1
|
Nishioka ST, Snipper J, Lee J, Schapiro J, Zhang RZ, Abe H, Till A, Okumura CYM. Group A Streptococcus induces lysosomal dysfunction in THP-1 macrophages. Infect Immun 2024; 92:e0014124. [PMID: 38722166 PMCID: PMC11237432 DOI: 10.1128/iai.00141-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024] Open
Abstract
The human-specific bacterial pathogen group A Streptococcus (GAS) is a significant cause of morbidity and mortality. Macrophages are important to control GAS infection, but previous data indicate that GAS can persist in macrophages. In this study, we detail the molecular mechanisms by which GAS survives in THP-1 macrophages. Our fluorescence microscopy studies demonstrate that GAS is readily phagocytosed by macrophages, but persists within phagolysosomes. These phagolysosomes are not acidified, which is in agreement with our findings that GAS cannot survive in low pH environments. We find that the secreted pore-forming toxin Streptolysin O (SLO) perforates the phagolysosomal membrane, allowing leakage of not only protons but also large proteins including the lysosomal protease cathepsin B. Additionally, GAS recruits CD63/LAMP-3, which may contribute to lysosomal permeabilization, especially in the absence of SLO. Thus, although GAS does not inhibit fusion of the lysosome with the phagosome, it has multiple mechanisms to prevent proper phagolysosome function, allowing for persistence of the bacteria within the macrophage. This has important implications for not only the initial response but also the overall functionality of the macrophages, which may lead to the resulting pathologies in GAS infection. Our data suggest that therapies aimed at improving macrophage function may positively impact patient outcomes in GAS infection.
Collapse
Affiliation(s)
- Scott T Nishioka
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Joshua Snipper
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Jimin Lee
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Joshua Schapiro
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Robert Z Zhang
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Hyewon Abe
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Andreas Till
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
- The San Diego Center for Systems Biology, University of California San Diego, La Jolla, California, USA
- University Hospital of Bonn, Bonn, Germany
| | | |
Collapse
|
2
|
Omo-Lamai S, Wang Y, Patel MN, Essien EO, Shen M, Majumdar A, Espy C, Wu J, Channer B, Tobin M, Murali S, Papp TE, Maheshwari R, Wang L, Chase LS, Zamora ME, Arral ML, Marcos-Contreras OA, Myerson JW, Hunter CA, Tsourkas A, Muzykantov V, Brodsky I, Shin S, Whitehead KA, Gaskill P, Discher D, Parhiz H, Brenner JS. Lipid Nanoparticle-Associated Inflammation is Triggered by Sensing of Endosomal Damage: Engineering Endosomal Escape Without Side Effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589801. [PMID: 38659905 PMCID: PMC11042321 DOI: 10.1101/2024.04.16.589801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as the dominant platform for RNA delivery, based on their success in the COVID-19 vaccines and late-stage clinical studies in other indications. However, we and others have shown that LNPs induce severe inflammation, and massively aggravate pre-existing inflammation. Here, using structure-function screening of lipids and analyses of signaling pathways, we elucidate the mechanisms of LNP-associated inflammation and demonstrate solutions. We show that LNPs' hallmark feature, endosomal escape, which is necessary for RNA expression, also directly triggers inflammation by causing endosomal membrane damage. Large, irreparable, endosomal holes are recognized by cytosolic proteins called galectins, which bind to sugars on the inner endosomal membrane and then regulate downstream inflammation. We find that inhibition of galectins abrogates LNP-associated inflammation, both in vitro and in vivo . We show that rapidly biodegradable ionizable lipids can preferentially create endosomal holes that are smaller in size and reparable by the endosomal sorting complex required for transport (ESCRT) pathway. Ionizable lipids producing such ESCRT-recruiting endosomal holes can produce high expression from cargo mRNA with minimal inflammation. Finally, we show that both routes to non-inflammatory LNPs, either galectin inhibition or ESCRT-recruiting ionizable lipids, are compatible with therapeutic mRNAs that ameliorate inflammation in disease models. LNPs without galectin inhibition or biodegradable ionizable lipids lead to severe exacerbation of inflammation in these models. In summary, endosomal escape induces endosomal membrane damage that can lead to inflammation. However, the inflammation can be controlled by inhibiting galectins (large hole detectors) or by using biodegradable lipids, which create smaller holes that are reparable by the ESCRT pathway. These strategies should lead to generally safer LNPs that can be used to treat inflammatory diseases.
Collapse
|
3
|
Mulligan R, Magaj M, Digilio L, Redemann S, Yap C, Winckler B. Collapse of late endosomal pH elicits a rapid Rab7 response via V-ATPase and RILP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.24.563658. [PMID: 37961579 PMCID: PMC10634777 DOI: 10.1101/2023.10.24.563658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Endosomal-lysosomal trafficking is accompanied by the acidification of endosomal compartments by the H+-V-ATPase to reach low lysosomal pH. Disruption of proper pH impairs lysosomal function and the balance of protein synthesis and degradation (proteostasis). We used the small dipeptide LLOMe, which is known to permeabilize lysosomal membranes, and find that LLOMe also impacts late endosomes (LEs) by neutralizing their pH without causing membrane permeabilization. We show that LLOMe leads to hyper-activation of Rab7 and disruption of tubulation and mannose-6-phosphate receptor (CI-M6PR) recycling on pH-neutralized LEs. Either pH neutralization (NH4Cl) or Rab7 hyper-active mutants alone can phenocopy the alterations in tubulation and CI-M6PR trafficking. Mechanistically, pH neutralization increases the assembly of the V1G1 subunit of the V-ATPase on endosomal membranes, which stabilizes GTP-bound Rab7 via RILP, a known interactor of Rab7 and V1G1. We propose a novel pathway by which V-ATPase and RILP modulate LE pH and Rab7 activation in concert. This pathway might broadly contribute to pH control during physiologic endosomal maturation or starvation and during pathologic pH neutralization, which occurs via lysosomotropic compounds or in disease states.
Collapse
Affiliation(s)
- R.J. Mulligan
- Department of Cell Biology, University of Virginia, Charlottesville, VA
- Cell and Developmental Biology Graduate Program, University of Virginia, Charlottesville, VA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA
| | - M.M. Magaj
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville VA
- Cell and Developmental Biology Graduate Program, University of Virginia, Charlottesville, VA
| | - L. Digilio
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| | - S. Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville VA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA
| | - C.C. Yap
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| | - B Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| |
Collapse
|
4
|
Chen W, Motsinger MM, Li J, Bohannon KP, Hanson PI. Ca 2+ -sensor ALG-2 engages ESCRTs to enhance lysosomal membrane resilience to osmotic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578682. [PMID: 38352356 PMCID: PMC10862787 DOI: 10.1101/2024.02.04.578682] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Lysosomes are central players in cellular catabolism, signaling, and metabolic regulation. Cellular and environmental stresses that damage lysosomal membranes can compromise their function and release toxic content into the cytoplasm. Here, we examine how cells respond to osmotic stress within lysosomes. Using sensitive assays of lysosomal leakage and rupture, we examine acute effects of the cathepsin C-metabolized osmotic disruptant glycyl-L-phenylalanine 2-naphthylamide (GPN). Our findings reveal that widely used concentrations of GPN rupture only a small fraction of lysosomes, but surprisingly trigger Ca 2+ release from nearly all. Chelating cytoplasmic Ca 2+ using BAPTA makes lysosomes more likely to rupture under GPN-induced stress, suggesting that Ca 2+ plays a role in protecting or rapidly repairing lysosomal membranes. Mechanistically, we establish that GPN causes the Ca 2+ -sensitive protein Apoptosis Linked Gene-2 (ALG-2) and interacting ESCRT proteins to redistribute onto lysosomes, improving their resistance to membrane stress created by GPN as well as the lysosomotropic drug chlorpromazine. Furthermore, we show that activating the cation channel TRPML1, with or without blocking the endoplasmic reticulum Ca 2+ pump, creates local Ca 2+ signals that protect lysosomes from rupture by recruiting ALG-2 and ESCRTs without any membrane damage. These findings reveal that Ca 2+ , through ALG-2, helps bring ESCRTs to lysosomes to enhance their resilience and maintain organelle integrity in the face of osmotic stress. SIGNIFICANCE As the degradative hub of the cell, lysosomes are full of toxic content that can spill into the cytoplasm. There has been much recent interest in how cells sense and repair lysosomal membrane damage using ESCRTs and cholesterol to rapidly fix "nanoscale damage". Here, we extend understanding of how ESCRTs contribute by uncovering a preventative role of the ESCRT machinery. We show that ESCRTs, when recruited by the Ca 2+ -sensor ALG-2, play a critical role in stabilizing the lysosomal membrane against osmotically-induced rupture. This finding suggests that cells have mechanisms not just for repairing but also for actively protecting lysosomes from stress-induced membrane damage.
Collapse
|
5
|
Raykov L, D'Amico D, López-Jiménez AT, Soldati T. Inflicting, Monitoring, Visualizing, and Quantitating Various Sterile Membrane Damages and the Repair Response in Dictyostelium discoideum. Methods Mol Biol 2024; 2814:45-53. [PMID: 38954196 DOI: 10.1007/978-1-0716-3894-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Eukaryotic cells have been constantly challenged throughout their evolution by pathogens, mechanical stresses, or toxic compounds that induce plasma membrane (PM) or endolysosomal membrane damage. The survival of the wounded cells depends on damage detection and repair machineries that are evolutionary conserved between protozoan, plants, and animals. We use the social amoeba Dictyostelium discoideum as a model system to study bacteria, mechanical or sterile membrane damage that allows us to identify and monitor factors involved in PM, endolysosomal damage response (ELDR), and endolysosomal homeostasis. Importantly, the sterile damage techniques presented here homogenously affect cell populations, which allows to phenotype mutant strains and quantify various aspects of cell fitness using live cell microscopy. This is instrumental to functionally assess genes involved in the repair of damaged plasma membrane or intracellular compartments and the degradation of extensively damaged compartments. Here, we describe how to inflict sterile PM or endolysosomal membrane damage, how to monitor the cell-intrinsic response to damage, and how to proxy proton leakage from damaged acidic compartments and quantify cell viability.
Collapse
Affiliation(s)
- Lyudmil Raykov
- Département de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, Geneva, Switzerland.
| | - Davide D'Amico
- Département de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, Geneva, Switzerland
| | - A T López-Jiménez
- Département de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, Geneva, Switzerland
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Thierry Soldati
- Département de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, Geneva, Switzerland.
| |
Collapse
|
6
|
Anand A, Mazur AC, Rosell-Arevalo P, Franzkoch R, Breitsprecher L, Listian SA, Hüttel SV, Müller D, Schäfer DG, Vormittag S, Hilbi H, Maniak M, Gutierrez MG, Barisch C. ER-dependent membrane repair of mycobacteria-induced vacuole damage. mBio 2023; 14:e0094323. [PMID: 37676004 PMCID: PMC10653851 DOI: 10.1128/mbio.00943-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023] Open
Abstract
IMPORTANCE Tuberculosis still remains a global burden and is one of the top infectious diseases from a single pathogen. Mycobacterium tuberculosis, the causative agent, has perfected many ways to replicate and persist within its host. While mycobacteria induce vacuole damage to evade the toxic environment and eventually escape into the cytosol, the host recruits repair machineries to restore the MCV membrane. However, how lipids are delivered for membrane repair is poorly understood. Using advanced fluorescence imaging and volumetric correlative approaches, we demonstrate that this involves the recruitment of the endoplasmic reticulum (ER)-Golgi lipid transfer protein OSBP8 in the Dictyostelium discoideum/Mycobacterium marinum system. Strikingly, depletion of OSBP8 affects lysosomal function accelerating mycobacterial growth. This indicates that an ER-dependent repair pathway constitutes a host defense mechanism against intracellular pathogens such as M. tuberculosis.
Collapse
Affiliation(s)
- Aby Anand
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Anna-Carina Mazur
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Patricia Rosell-Arevalo
- Host–Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Rico Franzkoch
- Integrated Bioimaging Facility, Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Leonhard Breitsprecher
- Integrated Bioimaging Facility, Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Stevanus A. Listian
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Sylvana V. Hüttel
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Danica Müller
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Deise G. Schäfer
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Simone Vormittag
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Markus Maniak
- Department of Cell Biology, University of Kassel, Kassel, Germany
| | - Maximiliano G. Gutierrez
- Host–Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Caroline Barisch
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Jani C, Marsh A, Uchil P, Jain N, Baskir ZR, Glover OT, Root DE, Doench JG, Barczak AK. Vps18 contributes to phagosome membrane integrity in Mycobacterium tuberculosis-infected macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.01.560397. [PMID: 37873319 PMCID: PMC10592876 DOI: 10.1101/2023.10.01.560397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Mycobacterium tuberculosis (Mtb) has evolved to be exquisitely adapted to survive within host macrophages. The capacity to damage the phagosomal membrane has emerged as central to Mtb virulence. While Mtb factors driving membrane damage have been described, host factors that repair that damage to contain the pathogen remain largely unknown. We used a genome-wide CRISPR screen to identify novel host factors required to repair Mtb-damaged phagosomal membranes. Vacuolar protein sorting-associated protein 18 (Vps18), a member of the HOPS and CORVET trafficking complexes, was among the top hits. Vps18 colocalized with Mtb in macrophages beginning shortly after infection, and Vps18-knockout macrophages demonstrated increased damage of Mtb-containing phagosomes without impaired autophagy. Mtb grew more robustly in Vps18-knockout cells, and the first-line anti-tuberculosis antibiotic pyrazinamide was less effective. Our results identify Vps18 as required for phagosomal membrane integrity in Mtb-infected cells and suggest that modulating phagosome integrity may hold promise for improving the efficacy of antibiotic treatment for TB.
Collapse
Affiliation(s)
| | | | - Pooja Uchil
- The Ragon Institute of MGH, MIT and Harvard
- Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg
| | - Neha Jain
- The Ragon Institute of MGH, MIT and Harvard
| | | | | | | | | | - Amy K Barczak
- The Ragon Institute of MGH, MIT and Harvard
- The Broad Institute
- Division of Infectious Diseases, Massachusetts General Hospital
- Department of Medicine, Harvard Medical School
| |
Collapse
|
8
|
Cheng W, Fukuda M, Kim S, Liu Y, Chen X, Holmes C, Li Y, Chung H, Ren Y, Guan J. Osmotically Rupturing Phagosomes in Macrophages Using PNIPAM Microparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24244-24256. [PMID: 37186785 PMCID: PMC10426762 DOI: 10.1021/acsami.3c05335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The rupture of macrophage phagosomes has been implicated in various human diseases and plays a critical role in immunity. However, the mechanisms underlying this process are complex and not yet fully understood. This study describes the development of a robust engineering method for rupturing phagosomes based on a well-defined mechanism. The method utilizes microfabricated microparticles composed of uncrosslinked linear poly(N-isopropylacrylamide) (PNIPAM) as phagocytic objects. These microparticles are internalized into phagosomes at 37 °C. By exposing the cells to a cold shock at 0 °C, the vast majority of the microparticle-containing phagosomes rupture. The percentage of phagosomal rupture decreases with the increase of the cold-shock temperature. The osmotic pressure in the phagosomes and the tension in the phagosomal membrane are calculated using the Flory-Huggins theory and the Young-Laplace equation. The modeling results indicate that the osmotic pressure generated by dissolved microparticles is probably responsible for phagosomal rupture, are consistent with the experimentally observed dependence of phagosomal rupture on the cold-shock temperature, and suggest the existence of a cellular mechanism for resisting phagosomal rupture. Moreover, the effects of various factors including hypotonic shock, chloroquine, tetrandrine, colchicine, and l-leucyl-l-leucine O-methyl ester (LLOMe) on phagosomal rupture have been studied with this method. The results further support that the osmotic pressure generated by the dissolved microparticles causes phagosomal rupture and demonstrated usefulness of this method for studying phagosomal rupture. This method can be further developed, ultimately leading to a deeper understanding of phagosomal rupture.
Collapse
Affiliation(s)
- Wenhao Cheng
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Masahiro Fukuda
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Sundol Kim
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Yuan Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Christina Holmes
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Hoyong Chung
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Yi Ren
- College of Medicine, Florida State University, Tallahassee, Florida 32306-4370, USA
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| |
Collapse
|
9
|
Yang Y, Wang M, Zhang YY, Zhao SZ, Gu S. The endosomal sorting complex required for transport repairs the membrane to delay cell death. Front Oncol 2022; 12:1007446. [PMID: 36330465 PMCID: PMC9622947 DOI: 10.3389/fonc.2022.1007446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/20/2022] [Indexed: 08/15/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery plays a key role in the repair of damaged plasma membranes with puncta form and removes pores from the plasma membrane in regulated cell death, apoptosis, necroptosis, pyroptosis, ferroptosis, and autophagy. ESCRT-I overexpression and ESCRT-III-associated charged multivesicular body protein (CHMP) 4B participate in apoptosis, and the ESCRT-1 protein TSG 101 maintains low levels of ALIX and ALG-2 and prevents predisposition to apoptosis. The ESCRT-III components CHMP2A and CHMP4B are recruited to broken membrane bubble sites with the requirement of extracellular Ca2+, remove membrane vesicles from cells, and delay the time required for active MLKL to mediate necroptosis, thus preserving cell survival. CHMP4B disturbed pyroptosis by recruiting around the plasma membrane neck to remove the GSDMD pores and preserve plasma membrane integrity depending on Ca2+ influx. The accumulation of the ESCRT-III subunits CHMP5 and CHMP6 in the plasma membrane is increased by the classical ferroptosis activators erastin-1 and ras-selective lethal small molecule 3 (RSL3) upon cytosolic calcium influx and repairs the ferroptotic plasma membrane. ESCRT-III- and VPS4-induced macroautophagy, ESCRT-0-initiated microautophagy. ESCRT-I, ESCRT-II, ESCRT-III, ALIX, and VPS4A are recruited to damaged lysosomes and precede lysophagy, indicating that ESCRT is a potential target to overcome drug resistance during tumor therapy.
Collapse
Affiliation(s)
- Ye Yang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Wang
- General Surgery Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Ying Zhang
- Respiratory and Critical Care Medicine Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Zhi Zhao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Song Gu
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Gros M, Segura E, Rookhuizen DC, Baudon B, Heurtebise-Chrétien S, Burgdorf N, Maurin M, Kapp EA, Simpson RJ, Kozik P, Villadangos JA, Bertrand MJM, Burbage M, Amigorena S. Endocytic membrane repair by ESCRT-III controls antigen export to the cytosol during antigen cross-presentation. Cell Rep 2022; 40:111205. [PMID: 35977488 PMCID: PMC9396532 DOI: 10.1016/j.celrep.2022.111205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/10/2022] [Accepted: 07/22/2022] [Indexed: 11/03/2022] Open
Abstract
Despite its crucial role in initiation of cytotoxic immune responses, the molecular pathways underlying antigen cross-presentation remain incompletely understood. The mechanism of antigen exit from endocytic compartments into the cytosol is a long-standing matter of controversy, confronting two main models: transfer through specific channels/transporters or rupture of endocytic membranes and leakage of luminal content. By monitoring the occurrence of intracellular damage in conventional dendritic cells (cDCs), we show that cross-presenting cDC1s display more frequent endomembrane injuries and increased recruitment of endosomal sorting complex required for transport (ESCRT)-III, the main repair system for intracellular membranes, relative to cDC2s. Silencing of CHMP2a or CHMP4b, two effector subunits of ESCRT-III, enhances cytosolic antigen export and cross-presentation. This phenotype is partially reversed by chemical inhibition of RIPK3, suggesting that endocytic damage is related to basal activation of the necroptosis pathway. Membrane repair therefore proves crucial in containing antigen export to the cytosol and cross-presentation in cDCs.
Collapse
Affiliation(s)
- Marine Gros
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France.
| | - Elodie Segura
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France; Department of Microbiology and Immunology at the Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Derek C Rookhuizen
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Blandine Baudon
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | | | - Nina Burgdorf
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Eugene A Kapp
- Walter & Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC 3086, Australia
| | - Patrycja Kozik
- Protein & Nucleic Acid Chemistry Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jose A Villadangos
- Department of Microbiology and Immunology at the Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mathieu J M Bertrand
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwinjaarde 71, 9052 Zwinaarde-Ghent, Belgium; VIB Center for Inflammation Research, Technologiepark-Zwinjaarde 71, 9052 Zwinaarde-Ghent, Belgium
| | - Marianne Burbage
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France.
| | - Sebastian Amigorena
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| |
Collapse
|
11
|
Gao L, Shi Y, Zhang E, You J, Han J, Su X, Han S. Biocapture-Directed Chemical Labeling for Discerning Stressed States of Organelles. Anal Chem 2022; 94:9903-9910. [PMID: 35754322 DOI: 10.1021/acs.analchem.2c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lysosomal rupture engaged in diverse diseases remains poorly discerned from lysosomal membrane permeabilization (LMP). We herein reported biocapture-directed chemical labeling (BCCL) for the discern of lysosomal rupture by tracking the release of optically labeled cathepsins from damaged lysosomes into the cytosol. BCCL entails covalent anchoring of an azide-tagged suicide substrate (Epo-LeuTyrAz) to the enzyme active site and bioorthogonal ligation of the introduced azide with DBCORC, a ratiometric sensor featuring an acidity-reporting red emissive X-rhodamine-lactam (ROX), blue emissive coumarin (CM) inert to pH, and DBCO reactive to azide. Aided with fluorescein isocyanate-labeled sialic acid (FITC-Sia), a probe remained in pH-elevated lysosomes but dissipated from LMP+ lysosomes, BCCL enables optical discern of four states of lysosomes: ruptured lysosomes (blue in cytosol), LMP+ lysosomes (blue in lysosomes), pH-elevated lysosomes (blue and green in lysosomes), and physiological lysosomes (blue, green and red in lysosomes). This approach could find applicability to study lysosome rupture over LMP in diseases and to evaluate lysosome rupture-inducing drugs.
Collapse
Affiliation(s)
- Lei Gao
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| | - Yilong Shi
- College of Life Science and State Key Laboratory for Cell Stress, Xiamen University, Xiamen 361005, China
| | - Enkang Zhang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| | - Jinxuan You
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| | - Jiahuai Han
- College of Life Science and State Key Laboratory for Cell Stress, Xiamen University, Xiamen 361005, China
| | - Xinhui Su
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shoufa Han
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| |
Collapse
|
12
|
Yim WWY, Yamamoto H, Mizushima N. Annexins A1 and A2 are recruited to larger lysosomal injuries independently of ESCRTs to promote repair. FEBS Lett 2022; 596:991-1003. [PMID: 35274304 DOI: 10.1002/1873-3468.14329] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Damaged lysosomes can be repaired by calcium release-dependent recruitment of the ESCRT machinery. However, the involvement of annexins, another group of calcium-responding membrane repair proteins, has not been fully addressed. Here, we show that although all ubiquitously expressed annexins (ANXA1, A2, A4, A5, A6, A7, and A11) localize to damaged lysosomes, only ANXA1 and ANXA2 are important for repair. Their recruitment is calcium-dependent, ESCRT-independent, and selective towards lysosomes with large injuries. Lysosomal leakage was more severe when ANXA1 or ANXA2 was depleted compared to that of ESCRT components. These findings suggest that ANXA1 and ANXA2 constitute an additional repair mechanism that serves to minimize leakage from damaged lysosomes.
Collapse
Affiliation(s)
- Willa Wen-You Yim
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
13
|
Pan C, Banerjee K, Lehmann GL, Almeida D, Hajjar KA, Benedicto I, Jiang Z, Radu RA, Thompson DH, Rodriguez-Boulan E, Nociari MM. Lipofuscin causes atypical necroptosis through lysosomal membrane permeabilization. Proc Natl Acad Sci U S A 2021; 118:e2100122118. [PMID: 34782457 PMCID: PMC8617501 DOI: 10.1073/pnas.2100122118] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 01/16/2023] Open
Abstract
Lipofuscin granules enclose mixtures of cross-linked proteins and lipids in proportions that depend on the tissue analyzed. Retinal lipofuscin is unique in that it contains mostly lipids with very little proteins. However, retinal lipofuscin also presents biological and physicochemical characteristics indistinguishable from conventional granules, including indigestibility, tendency to cause lysosome swelling that results in rupture or defective functions, and ability to trigger NLRP3 inflammation, a symptom of low-level disruption of lysosomes. In addition, like conventional lipofuscins, it appears as an autofluorescent pigment, considered toxic waste, and a biomarker of aging. Ocular lipofuscin accumulates in the retinal pigment epithelium (RPE), whereby it interferes with the support of the neuroretina. RPE cell death is the primary cause of blindness in the most prevalent incurable genetic and age-related human disorders, Stargardt disease and age-related macular degeneration (AMD), respectively. Although retinal lipofuscin is directly linked to the cell death of the RPE in Stargardt, the extent to which it contributes to AMD is a matter of debate. Nonetheless, the number of AMD clinical trials that target lipofuscin formation speaks for the potential relevance for AMD as well. Here, we show that retinal lipofuscin triggers an atypical necroptotic cascade, amenable to pharmacological intervention. This pathway is distinct from canonic necroptosis and is instead dependent on the destabilization of lysosomes. We also provide evidence that necroptosis is activated in aged human retinas with AMD. Overall, this cytotoxicity mechanism may offer therapeutic targets and markers for genetic and age-related diseases associated with lipofuscin buildups.
Collapse
Affiliation(s)
- Chendong Pan
- Department of Ophthalmology, Weill Cornell Medicine, Margaret Dyson Vision Research Institute, New York, NY 10065
| | - Kalpita Banerjee
- Department of Ophthalmology, Weill Cornell Medicine, Margaret Dyson Vision Research Institute, New York, NY 10065
| | - Guillermo L Lehmann
- Department of Ophthalmology, Weill Cornell Medicine, Margaret Dyson Vision Research Institute, New York, NY 10065
| | - Dena Almeida
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065
| | | | - Ignacio Benedicto
- Department of Ophthalmology, Weill Cornell Medicine, Margaret Dyson Vision Research Institute, New York, NY 10065
- Centro Nacional de Investigaciones Cardiovasculares, Madrid 47907, Spain
| | - Zhichun Jiang
- UCLA Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA 90095
| | - Roxana A Radu
- UCLA Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA 90095
| | - David H Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN 28029
| | - Enrique Rodriguez-Boulan
- Department of Ophthalmology, Weill Cornell Medicine, Margaret Dyson Vision Research Institute, New York, NY 10065
| | - Marcelo M Nociari
- Department of Ophthalmology, Weill Cornell Medicine, Margaret Dyson Vision Research Institute, New York, NY 10065;
| |
Collapse
|
14
|
Targeting lysosomes in human disease: from basic research to clinical applications. Signal Transduct Target Ther 2021; 6:379. [PMID: 34744168 PMCID: PMC8572923 DOI: 10.1038/s41392-021-00778-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/26/2021] [Indexed: 01/18/2023] Open
Abstract
In recent years, accumulating evidence has elucidated the role of lysosomes in dynamically regulating cellular and organismal homeostasis. Lysosomal changes and dysfunction have been correlated with the development of numerous diseases. In this review, we interpreted the key biological functions of lysosomes in four areas: cellular metabolism, cell proliferation and differentiation, immunity, and cell death. More importantly, we actively sought to determine the characteristic changes and dysfunction of lysosomes in cells affected by these diseases, the causes of these changes and dysfunction, and their significance to the development and treatment of human disease. Furthermore, we outlined currently available targeting strategies: (1) targeting lysosomal acidification; (2) targeting lysosomal cathepsins; (3) targeting lysosomal membrane permeability and integrity; (4) targeting lysosomal calcium signaling; (5) targeting mTOR signaling; and (6) emerging potential targeting strategies. Moreover, we systematically summarized the corresponding drugs and their application in clinical trials. By integrating basic research with clinical findings, we discussed the current opportunities and challenges of targeting lysosomes in human disease.
Collapse
|
15
|
Trofimenko E, Grasso G, Heulot M, Chevalier N, Deriu MA, Dubuis G, Arribat Y, Serulla M, Michel S, Vantomme G, Ory F, Dam LC, Puyal J, Amati F, Lüthi A, Danani A, Widmann C. Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore. eLife 2021; 10:69832. [PMID: 34713805 PMCID: PMC8639150 DOI: 10.7554/elife.69832] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Cell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct translocation into cells by decreasing the transmembrane potential (Vm). These findings provide the first unbiased genetic validation of the role of Vm in CPP translocation in cells. In silico modeling and live cell experiments indicate that CPPs, by bringing positive charges on the outer surface of the plasma membrane, decrease the Vm to very low values (–150 mV or less), a situation we have coined megapolarization that then triggers formation of water pores used by CPPs to enter cells. Megapolarization lowers the free energy barrier associated with CPP membrane translocation. Using dyes of varying dimensions in CPP co-entry experiments, the diameter of the water pores in living cells was estimated to be 2 (–5) nm, in accordance with the structural characteristics of the pores predicted by in silico modeling. Pharmacological manipulation to lower transmembrane potential boosted CPP cellular internalization in zebrafish and mouse models. Besides identifying the first proteins that regulate CPP translocation, this work characterized key mechanistic steps used by CPPs to cross cellular membranes. This opens the ground for strategies aimed at improving the ability of cells to capture CPP-linked cargos in vitro and in vivo. Before a drug can have its desired effect, it must reach its target tissue or organ, and enter its cells. This is not easy because cells are surrounded by the plasma membrane, a fat-based barrier that separates the cell from its external environment. The plasma membrane contains proteins that act as channels, shuttling specific molecules in and out of the cell, and it also holds charge, with its inside surface being more negatively charged than its outside surface. Cell-penetrating peptides are short sequences of amino acids (the building blocks that form proteins) that carry positive charges. These positive charges allow them to cross the membrane easily, but it is not well understood how. To find out how cell-penetrating peptides cross the membrane, Trofimenko et al. attached them to dyes of different sizes. This revealed that the cell-penetrating peptides enter the cell through temporary holes called water pores, which measure about two nanometres across. The water pores form when the membrane becomes ‘megapolarized’, this is, when the difference in charge between the inside and the outside of the membrane becomes greater than normal. This can happen when the negative charge on the inside surface or the positive charge on the outer surface of the membrane increase. Megapolarization depends on potassium channels, which transport positive potassium ions outside the cell, making the outside of the membrane positive. When cell-penetrating peptides arrive at the outer surface of the cell near potassium channels, they make it even more positive. This increases the charge difference between the inside and the outside of the cell, allowing water pores to form. Once the peptides pass through the pores, the charge difference between the inside and the outside of the cell membrane dissipates, and the pores collapse. Drug developers are experimenting with attaching cell-penetrating peptides to drugs to help them get inside their target cells. Currently there are several experimental medications of this kind in clinical trials. Understanding how these peptides gain entry, and what size of molecule they could carry with them, provides solid ground for further drug development.
Collapse
Affiliation(s)
- Evgeniya Trofimenko
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence Research, Università della Svizzera italiana, Scuola Universitaria Professionale della Svizzera Italiana, Lugano, Switzerland
| | - Mathieu Heulot
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nadja Chevalier
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Marco A Deriu
- PolitoBIOMed Lab Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Gilles Dubuis
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Yoan Arribat
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Marc Serulla
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sebastien Michel
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gil Vantomme
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Florine Ory
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Linh Chi Dam
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML (University Center of Legal Medicine), Lausanne University Hospital, Lausanne, Switzerland
| | - Francesca Amati
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Danani
- Dalle Molle Institute for Artificial Intelligence Research, Università della Svizzera italiana, Scuola Universitaria Professionale della Svizzera Italiana, Lugano, Switzerland
| | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Gupta S, Yano J, Mercier V, Htwe HH, Shin HR, Rademaker G, Cakir Z, Ituarte T, Wen KW, Kim GE, Zoncu R, Roux A, Dawson DW, Perera RM. Lysosomal retargeting of Myoferlin mitigates membrane stress to enable pancreatic cancer growth. Nat Cell Biol 2021; 23:232-242. [PMID: 33686253 PMCID: PMC9446896 DOI: 10.1038/s41556-021-00644-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Lysosomes must maintain the integrity of their limiting membrane to ensure efficient fusion with incoming organelles and degradation of substrates within their lumen. Pancreatic cancer cells upregulate lysosomal biogenesis to enhance nutrient recycling and stress resistance, but it is unknown whether dedicated programmes for maintaining the integrity of the lysosome membrane facilitate pancreatic cancer growth. Using proteomic-based organelle profiling, we identify the Ferlin family plasma membrane repair factor Myoferlin as selectively and highly enriched on the membrane of pancreatic cancer lysosomes. Mechanistically, lysosomal localization of Myoferlin is necessary and sufficient for the maintenance of lysosome health and provides an early acting protective system against membrane damage that is independent of the endosomal sorting complex required for transport (ESCRT)-mediated repair network. Myoferlin is upregulated in human pancreatic cancer, predicts poor survival and its ablation severely impairs lysosome function and tumour growth in vivo. Thus, retargeting of plasma membrane repair factors enhances the pro-oncogenic activities of the lysosome.
Collapse
Affiliation(s)
- Suprit Gupta
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Julian Yano
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Mercier
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Htet Htwe Htwe
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Hijai R Shin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Gilles Rademaker
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Zeynep Cakir
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas Ituarte
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Kwun W Wen
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Grace E Kim
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - David W Dawson
- Department of Pathology and Laboratory Medicine and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Rushika M Perera
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Morgan AJ, Galione A. Lysosomal agents inhibit store-operated Ca 2+ entry. J Cell Sci 2021; 134:224094. [PMID: 33328326 PMCID: PMC7860125 DOI: 10.1242/jcs.248658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/09/2020] [Indexed: 02/02/2023] Open
Abstract
Pharmacological manipulation of lysosome membrane integrity or ionic movements is a key strategy for probing lysosomal involvement in cellular processes. However, we have found an unexpected inhibition of store-operated Ca2+ entry (SOCE) by these agents. Dipeptides [glycyl-L-phenylalanine 2-naphthylamide (GPN) and L-leucyl-L-leucine methyl ester] that are inducers of lysosomal membrane permeabilization (LMP) uncoupled endoplasmic reticulum Ca2+-store depletion from SOCE by interfering with Stim1 oligomerization and/or Stim1 activation of Orai. Similarly, the K+/H+ ionophore, nigericin, that rapidly elevates lysosomal pH, also inhibited SOCE in a Stim1-dependent manner. In contrast, other strategies for manipulating lysosomes (bafilomycin A1, lysosomal re-positioning) had no effect upon SOCE. Finally, the effects of GPN on SOCE and Stim1 was reversed by a dynamin inhibitor, dynasore. Our data show that lysosomal agents not only release Ca2+ from stores but also uncouple this release from the normal recruitment of Ca2+ influx. Summary: Lysosomal agents uncouple ER Ca2+-release from store-operated Ca2+ entry, predominantly by inhibiting Stim1 oligomerization and its activation of Orai.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
18
|
Zhou Y, Zhou X, Huang X, Hong T, Zhang K, Qi W, Guo M, Nie S. Lysosome-Mediated Cytotoxic Autophagy Contributes to Tea Polysaccharide-Induced Colon Cancer Cell Death via mTOR-TFEB Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:686-697. [PMID: 33369397 DOI: 10.1021/acs.jafc.0c07166] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Targeting autophagy and lysosome may serve as a promising strategy for cancer therapy. Tea polysaccharide (TP) has shown promising antitumor effects. However, its mechanism remains elusive. Here, TP was found to have a significant inhibitory effect on the proliferation of colon cancer line HCT116 cells. RNA-seq analysis showed that TP upregulated autophagy and lysosome signal pathways, which was further confirmed through experiments. Immunofluorescence experiments indicated that TP activated transcription factor EB (TFEB), a key nuclear transcription factor modulating autophagy and lysosome biogenesis. In addition, TP inhibited the activity of mTOR, while it increased the expression of Lamp1. Furthermore, TP ameliorated the lysosomal damage and autophagy flux barrier caused by Baf A1 (lysosome inhibitor). Hence, our data suggested that TP repressed the proliferation of HCT116 cells by targeting lysosome to induce cytotoxic autophagy, which might be achieved through mTOR-TFEB signaling. In summary, TP may be used as a potential drug to overcome colon cancer.
Collapse
Affiliation(s)
- Yujia Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Tao Hong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Ke Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Wucheng Qi
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Mi Guo
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| |
Collapse
|
19
|
Paunovic V, Kosic M, Misirkic-Marjanovic M, Trajkovic V, Harhaji-Trajkovic L. Dual targeting of tumor cell energy metabolism and lysosomes as an anticancer strategy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118944. [PMID: 33383091 DOI: 10.1016/j.bbamcr.2020.118944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
To sustain their proliferative and metastatic capacity, tumor cells increase the activity of energy-producing pathways and lysosomal compartment, resorting to autophagolysosomal degradation when nutrients are scarce. Consequently, large fragile lysosomes and enhanced energy metabolism may serve as targets for anticancer therapy. A simultaneous induction of energy stress (by caloric restriction and inhibition of glycolysis, oxidative phosphorylation, Krebs cycle, or amino acid/fatty acid metabolism) and lysosomal stress (by lysosomotropic detergents, vacuolar ATPase inhibitors, or cationic amphiphilic drugs) is an efficient anti-cancer strategy demonstrated in a number of studies. However, the mechanisms of lysosomal/energy stress co-amplification, apart from the protective autophagy inhibition, are poorly understood. We here summarize the established and suggest potential mechanisms and candidates for anticancer therapy based on the dual targeting of lysosomes and energy metabolism.
Collapse
Affiliation(s)
- Verica Paunovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Milica Kosic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Maja Misirkic-Marjanovic
- Department of Neurophysiology, Institute for Biological Research, "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Ljubica Harhaji-Trajkovic
- Department of Neurophysiology, Institute for Biological Research, "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia.
| |
Collapse
|
20
|
Bernard EM, Fearns A, Bussi C, Santucci P, Peddie CJ, Lai RJ, Collinson LM, Gutierrez MG. M. tuberculosis infection of human iPSC-derived macrophages reveals complex membrane dynamics during xenophagy evasion. J Cell Sci 2020; 134:jcs252973. [PMID: 32938685 PMCID: PMC7710011 DOI: 10.1242/jcs.252973] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Xenophagy is an important cellular defence mechanism against cytosol-invading pathogens, such as Mycobacterium tuberculosis (Mtb). Activation of xenophagy in macrophages targets Mtb to autophagosomes; however, how Mtb is targeted to autophagosomes in human macrophages at a high spatial and temporal resolution is unknown. Here, we use human induced pluripotent stem cell-derived macrophages (iPSDMs) to study the human macrophage response to Mtb infection and the role of the ESX-1 type VII secretion system. Using RNA-seq, we identify ESX-1-dependent transcriptional responses in iPSDMs after infection with Mtb. This analysis revealed differential inflammatory responses and dysregulated pathways such as eukaryotic initiation factor 2 (eIF2) signalling and protein ubiquitylation. Moreover, live-cell imaging revealed that Mtb infection in human macrophages induces dynamic ESX-1-dependent, LC3B-positive tubulovesicular autophagosomes (LC3-TVS). Through a correlative live-cell and focused ion beam scanning electron microscopy (FIB SEM) approach, we show that upon phagosomal rupture, Mtb induces the formation of LC3-TVS, from which the bacterium is able to escape to reside in the cytosol. Thus, iPSDMs represent a valuable model for studying spatiotemporal dynamics of human macrophage-Mtb interactions, and Mtb is able to evade capture by autophagic compartments.
Collapse
Affiliation(s)
- Elliott M Bernard
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Antony Fearns
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Claudio Bussi
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Pierre Santucci
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Christopher J Peddie
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rachel J Lai
- Department of Medicine, Imperial College London, London W2 1PG, UK
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
21
|
Carey KL, Paulus GLC, Wang L, Balce DR, Luo JW, Bergman P, Ferder IC, Kong L, Renaud N, Singh S, Kost-Alimova M, Nyfeler B, Lassen KG, Virgin HW, Xavier RJ. TFEB Transcriptional Responses Reveal Negative Feedback by BHLHE40 and BHLHE41. Cell Rep 2020; 33:108371. [PMID: 33176151 DOI: 10.1016/j.celrep.2020.108371] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/18/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022] Open
Abstract
Transcription factor EB (TFEB) activates lysosomal biogenesis genes in response to environmental cues. Given implications of impaired TFEB signaling and lysosomal dysfunction in metabolic, neurological, and infectious diseases, we aim to systematically identify TFEB-directed circuits by examining transcriptional responses to TFEB subcellular localization and stimulation. We reveal that steady-state nuclear TFEB is sufficient to activate transcription of lysosomal, autophagy, and innate immunity genes, whereas other targets require higher thresholds of stimulation. Furthermore, we identify shared and distinct transcriptional signatures between mTOR inhibition and bacterial autophagy. Using a genome-wide CRISPR library, we find TFEB targets that protect cells from or sensitize cells to lysosomal cell death. BHLHE40 and BHLHE41, genes responsive to high, sustained levels of nuclear TFEB, act in opposition to TFEB upon lysosomal cell death induction. Further investigation identifies genes counter-regulated by TFEB and BHLHE40/41, adding this negative feedback to the current understanding of TFEB regulatory mechanisms.
Collapse
Affiliation(s)
- Kimberly L Carey
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Geraldine L C Paulus
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingfei Wang
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dale R Balce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jessica W Luo
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Phil Bergman
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Ianina C Ferder
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingjia Kong
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nicole Renaud
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Maria Kost-Alimova
- Center for the Science of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beat Nyfeler
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kara G Lassen
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramnik J Xavier
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
22
|
Li Y, Yong YL, Yang M, Wang W, Qu X, Dang X, Shang D, Shao Y, Liu J, Chang Y. Fine particulate matter inhibits phagocytosis of macrophages by disturbing autophagy. FASEB J 2020; 34:16716-16735. [PMID: 33124742 DOI: 10.1096/fj.202000657r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 01/22/2023]
Abstract
Mounting evidence from epidemiological and clinical studies has revealed marked correlations between the air pollutant fine particulate matter (FPM) and respiratory diseases. FPM reaches distal airways and deposits in alveolar regions where it can act directly on alveolar macrophages. However, the detailed effect of FPM on the physiological function of alveolar macrophages and the underlying mechanisms remain unclear. In this study, we showed that exposing THP-1-derived macrophages to FPM led to autophagy dysfunction. FPM activated the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway, which promoted the expression of autophagy-related 2A (ATG2A) and reactive oxygen species generation. The overexpression of ATG2A enhanced the synthesis of autophagic membranes, and the excessive production of reactive oxygen species caused autophagy flux inhibition through disrupting the lysosomal activity. More importantly, FPM impaired the phagocytic ability of macrophages on Escherichia coli and apoptotic neutrophils. Finally, we showed that restoring autophagy rescued the impairment of phagocytic ability induced by FPM. In summary, these results reveal the molecular mechanism of autophagy dysfunction caused by FPM and provide a novel approach to resolve the impaired function of macrophages in respiratory diseases induced by FPM.
Collapse
Affiliation(s)
- Ying Li
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yu-Le Yong
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Menglin Yang
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Weijia Wang
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Qu
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaomin Dang
- Department of Respiration, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Dong Shang
- Department of Respiration, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yongping Shao
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ying Chang
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Varalda M, Antona A, Bettio V, Roy K, Vachamaram A, Yellenki V, Massarotti A, Baldanzi G, Capello D. Psychotropic Drugs Show Anticancer Activity by Disrupting Mitochondrial and Lysosomal Function. Front Oncol 2020; 10:562196. [PMID: 33194631 PMCID: PMC7604408 DOI: 10.3389/fonc.2020.562196] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background and Purpose: Drug repositioning is a promising strategy for discovering new therapeutic strategies for cancer therapy. We investigated psychotropic drugs for their antitumor activity because of several epidemiological studies reporting lower cancer incidence in individuals receiving long term drug treatment. Experimental Approach: We investigated 27 psychotropic drugs for their cytotoxic activity in colorectal carcinoma, glioblastoma and breast cancer cell lines. Consistent with the cationic amphiphilic structure of the most cytotoxic compounds, we investigated their effect on mitochondrial and lysosomal compartments. Results: Penfluridol, ebastine, pimozide and fluoxetine, fluspirilene and nefazodone showed significant cytotoxicity, in the low micromolar range, in all cell lines tested. In MCF7 cells these drugs caused mitochondrial membrane depolarization, increased the acidic vesicular compartments and induced phospholipidosis. Both penfluridol and spiperone induced AMPK activation and autophagy. Neither caspase nor autophagy inhibitors rescued cells from death induced by ebastine, fluoxetine, fluspirilene and nefazodone. Treatment with 3-methyladenine partially rescued cell death induced by pimozide and spiperone, whereas enhanced the cytotoxic activity of penfluridol. Conversely, inhibition of lysosomal cathepsins significantly reduced cell death induced by ebastin, penfluridol, pimozide, spiperone and mildly in fluoxetine treated cells. Lastly, Spiperone cytotoxicity was restricted to colorectal cancer and breast cancer and caused apoptotic cell death in MCF7 cells. Conclusions: The cytotoxicity of psychotropic drugs with cationic amphiphilic structures relied on simultaneous mitochondrial and lysosomal disruption and induction of cell death that not necessarily requires apoptosis. Since dual targeting of lysosomes and mitochondria constitutes a new promising therapeutic approach for cancer, particularly those in which the apoptotic machinery is defective, these data further support their clinical development for cancer therapy.
Collapse
Affiliation(s)
- Marco Varalda
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy.,UPO Biobank, University of Piemonte Orientale, Novara, Italy
| | - Annamaria Antona
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Valentina Bettio
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy.,UPO Biobank, University of Piemonte Orientale, Novara, Italy
| | - Konkonika Roy
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Ajay Vachamaram
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy.,Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Vaibhav Yellenki
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Alberto Massarotti
- Department Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Gianluca Baldanzi
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy.,Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Daniela Capello
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy.,UPO Biobank, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
24
|
Herbst S, Campbell P, Harvey J, Bernard EM, Papayannopoulos V, Wood NW, Morris HR, Gutierrez MG. LRRK2 activation controls the repair of damaged endomembranes in macrophages. EMBO J 2020; 39:e104494. [PMID: 32643832 PMCID: PMC7507578 DOI: 10.15252/embj.2020104494] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/15/2023] Open
Abstract
Cells respond to endolysosome damage by either repairing the damage or targeting damaged endolysosomes for degradation via lysophagy. However, the signals regulating the decision for repair or lysophagy are poorly characterised. Here, we show that the Parkinson's disease (PD)-related kinase LRRK2 is activated in macrophages by pathogen- or sterile-induced endomembrane damage. LRRK2 recruits the Rab GTPase Rab8A to damaged endolysosomes as well as the ESCRT-III component CHMP4B, thereby favouring ESCRT-mediated repair. Conversely, in the absence of LRRK2 and Rab8A, damaged endolysosomes are targeted to lysophagy. These observations are recapitulated in macrophages from PD patients where pathogenic LRRK2 gain-of-function mutations result in the accumulation of endolysosomes which are positive for the membrane damage marker Galectin-3. Altogether, this work indicates that LRRK2 regulates endolysosomal homeostasis by controlling the balance between membrane repair and organelle replacement, uncovering an unexpected function for LRRK2, and providing a new link between membrane damage and PD.
Collapse
Affiliation(s)
- Susanne Herbst
- Host‐Pathogen Interactions in Tuberculosis LaboratoryThe Francis Crick InstituteLondonUK
| | - Philip Campbell
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyUCL Movement Disorders CentreUniversity College LondonLondonUK
| | - John Harvey
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyUCL Movement Disorders CentreUniversity College LondonLondonUK
| | - Elliott M Bernard
- Host‐Pathogen Interactions in Tuberculosis LaboratoryThe Francis Crick InstituteLondonUK
| | | | - Nicholas W Wood
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyUCL Movement Disorders CentreUniversity College LondonLondonUK
| | - Huw R Morris
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyUCL Movement Disorders CentreUniversity College LondonLondonUK
| | | |
Collapse
|
25
|
Daussy CF, Wodrich H. "Repair Me if You Can": Membrane Damage, Response, and Control from the Viral Perspective. Cells 2020; 9:cells9092042. [PMID: 32906744 PMCID: PMC7564661 DOI: 10.3390/cells9092042] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cells are constantly challenged by pathogens (bacteria, virus, and fungi), and protein aggregates or chemicals, which can provoke membrane damage at the plasma membrane or within the endo-lysosomal compartments. Detection of endo-lysosomal rupture depends on a family of sugar-binding lectins, known as galectins, which sense the abnormal exposure of glycans to the cytoplasm upon membrane damage. Galectins in conjunction with other factors orchestrate specific membrane damage responses such as the recruitment of the endosomal sorting complex required for transport (ESCRT) machinery to either repair damaged membranes or the activation of autophagy to remove membrane remnants. If not controlled, membrane damage causes the release of harmful components including protons, reactive oxygen species, or cathepsins that will elicit inflammation. In this review, we provide an overview of current knowledge on membrane damage and cellular responses. In particular, we focus on the endo-lysosomal damage triggered by non-enveloped viruses (such as adenovirus) and discuss viral strategies to control the cellular membrane damage response. Finally, we debate the link between autophagy and inflammation in this context and discuss the possibility that virus induced autophagy upon entry limits inflammation.
Collapse
|
26
|
Nagakannan P, Tabeshmehr P, Eftekharpour E. Oxidative damage of lysosomes in regulated cell death systems: Pathophysiology and pharmacologic interventions. Free Radic Biol Med 2020; 157:94-127. [PMID: 32259579 DOI: 10.1016/j.freeradbiomed.2020.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Lysosomes are small specialized organelles containing a variety of different hydrolase enzymes that are responsible for degradation of all macromolecules, entering the cells through the endosomal system or originated from the internal sources. This allows for transport and recycling of nutrients and internalization of surface proteins for antigen presentation as well as maintaining cellular homeostasis. Lysosomes are also important storage compartments for metal ions and nutrients. The integrity of lysosomal membrane is central to maintaining their normal function, but like other cellular membranes, lysosomal membrane is subject to damage mediated by reactive oxygen species. This results in spillage of lysosomal enzymes into the cytoplasm, leading to proteolytic damage to cellular systems and organelles. Several forms of lysosomal dependent cell death have been identified in diseases. Examination of these events are important for finding treatment strategies relevant to cancer or neurodegenerative diseases as well as autoimmune deficiencies. In this review, we have examined the current literature on involvement of lysosomes in induction of programed cell death and have provided an extensive list of therapeutic approaches that can modulate cell death. Exploitation of these mechanisms can lead to novel therapies for cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Pandian Nagakannan
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Parisa Tabeshmehr
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eftekhar Eftekharpour
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
27
|
Endosomal membrane tension regulates ESCRT-III-dependent intra-lumenal vesicle formation. Nat Cell Biol 2020; 22:947-959. [PMID: 32753669 PMCID: PMC7612185 DOI: 10.1038/s41556-020-0546-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
Plasma membrane tension strongly affects cell surface processes, such as migration, endocytosis and signalling. However, it is not known whether membrane tension of organelles regulates their functions, notably intracellular traffic. The ESCRT-III complex is the major membrane remodelling complex that drives Intra-Lumenal Vesicle (ILV) formation on endosomal membranes. Here, we made use of a fluorescent membrane tension probe to show that ESCRT-III subunits are recruited onto endosomal membranes when membrane tension is reduced. We find that tension-dependent recruitment is associated with ESCRT-III polymerization and membrane deformation in vitro, and correlates with increased ILV formation in ESCRT-III decorated endosomes in vivo. Finally, we find that endosomal membrane tension decreases when ILV formation is triggered by EGF under physiological conditions. These results indicate that membrane tension is a major regulator of ILV formation and of endosome trafficking, leading us to conclude that membrane tension can control organelle functions.
Collapse
|
28
|
Bohannon KP, Hanson PI. ESCRT puts its thumb on the nanoscale: Fixing tiny holes in endolysosomes. Curr Opin Cell Biol 2020; 65:122-130. [PMID: 32731154 PMCID: PMC7578027 DOI: 10.1016/j.ceb.2020.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022]
Abstract
The ESCRT (endosomal complex required for transport) machinery remodels membranes to bud vesicles away from the cytoplasm. In addition to this classic role, ESCRTs are now understood to repair damage in the plasma membrane, nuclear envelope, and throughout the endolysosomal network. Wounds in endolysosomal membranes are caused by pathogens, particulates, and other chemical or metabolic stresses. Nanoscale damage in these membranes promotes activation and engagement of ESCRT proteins. A full understanding of damage signals, molecular sensing, and the mechanism of membrane repair is yet to be developed. Nevertheless, a triggering role for calcium and ESCRT-I in recruiting ESCRT-III machinery for membrane remodeling is a repeated theme in functional studies of this response. In our current understanding of the continuum of cellular responses to lipid bilayer damage, the ESCRT machinery is fast, sensitive, and deployed independently of other systems.
Collapse
Affiliation(s)
- Kevin P Bohannon
- Department of Biological Chemistry, University of Michigan School of Medicine, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
| | - Phyllis I Hanson
- Department of Biological Chemistry, University of Michigan School of Medicine, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
29
|
Kavčič N, Butinar M, Sobotič B, Hafner Česen M, Petelin A, Bojić L, Zavašnik Bergant T, Bratovš A, Reinheckel T, Turk B. Intracellular cathepsin C levels determine sensitivity of cells to leucyl-leucine methyl ester-triggered apoptosis. FEBS J 2020; 287:5148-5166. [PMID: 32319717 DOI: 10.1111/febs.15326] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/06/2020] [Accepted: 03/05/2020] [Indexed: 12/20/2022]
Abstract
L-leucyl-leucine methyl ester (LLOMe) is a lysosomotropic detergent, which was evaluated in clinical trials in graft-vs-host disease because it very efficiently killed monocytic cell lines. It was also shown to efficiently trigger apoptosis in cancer cells, suggesting that the drug might have potential in anticancer therapy. Using U-937 and THP-1 promonocytes as models for monocytic cells, U-87-MG and HeLa cells as models for cancer cells, and noncancerous HEK293 cells, we show that the drug triggers rapid cathepsin C-dependent lysosomal membrane permeabilization, followed by the release of other cysteine cathepsins into the cytosol and subsequent apoptosis. However, monocytes were found to be far more sensitive to the drug than the cancer and noncancer cells, which is most likely a consequence of the much higher intracellular levels of cathepsin C-the most upstream molecule in the pathway-in monocytic cell lines as compared to cancer cells. Overexpression of cathepsin C in HEK293 cells substantially enhances their sensitivity to the drug, consistent with the crucial role of cathepsin C. Major involvement of cysteine cathepsins B, S, and L in the downstream signaling pathway to mitochondrial cell death was confirmed in two gene ablation models, including the ablation of the major cytosolic inhibitor of cysteine cathepsins, stefin B, in primary mouse cancer cells, and simultaneous ablation of two major cathepsins, B and L, in mouse embryonic fibroblasts (MEFs). Deletion of stefin B resulted in sensitizing primary murine breast cancer cells to cell death without affecting the release of cathepsins, whereas simultaneous ablation of cathepsins B and L largely protected MEFs against cell death. However, due to the extreme sensitivity of monocytes to LLOMe, it appears that the drug may not be suitable for anticancer therapy due to risk of systemic toxicity.
Collapse
Affiliation(s)
- Nežka Kavčič
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Miha Butinar
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Barbara Sobotič
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maruša Hafner Česen
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Ana Petelin
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Lea Bojić
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tina Zavašnik Bergant
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Andreja Bratovš
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Thomas Reinheckel
- Medical Faculty, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs University, Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| |
Collapse
|
30
|
Abstract
Small interfering RNAs (siRNAs) are a new class of promising therapeutic molecules that can be used for sequence-specific downregulation of disease-causing genes. However, endosomal entrapment of siRNA is a key hurdle for most delivery strategies, limiting the therapeutic effect. Here, we use live-cell microscopy and cytosolic galectin-9 as a sensor of membrane damage, to probe fundamental properties of endosomal escape of cholesterol-conjugated siRNA induced by endosome-disrupting compounds. We demonstrate efficient release of ligand-conjugated siRNA from vesicles damaged by small molecules, enhancing target knockdown up to ∼47-fold in tumor cells. Still, mismatch between siRNA-containing and drug-targeted endolysosomal compartments limits siRNA activity improvement. We also show widespread endosomal damage in macroscopic tumor spheroids after small molecule treatment, substantially improving siRNA delivery and knockdown throughout the spheroid. We believe the strategy to characterize endosomal escape presented here will be widely applicable, facilitating efforts to improve delivery of siRNA and other nucleic acid-based therapeutics.
Collapse
|
31
|
Di Cristo L, Grimaldi B, Catelani T, Vázquez E, Pompa PP, Sabella S. Repeated exposure to aerosolized graphene oxide mediates autophagy inhibition and inflammation in a three-dimensional human airway model. Mater Today Bio 2020; 6:100050. [PMID: 32322818 PMCID: PMC7171197 DOI: 10.1016/j.mtbio.2020.100050] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
Hazard evaluation of engineered nanomaterials (ENMs) using real-world exposure scenario could provide better interpretation of toxicity end points for their use in the assessment of human safety and for their implications in many fields such as toxicology, nanomedicine, and so forth. However, most of the current studies, both in vivo and in vitro, do not reflect realistic conditions of human exposure to ENMs, due to the high doses implemented. Moreover, the use of cellular models cultured under submerged conditions limits their physiological relevance for lung exposure, where cells are primarily cultured at the air-liquid interface. Addressing such issues is even more challenging for emergent nanomaterials, such as graphene oxide (GO), for which little or no information on exposure is available. In this work, we studied the impact of repeated exposure of GO on a three-dimensional (3D) reconstruct of human bronchial tissue, using a nebulizer system focusing on short-term effects. The selected doses (reaching a maximum of ca. 20 μg/cm2 for a period of 4 weeks of exposure) were extrapolated from alveolar mass deposition values of a broader class of carbon-based nanomaterials, reflecting a full working lifetime of human exposure. Experimental results did not show strong toxic effects of GO in terms of viability and integrity of the lung tissue. However, since 2 weeks of treatment, repeated GO exposure elicited a proinflammatory response, moderate barrier impairment, and autophagosome accumulation, a process resulting from blockade of autophagy flux. Interestingly, the 3D airway model could recover such an effect by restoring autophagy flux at longer exposure (30 days). These findings indicate that prolonged exposure to GO produces a time window (during the 30 days of treatment set for this study) for which GO-mediated autophagy inhibition along with inflammation may potentially increase the susceptibility of exposed humans to pulmonary infections and/or lung diseases. This study also highlights the importance of using physiologically relevant in vitro models and doses derived from real-world exposure to obtain focused data for the assessment of human safety.
Collapse
Affiliation(s)
- L Di Cristo
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16136, Italy
| | - B Grimaldi
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16136, Italy
| | - T Catelani
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - E Vázquez
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - P P Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| | - S Sabella
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16136, Italy
| |
Collapse
|
32
|
Koerver L, Papadopoulos C, Liu B, Kravic B, Rota G, Brecht L, Veenendaal T, Polajnar M, Bluemke A, Ehrmann M, Klumperman J, Jäättelä M, Behrends C, Meyer H. The ubiquitin-conjugating enzyme UBE2QL1 coordinates lysophagy in response to endolysosomal damage. EMBO Rep 2019; 20:e48014. [PMID: 31432621 PMCID: PMC6776906 DOI: 10.15252/embr.201948014] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
The autophagic clearance of damaged lysosomes by lysophagy involves extensive modification of the organelle with ubiquitin, but the underlying ubiquitination machinery is still poorly characterized. Here, we use an siRNA screening approach and identify human UBE2QL1 as a major regulator of lysosomal ubiquitination, lysophagy, and cell survival after lysosomal damage. UBE2QL1 translocates to permeabilized lysosomes where it associates with damage sensors, ubiquitination targets, and lysophagy effectors. UBE2QL1 knockdown reduces ubiquitination and accumulation of the critical autophagy receptor p62 and abrogates recruitment of the AAA-ATPase VCP/p97, which is essential for efficient lysophagy. Crucially, it affects association of LC3B with damaged lysosomes indicating that autophagosome formation was impaired. Already in unchallenged cells, depletion of UBE2QL1 leads to increased lysosomal damage, mTOR dissociation from lysosomes, and TFEB activation pointing to a role in lysosomal homeostasis. In line with this, mutation of the homologue ubc-25 in Caenorhabditis elegans exacerbates lysosome permeability in worms lacking the lysosome stabilizing protein SCAV-3/LIMP2. Thus, UBE2QL1 coordinates critical steps in the acute endolysosomal damage response and is essential for maintenance of lysosomal integrity.
Collapse
Affiliation(s)
- Lisa Koerver
- Faculty of BiologyCentre for Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| | | | - Bin Liu
- Cell Death and Metabolism UnitCenter for Autophagy, Recycling and DiseaseDanish Cancer Society Research CenterCopenhagenDenmark
| | - Bojana Kravic
- Faculty of BiologyCentre for Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| | - Giulia Rota
- Faculty of BiologyCentre for Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| | - Lukas Brecht
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilians‐Universität MünchenMünchenGermany
| | - Tineke Veenendaal
- Section Cell BiologyCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Mira Polajnar
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilians‐Universität MünchenMünchenGermany
| | - Anika Bluemke
- Faculty of BiologyCentre for Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| | - Michael Ehrmann
- Faculty of BiologyCentre for Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| | - Judith Klumperman
- Section Cell BiologyCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Marja Jäättelä
- Cell Death and Metabolism UnitCenter for Autophagy, Recycling and DiseaseDanish Cancer Society Research CenterCopenhagenDenmark
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilians‐Universität MünchenMünchenGermany
| | - Hemmo Meyer
- Faculty of BiologyCentre for Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| |
Collapse
|
33
|
Papadopoulos C, Kravic B, Meyer H. Repair or Lysophagy: Dealing with Damaged Lysosomes. J Mol Biol 2019; 432:231-239. [PMID: 31449799 DOI: 10.1016/j.jmb.2019.08.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022]
Abstract
Lysosomal membrane permeabilization or full rupture of lysosomes is a common and severe stress condition that is relevant for degenerative disease, infection and cancer. If damage is limited, cells can repair lysosomes by means of the endosomal sorting complex required for transport (ESCRT) machinery. Presumably, if repair fails, lysosomes are tagged with ubiquitin to initiate clearance by selective macroautophagy, termed lysophagy. Accumulating evidence suggests damage-induced exposure of luminal glycans to the cytosol as the key trigger for ubiquitination. In this review, we discuss recent data on cellular damage sensing, the underlying ubiquitination and autophagy machinery as well as additional layers of regulation such as processing of ubiquitinated proteins by the AAA-ATPase VCP/p97. We conclude with thoughts on how these mechanisms may regulate decision making between lysosome repair and lysophagy.
Collapse
Affiliation(s)
| | - Bojana Kravic
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Hemmo Meyer
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
34
|
Goren L, Zhang G, Kaushik S, Breslin PAS, Du YCN, Foster DA. (-)-Oleocanthal and (-)-oleocanthal-rich olive oils induce lysosomal membrane permeabilization in cancer cells. PLoS One 2019; 14:e0216024. [PMID: 31412041 PMCID: PMC6693737 DOI: 10.1371/journal.pone.0216024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/13/2019] [Indexed: 12/20/2022] Open
Abstract
(-)-Oleocanthal (oleocanthal) is a phenolic compound found in varying concentrations in extra virgin olive oil oleocanthal has been shown to be active physiologically, benefiting several diseased states by conferring anti-inflammatory and neuroprotective benefits. Recently, we and other groups have demonstrated its specific and selective toxicity toward cancer cells; however, the mechanism leading to cancer cell death is still disputed. The current study demonstrates that oleocanthal, as well as naturally oleocanthal-rich extra virgin olive oils, induced damage to cancer cells’ lysosomes leading to cellular toxicity in vitro and in vivo. Lysosomal membrane permeabilization following oleocanthal treatment in various cell lines was assayed via three complementary methods. Additionally, we found oleocanthal treatment reduced tumor burden and extended lifespan of mice engineered to develop pancreatic neuroendocrine tumors. Finally, following-up on numerous correlative studies demonstrating consumption of olive oil reduces cancer incidence and morbidity, we observed that extra virgin olive oils naturally rich in oleocanthal sharply reduced cancer cell viability and induced lysosomal membrane permeabilization while oleocanthal-poor oils did not. Our results are especially encouraging since tumor cells often have larger and more numerous lysosomes, making them especially vulnerable to lysosomotropic agents such as oleocanthal.
Collapse
Affiliation(s)
- Limor Goren
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, United States of America
- Biology Program, Graduate Center of the City University of New York, New York, New York, United States of America
| | - George Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Paul A. S. Breslin
- Rutgers University Department of Nutritional Sciences, New Brunswick, New Jersey, United States of America
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - David A. Foster
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, United States of America
- Biology Program, Graduate Center of the City University of New York, New York, New York, United States of America
- Biochemistry Program, Graduate Center of the City University of New York, New York, New York, United States of America
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Brun S, Bassissi F, Serdjebi C, Novello M, Tracz J, Autelitano F, Guillemot M, Fabre P, Courcambeck J, Ansaldi C, Raymond E, Halfon P. GNS561, a new lysosomotropic small molecule, for the treatment of intrahepatic cholangiocarcinoma. Invest New Drugs 2019; 37:1135-1145. [DOI: 10.1007/s10637-019-00741-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/01/2019] [Indexed: 02/08/2023]
|
36
|
Dana D, Garcia J, Bhuiyan AI, Rathod P, Joo L, Novoa DA, Paroly S, Fath KR, Chang EJ, Pathak SK. Cell penetrable, clickable and tagless activity-based probe of human cathepsin L. Bioorg Chem 2019; 85:505-514. [PMID: 30802807 DOI: 10.1016/j.bioorg.2019.02.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/12/2019] [Accepted: 02/12/2019] [Indexed: 01/19/2023]
Abstract
Human cathepsin L is a ubiquitously expressed endopeptidase and is known to play critical roles in a wide variety of cellular signaling events. Its overexpression has been implicated in numerous human diseases, including highly invasive forms of cancer. Inhibition of cathepsin L is therefore considered a viable therapeutic strategy. Unfortunately, several redundant and even opposing roles of cathepsin L have recently emerged. Selective cathepsin L probes are therefore needed to dissect its function in context-specific manner before significant resources are directed into drug discovery efforts. Herein, the development of a clickable and tagless activity-based probe of cathepsin L is reported. The probe is highly efficient, active-site directed and activity-dependent, selective, cell penetrable, and non-toxic to human cells. Using zebrafish model, we demonstrate that the probe can inhibit cathepsin L function in vivo during the hatching process. It is anticipated that the probe will be a highly effective tool in dissecting cathepsin L biology at the proteome levels in both normal physiology and human diseases, thereby facilitating drug-discovery efforts targeting cathepsin L.
Collapse
Affiliation(s)
- Dibyendu Dana
- Queens College of the City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367-1597, USA; Chemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Jeremy Garcia
- Queens College of the City University of New York, Department of Biology, 65-30 Kissena Blvd, Flushing, NY 11367-1597, USA
| | - Ashif I Bhuiyan
- Queens College of the City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367-1597, USA; Biochemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Pratikkumar Rathod
- York College of the City University of New York, Department of Chemistry, 94-20 Guy R. Brewer Blvd, Jamaica, NY 11451-0001, USA; Laguardia Community College, 31-10 Thomson Ave, Long Island City, NY 11101, USA
| | - Laura Joo
- Queens College of the City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367-1597, USA
| | - Daniel A Novoa
- Queens College of the City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367-1597, USA
| | - Suneeta Paroly
- Bard High School Early College Queens, 30-20 Thomson Avenue, Long Island City, NY 11101, USA
| | - Karl R Fath
- Queens College of the City University of New York, Department of Biology, 65-30 Kissena Blvd, Flushing, NY 11367-1597, USA; Biochemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Emmanuel J Chang
- York College of the City University of New York, Department of Chemistry, 94-20 Guy R. Brewer Blvd, Jamaica, NY 11451-0001, USA; Chemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA; Biochemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Sanjai K Pathak
- Queens College of the City University of New York, Chemistry and Biochemistry Department, 65-30 Kissena Blvd, Flushing, NY 11367-1597, USA; Chemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA; Biochemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA.
| |
Collapse
|
37
|
Atakpa P, van Marrewijk LM, Apta-Smith M, Chakraborty S, Taylor CW. GPN does not release lysosomal Ca 2+ but evokes Ca 2+ release from the ER by increasing the cytosolic pH independently of cathepsin C. J Cell Sci 2019; 132:jcs223883. [PMID: 30617110 PMCID: PMC6382017 DOI: 10.1242/jcs.223883] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022] Open
Abstract
The dipeptide glycyl-l-phenylalanine 2-naphthylamide (GPN) is widely used to perturb lysosomes because its cleavage by the lysosomal enzyme cathepsin C is proposed to rupture lysosomal membranes. We show that GPN evokes a sustained increase in lysosomal pH (pHly), and transient increases in cytosolic pH (pHcyt) and Ca2+ concentration ([Ca2+]c). None of these effects require cathepsin C, nor are they accompanied by rupture of lysosomes, but they are mimicked by structurally unrelated weak bases. GPN-evoked increases in [Ca2+]c require Ca2+ within the endoplasmic reticulum (ER), but they are not mediated by ER Ca2+ channels amplifying Ca2+ release from lysosomes. GPN increases [Ca2+]c by increasing pHcyt, which then directly stimulates Ca2+ release from the ER. We conclude that physiologically relevant increases in pHcyt stimulate Ca2+ release from the ER in a manner that is independent of IP3 and ryanodine receptors, and that GPN does not selectively target lysosomes.
Collapse
Affiliation(s)
- Peace Atakpa
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Laura M van Marrewijk
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Michael Apta-Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Sumita Chakraborty
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
38
|
López-Jiménez AT, Cardenal-Muñoz E, Leuba F, Gerstenmaier L, Barisch C, Hagedorn M, King JS, Soldati T. The ESCRT and autophagy machineries cooperate to repair ESX-1-dependent damage at the Mycobacterium-containing vacuole but have opposite impact on containing the infection. PLoS Pathog 2018; 14:e1007501. [PMID: 30596802 PMCID: PMC6329560 DOI: 10.1371/journal.ppat.1007501] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 01/11/2019] [Accepted: 12/03/2018] [Indexed: 12/21/2022] Open
Abstract
Phagocytic cells capture and kill most invader microbes within the bactericidal phagosome, but some pathogens subvert killing by damaging the compartment and escaping to the cytosol. To prevent the leakage of pathogen virulence and host defence factors, as well as bacteria escape, host cells have to contain and repair the membrane damage, or finally eliminate the cytosolic bacteria. All eukaryotic cells engage various repair mechanisms to ensure plasma membrane integrity and proper compartmentalization of organelles, including the Endosomal Sorting Complex Required for Transport (ESCRT) and autophagy machineries. We show that during infection of Dictyostelium discoideum with Mycobacterium marinum, the ESCRT-I component Tsg101, the ESCRT-III protein Snf7/Chmp4/Vps32 and the AAA-ATPase Vps4 are recruited to sites of damage at the Mycobacterium-containing vacuole. Interestingly, damage separately recruits the ESCRT and the autophagy machineries. In addition, the recruitment of Vps32 and Vps4 to repair sterile membrane damage depends on Tsg101 but appears independent of Ca2+. Finally, in absence of Tsg101, M. marinum accesses prematurely the cytosol, where the autophagy machinery restricts its growth. We propose that ESCRT has an evolutionary conserved function to repair small membrane damage and to contain intracellular pathogens in intact compartments. Upon uptake by a host cell, intracellular pathogens reside in a membranous compartment called phagosome. Within the phagosome, microbes are protected from the extracellular and cytosolic immune defences, whilst access to nutrients is limited. Some microbes gain access to the host cytosol by damaging the membrane of the phagosome, a step preceding egress and dissemination. Autophagy, a major catabolic pathway in eukaryotes, has been previously proposed to contribute to autonomous cell defence and to repair the membrane damage induced by intracellular pathogens. Here, we provide evidence that, in Dictyostelium discoideum, autophagy does not work alone in the containment of vacuolar mycobacteria, but it operates together with the Endosomal Sorting Complex Required for Transport (ESCRT), a protein machinery recently shown to repair endolysosomal damage. We demonstrate that the membrane perforations induced by the ESX-1 secretion system of Mycobacterium marinum are targeted by both ESCRT and autophagy, which seal the damaged vacuole. We propose that ESCRT might mend small membrane pores, whilst autophagy patches larger cumulative wounds. Interestingly, and contrary to what has been described in mammalian cells for ESCRT-dependent endolysosomal repair, in D. discoideum, repair of sterile membrane damage appears not to require Ca2+. The evolutionary conservation of the function of ESCRT in membrane repair suggests that this machinery plays an ancestral and widespread role to contain a broad range of intracellular pathogens.
Collapse
Affiliation(s)
- Ana T. López-Jiménez
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
| | - Elena Cardenal-Muñoz
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
| | - Florence Leuba
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
| | - Lilli Gerstenmaier
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Caroline Barisch
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
| | - Monica Hagedorn
- Life Sciences and Chemistry, Jacobs University Bremen gGmbH, group Ribogenetics, Bremen, Germany
| | - Jason S. King
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
39
|
Wang F, Gómez-Sintes R, Boya P. Lysosomal membrane permeabilization and cell death. Traffic 2018; 19:918-931. [DOI: 10.1111/tra.12613] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Fengjuan Wang
- Unit Biotechnology and Cell Signaling/Laboratory of Excellence Medalis, CNRS/Université de Strasbourg; Illkirch France
| | - Raquel Gómez-Sintes
- Departament of Cellular and Molecular Biology; Centro de Investigaciones Biológicas, CSIC; Madrid Spain
| | - Patricia Boya
- Departament of Cellular and Molecular Biology; Centro de Investigaciones Biológicas, CSIC; Madrid Spain
| |
Collapse
|
40
|
Skowyra ML, Schlesinger PH, Naismith TV, Hanson PI. Triggered recruitment of ESCRT machinery promotes endolysosomal repair. Science 2018; 360:360/6384/eaar5078. [PMID: 29622626 PMCID: PMC6195421 DOI: 10.1126/science.aar5078] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/16/2018] [Indexed: 12/15/2022]
Abstract
Endolysosomes can be damaged by diverse materials. Terminally damaged compartments are degraded by lysophagy, but pathways that repair salvageable organelles are poorly understood. Here we found that the endosomal sorting complex required for transport (ESCRT) machinery, known to mediate budding and fission on endolysosomes, also plays an essential role in their repair. ESCRTs were rapidly recruited to acutely injured endolysosomes through a pathway requiring calcium and ESCRT-activating factors that was independent of lysophagy. We used live-cell imaging to demonstrate that ESCRTs responded to small perforations in endolysosomal membranes and enabled compartments to recover from limited damage. Silica crystals that disrupted endolysosomes also triggered ESCRT recruitment. ESCRTs thus provide a defense against endolysosomal damage likely to be relevant in physiological and pathological contexts.
Collapse
Affiliation(s)
- Michael L Skowyra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul H Schlesinger
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
41
|
Targeting of cathepsin C induces autophagic dysregulation that directs ER stress mediated cellular cytotoxicity in colorectal cancer cells. Cell Signal 2018; 46:92-102. [PMID: 29501728 DOI: 10.1016/j.cellsig.2018.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 12/14/2022]
Abstract
As Autophagy is a pivotal mechanism of cancer cell survival and the development of chemotherapeutic resistance; therefore, new approaches are warranted for its targeting which may be fulfilled by cathepsins regulation. Amongst cathepsins, cathepsin C (CTSC) is highly expressed in various cancers and possesses significant therapeutic potential in autoimmune disorders; however, its role in colorectal cancer has not been explored. Herein, we aimed to investigate the role of CTSC in autophagy regulation mediated colorectal carcinoma cell proliferation. Cathepsin C targeting through inhibitors/siRNA leads to the accumulation of light chain 3 II and p62 without affecting the lysosomal integrity, revealed dysfunctional autolysosomal degradation which is also substantiated by proteolytic studies. Cathepsin C inhibition showed comparable autophagy blockade with E64d and augmented the autophagy blockade mediated by bafilomycin. Loss of CTSC function also induced ER stress-mediated JNK phosphorylation accompanied by the translocation of mitochondrial cyt c followed by apoptotic cell death in colorectal carcinoma cells. Taken together, the study reveals that CTSC targeting plays a key role in the regulation of autophagy mediated colorectal cancer cell proliferation. Further investigations are required to determine the functional role of CTSC in other tumors also which may have implications for the therapeutic prevention of cancer in the future.
Collapse
|
42
|
Joris F, De Backer L, Van de Vyver T, Bastiancich C, De Smedt SC, Raemdonck K. Repurposing cationic amphiphilic drugs as adjuvants to induce lysosomal siRNA escape in nanogel transfected cells. J Control Release 2018; 269:266-276. [PMID: 29146245 DOI: 10.1016/j.jconrel.2017.11.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/27/2017] [Accepted: 11/11/2017] [Indexed: 12/15/2022]
Abstract
Cytosolic delivery remains a major bottleneck for siRNA therapeutics. To facilitate delivery, siRNAs are often enclosed in nanoparticles (NPs). However, upon endocytosis such NPs are mainly trafficked towards lysosomes. To avoid degradation, cytosolic release of siRNA should occur prior to fusion of endosomes with lysosomes, but current endosomal escape strategies remain inefficient. In contrast to this paradigm, we aim to exploit lysosomal accumulation by treating NP-transfected cells with low molecular weight drugs that release the siRNA from the lysosomes into the cytosol. We show that FDA-approved cationic amphiphilic drugs (CADs) significantly improved gene silencing by siRNA-loaded nanogels in cancer cells through simple sequential incubation. CADs induced lysosomal phospholipidosis, leading to transient lysosomal membrane permeabilization and improved siRNA release without cytotoxicity. Of note, the lysosomes could be applied as an intracellular depot for triggered siRNA release by multiple CAD treatments.
Collapse
Affiliation(s)
- Freya Joris
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium
| | - Lynn De Backer
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium
| | - Thijs Van de Vyver
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium
| | - Chiara Bastiancich
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Stefaan C De Smedt
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium.
| | - Koen Raemdonck
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
43
|
Barisch C, Kalinina V, Lefrançois LH, Appiah J, López-Jiménez AT, Soldati T. Localization of all four ZnT zinc transporters in Dictyostelium and impact of ZntA and B knockout on bacteria killing. J Cell Sci 2018; 131:jcs.222000. [DOI: 10.1242/jcs.222000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/17/2018] [Indexed: 01/26/2023] Open
Abstract
Professional phagocytes have developed an extensive repertoire of autonomous immunity strategies to ensure killing of bacteria. Besides phagosome acidification and the generation of reactive oxygen species, deprivation of nutrients and the lumenal accumulation of toxic metals are essential to kill ingested bacteria or inhibit growth of intracellular pathogens. We use the soil amoeba Dictyostelium discoideum, a professional phagocyte that digests bacteria for nutritional purposes, to decipher the role of zinc poisoning during phagocytosis of non-pathogenic bacteria and visualize the temporal and spatial dynamics of compartmentalized, free zinc using fluorescent probes. Immediately after particle uptake, zinc is delivered to phagosomes by fusion with “zincosomes” of endosomal origin, but also by the action of one or more zinc transporters. We localize the four Dictyostelium ZnT transporters to endosomes, the contractile vacuole and the Golgi apparatus, and study the impact of znt knockouts on zinc homeostasis. Finally, we show that zinc is delivered into the lumen of Mycobacterium smegmatis-containing vacuoles, and that Escherichia coli deficient in the zinc efflux P1B-type ATPase ZntA is killed faster than wild type bacteria.
Collapse
Affiliation(s)
- Caroline Barisch
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Vera Kalinina
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
- Present address: Institute of Cytology, Russian Academy of Sciences, Tikhoretsky ave. 4, 194064 St. Petersburg, Russia
| | - Louise H. Lefrançois
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Joddy Appiah
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Ana T. López-Jiménez
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| |
Collapse
|