1
|
Haga K, Fukuda M. Comprehensive knockout analysis of the RAB family small GTPases reveals an overlapping role of RAB2 and RAB14 in autophagosome maturation. Autophagy 2025; 21:21-36. [PMID: 38953305 DOI: 10.1080/15548627.2024.2374699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Macroautophagy, simply referred to below as autophagy, is an intracellular degradation system that is highly conserved in eukaryotes. Since the processes involved in autophagy are accompanied by membrane dynamics, RAB small GTPases, key regulators of membrane trafficking, are generally thought to regulate the membrane dynamics of autophagy. Although more than half of the mammalian RABs have been reported to be involved in canonical and selective autophagy, no consensus has been reached in regard to the role of RABs in mammalian autophagy. Here, we comprehensively analyzed a rab-knockout (KO) library of MDCK cells to reevaluate the requirement for each RAB isoform in basal and starvation-induced autophagy. The results revealed clear alteration of the MAP1LC3/LC3-II level in only four rab-KO cells (rab1-KO, rab2-KO, rab7a-KO, and rab14-KO cells) and identified RAB14 as a new regulator of autophagy, specifically at the autophagosome maturation step. The autophagy-defective phenotype of two of these rab-KO cells, rab2-KO and rab14-KO cells, was very mild, but double KO of rab2 and rab14 caused a severer autophagy-defective phenotype (greater LC3 accumulation than in single-KO cells, indicating an overlapping role of RAB2 and RAB14 during autophagosome maturation. We also found that RAB14 is phylogenetically similar to RAB2 and that it possesses the same properties as RAB2, i.e. autophagosome localization and interaction with the HOPS subunits VPS39 and VPS41. Our findings suggest that RAB2 and RAB14 overlappingly regulate the autophagosome maturation step through recruitment of the HOPS complex to the autophagosome.Abbreviation: AID2: auxin-inducible degron 2; ATG: autophagy related; BafA1: bafilomycin A1; CKO: conditional knockout; EBSS: Earle's balanced salt solution; EEA1: early endosome antigen 1; HOPS: homotypic fusion and protein sorting; HRP: horseradish peroxidase; IP: immunoprecipitation; KD: knockdown; KO: knockout; LAMP2: lysosomal-associated membrane protein 2; MDCK: Madin-Darby canine kidney; mAb: monoclonal antibody; MEF: mouse embryonic fibroblast; MTORC1: mechanistic target of rapamycin kinase complex 1; 5-Ph-IAA: 5-phenyl-indole-3-acetic acid; pAb: polyclonal antibody; siRNA: small interfering RNA; SNARE: soluble NSF-attachment protein receptor; TF: transferrin; WT: wild-type.
Collapse
Affiliation(s)
- Kentaro Haga
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
2
|
Saha I, Insinna C, Westlake CJ. Rab11-Rab8 cascade dynamics in primary cilia and membrane tubules. Cell Rep 2024; 43:114955. [PMID: 39520683 DOI: 10.1016/j.celrep.2024.114955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/26/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The Rab11-Rab8 cascade mediated by the Rab8 guanine nucleotide exchange factor (GEF), Rabin8, orchestrates multiple membrane transport processes, but Rab membrane loading and exchange dynamics are unclear. Here, we use advanced fluorescence imaging approaches to characterize Rab11, Rab8, and Rabin8 protein dynamics. Using fluorescence ablation and recovery studies (FRAP), we show that Rab8 ciliary trafficking requires Rab11 and Rabin8. Reciprocally, we discover that Rab11 is recruited to cilia during ciliogenesis in association with Rab8. We uncover a requirement for this cascade in Rab8 association with long tubular membranes (LTMs) in human cells and zebrafish embryos. Membrane exchange dynamics of Rab11 on Rab8 LTMs is shown using super-resolution imaging, along with a dependency on Rabin8 GEF activity. Finally, cascade-dependent Rab8 loading onto enlarged Rab11-Rabin8 membrane structures is discussed. This study demonstrates that the Rab11-Rab8 cascade involves membrane conversion and expands our understanding of the cellular multifunctionality of this trafficking pathway.
Collapse
Affiliation(s)
- Ipsita Saha
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Christine Insinna
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Christopher J Westlake
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
3
|
Štimac I, Marcelić M, Radić B, Viduka I, Blagojević Zagorac G, Lukanović Jurić S, Rožmanić C, Messerle M, Brizić I, Lučin P, Mahmutefendić Lučin H. SNX27:Retromer:ESCPE-1-mediated early endosomal tubulation impacts cytomegalovirus replication. Front Cell Infect Microbiol 2024; 14:1399761. [PMID: 39359939 PMCID: PMC11445146 DOI: 10.3389/fcimb.2024.1399761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Cytomegaloviruses (CMVs) extensively reorganize the membrane system of the cell and establish a new structure as large as the cell nucleus called the assembly compartment (AC). Our previous studies on murine CMV (MCMV)-infected fibroblasts indicated that the inner part of the AC contains rearranged early endosomes, recycling endosomes, endosomal recycling compartments and trans-Golgi membrane structures that are extensively tubulated, including the expansion and retention of tubular Rab10 elements. An essential process that initiates Rab10-associated tubulation is cargo sorting and retrieval mediated by SNX27, Retromer, and ESCPE-1 (endosomal SNX-BAR sorting complex for promoting exit 1) complexes. Objective The aim of this study was to investigate the role of SNX27:Retromer:ESCPE-1 complexes in the biogenesis of pre-AC in MCMV-infected cells and subsequently their role in secondary envelopment and release of infectious virions. Results Here we show that SNX27:Retromer:ESCPE1-mediated tubulation is essential for the establishment of a Rab10-decorated subset of membranes within the pre-AC, a function that requires an intact F3 subdomain of the SNX27 FERM domain. Suppression of SNX27-mediated functions resulted in an almost tenfold decrease in the release of infectious virions. However, these effects cannot be directly linked to the contribution of SNX27:Retromer:ESCPE-1-dependent tubulation to the secondary envelopment, as suppression of these components, including the F3-FERM domain, led to a decrease in MCMV protein expression and inhibited the progression of the replication cycle. Conclusion This study demonstrates a novel and important function of membrane tubulation within the pre-AC associated with the control of viral protein expression.
Collapse
Affiliation(s)
- Igor Štimac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marina Marcelić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Barbara Radić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ivona Viduka
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North, University Center Varaždin, Varaždin, Croatia
| | - Silvija Lukanović Jurić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Carmen Rožmanić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North, University Center Varaždin, Varaždin, Croatia
| | - Hana Mahmutefendić Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North, University Center Varaždin, Varaždin, Croatia
| |
Collapse
|
4
|
Eun SH, Noh SH, Lee MG. Specific kinesin and dynein molecules participate in the unconventional protein secretion of transmembrane proteins. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:435-447. [PMID: 39198224 PMCID: PMC11362002 DOI: 10.4196/kjpp.2024.28.5.435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/19/2024] [Accepted: 06/05/2024] [Indexed: 09/01/2024]
Abstract
Secretory proteins, including plasma membrane proteins, are generally known to be transported to the plasma membrane through the endoplasmic reticulum- to-Golgi pathway. However, recent studies have revealed that several plasma membrane proteins and cytosolic proteins lacking a signal peptide are released via an unconventional protein secretion (UcPS) route, bypassing the Golgi during their journey to the cell surface. For instance, transmembrane proteins such as the misfolded cystic fibrosis transmembrane conductance regulator (CFTR) protein and the Spike protein of coronaviruses have been observed to reach the cell surface through a UcPS pathway under cell stress conditions. Nevertheless, the precise mechanisms of the UcPS pathway, particularly the molecular machineries involving cytosolic motor proteins, remain largely unknown. In this study, we identified specific kinesins, namely KIF1A and KIF5A, along with cytoplasmic dynein, as critical players in the unconventional trafficking of CFTR and the SARS-CoV-2 Spike protein. Gene silencing results demonstrated that knockdown of KIF1A, KIF5A, and the KIF-associated adaptor protein SKIP, FYCO1 significantly reduced the UcPS of △F508-CFTR. Moreover, gene silencing of these motor proteins impeded the UcPS of the SARS-CoV-2 Spike protein. However, the same gene silencing did not affect the conventional Golgimediated cell surface trafficking of wild-type CFTR and Spike protein. These findings suggest that specific motor proteins, distinct from those involved in conventional trafficking, are implicated in the stress-induced UcPS of transmembrane proteins.
Collapse
Affiliation(s)
- Sung Ho Eun
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Shin Hye Noh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
5
|
Parolek J, Burd CG. Bridge-like lipid transfer protein family member 2 suppresses ciliogenesis. Mol Biol Cell 2024; 35:br11. [PMID: 38536441 PMCID: PMC11151097 DOI: 10.1091/mbc.e24-02-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Bridge-like lipid transfer protein family member 2 (BLTP2) is an evolutionary conserved protein with unknown function(s). The absence of BLTP2 in Drosophila melanogaster results in impaired cellular secretion and larval death, while in mice (Mus musculus), it causes preweaning lethality. Structural predictions propose that BLTP2 belongs to the repeating β-groove domain-containing (also called the VPS13) protein family, forming a long tube with a hydrophobic core, suggesting that it operates as a lipid transfer protein (LTP). We establish BLTP2 as a negative regulator of ciliogenesis in RPE-1 cells based on a strong genetic interaction with WDR44, a gene that also suppresses ciliogenesis. Like WDR44, BLTP2 localizes to membrane contact sites involving the endoplasmic reticulum and the tubular endosome network in HeLa cells and that BLTP2 depletion enhanced ciliogenesis in RPE-1 cells grown in serum-containing medium, a condition where ciliogenesis is normally suppressed. This study establishes human BLTP2 as a putative LTP acting between tubular endosomes and ER that regulates primary cilium biogenesis.
Collapse
Affiliation(s)
- Jan Parolek
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | | |
Collapse
|
6
|
Montgomery AC, Mendoza CS, Garbouchian A, Quinones GB, Bentley M. Polarized transport requires AP-1-mediated recruitment of KIF13A and KIF13B at the trans-Golgi. Mol Biol Cell 2024; 35:ar61. [PMID: 38446634 PMCID: PMC11151104 DOI: 10.1091/mbc.e23-10-0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Neurons are polarized cells that require accurate membrane trafficking to maintain distinct protein complements at dendritic and axonal membranes. The Kinesin-3 family members KIF13A and KIF13B are thought to mediate dendrite-selective transport, but the mechanism by which they are recruited to polarized vesicles and the differences in the specific trafficking role of each KIF13 have not been defined. We performed live-cell imaging in cultured hippocampal neurons and found that KIF13A is a dedicated dendrite-selective kinesin. KIF13B confers two different transport modes, dendrite- and axon-selective transport. Both KIF13s are maintained at the trans-Golgi network by interactions with the heterotetrameric adaptor protein complex AP-1. Interference with KIF13 binding to AP-1 resulted in disruptions to both dendrite- and axon-selective trafficking. We propose that AP-1 is the molecular link between the sorting of polarized cargoes into vesicles and the recruitment of kinesins that confer polarized transport.
Collapse
Affiliation(s)
- Andrew C Montgomery
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Christina S Mendoza
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Alex Garbouchian
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Geraldine B Quinones
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Marvin Bentley
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
7
|
Zhu H, Sydor AM, Boddy KC, Coyaud E, Laurent EMN, Au A, Tan JMJ, Yan BR, Moffat J, Muise AM, Yip CM, Grinstein S, Raught B, Brumell JH. Salmonella exploits membrane reservoirs for invasion of host cells. Nat Commun 2024; 15:3120. [PMID: 38600106 PMCID: PMC11006906 DOI: 10.1038/s41467-024-47183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Salmonella utilizes a type 3 secretion system to translocate virulence proteins (effectors) into host cells during infection1. The effectors modulate host cell machinery to drive uptake of the bacteria into vacuoles, where they can establish an intracellular replicative niche. A remarkable feature of Salmonella invasion is the formation of actin-rich protuberances (ruffles) on the host cell surface that contribute to bacterial uptake. However, the membrane source for ruffle formation and how these bacteria regulate membrane mobilization within host cells remains unclear. Here, we show that Salmonella exploits membrane reservoirs for the generation of invasion ruffles. The reservoirs are pre-existing tubular compartments associated with the plasma membrane (PM) and are formed through the activity of RAB10 GTPase. Under normal growth conditions, membrane reservoirs contribute to PM homeostasis and are preloaded with the exocyst subunit EXOC2. During Salmonella invasion, the bacterial effectors SipC, SopE2, and SopB recruit exocyst subunits from membrane reservoirs and other cellular compartments, thereby allowing exocyst complex assembly and membrane delivery required for bacterial uptake. Our findings reveal an important role for RAB10 in the establishment of membrane reservoirs and the mechanisms by which Salmonella can exploit these compartments during host cell invasion.
Collapse
Affiliation(s)
- Hongxian Zhu
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Andrew M Sydor
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Kirsten C Boddy
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM)-U1192, Université de Lille, Inserm, CHU Lille, Lille, France
| | - Estelle M N Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM)-U1192, Université de Lille, Inserm, CHU Lille, Lille, France
| | - Aaron Au
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Joel M J Tan
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Bing-Ru Yan
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Aleixo M Muise
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
- SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - Christopher M Yip
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
8
|
Shiraishi T, Bono K, Hiraki H, Manome Y, Oka H, Iguchi Y, Okano HJ. The impact of VPS35 D620N mutation on alternative autophagy and its reversal by estrogen in Parkinson's disease. Cell Mol Life Sci 2024; 81:103. [PMID: 38409392 PMCID: PMC10896810 DOI: 10.1007/s00018-024-05123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/28/2024]
Abstract
VPS35 plays a key role in neurodegenerative processes in Alzheimer's disease and Parkinson's disease (PD). Many genetic studies have shown a close relationship between autophagy and PD pathophysiology, and specifically, the PD-causing D620N mutation in VPS35 has been shown to impair autophagy. However, the molecular mechanisms underlying neuronal cell death and impaired autophagy in PD are debated. Notably, increasing evidence suggests that Rab9-dependent "alternative" autophagy, which is driven by a different molecular mechanism that driving ATG5-dependent "conventional" autophagy, also contributes to neurodegenerative process. In this study, we investigated the relationship between alternative autophagy and VPS35 D620N mutant-related PD pathogenesis. We isolated iPSCs from the blood mononuclear cell population of two PD patients carrying the VPS35 D620N mutant. In addition, we used CRISPR-Cas9 to generate SH-SY5Y cells carrying the D620N variant of VPS35. We first revealed that the number of autophagic vacuoles was significantly decreased in ATG5-knockout Mouse Embryonic Fibroblast or ATG5-knockdown patient-derived dopaminergic neurons carrying the VPS35 D620N mutant compared with that of the wild type VPS35 control cells. Furthermore, estrogen, which activates alternative autophagy pathways, increased the number of autophagic vacuoles in ATG5-knockdown VPS35 D620N mutant dopaminergic neurons. Estrogen induces Rab9 phosphorylation, mediated through Ulk1 phosphorylation, ultimately regulating alternative autophagy. Moreover, estrogen reduced the apoptosis rate of VPS35 D620N neurons, and this effect of estrogen was diminished under alternative autophagy knockdown conditions. In conclusion, alternative autophagy might be important for maintaining neuronal homeostasis and may be associated with the neuroprotective effect of estrogen in PD with VPS35 D620N.
Collapse
Affiliation(s)
- Tomotaka Shiraishi
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 1058461, Japan
- Department of Neurology, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 105‑8461, Japan
| | - Keiko Bono
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 1058461, Japan
- Department of Neurology, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 105‑8461, Japan
| | - Hiromi Hiraki
- Department of Neurology, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 105‑8461, Japan
| | - Yoko Manome
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 1058461, Japan
| | - Hisayoshi Oka
- Department of Neurology, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 105‑8461, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 105‑8461, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 1058461, Japan.
| |
Collapse
|
9
|
Lapierre LA, Roland JT, Manning EH, Caldwell C, Glenn HL, Vidalain PO, Tangy F, Hogue BG, de Haan CAM, Goldenring JR. Coronavirus M Protein Trafficking in Epithelial Cells Utilizes a Myosin Vb Splice Variant and Rab10. Cells 2024; 13:126. [PMID: 38247817 PMCID: PMC10814003 DOI: 10.3390/cells13020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The membrane (M) glycoprotein of coronaviruses (CoVs) serves as the nidus for virion assembly. Using a yeast two-hybrid screen, we identified the interaction of the cytosolic tail of Murine Hepatitis Virus (MHV-CoV) M protein with Myosin Vb (MYO5B), specifically with the alternative splice variant of cellular MYO5B including exon D (MYO5B+D), which mediates interaction with Rab10. When co-expressed in human lung epithelial A549 and canine kidney epithelial MDCK cells, MYO5B+D co-localized with the MHV-CoV M protein, as well as with the M proteins from Porcine Epidemic Diarrhea Virus (PEDV-CoV), Middle East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome 2 (SARS-CoV-2). Co-expressed M proteins and MYO5B+D co-localized with endogenous Rab10 and Rab11a. We identified point mutations in MHV-CoV M that blocked the interaction with MYO5B+D in yeast 2-hybrid assays. One of these point mutations (E121K) was previously shown to block MHV-CoV virion assembly and its interaction with MYO5B+D. The E to K mutation at homologous positions in PEDV-CoV, MERS-CoV and SARS-CoV-2 M proteins also blocked colocalization with MYO5B+D. The knockdown of Rab10 blocked the co-localization of M proteins with MYO5B+D and was rescued by re-expression of CFP-Rab10. Our results suggest that CoV M proteins traffic through Rab10-containing systems, in association with MYO5B+D.
Collapse
Affiliation(s)
- Lynne A. Lapierre
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (L.A.L.); (J.T.R.); (E.H.M.); (C.C.)
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Nashville VA Medical Center, Nashville, TN 37212, USA
| | - Joseph T. Roland
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (L.A.L.); (J.T.R.); (E.H.M.); (C.C.)
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Elizabeth H. Manning
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (L.A.L.); (J.T.R.); (E.H.M.); (C.C.)
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Nashville VA Medical Center, Nashville, TN 37212, USA
| | - Catherine Caldwell
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (L.A.L.); (J.T.R.); (E.H.M.); (C.C.)
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Nashville VA Medical Center, Nashville, TN 37212, USA
| | - Honor L. Glenn
- Biodesign Institute Center for Immunotherapy, Vaccines & Virotherapy, Tempe, AZ 85287, USA; (H.L.G.); (B.G.H.)
| | - Pierre-Olivier Vidalain
- Equipe Infections Virales, Métabolisme et Immunité, Centre International de Recherche en Infectiologie (CIRI), Univ. Lyon, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France;
- Unité Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR3569, 75015 Paris, France
| | - Frederic Tangy
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR3569, 75015 Paris, France;
| | - Brenda G. Hogue
- Biodesign Institute Center for Immunotherapy, Vaccines & Virotherapy, Tempe, AZ 85287, USA; (H.L.G.); (B.G.H.)
- Center for Applied Structural Discovery, Biodesign Institute, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Phoenix, AZ 85004, USA
| | - C. A. M. de Haan
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Section Virology, University of Utrecht, 3584 CS Utrecht, The Netherlands;
| | - James R. Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (L.A.L.); (J.T.R.); (E.H.M.); (C.C.)
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Nashville VA Medical Center, Nashville, TN 37212, USA
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
10
|
Singh V, Menard MA, Serrano GE, Beach TG, Zhao HT, Riley-DiPaolo A, Subrahmanian N, LaVoie MJ, Volpicelli-Daley LA. Cellular and subcellular localization of Rab10 and phospho-T73 Rab10 in the mouse and human brain. Acta Neuropathol Commun 2023; 11:201. [PMID: 38110990 PMCID: PMC10726543 DOI: 10.1186/s40478-023-01704-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023] Open
Abstract
Autosomal dominant pathogenic mutations in Leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease (PD). The most common mutation, G2019S-LRRK2, increases the kinase activity of LRRK2 causing hyper-phosphorylation of its substrates. One of these substrates, Rab10, is phosphorylated at a conserved Thr73 residue (pRab10), and is one of the most abundant LRRK2 Rab GTPases expressed in various tissues. The involvement of Rab10 in neurodegenerative disease, including both PD and Alzheimer's disease makes pinpointing the cellular and subcellular localization of Rab10 and pRab10 in the brain an important step in understanding its functional role, and how post-translational modifications could impact function. To establish the specificity of antibodies to the phosphorylated form of Rab10 (pRab10), Rab10 specific antisense oligonucleotides were intraventricularly injected into the brains of mice. Further, Rab10 knock out induced neurons, differentiated from human induced pluripotent stem cells were used to test the pRab10 antibody specificity. To amplify the weak immunofluorescence signal of pRab10, tyramide signal amplification was utilized. Rab10 and pRab10 were expressed in the cortex, striatum and the substantia nigra pars compacta. Immunofluorescence for pRab10 was increased in G2019S-LRRK2 knockin mice. Neurons, astrocytes, microglia and oligodendrocytes all showed Rab10 and pRab10 expression. While Rab10 colocalized with endoplasmic reticulum, lysosome and trans-Golgi network markers, pRab10 did not localize to these organelles. However, pRab10, did overlap with markers of the presynaptic terminal in both mouse and human cortex, including α-synuclein. Results from this study suggest Rab10 and pRab10 are expressed in all brain areas and cell types tested in this study, but pRab10 is enriched at the presynaptic terminal. As Rab10 is a LRRK2 kinase substrate, increased kinase activity of G2019S-LRRK2 in PD may affect Rab10 mediated membrane trafficking at the presynaptic terminal in neurons in disease.
Collapse
Affiliation(s)
- Vijay Singh
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Marissa A Menard
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Geidy E Serrano
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Hien T Zhao
- Ionis Pharmaceuticals Inc, Carlsbad, CA, 92010, USA
| | - Alexis Riley-DiPaolo
- Department of Neuroscience at the University of Florida, Gainesville, FL, 32611, USA
| | - Nitya Subrahmanian
- Department of Neurology, Center for Translational Research in Neurodegenerative Disease, Fixel Institute for Neurologic Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Matthew J LaVoie
- Department of Neurology, Center for Translational Research in Neurodegenerative Disease, Fixel Institute for Neurologic Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
11
|
Lerner G, Ding L, Candor K, Spearman P. Incorporation of the HIV-1 envelope glycoprotein into viral particles is regulated by the tubular recycling endosome in a cell type-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.17.572063. [PMID: 38168173 PMCID: PMC10760151 DOI: 10.1101/2023.12.17.572063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The HIV-1 envelope glycoprotein (Env) is incorporated into particles during assembly on the plasma membrane (PM). Env initially reaches the PM through the secretory pathway, after which it is rapidly endocytosed via an AP-2- and clathrin-dependent mechanism. Here we show that endocytosed cell surface Env enters the tubular recycling endosome compartment (TRE). Trafficking to the TRE was dependent upon motifs within the CT previously implicated in Env recycling and particle incorporation. Depletion of TRE components MICAL-L1 or EHD1 led to defects in Env incorporation, particle infectivity, and viral replication. Remarkably, defects were limited to cell types defined as nonpermissive for incorporation of CT-deleted Env, including monocyte-derived macrophages, and not observed in 293T, HeLa, or MT-4 cells. This work identifies the TRE as an essential component of Env trafficking and particle incorporation, and provides evidence that the cell type-dependent incorporation of Env is defined by interactions with components of the TRE.
Collapse
Affiliation(s)
- Grigoriy Lerner
- Molecular and Cellular Biosciences, University of Cincinnati College of Medicine, and Infectious Diseases, Cincinnati Children’s Hospital, Cincinnati, OH
| | - Lingmei Ding
- Infectious Diseases, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH
| | - Kathleen Candor
- Immunology Graduate Program, University of Cincinnati College of Medicine, and Infectious Diseases, Cincinnati Children’s Hospital, Cincinnati, OH
| | - Paul Spearman
- Infectious Diseases, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH
| |
Collapse
|
12
|
Cason SE, Holzbaur EL. Axonal transport of autophagosomes is regulated by dynein activators JIP3/JIP4 and ARF/RAB GTPases. J Cell Biol 2023; 222:e202301084. [PMID: 37909920 PMCID: PMC10620608 DOI: 10.1083/jcb.202301084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/28/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Neuronal autophagosomes form and engulf cargos at presynaptic sites in the axon and are then transported to the soma to recycle their cargo. Autophagic vacuoles (AVs) mature en route via fusion with lysosomes to become degradatively competent organelles; transport is driven by the microtubule motor protein cytoplasmic dynein, with motor activity regulated by a sequential series of adaptors. Using lysate-based single-molecule motility assays and live-cell imaging in primary neurons, we show that JNK-interacting proteins 3 (JIP3) and 4 (JIP4) are activating adaptors for dynein that are regulated on autophagosomes and lysosomes by the small GTPases ARF6 and RAB10. GTP-bound ARF6 promotes formation of the JIP3/4-dynein-dynactin complex. Either knockdown or overexpression of RAB10 stalls transport, suggesting that this GTPase is also required to coordinate the opposing activities of bound dynein and kinesin motors. These findings highlight the complex coordination of motor regulation during organelle transport in neurons.
Collapse
Affiliation(s)
- Sydney E. Cason
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Erika L.F. Holzbaur
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Rodriguez-Polanco WR, Norris A, Velasco AB, Gleason AM, Grant BD. Syndapin and GTPase RAP-1 control endocytic recycling via RHO-1 and non-muscle myosin II. Curr Biol 2023; 33:4844-4856.e5. [PMID: 37832552 PMCID: PMC10841897 DOI: 10.1016/j.cub.2023.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/07/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
After endocytosis, many plasma membrane components are recycled via membrane tubules that emerge from early endosomes to form recycling endosomes, eventually leading to their return to the plasma membrane. We previously showed that Syndapin/PACSIN-family protein SDPN-1 is required in vivo for basolateral endocytic recycling in the C. elegans intestine. Here, we document an interaction between the SDPN-1 SH3 domain and a target sequence in PXF-1/PDZ-GEF1/RAPGEF2, a known exchange factor for Rap-GTPases. We found that endogenous mutations engineered into the SDPN-1 SH3 domain, or its binding site in the PXF-1 protein, interfere with recycling in vivo, as does the loss of the PXF-1 target RAP-1. In some contexts, Rap-GTPases negatively regulate RhoA activity, suggesting a potential for Syndapin to regulate RhoA. Our results indicate that in the C. elegans intestine, RHO-1/RhoA is enriched on SDPN-1- and RAP-1-positive endosomes, and the loss of SDPN-1 or RAP-1 elevates RHO-1(GTP) levels on intestinal endosomes. Furthermore, we found that depletion of RHO-1 suppressed sdpn-1 mutant recycling defects, indicating that control of RHO-1 activity is a key mechanism by which SDPN-1 acts to promote endocytic recycling. RHO-1/RhoA is well known for controlling actomyosin contraction cycles, although little is known about the effects of non-muscle myosin II on endosomes. Our analysis found that non-muscle myosin II is enriched on SDPN-1-positive endosomes, with two non-muscle myosin II heavy-chain isoforms acting in apparent opposition. Depletion of nmy-2 inhibited recycling like sdpn-1 mutants, whereas depletion of nmy-1 suppressed sdpn-1 mutant recycling defects, indicating that actomyosin contractility controls recycling endosome function.
Collapse
Affiliation(s)
| | - Anne Norris
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Agustin B Velasco
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Adenrele M Gleason
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA; Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA; Rutgers Center for Lipid Research, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901-8521, USA.
| |
Collapse
|
14
|
Rinaldi C, Waters CS, Li Z, Kumbier K, Rao L, Nichols RJ, Jacobson MP, Wu LF, Altschuler SJ. Dissecting the effects of GTPase and kinase domain mutations on LRRK2 endosomal localization and activity. Cell Rep 2023; 42:112447. [PMID: 37141099 DOI: 10.1016/j.celrep.2023.112447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 05/05/2023] Open
Abstract
Parkinson's disease-causing leucine-rich repeat kinase 2 (LRRK2) mutations lead to varying degrees of Rab GTPase hyperphosphorylation. Puzzlingly, LRRK2 GTPase-inactivating mutations-which do not affect intrinsic kinase activity-lead to higher levels of cellular Rab phosphorylation than kinase-activating mutations. Here, we investigate whether mutation-dependent differences in LRRK2 cellular localization could explain this discrepancy. We discover that blocking endosomal maturation leads to the rapid formation of mutant LRRK2+ endosomes on which LRRK2 phosphorylates substrate Rabs. LRRK2+ endosomes are maintained through positive feedback, which mutually reinforces membrane localization of LRRK2 and phosphorylated Rab substrates. Furthermore, across a panel of mutants, cells expressing GTPase-inactivating mutants form strikingly more LRRK2+ endosomes than cells expressing kinase-activating mutants, resulting in higher total cellular levels of phosphorylated Rabs. Our study suggests that the increased probability that LRRK2 GTPase-inactivating mutants are retained on intracellular membranes compared to kinase-activating mutants leads to higher substrate phosphorylation.
Collapse
Affiliation(s)
- Capria Rinaldi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christopher S Waters
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zizheng Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Karl Kumbier
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lee Rao
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - R Jeremy Nichols
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
15
|
Insights into the cellular consequences of LRRK2-mediated Rab protein phosphorylation. Biochem Soc Trans 2023; 51:587-595. [PMID: 36929701 DOI: 10.1042/bst20201145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Point mutations in leucine-rich repeat kinase 2 (LRRK2) which cause Parkinson's disease increase its kinase activity, and a subset of Rab GTPases have been identified as endogenous LRRK2 kinase substrates. Their phosphorylation correlates with a loss-of-function for the membrane trafficking steps they are normally involved in, but it also allows them to bind to a novel set of effector proteins with dominant cellular consequences. In this brief review, we will summarize novel findings related to the LRRK2-mediated phosphorylation of Rab GTPases and its various cellular consequences in vitro and in the intact brain, and we will highlight major outstanding questions in the field.
Collapse
|
16
|
Nakashima S, Matsui T, Fukuda M. Vps9d1 regulates tubular endosome formation through specific activation of Rab22A. J Cell Sci 2023; 136:286994. [PMID: 36762583 DOI: 10.1242/jcs.260522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
The small GTPase Rab22A is an important regulator of the formation of tubular endosomes, which are one of the types of recycling endosome compartments of the clathrin-independent endocytosis pathway. In order to regulate tubular endosome formation, Rab22A must be activated by a specific guanine-nucleotide-exchange factor (GEF); however, all of the GEFs that have been reported to exhibit Rab22A-GEF activity in vitro also activate Rab5A, an essential regulator of the clathrin-mediated endocytosis pathway, and no Rab22A-specific GEF has ever been identified. Here, we identified Vps9d1, a previously uncharacterized vacuolar protein sorting 9 (VPS9) domain-containing protein, as a novel Rab22A-GEF. The formation of tubular endosome structures was found to be severely impaired in Vps9d1-depleted HeLa cells, but Rab5A localization was unaffected. Expression of a constitutively active Rab22A mutant in Vps9d1-depleted HeLa cells restored tubular endosomes, but expression of a GEF-activity-deficient Vps9d1 mutant did not. Moreover, Vps9d1 depletion altered the distribution of clathrin-independent endocytosed cargos and impaired their recycling. Our findings indicate that Vps9d1 promotes tubular endosome formation by specifically activating Rab22A.
Collapse
Affiliation(s)
- Shumpei Nakashima
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Takahide Matsui
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
17
|
Lazo OM, Schiavo G. Rab10 regulates the sorting of internalised TrkB for retrograde axonal transport. eLife 2023; 12:81532. [PMID: 36897066 PMCID: PMC10005780 DOI: 10.7554/elife.81532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
Neurons process real-time information from axon terminals to coordinate gene expression, growth, and plasticity. Inputs from distal axons are encoded as a stream of endocytic organelles, termed signalling endosomes, targeted to the soma. Formation of these organelles depends on target-derived molecules, such as brain-derived neurotrophic factor (BDNF), which is recognised by TrkB receptors on the plasma membrane, endocytosed, and transported to the cell body along the microtubules network. Notwithstanding its physiological and neuropathological importance, the mechanism controlling the sorting of TrkB to signalling endosomes is currently unknown. In this work, we use primary mouse neurons to uncover the small GTPase Rab10 as critical for TrkB sorting and propagation of BDNF signalling from axon terminals to the soma. Our data demonstrate that Rab10 defines a novel membrane compartment that is rapidly mobilised towards the axon terminal upon BDNF stimulation, enabling the axon to fine-tune retrograde signalling depending on BDNF availability at the synapse. These results help clarifying the neuroprotective phenotype recently associated to Rab10 polymorphisms in Alzheimer's disease and provide a new therapeutic target to halt neurodegeneration.
Collapse
Affiliation(s)
- Oscar Marcelo Lazo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| |
Collapse
|
18
|
Wang Y, Arnold ML, Smart AJ, Wang G, Androwski RJ, Morera A, Nguyen KCQ, Schweinsberg PJ, Bai G, Cooper J, Hall DH, Driscoll M, Grant BD. Large vesicle extrusions from C. elegans neurons are consumed and stimulated by glial-like phagocytosis activity of the neighboring cell. eLife 2023; 12:e82227. [PMID: 36861960 PMCID: PMC10023159 DOI: 10.7554/elife.82227] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/28/2023] [Indexed: 03/03/2023] Open
Abstract
Caenorhabditis elegans neurons under stress can produce giant vesicles, several microns in diameter, called exophers. Current models suggest that exophers are neuroprotective, providing a mechanism for stressed neurons to eject toxic protein aggregates and organelles. However, little is known of the fate of the exopher once it leaves the neuron. We found that exophers produced by mechanosensory neurons in C. elegans are engulfed by surrounding hypodermal skin cells and are then broken up into numerous smaller vesicles that acquire hypodermal phagosome maturation markers, with vesicular contents gradually degraded by hypodermal lysosomes. Consistent with the hypodermis acting as an exopher phagocyte, we found that exopher removal requires hypodermal actin and Arp2/3, and the hypodermal plasma membrane adjacent to newly formed exophers accumulates dynamic F-actin during budding. Efficient fission of engulfed exopher-phagosomes to produce smaller vesicles and degrade their contents requires phagosome maturation factors SAND-1/Mon1, GTPase RAB-35, the CNT-1 ARF-GAP, and microtubule motor-associated GTPase ARL-8, suggesting a close coupling of phagosome fission and phagosome maturation. Lysosome activity was required to degrade exopher contents in the hypodermis but not for exopher-phagosome resolution into smaller vesicles. Importantly, we found that GTPase ARF-6 and effector SEC-10/exocyst activity in the hypodermis, along with the CED-1 phagocytic receptor, is required for efficient production of exophers by the neuron. Our results indicate that the neuron requires specific interaction with the phagocyte for an efficient exopher response, a mechanistic feature potentially conserved with mammalian exophergenesis, and similar to neuronal pruning by phagocytic glia that influences neurodegenerative disease.
Collapse
Affiliation(s)
- Yu Wang
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Meghan Lee Arnold
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Anna Joelle Smart
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Guoqiang Wang
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Rebecca J Androwski
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Andres Morera
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Ken CQ Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, BronxNew YorkUnited States
| | - Peter J Schweinsberg
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Jason Cooper
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, BronxNew YorkUnited States
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
- Rutgers Center for Lipid ResearchNew BrunswickUnited States
| |
Collapse
|
19
|
Redpath GMI, Ananthanarayanan V. Endosomal sorting sorted - motors, adaptors and lessons from in vitro and cellular studies. J Cell Sci 2023; 136:292583. [PMID: 36861885 DOI: 10.1242/jcs.260749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Motor proteins are key players in exerting spatiotemporal control over the intracellular location of membrane-bound compartments, including endosomes containing cargo. In this Review, we focus on how motors and their cargo adaptors regulate positioning of cargoes from the earliest stages of endocytosis and through the two main intracellular itineraries: (1) degradation at the lysosome or (2) recycling back to the plasma membrane. In vitro and cellular (in vivo) studies on cargo transport thus far have typically focussed independently on either the motor proteins and adaptors, or membrane trafficking. Here, we will discuss recent studies to highlight what is known about the regulation of endosomal vesicle positioning and transport by motors and cargo adaptors. We also emphasise that in vitro and cellular studies are often performed at different scales, from single molecules to whole organelles, with the aim to provide a perspective on the unified principles of motor-driven cargo trafficking in living cells that can be learned from these differing scales.
Collapse
Affiliation(s)
- Gregory M I Redpath
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, The University of New South Wales, Sydney 2052, Australia
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
20
|
Rodriguez-Polanco WR, Norris A, Velasco AB, Gleason AM, Grant BD. Syndapin Regulates the RAP-1 GTPase to Control Endocytic Recycling via RHO-1 and Non-Muscle Myosin II. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530328. [PMID: 36909525 PMCID: PMC10002613 DOI: 10.1101/2023.02.27.530328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
After endocytosis, many plasma membrane components are recycled via narrow-diameter membrane tubules that emerge from early endosomes to form recycling endosomes, eventually leading to their return to the plasma membrane. We previously showed that the F-BAR and SH3 domain Syndapin/PACSIN-family protein SDPN-1 is required in vivo for basolateral endocytic recycling in the C. elegans intestine. Here we sought to determine the significance of a predicted interaction between the SDPN-1 SH3 domain and a target sequence in PXF-1/PDZ-GEF1/RAPGEF2, a known exchange factor for Rap-GTPases. We found that endogenous mutations we engineered into the SDPN-1 SH3 domain, or its binding site in the PXF-1 protein, interfere with recycling in vivo , as does loss of the PXF-1 target RAP-1. Rap-GTPases have been shown in several contexts to negatively regulate RhoA activity. Our results show that RHO-1/RhoA is enriched on SDPN-1 and RAP-1 positive endosomes in the C. elegans intestine, and loss of SDPN-1 or RAP-1 elevates RHO-1(GTP) levels on intestinal endosomes. Furthermore, we found that depletion of RHO-1 suppressed sdpn-1 mutant recycling defects, indicating that control of RHO-1 activity is a key mechanism by which SDPN-1 acts to promote endocytic recycling. RHO-1/RhoA is well-known for controlling actomyosin contraction cycles, although little is known of non-muscle myosin II on endosomes. Our analysis found that non-muscle myosin II is enriched on SDPN-1 positive endosomes, with two non-muscle myosin II heavy chain isoforms acting in apparent opposition. Depletion of nmy-2 inhibited recycling like sdpn-1 mutants, while depletion of nmy-1 suppressed sdpn-1 mutant recycling defects, indicating actomyosin contractility in controlling recycling endosome function.
Collapse
|
21
|
Cason SE, Holzbaur EL. Axonal transport of autophagosomes is regulated by dynein activators JIP3/JIP4 and ARF/RAB GTPases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.28.526044. [PMID: 36747648 PMCID: PMC9901177 DOI: 10.1101/2023.01.28.526044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neuronal autophagosomes, "self-eating" degradative organelles, form at presynaptic sites in the distal axon and are transported to the soma to recycle their cargo. During transit, autophagic vacuoles (AVs) mature through fusion with lysosomes to acquire the enzymes necessary to breakdown their cargo. AV transport is driven primarily by the microtubule motor cytoplasmic dynein in concert with dynactin and a series of activating adaptors that change depending on organelle maturation state. The transport of mature AVs is regulated by the scaffolding proteins JIP3 and JIP4, both of which activate dynein motility in vitro. AV transport is also regulated by ARF6 in a GTP-dependent fashion. While GTP-bound ARF6 promotes the formation of the JIP3/4-dynein-dynactin complex, RAB10 competes with the activity of this complex by increasing kinesin recruitment to axonal AVs and lysosomes. These interactions highlight the complex coordination of motors regulating organelle transport in neurons.
Collapse
Affiliation(s)
- Sydney E. Cason
- Department of Physiology, University of Pennsylvania
- Neuroscience Graduate Group, University of Pennsylvania
- Pennsylvania Muscle Institute, University of Pennsylvania
| | - Erika L.F. Holzbaur
- Department of Physiology, University of Pennsylvania
- Neuroscience Graduate Group, University of Pennsylvania
- Pennsylvania Muscle Institute, University of Pennsylvania
| |
Collapse
|
22
|
Diaz-Vegas A, Norris DM, Jall-Rogg S, Cooke KC, Conway OJ, Shun-Shion AS, Duan X, Potter M, van Gerwen J, Baird HJ, Humphrey SJ, James DE, Fazakerley DJ, Burchfield JG. A high-content endogenous GLUT4 trafficking assay reveals new aspects of adipocyte biology. Life Sci Alliance 2023; 6:e202201585. [PMID: 36283703 PMCID: PMC9595207 DOI: 10.26508/lsa.202201585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Insulin-induced GLUT4 translocation to the plasma membrane in muscle and adipocytes is crucial for whole-body glucose homeostasis. Currently, GLUT4 trafficking assays rely on overexpression of tagged GLUT4. Here we describe a high-content imaging platform for studying endogenous GLUT4 translocation in intact adipocytes. This method enables high fidelity analysis of GLUT4 responses to specific perturbations, multiplexing of other trafficking proteins and other features including lipid droplet morphology. Using this multiplexed approach we showed that Vps45 and Rab14 are selective regulators of GLUT4, but Trarg1, Stx6, Stx16, Tbc1d4 and Rab10 knockdown affected both GLUT4 and TfR translocation. Thus, GLUT4 and TfR translocation machinery likely have some overlap upon insulin-stimulation. In addition, we identified Kif13A, a Rab10 binding molecular motor, as a novel regulator of GLUT4 traffic. Finally, comparison of endogenous to overexpressed GLUT4 highlights that the endogenous GLUT4 methodology has an enhanced sensitivity to genetic perturbations and emphasises the advantage of studying endogenous protein trafficking for drug discovery and genetic analysis of insulin action in relevant cell types.
Collapse
Affiliation(s)
- Alexis Diaz-Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Dougall M Norris
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Sigrid Jall-Rogg
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Kristen C Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Olivia J Conway
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Amber S Shun-Shion
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Xiaowen Duan
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Meg Potter
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Julian van Gerwen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Harry Jm Baird
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - James G Burchfield
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
23
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
24
|
Snead DM, Matyszewski M, Dickey AM, Lin YX, Leschziner AE, Reck-Peterson SL. Structural basis for Parkinson's disease-linked LRRK2's binding to microtubules. Nat Struct Mol Biol 2022; 29:1196-1207. [PMID: 36510024 PMCID: PMC9758056 DOI: 10.1038/s41594-022-00863-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is one of the most commonly mutated genes in familial Parkinson's disease (PD). Under some circumstances, LRRK2 co-localizes with microtubules in cells, an association enhanced by PD mutations. We report a cryo-EM structure of the catalytic half of LRRK2, containing its kinase, in a closed conformation, and GTPase domains, bound to microtubules. We also report a structure of the catalytic half of LRRK1, which is closely related to LRRK2 but is not linked to PD. Although LRRK1's structure is similar to that of LRRK2, we find that LRRK1 does not interact with microtubules. Guided by these structures, we identify amino acids in LRRK2's GTPase that mediate microtubule binding; mutating them disrupts microtubule binding in vitro and in cells, without affecting LRRK2's kinase activity. Our results have implications for the design of therapeutic LRRK2 kinase inhibitors.
Collapse
Affiliation(s)
- David M Snead
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, MD, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mariusz Matyszewski
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, MD, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Andrea M Dickey
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, MD, USA
| | - Yu Xuan Lin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, MD, USA
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, MD, USA.
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, MD, USA.
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, Maryland, MD, USA.
| |
Collapse
|
25
|
Jongsma MLM, Bakker N, Neefjes J. Choreographing the motor-driven endosomal dance. J Cell Sci 2022; 136:282885. [PMID: 36382597 PMCID: PMC9845747 DOI: 10.1242/jcs.259689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The endosomal system orchestrates the transport of lipids, proteins and nutrients across the entire cell. Along their journey, endosomes mature, change shape via fusion and fission, and communicate with other organelles. This intriguing endosomal choreography, which includes bidirectional and stop-and-go motions, is coordinated by the microtubule-based motor proteins dynein and kinesin. These motors bridge various endosomal subtypes to the microtubule tracks thanks to their cargo-binding domain interacting with endosome-associated proteins, and their motor domain interacting with microtubules and associated proteins. Together, these interactions determine the mobility of different endosomal structures. In this Review, we provide a comprehensive overview of the factors regulating the different interactions to tune the fascinating dance of endosomes along microtubules.
Collapse
Affiliation(s)
- Marlieke L. M. Jongsma
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, 2333 ZC Leiden, The Netherlands
| | - Nina Bakker
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, 2333 ZC Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, 2333 ZC Leiden, The Netherlands,Author for correspondence ()
| |
Collapse
|
26
|
Mahmutefendić Lučin H, Blagojević Zagorac G, Marcelić M, Lučin P. Host Cell Signatures of the Envelopment Site within Beta-Herpes Virions. Int J Mol Sci 2022; 23:9994. [PMID: 36077391 PMCID: PMC9456339 DOI: 10.3390/ijms23179994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Beta-herpesvirus infection completely reorganizes the membrane system of the cell. This system is maintained by the spatiotemporal arrangement of more than 3000 cellular proteins that continuously adapt the configuration of membrane organelles according to cellular needs. Beta-herpesvirus infection establishes a new configuration known as the assembly compartment (AC). The AC membranes are loaded with virus-encoded proteins during the long replication cycle and used for the final envelopment of the newly formed capsids to form infectious virions. The identity of the envelopment membranes is still largely unknown. Electron microscopy and immunofluorescence studies suggest that the envelopment occurs as a membrane wrapping around the capsids, similar to the growth of phagophores, in the area of the AC with the membrane identities of early/recycling endosomes and the trans-Golgi network. During wrapping, host cell proteins that define the identity and shape of these membranes are captured along with the capsids and incorporated into the virions as host cell signatures. In this report, we reviewed the existing information on host cell signatures in human cytomegalovirus (HCMV) virions. We analyzed the published proteomes of the HCMV virion preparations that identified a large number of host cell proteins. Virion purification methods are not yet advanced enough to separate all of the components of the rich extracellular material, including the large amounts of non-vesicular extracellular particles (NVEPs). Therefore, we used the proteomic data from large and small extracellular vesicles (lEVs and sEVs) and NVEPs to filter out the host cell proteins identified in the viral proteomes. Using these filters, we were able to narrow down the analysis of the host cell signatures within the virions and determine that envelopment likely occurs at the membranes derived from the tubular recycling endosomes. Many of these signatures were also found at the autophagosomes, suggesting that the CMV-infected cell forms membrane organelles with phagophore growth properties using early endosomal host cell machinery that coordinates endosomal recycling.
Collapse
Affiliation(s)
| | | | | | - Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
27
|
Larocque G, Royle SJ. Integrating intracellular nanovesicles into integrin trafficking pathways and beyond. Cell Mol Life Sci 2022; 79:335. [PMID: 35657500 PMCID: PMC9166830 DOI: 10.1007/s00018-022-04371-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Membrane traffic controls the movement of proteins and lipids from one cellular compartment to another using a system of transport vesicles. Intracellular nanovesicles (INVs) are a newly described class of transport vesicles. These vesicles are small, carry diverse cargo, and are involved in multiple trafficking steps including anterograde traffic and endosomal recycling. An example of a biological process that they control is cell migration and invasion, due to their role in integrin recycling. In this review, we describe what is known so far about these vesicles. We discuss how INVs may integrate into established membrane trafficking pathways using integrin recycling as an example. We speculate where in the cell INVs have the potential to operate and we identify key questions for future investigation.
Collapse
Affiliation(s)
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
28
|
Birdsall V, Kirwan K, Zhu M, Imoto Y, Wilson SM, Watanabe S, Waites CL. Axonal transport of Hrs is activity dependent and facilitates synaptic vesicle protein degradation. Life Sci Alliance 2022; 5:5/10/e202000745. [PMID: 35636965 PMCID: PMC9152131 DOI: 10.26508/lsa.202000745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
This study describes an activity-dependent mechanism for transporting ESCRT-0 protein Hrs to synaptic vesicle (SV) pools, facilitating SV protein degradation in response to increased neuronal firing. Turnover of synaptic vesicle (SV) proteins is vital for the maintenance of healthy and functional synapses. SV protein turnover is driven by neuronal activity in an endosomal sorting complex required for transport (ESCRT)-dependent manner. Here, we characterize a critical step in this process: axonal transport of ESCRT-0 component Hrs, necessary for sorting proteins into the ESCRT pathway and recruiting downstream ESCRT machinery to catalyze multivesicular body (MVB) formation. We find that neuronal activity stimulates the formation of presynaptic endosomes and MVBs, as well as the motility of Hrs+ vesicles in axons and their delivery to SV pools. Hrs+ vesicles co-transport ESCRT-0 component STAM1 and comprise a subset of Rab5+ vesicles, likely representing pro-degradative early endosomes. Furthermore, we identify kinesin motor protein KIF13A as essential for the activity-dependent transport of Hrs to SV pools and the degradation of SV membrane proteins. Together, these data demonstrate a novel activity- and KIF13A-dependent mechanism for mobilizing axonal transport of ESCRT machinery to facilitate the degradation of SV membrane proteins.
Collapse
Affiliation(s)
- Veronica Birdsall
- Neurobiology and Behavior PhD Program, Columbia University, New York, NY, USA
| | - Konner Kirwan
- Neurobiology and Behavior PhD Program, Columbia University, New York, NY, USA
| | - Mei Zhu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Yuuta Imoto
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Scott M Wilson
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD, USA.,Solomon H Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA .,Department of Neuroscience, Columbia University, New York, NY, USA
| |
Collapse
|
29
|
Matsui T, Sakamaki Y, Nakashima S, Fukuda M. Rab39 and its effector UACA regulate basolateral exosome release from polarized epithelial cells. Cell Rep 2022; 39:110875. [PMID: 35649370 DOI: 10.1016/j.celrep.2022.110875] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/29/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Exosomes are small extracellular vesicles that originate from the intraluminal vesicles of multivesicular bodies (MVBs). We previously reported that polarized Madin-Darby canine kidney (MDCK) epithelial cells secrete two types of exosomes, apical and basolateral exosomes, from different MVBs. However, how these MVBs are selectively targeted to the apical or basolateral membrane remained unknown. Here, we analyze members of the Rab family small GTPases and show that different sets of Rabs mediate asymmetrical exosome release. Rab27, the best-known regulator of MVB transport for exosome release, is specifically but partially involved in apical exosome release, and Rab37, a close homolog of Rab27, is an additional apical exosome regulator. By contrast, Rab39 functions as a specific regulator of basolateral exosome release. Mechanistically, Rab39 interacts with its effector UACA, and UACA then recruits Lyspersin, a component of BLOC-1-related complex (BORC). Our findings suggest that the Rab39-UACA-BORC complex specifically mediates basolateral exosome release.
Collapse
Affiliation(s)
- Takahide Matsui
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | - Yuriko Sakamaki
- Microscopy Research Support Unit Research Core, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shumpei Nakashima
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
30
|
Kluss JH, Bonet-Ponce L, Lewis PA, Cookson MR. Directing LRRK2 to membranes of the endolysosomal pathway triggers RAB phosphorylation and JIP4 recruitment. Neurobiol Dis 2022; 170:105769. [PMID: 35580815 DOI: 10.1016/j.nbd.2022.105769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Coding mutations in the Leucine-rich repeat kinase 2 (LRRK2) gene, which are associated with dominantly inherited Parkinson's disease (PD), lead to an increased activity of the encoded LRRK2 protein kinase. As such, kinase inhibitors are being considered as therapeutic agents for PD. It is therefore of interest to understand the mechanism(s) by which LRRK2 is activated during cellular signaling. Lysosomal membrane damage represents one way of activating LRRK2 and leads to phosphorylation of downstream RAB substrates and recruitment of the motor adaptor protein JIP4. However, it is unclear whether the activation of LRRK2 would be seen at other membranes of the endolysosomal system, where LRRK2 has also shown to be localized, or whether these signaling events can be induced without membrane damage. Here, we use a rapamycin-dependent oligomerization system to direct LRRK2 to various endomembranes including the Golgi apparatus, lysosomes, the plasma membrane, recycling, early, and late endosomes. Irrespective of membrane location, the recruitment of LRRK2 to membranes results in local accumulation of phosphorylated RAB10, RAB12, and JIP4. We also show that endogenous RAB29, previously nominated as an activator of LRRK2 based on overexpression, is not required for activation of LRRK2 at the Golgi nor lysosome. We therefore conclude that LRRK2 signaling to RAB10, RAB12, and JIP4 can be activated once LRRK2 is accumulated at any cellular organelle along the endolysosomal pathway.
Collapse
Affiliation(s)
- Jillian H Kluss
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3707, USA; School of Pharmacy, University of Reading, Whiteknights, Reading, UK
| | - Luis Bonet-Ponce
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3707, USA
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK; Royal Veterinary College, Royal College Street, London, UK; UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3707, USA.
| |
Collapse
|
31
|
Thankachan JM, Setty SRG. KIF13A—A Key Regulator of Recycling Endosome Dynamics. Front Cell Dev Biol 2022; 10:877532. [PMID: 35547822 PMCID: PMC9081326 DOI: 10.3389/fcell.2022.877532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
Molecular motors of the kinesin superfamily (KIF) are a class of ATP-dependent motor proteins that transport cargo, including vesicles, along the tracks of the microtubule network. Around 45 KIF proteins have been described and are grouped into 14 subfamilies based on the sequence homology and domain organization. These motors facilitate a plethora of cellular functions such as vesicle transport, cell division and reorganization of the microtubule cytoskeleton. Current studies suggest that KIF13A, a kinesin-3 family member, associates with recycling endosomes and regulates their membrane dynamics (length and number). KIF13A has been implicated in several processes in many cell types, including cargo transport, recycling endosomal tubule biogenesis, cell polarity, migration and cytokinesis. Here we describe the recent advances in understanding the regulatory aspects of KIF13A motor in controlling the endosomal dynamics in addition to its structure, mechanism of its association to the membranes, regulators of motor activity, cell type-specific cargo/membrane transport, methods to measure its activity and its association with disease. Thus, this review article will provide our current understanding of the cell biological roles of KIF13A in regulating endosomal membrane remodeling.
Collapse
|
32
|
Zajac AL, Horne-Badovinac S. Kinesin-directed secretion of basement membrane proteins to a subdomain of the basolateral surface in Drosophila epithelial cells. Curr Biol 2022; 32:735-748.e10. [PMID: 35021047 PMCID: PMC8891071 DOI: 10.1016/j.cub.2021.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022]
Abstract
Epithelial tissues are lined with a sheet-like basement membrane (BM) extracellular matrix at their basal surfaces that plays essential roles in adhesion and signaling. BMs also provide mechanical support to guide morphogenesis. Despite their importance, we know little about how epithelial cells secrete and assemble BMs during development. BM proteins are sorted into a basolateral secretory pathway distinct from other basolateral proteins. Because BM proteins self-assemble into networks, and the BM lines only a small portion of the basolateral domain, we hypothesized that the site of BM protein secretion might be tightly controlled. Using the Drosophila follicular epithelium, we show that kinesin-3 and kinesin-1 motors work together to define this secretion site. Similar to all epithelia, the follicle cells have polarized microtubules (MTs) along their apical-basal axes. These cells collectively migrate, and they also have polarized MTs along the migratory axis at their basal surfaces. We find follicle cell MTs form one interconnected network, which allows kinesins to transport Rab10+ BM secretory vesicles both basally and to the trailing edge of each cell. This positions them near the basal surface and the basal-most region of the lateral domain for exocytosis. When kinesin transport is disrupted, the site of BM protein secretion is expanded, and ectopic BM networks form between cells that impede migration and disrupt tissue architecture. These results show how epithelial cells can define a subdomain on their basolateral surface through MT-based transport and highlight the importance of controlling the exocytic site of network-forming proteins.
Collapse
Affiliation(s)
- Allison L. Zajac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
33
|
Higashi S, Makiyama T, Sakane H, Nogami S, Shirataki H. Regulation of Hook1-mediated endosomal sorting of clathrin-independent cargo by γ-taxilin. J Cell Sci 2021; 135:273710. [PMID: 34897470 DOI: 10.1242/jcs.258849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
In clathrin-independent endocytosis, Hook1, a microtubule- and cargo-tethering protein, participates in sorting of cargo proteins such as CD98 and CD147 into recycling endosomes. However, the molecular mechanism that regulates Hook1-mediated endosomal sorting is not fully understood. Here, we found that γ-taxilin is a novel regulator of Hook1-mediated endosomal sorting. γ-Taxilin depletion promoted both CD98-positive tubular formation and CD98 recycling. Conversely, overexpression of γ-taxilin inhibited the CD98-positive tubular formation. Depletion of Hook1, or Rab10 or Rab22a (which are both involved in Hook1-mediated endosomal sorting), attenuated the effect of γ-taxilin depletion on the CD98-positive tubular formation. γ-Taxilin depletion promoted CD147-mediated spreading of HeLa cells, suggesting that γ-taxilin may be a pivotal player in various cellular functions in which Hook1-mediated cargo proteins are involved. γ-Taxilin bound to the C-terminal region of Hook1 and inhibited its interaction with CD98; the latter interaction is necessary for sorting CD98. We suggest that γ-taxilin negatively regulates the sorting of Hook1-mediated cargo proteins into recycling endosomes by interfering with the interactions between Hook1 and the cargo proteins.
Collapse
Affiliation(s)
- Satoru Higashi
- Department of Molecular and Cell Biology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Tochigi 321-0293, Japan
| | - Tomohiko Makiyama
- Department of Molecular and Cell Biology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Tochigi 321-0293, Japan
| | - Hiroshi Sakane
- Department of Molecular and Cell Biology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Tochigi 321-0293, Japan
| | - Satoru Nogami
- Department of Molecular and Cell Biology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Tochigi 321-0293, Japan
| | - Hiromichi Shirataki
- Department of Molecular and Cell Biology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Tochigi 321-0293, Japan
| |
Collapse
|
34
|
Goetze S, Frey K, Rohrer L, Radosavljevic S, Krützfeldt J, Landmesser U, Bueter M, Pedrioli PGA, von Eckardstein A, Wollscheid B. Reproducible Determination of High-Density Lipoprotein Proteotypes. J Proteome Res 2021; 20:4974-4984. [PMID: 34677978 DOI: 10.1021/acs.jproteome.1c00429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
High-density lipoprotein (HDL) is a heterogeneous mixture of blood-circulating multimolecular particles containing many different proteins, lipids, and RNAs. Recent advancements in mass spectrometry-based proteotype analysis show promise for the analysis of proteoforms across large patient cohorts. In order to create the required spectral libraries enabling these data-independent acquisition (DIA) strategies, HDL was isolated from the plasma of more than 300 patients with a multiplicity of physiological HDL states. HDL proteome spectral libraries consisting of 296 protein groups and more than 786 peptidoforms were established, and the performance of the DIA strategy was benchmarked for the detection of HDL proteotype differences between healthy individuals and a cohort of patients suffering from diabetes mellitus type 2 and/or coronary heart disease. Bioinformatic interrogation of the data using the generated spectral libraries showed that the DIA approach enabled robust HDL proteotype determination. HDL peptidoform analysis enabled by using spectral libraries allowed for the identification of post-translational modifications, such as in APOA1, which could affect HDL functionality. From a technical point of view, data analysis further shows that protein and peptide quantities are currently more discriminative between different HDL proteotypes than peptidoforms without further enrichment. Together, DIA-based HDL proteotyping enables the robust digitization of HDL proteotypes as a basis for the analysis of larger clinical cohorts.
Collapse
Affiliation(s)
- Sandra Goetze
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich 8093, Switzerland.,Swiss Multi-Omics Center (SMOC), PHRT-CPAC, ETH Zurich, Zurich 8093, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Kathrin Frey
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich 8093, Switzerland
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich 8091, Switzerland
| | - Silvija Radosavljevic
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich 8091, Switzerland
| | - Jan Krützfeldt
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Zurich 8091, Switzerland
| | - Ulf Landmesser
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin 12203, Germany
| | - Marco Bueter
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich 8091, Switzerland
| | - Patrick G A Pedrioli
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich 8093, Switzerland.,Swiss Multi-Omics Center (SMOC), PHRT-CPAC, ETH Zurich, Zurich 8093, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| | | | - Bernd Wollscheid
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich 8093, Switzerland.,Swiss Multi-Omics Center (SMOC), PHRT-CPAC, ETH Zurich, Zurich 8093, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| |
Collapse
|
35
|
The EMT activator ZEB1 accelerates endosomal trafficking to establish a polarity axis in lung adenocarcinoma cells. Nat Commun 2021; 12:6354. [PMID: 34732702 PMCID: PMC8566461 DOI: 10.1038/s41467-021-26677-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a transcriptionally governed process by which cancer cells establish a front-rear polarity axis that facilitates motility and invasion. Dynamic assembly of focal adhesions and other actin-based cytoskeletal structures on the leading edge of motile cells requires precise spatial and temporal control of protein trafficking. Yet, the way in which EMT-activating transcriptional programs interface with vesicular trafficking networks that effect cell polarity change remains unclear. Here, by utilizing multiple approaches to assess vesicular transport dynamics through endocytic recycling and retrograde trafficking pathways in lung adenocarcinoma cells at distinct positions on the EMT spectrum, we find that the EMT-activating transcription factor ZEB1 accelerates endocytosis and intracellular trafficking of plasma membrane-bound proteins. ZEB1 drives turnover of the MET receptor tyrosine kinase by hastening receptor endocytosis and transport to the lysosomal compartment for degradation. ZEB1 relieves a plus-end-directed microtubule-dependent kinesin motor protein (KIF13A) and a clathrin-associated adaptor protein complex subunit (AP1S2) from microRNA-dependent silencing, thereby accelerating cargo transport through the endocytic recycling and retrograde vesicular pathways, respectively. Depletion of KIF13A or AP1S2 mitigates ZEB1-dependent focal adhesion dynamics, front-rear axis polarization, and cancer cell motility. Thus, ZEB1-dependent transcriptional networks govern vesicular trafficking dynamics to effect cell polarity change. The way in which metastatic tumour cells control endocytic vesicular trafficking networks to establish a front-rear polarity axis that facilitates motility remains unclear. Here, the authors show that the EMT activator ZEB1 influences vesicular trafficking dynamics to execute cell polarity change.
Collapse
|
36
|
Marcelić M, Lučin HM, Begonja AJ, Zagorac GB, Lisnić VJ, Lučin P. Endosomal Phosphatidylinositol-3-Phosphate-Associated Functions Are Dispensable for Establishment of the Cytomegalovirus Pre-Assembly Compartment but Essential for the Virus Growth. Life (Basel) 2021; 11:859. [PMID: 34440603 PMCID: PMC8398575 DOI: 10.3390/life11080859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 01/20/2023] Open
Abstract
Murine cytomegalovirus (MCMV) initiates the stepwise establishment of the pre-assembly compartment (pre-AC) in the early phase of infection by the expansion of the early endosome (EE)/endosomal recycling compartment (ERC) interface and relocation of the Golgi complex. We depleted Vps34-derived phosphatidylinositol-3-phosphate (PI(3)P) at EEs by VPS34-IN1 and inhibited PI(3)P-associated functions by overexpression of 2xFYVE- and p40PX PI(3)P-binding modules to assess the role of PI(3)P-dependent EE domains in the pre-AC biogenesis. We monitored the accumulation of Rab10 and Evectin-2 in the inner pre-AC and the relocation of GM130-positive cis-Golgi organelles to the outer pre-AC by confocal microscopy. Although PI(3)P- and Vps34-positive endosomes build a substantial part of pre-AC, the PI(3)P depletion and the inhibition of PI(3)P-associated functions did not prevent the establishment of infection and progression through the early phase. The PI(3)P depletion in uninfected and MCMV-infected cells rapidly dispersed PI(3)P-bond proteins and reorganized EEs, including ablation of EE-to-ERC transport and relocation of Rab11 endosomes. The PI(3)P depletion one hour before pre-AC initiation and overexpression of 2xFYVE and p40PX domains neither prevented Rab10- and Evectin-2 accumulation, nor Golgi unlinking and relocation. These data demonstrate that PI(3)P-dependent functions, including the Rab11-dependent EE-to-ERC route, are dispensable for pre-AC initiation. Nevertheless, the virus growth was drastically reduced in PI(3)P-depleted cells, indicating that PI(3)P-associated functions are essential for the late phase of infection.
Collapse
Affiliation(s)
- Marina Marcelić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (M.M.); (H.M.L.); (G.B.Z.)
| | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (M.M.); (H.M.L.); (G.B.Z.)
- University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Antonija Jurak Begonja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
| | - Gordana Blagojević Zagorac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (M.M.); (H.M.L.); (G.B.Z.)
- University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (M.M.); (H.M.L.); (G.B.Z.)
- University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
37
|
Deisl C, Hilgemann DW, Syeda R, Fine M. TMEM16F and dynamins control expansive plasma membrane reservoirs. Nat Commun 2021; 12:4990. [PMID: 34404808 PMCID: PMC8371123 DOI: 10.1038/s41467-021-25286-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/29/2021] [Indexed: 11/09/2022] Open
Abstract
Cells can expand their plasma membrane laterally by unfolding membrane undulations and by exocytosis. Here, we describe a third mechanism involving invaginations held shut by the membrane adapter, dynamin. Compartments open when Ca activates the lipid scramblase, TMEM16F, anionic phospholipids escape from the cytoplasmic monolayer in exchange for neutral lipids, and dynamins relax. Deletion of TMEM16F or dynamins blocks expansion, with loss of dynamin expression generating a maximally expanded basal plasma membrane state. Re-expression of dynamin2 or its GTPase-inactivated mutant, but not a lipid binding mutant, regenerates reserve compartments and rescues expansion. Dynamin2-GFP fusion proteins form punctae that rapidly dissipate from these compartments during TMEM16F activation. Newly exposed compartments extend deeply into the cytoplasm, lack numerous organellar markers, and remain closure-competent for many seconds. Without Ca, compartments open slowly when dynamins are sequestered by cytoplasmic dynamin antibodies or when scrambling is mimicked by neutralizing anionic phospholipids and supplementing neutral lipids. Activation of Ca-permeable mechanosensitive channels via cell swelling or channel agonists opens the compartments in parallel with phospholipid scrambling. Thus, dynamins and TMEM16F control large plasma membrane reserves that open in response to lateral membrane stress and Ca influx.
Collapse
Affiliation(s)
- Christine Deisl
- University of Texas Southwestern Medical Center, Department of Physiology, Dallas, TX, USA
| | - Donald W Hilgemann
- University of Texas Southwestern Medical Center, Department of Physiology, Dallas, TX, USA.
| | - Ruhma Syeda
- University of Texas Southwestern Medical Center, Department of Neuroscience, Dallas, TX, USA
| | - Michael Fine
- University of Texas Southwestern Medical Center, Department of Physiology, Dallas, TX, USA.
- University of Texas Southwestern Medical Center, Department of Molecular Genetics, Dallas, TX, USA.
| |
Collapse
|
38
|
Boddy KC, Zhu H, D'Costa VM, Xu C, Beyrakhova K, Cygler M, Grinstein S, Coyaud E, Laurent EMN, St-Germain J, Raught B, Brumell JH. Salmonella effector SopD promotes plasma membrane scission by inhibiting Rab10. Nat Commun 2021; 12:4707. [PMID: 34349110 PMCID: PMC8339009 DOI: 10.1038/s41467-021-24983-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Salmonella utilizes translocated virulence proteins (termed effectors) to promote host cell invasion. The effector SopD contributes to invasion by promoting scission of the plasma membrane, generating Salmonella-containing vacuoles. SopD is expressed in all Salmonella lineages and plays important roles in animal models of infection, but its host cell targets are unknown. Here we show that SopD can bind to and inhibit the small GTPase Rab10, through a C-terminal GTPase activating protein (GAP) domain. During infection, Rab10 and its effectors MICAL-L1 and EHBP1 are recruited to invasion sites. By inhibiting Rab10, SopD promotes removal of Rab10 and recruitment of Dynamin-2 to drive scission of the plasma membrane. Together, our study uncovers an important role for Rab10 in regulating plasma membrane scission and identifies the mechanism used by a bacterial pathogen to manipulate this function during infection.
Collapse
Affiliation(s)
- Kirsten C Boddy
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Hongxian Zhu
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Vanessa M D'Costa
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Caishuang Xu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ksenia Beyrakhova
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sergio Grinstein
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Estelle M N Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada. .,SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
39
|
Wunderley L, Zhang L, Yarwood R, Qin W, Lowe M, Woodman P. Endosomal recycling tubule scission and integrin recycling involve the membrane curvature-supporting protein LITAF. J Cell Sci 2021; 134:jcs258549. [PMID: 34342350 PMCID: PMC8353527 DOI: 10.1242/jcs.258549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022] Open
Abstract
Recycling to the cell surface requires the scission of tubular membrane intermediates emanating from endosomes. Here, we identify the monotopic membrane protein LPS-induced TNF-activating factor (LITAF) and the related protein cell death involved p53 target 1 (CDIP1) as novel membrane curvature proteins that contribute to recycling tubule scission. Recombinant LITAF supports high membrane curvature, shown by its ability to reduce proteoliposome size. The membrane domains of LITAF and CDIP1 partition strongly into ∼50 nm diameter tubules labelled with the recycling markers Pacsin2, ARF6 and SNX1, and the recycling cargoes MHC class I and CD59. Partitioning of LITAF into tubules is impaired by mutations linked to Charcot Marie Tooth disease type 1C. Meanwhile, co-depletion of LITAF and CDIP1 results in the expansion of tubular recycling compartments and stabilised Rab11 tubules, pointing to a function for LITAF and CDIP1 in membrane scission. Consistent with this, co-depletion of LITAF and CDIP1 impairs integrin recycling and cell migration.
Collapse
Affiliation(s)
| | | | | | | | | | - Philip Woodman
- Faculty of Biology Medicine and Health, Manchester Academic and Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
40
|
Sikora R, Bun P, Danglot L, Alqabandi M, Bassereau P, Niedergang F, Galli T, Zahraoui A. MICAL-L1 is required for cargo protein delivery to the cell surface. Biol Open 2021; 10:269021. [PMID: 34100897 PMCID: PMC8214422 DOI: 10.1242/bio.058008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/22/2021] [Indexed: 11/21/2022] Open
Abstract
Secreted proteins are transported along intracellular route from the endoplasmic reticulum through the Golgi before reaching the plasma membrane. Small GTPase Rab and their effectors play a key role in membrane trafficking. Using confocal microscopy, we showed that MICAL-L1 was associated with tubulo-vesicular structures and exhibited a significant colocalization with markers of the Golgi apparatus and recycling endosomes. Super resolution STORM microscopy suggested at the molecular level, a very close association of MICAL-L1 and microdomains in the Golgi cisternae. Using a synchronized secretion assay, we report that the shRNA-mediated depletion of MICAL-L1 impaired the delivery of a subset of cargo proteins to the cell surface. The process of membrane tubulation was monitored in vitro, and we observe that recombinant MICAL-L1-RBD domain may contribute to promote PACSINs-mediated membrane tubulation. Interestingly, two hydrophobic residues at the C-terminus of MICAL-L1 appeared to be important for phosphatidic acid binding, and for association with membrane tubules. Our results reveal a new role for MICAL-L1 in cargo delivery to the plasma membrane. Summary: MICAL-L1, an effector of Rab GTPases, exhibits a significant colocalization with markers of the Golgi apparatus and recycling endosomes. It is involved in cargo delivery to the plasma membrane.
Collapse
Affiliation(s)
- R Sikora
- Université de Paris, Inserm U1016-CNRS UMR 8104, Institut Cochin, Paris, France
| | - P Bun
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging facility, 75014 Paris, France
| | - L Danglot
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging facility, 75014 Paris, France
| | - M Alqabandi
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS, UMR168, 75005, Paris, France
| | - P Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS, UMR168, 75005, Paris, France
| | - F Niedergang
- Université de Paris, Inserm U1016-CNRS UMR 8104, Institut Cochin, Paris, France
| | - T Galli
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, Paris, France.,GHU PARIS psychiatrie & neurosciences, F-75014 Paris, France
| | - A Zahraoui
- Université de Paris, Inserm U1016-CNRS UMR 8104, Institut Cochin, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, Paris, France
| |
Collapse
|
41
|
Kawai K, Nishigaki A, Moriya S, Egami Y, Araki N. Rab10-Positive Tubular Structures Represent a Novel Endocytic Pathway That Diverges From Canonical Macropinocytosis in RAW264 Macrophages. Front Immunol 2021; 12:649600. [PMID: 34135890 PMCID: PMC8203412 DOI: 10.3389/fimmu.2021.649600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Using the optogenetic photo-manipulation of photoactivatable (PA)-Rac1, remarkable cell surface ruffling and the formation of a macropinocytic cup (premacropinosome) could be induced in the region of RAW264 macrophages irradiated with blue light due to the activation of PA-Rac1. However, the completion of macropinosome formation did not occur until Rac1 was deactivated by the removal of the light stimulus. Following PA-Rac1 deactivation, some premacropinosomes closed into intracellular macropinosomes, whereas many others transformed into long Rab10-positive tubules without forming typical macropinosomes. These Rab10-positive tubules moved centripetally towards the perinuclear Golgi region along microtubules. Surprisingly, these Rab10-positive tubules did not contain any endosome/lysosome compartment markers, such as Rab5, Rab7, or LAMP1, suggesting that the Rab10-positive tubules were not part of the degradation pathway for lysosomes. These Rab10-positive tubules were distinct from recycling endosomal compartments, which are labeled with Rab4, Rab11, or SNX1. These findings suggested that these Rab10-positive tubules may be a part of non-degradative endocytic pathway that has never been known. The formation of Rab10-positive tubules from premacropinosomes was also observed in control and phorbol myristate acetate (PMA)-stimulated macrophages, although their frequencies were low. Interestingly, the formation of Rab10-positive premacropinosomes and tubules was not inhibited by phosphoinositide 3-kinase (PI3K) inhibitors, while the classical macropinosome formation requires PI3K activity. Thus, this study provides evidence to support the existence of Rab10-positive tubules as a novel endocytic pathway that diverges from canonical macropinocytosis.
Collapse
Affiliation(s)
- Katsuhisa Kawai
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan
| | - Arata Nishigaki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan
| | - Seiji Moriya
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan
| | - Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan
| |
Collapse
|
42
|
Sakane A, Yano TA, Uchihashi T, Horikawa K, Hara Y, Imoto I, Kurisu S, Yamada H, Takei K, Sasaki T. JRAB/MICAL-L2 undergoes liquid-liquid phase separation to form tubular recycling endosomes. Commun Biol 2021; 4:551. [PMID: 33976349 PMCID: PMC8113518 DOI: 10.1038/s42003-021-02080-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Elongated tubular endosomes play essential roles in diverse cellular functions. Multiple molecules have been implicated in tubulation of recycling endosomes, but the mechanism of endosomal tubule biogenesis has remained unclear. In this study, we found that JRAB/MICAL-L2 induces endosomal tubulation via activated Rab8A. In association with Rab8A, JRAB/MICAL-L2 adopts its closed form, which functions in the tubulation of recycling endosomes. Moreover, JRAB/MICAL-L2 induces liquid–liquid phase separation, initiating the formation of tubular recycling endosomes upon overexpression. Between its N-terminal and C-terminal globular domains, JRAB/MICAL-L2 contains an intrinsically disordered region, which contributes to the formation of JRAB/MICAL-L2 condensates. Based on our findings, we propose that JRAB/MICAL-L2 plays two sequential roles in the biogenesis of tubular recycling endosomes: first, JRAB/MICAL-L2 organizes phase separation, and then the closed form of JRAB/MICAL-L2 formed by interaction with Rab8A promotes endosomal tubulation. Sakane et al. demonstrate that JRAB/MICAL-L2, an effector protein of Rab8 and Rab13, induces endosomal tubulation in HeLa cells depending on its closed conformation caused by an activated Rab8A. JRAB/MICAL-L2 undergoes liquid-liquid phase separation when overexpressed, which precedes its interaction with Rab8A, eventually leading to tubulation.
Collapse
Affiliation(s)
- Ayuko Sakane
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan. .,Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima, Japan.
| | - Taka-Aki Yano
- Department of Post-LED Photonics Research, Institute of Post-LED Photonics, Tokushima, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Nagoya, Japan.,Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Kazuki Horikawa
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, Tokushima, Japan
| | - Yusuke Hara
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, Tokushima, Japan
| | - Issei Imoto
- Division of Molecular Genetics, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cancer Genetics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shusaku Kurisu
- Department of Cell Biology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Hiroshi Yamada
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kohji Takei
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuya Sasaki
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan.
| |
Collapse
|
43
|
Salvany S, Casanovas A, Piedrafita L, Tarabal O, Hernández S, Calderó J, Esquerda JE. Microglial recruitment and mechanisms involved in the disruption of afferent synaptic terminals on spinal cord motor neurons after acute peripheral nerve injury. Glia 2021; 69:1216-1240. [PMID: 33386754 PMCID: PMC7986680 DOI: 10.1002/glia.23959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
Peripheral nerve section with subsequent disconnection of motor neuron (MN) cell bodies from their skeletal muscle targets leads to a rapid reactive response involving the recruitment and activation of microglia. In addition, the loss of afferent synapses on MNs occurs in concomitance with microglial reaction by a process described as synaptic stripping. However, the way in which postaxotomy-activated microglia adjacent to MNs are involved in synaptic removal is less defined. Here, we used confocal and electron microscopy to examine interactions between recruited microglial cells and presynaptic terminals in axotomized MNs between 1 and 15 days after sciatic nerve transection in mice. We did not observe any bulk engulfment of synaptic boutons by microglia. Instead, microglial cells internalized small membranous-vesicular fragments which originated from the acute disruption of synaptic terminals involving the activation of the necroptotic pathway. The presence of abundant extracellular vesicles in the perineuronal space after axotomy, together with the increased expression of phospho-mixed lineage kinase domain-like protein and, later, of extracellular vesicle markers, such as CD9, CD63, and flotillin, indicate that the vesicles mainly originated in synapses and were transferred to microglia. The upregulation of Rab7 and Rab10 in microglia interacting with injured MNs, indicated the activation of endocytosis. As activated microglia and synaptic boutons displayed positive C1q immunoreactivity, a complement-mediated opsonization may also contribute to microglial-mediated synaptic disruption. In addition to the relevance of our data in the context of neuroinflammation and MN disease, they should also be taken into account for understanding functional recovery after peripheral nerve injury.
Collapse
Affiliation(s)
- Sara Salvany
- Patologia Neuromuscular Experimental Departament de Medicina Experimental, Facultat de MedicinaUniversitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida)LleidaCataloniaSpain
| | - Anna Casanovas
- Patologia Neuromuscular Experimental Departament de Medicina Experimental, Facultat de MedicinaUniversitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida)LleidaCataloniaSpain
| | - Lídia Piedrafita
- Patologia Neuromuscular Experimental Departament de Medicina Experimental, Facultat de MedicinaUniversitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida)LleidaCataloniaSpain
| | - Olga Tarabal
- Patologia Neuromuscular Experimental Departament de Medicina Experimental, Facultat de MedicinaUniversitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida)LleidaCataloniaSpain
| | - Sara Hernández
- Patologia Neuromuscular Experimental Departament de Medicina Experimental, Facultat de MedicinaUniversitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida)LleidaCataloniaSpain
| | - Jordi Calderó
- Patologia Neuromuscular Experimental Departament de Medicina Experimental, Facultat de MedicinaUniversitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida)LleidaCataloniaSpain
| | - Josep E. Esquerda
- Patologia Neuromuscular Experimental Departament de Medicina Experimental, Facultat de MedicinaUniversitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida)LleidaCataloniaSpain
| |
Collapse
|
44
|
Clague MJ, Urbé S. Data mining for traffic information. Traffic 2021; 21:162-168. [PMID: 31596015 DOI: 10.1111/tra.12702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/23/2022]
Abstract
Modern cell biology is now rich with data acquired at the whole genome and proteome level. We can add value to this data through integration and application of specialist knowledge. To illustrate, we will focus on the SNARE and RAB proteins; key regulators of intracellular fusion specificity and organelle identity. We examine published mass spectrometry data to gain an estimate of protein copy number and organelle distribution in HeLa cells for each family member. We also survey recent global CRISPR/Cas9 screens for essential genes from these families. We highlight instances of co-essentiality with other genes across a large panel of cell lines that allows for the identification of functionally coherent clusters. Examples of such correlations include RAB10 with the SNARE protein Syntaxin4 (STX4) and RAB7/RAB21 with the WASH and the CCC (COMMD/CCDC22/CCDC93) complexes, both of which are linked to endosomal recycling pathways.
Collapse
Affiliation(s)
- Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Sylvie Urbé
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
45
|
Lucken-Ardjomande Häsler S, Vallis Y, Pasche M, McMahon HT. GRAF2, WDR44, and MICAL1 mediate Rab8/10/11-dependent export of E-cadherin, MMP14, and CFTR ΔF508. J Cell Biol 2021; 219:151714. [PMID: 32344433 PMCID: PMC7199855 DOI: 10.1083/jcb.201811014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
In addition to the classical pathway of secretion, some transmembrane proteins reach the plasma membrane through alternative routes. Several proteins transit through endosomes and are exported in a Rab8-, Rab10-, and/or Rab11-dependent manner. GRAFs are membrane-binding proteins associated with tubules and vesicles. We found extensive colocalization of GRAF1b/2 with Rab8a/b and partial with Rab10. We identified MICAL1 and WDR44 as direct GRAF-binding partners. MICAL1 links GRAF1b/2 to Rab8a/b and Rab10, and WDR44 binds Rab11. Endogenous WDR44 labels a subset of tubular endosomes, which are closely aligned with the ER via binding to VAPA/B. With its BAR domain, GRAF2 can tubulate membranes, and in its absence WDR44 tubules are not observed. We show that GRAF2 and WDR44 are essential for the export of neosynthesized E-cadherin, MMP14, and CFTR ΔF508, three proteins whose exocytosis is sensitive to ER stress. Overexpression of dominant negative mutants of GRAF1/2, WDR44, and MICAL1 also interferes with it, facilitating future studies of Rab8/10/11-dependent exocytic pathways of central importance in biology.
Collapse
Affiliation(s)
| | - Yvonne Vallis
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Mathias Pasche
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Harvey T McMahon
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
46
|
Patel NM, Siva MSA, Kumari R, Shewale DJ, Rai A, Ritt M, Sharma P, Setty SRG, Sivaramakrishnan S, Soppina V. KIF13A motors are regulated by Rab22A to function as weak dimers inside the cell. SCIENCE ADVANCES 2021; 7:7/6/eabd2054. [PMID: 33536208 PMCID: PMC7857691 DOI: 10.1126/sciadv.abd2054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/16/2020] [Indexed: 05/04/2023]
Abstract
Endocytic recycling is a complex itinerary, critical for many cellular processes. Membrane tubulation is a hallmark of recycling endosomes (REs), mediated by KIF13A, a kinesin-3 family motor. Understanding the regulatory mechanism of KIF13A in RE tubulation and cargo recycling is of fundamental importance but is overlooked. Here, we report a unique mechanism of KIF13A dimerization modulated by Rab22A, a small guanosine triphosphatase, during RE tubulation. A conserved proline between neck coil-coiled-coil (NC-CC1) domains of KIF13A creates steric hindrance, rendering the motors as inactive monomers. Rab22A plays an unusual role by binding to NC-CC1 domains of KIF13A, relieving proline-mediated inhibition and facilitating motor dimerization. As a result, KIF13A motors produce balanced motility and force against multiple dyneins in a molecular tug-of-war to regulate RE tubulation and homeostasis. Together, our findings demonstrate that KIF13A motors are tuned at a single-molecule level to function as weak dimers on the cellular cargo.
Collapse
Affiliation(s)
- Nishaben M Patel
- Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | | | - Ruchi Kumari
- Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Dipeshwari J Shewale
- Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Ashim Rai
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Michael Ritt
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Prerna Sharma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Virupakshi Soppina
- Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India.
| |
Collapse
|
47
|
Farmer T, Xie S, Naslavsky N, Stöckli J, James DE, Caplan S. Defining the protein and lipid constituents of tubular recycling endosomes. J Biol Chem 2021; 296:100190. [PMID: 33334886 PMCID: PMC7948492 DOI: 10.1074/jbc.ra120.015992] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
Once internalized, receptors reach the sorting endosome and are either targeted for degradation or recycled to the plasma membrane, a process mediated at least in part by tubular recycling endosomes (TREs). TREs may be efficient for sorting owing to the ratio of large surface membrane area to luminal volume; following receptor segregation, TRE fission likely releases receptor-laden tubules and vesicles for recycling. Despite the importance of TRE networks for recycling, these unique structures remain poorly understood, and unresolved questions relate to their lipid and protein composition and biogenesis. Our previous studies have depicted the endocytic protein MICAL-L1 as an essential TRE constituent, and newer studies show a similar localization for the GTP-binding protein Rab10. We demonstrate that TREs are enriched in both phosphatidic acid (PA) and phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), supporting the idea of MICAL-L1 recruitment by PA and Rab10 recruitment via PI(4,5)P2. Using siRNA knock-down, we demonstrate that Rab10-marked TREs remain prominent in cells upon MICAL-L1 or Syndapin2 depletion. However, depletion of Rab10 or its interaction partner, EHBP1, led to loss of MICAL-L1-marked TREs. We next used phospholipase D inhibitors to decrease PA synthesis, acutely disrupt TREs, and enable monitoring of TRE regeneration after inhibitor washout. Rab10 depletion prevented TRE regeneration, whereas MICAL-L1 knock-down did not. It is surprising that EHBP1 depletion did not affect TRE regeneration under these conditions. Overall, our study supports a primary role for Rab10 and the requirement for PA and PI(4,5)P2 in TRE biogenesis and regeneration, with Rab10 likely linking the sorting endosome to motor proteins and the microtubule network.
Collapse
Affiliation(s)
- Trey Farmer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Shuwei Xie
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jacqueline Stöckli
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
48
|
Brumfield A, Chaudhary N, Molle D, Wen J, Graumann J, McGraw TE. Insulin-promoted mobilization of GLUT4 from a perinuclear storage site requires RAB10. Mol Biol Cell 2021; 32:57-73. [PMID: 33175605 PMCID: PMC8098823 DOI: 10.1091/mbc.e20-06-0356] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/05/2022] Open
Abstract
Insulin controls glucose uptake into muscle and fat cells by inducing a net redistribution of glucose transporter 4 (GLUT4) from intracellular storage to the plasma membrane (PM). The TBC1D4-RAB10 signaling module is required for insulin-stimulated GLUT4 translocation to the PM, although where it intersects GLUT4 traffic was unknown. Here we demonstrate that TBC1D4-RAB10 functions to control GLUT4 mobilization from a trans-Golgi network (TGN) storage compartment, establishing that insulin, in addition to regulating the PM proximal effects of GLUT4-containing vesicles docking to and fusion with the PM, also directly regulates the behavior of GLUT4 deeper within the cell. We also show that GLUT4 is retained in an element/domain of the TGN from which newly synthesized lysosomal proteins are targeted to the late endosomes and the ATP7A copper transporter is translocated to the PM by elevated copper. Insulin does not mobilize ATP7A nor does copper mobilize GLUT4, and RAB10 is not required for copper-elicited ATP7A mobilization. Consequently, GLUT4 intracellular sequestration and mobilization by insulin is achieved, in part, through utilizing a region of the TGN devoted to specialized cargo transport in general rather than being specific for GLUT4. Our results define the GLUT4-containing region of the TGN as a sorting and storage site from which different cargo are mobilized by distinct signals through unique molecular machinery.
Collapse
Affiliation(s)
| | - Natasha Chaudhary
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Dorothee Molle
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Jennifer Wen
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Johannes Graumann
- Weill Cornell Medical College in Qatar, Education City, 24144 Doha, State of Qatar
| | - Timothy E. McGraw
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
49
|
Ohishi Y, Ammann S, Ziaee V, Strege K, Groß M, Amos CV, Shahrooei M, Ashournia P, Razaghian A, Griffiths GM, Ehl S, Fukuda M, Parvaneh N. Griscelli Syndrome Type 2 Sine Albinism: Unraveling Differential RAB27A Effector Engagement. Front Immunol 2020; 11:612977. [PMID: 33362801 PMCID: PMC7758216 DOI: 10.3389/fimmu.2020.612977] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022] Open
Abstract
Griscelli syndrome type 2 (GS-2) is an inborn error of immunity characterized by partial albinism and episodes of hemophagocytic lymphohistiocytosis (HLH). It is caused by RAB27A mutations that encode RAB27A, a member of the Rab GTPase family. RAB27A is expressed in many tissues and regulates vesicular transport and organelle dynamics. Occasionally, GS-2 patients with RAB27A mutation display normal pigmentation. The study of such variants provides the opportunity to map distinct binding sites for tissue-specific effectors on RAB27A. Here we present a new case of GS-2 without albinism (GS-2 sine albinism) caused by a novel missense mutation (Val143Ala) in the RAB27A and characterize its functional cellular consequences. Using pertinent animal cell lines, the Val143Ala mutation impairs both the RAB27A–SLP2-A interaction and RAB27A–MUNC13-4 interaction, but it does not affect the RAB27A–melanophilin (MLPH)/SLAC2-A interaction that is crucial for skin and hair pigmentation. We conclude that disruption of the RAB27A–MUNC13-4 interaction in cytotoxic lymphocytes leads to the HLH predisposition of the GS-2 patient with the Val143Ala mutation. Finally, we include a review of GS-2 sine albinism cases reported in the literature, summarizing their genetic and clinical characteristics.
Collapse
Affiliation(s)
- Yuta Ohishi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Sandra Ammann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Vahid Ziaee
- Department of Pediatrics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Katharina Strege
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Miriam Groß
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Carla Vazquez Amos
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Mohammad Shahrooei
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Parisa Ashournia
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Anahita Razaghian
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Research Center for Immunodeficiencies, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
50
|
Deniston CK, Salogiannis J, Mathea S, Snead DM, Lahiri I, Matyszewski M, Donosa O, Watanabe R, Böhning J, Shiau AK, Knapp S, Villa E, Reck-Peterson SL, Leschziner AE. Structure of LRRK2 in Parkinson's disease and model for microtubule interaction. Nature 2020; 588:344-349. [PMID: 32814344 PMCID: PMC7726071 DOI: 10.1038/s41586-020-2673-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 08/12/2020] [Indexed: 12/22/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is the most commonly mutated gene in familial Parkinson's disease1 and is also linked to its idiopathic form2. LRRK2 has been proposed to function in membrane trafficking3 and colocalizes with microtubules4. Despite the fundamental importance of LRRK2 for understanding and treating Parkinson's disease, structural information on the enzyme is limited. Here we report the structure of the catalytic half of LRRK2, and an atomic model of microtubule-associated LRRK2 built using a reported cryo-electron tomography in situ structure5. We propose that the conformation of the LRRK2 kinase domain regulates its interactions with microtubules, with a closed conformation favouring oligomerization on microtubules. We show that the catalytic half of LRRK2 is sufficient for filament formation and blocks the motility of the microtubule-based motors kinesin 1 and cytoplasmic dynein 1 in vitro. Kinase inhibitors that stabilize an open conformation relieve this interference and reduce the formation of LRRK2 filaments in cells, whereas inhibitors that stabilize a closed conformation do not. Our findings suggest that LRRK2 can act as a roadblock for microtubule-based motors and have implications for the design of therapeutic LRRK2 kinase inhibitors.
Collapse
Affiliation(s)
- C K Deniston
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Genomics Institute of the Novartis Research Foundation, La Jolla, CA, USA
| | - J Salogiannis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - S Mathea
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany
| | - D M Snead
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - I Lahiri
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - M Matyszewski
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - O Donosa
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - R Watanabe
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, CA, USA
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - J Böhning
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, CA, USA
- Sir William Dunn School of Pathology, Oxford University, Oxford, UK
| | - A K Shiau
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA, USA
| | - S Knapp
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany
| | - E Villa
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, CA, USA
| | - S L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA, USA.
| | - A E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|