explore focused ion beam facilitated serial block face-scanning electron microscopy to study the endothelial cell–specific storage organelles, the Weibel–Palade bodies, during their biogenesis at the Golgi apparatus. Weibel–Palade bodies predominantly contain the coagulation protein Von Willebrand factor which is secreted by the cell upon vascular damage. Using focused ion beam facilitated serial block face-scanning electron microscopy we show that the technique has the sensitivity to clearly reveal subcellular details like mitochondrial cristae and small vesicles with a diameter of about 50 nm. Also, we reveal numerous associations between Weibel–Palade bodies and Golgi stacks which became conceivable in large-scale three-dimensional data. We demonstrate that serial block face-scanning electron microscopy is a promising tool that offers an alternative for electron tomography to study subcellular organelle interactions in the context of a complete cell.
Collapse
Affiliation(s)
- M J Mourik
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - F G A Faas
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - J Eikenboom
- Department of Thrombosis and Hemostasis, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - A J Koster
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
49
|
Abstract
Methods for electron tomography of the nematode C. elegans are explained in detail, including a brief introduction to specimen preparation, methods for image collection, and a comparison of several general methods for producing dual-axis tomograms, with or without external fiducial reference objects. New electron tomograms highlight features in software for data display, annotation, and analysis. This chapter discusses the ultrastructural analysis of cells and tissues, rather than molecular studies.
Collapse
Affiliation(s)
- David H Hall
- Albert Einstein College of Medicine, Center for C. elegans Anatomy, 1410 Pelham Parkway South, Room 601, Bronx, NY, 10461, USA.
| | | |
Collapse
|
50
|
Eberle AL, Selchow O, Thaler M, Zeidler D, Kirmse R. Mission (im)possible – mapping the brain becomes a reality. Microscopy (Oxf) 2014; 64:45-55. [DOI: 10.1093/jmicro/dfu104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|