1
|
Heidler J, Cabrera-Orefice A, Wittig I, Heyne E, Tomczak JN, Petersen B, Henze D, Pohjoismäki JLO, Szibor M. Hyperbaric oxygen treatment reveals spatiotemporal OXPHOS plasticity in the porcine heart. PNAS NEXUS 2024; 3:pgae210. [PMID: 38881840 PMCID: PMC11179111 DOI: 10.1093/pnasnexus/pgae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Cardiomyocytes meet their high ATP demand almost exclusively by oxidative phosphorylation (OXPHOS). Adequate oxygen supply is an essential prerequisite to keep OXPHOS operational. At least two spatially distinct mitochondrial subpopulations facilitate OXPHOS in cardiomyocytes, i.e. subsarcolemmal (SSM) and interfibrillar mitochondria (IFM). Their intracellular localization below the sarcolemma or buried deep between the sarcomeres suggests different oxygen availability. Here, we studied SSM and IFM isolated from piglet hearts and found significantly lower activities of electron transport chain enzymes and F1FO-ATP synthase in IFM, indicative for compromised energy metabolism. To test the contribution of oxygen availability to this outcome, we ventilated piglets under hyperbaric hyperoxic (HBO) conditions for 240 min. HBO treatment raised OXPHOS enzyme activities in IFM to the level of SSM. Complexome profiling analysis revealed that a high proportion of the F1FO-ATP synthase in the IFM was in a disassembled state prior to the HBO treatment. Upon increased oxygen availability, the enzyme was found to be largely assembled, which may account for the observed increase in OXPHOS complex activities. Although HBO also induced transcription of genes involved in mitochondrial biogenesis, a full proteome analysis revealed only minimal alterations, meaning that HBO-mediated tissue remodeling is an unlikely cause for the observed differences in OXPHOS. We conclude that a previously unrecognized oxygen-regulated mechanism endows cardiac OXPHOS with spatiotemporal plasticity that may underlie the enormous metabolic and contractile adaptability of the heart.
Collapse
Affiliation(s)
- Juliana Heidler
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Experimental Vascular Surgery, University Clinic of Vascular Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Alfredo Cabrera-Orefice
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Estelle Heyne
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany
| | - Jan-Niklas Tomczak
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), 31535 Mariensee, Germany
| | - Dirk Henze
- Praxis für Anästhesiologie, Dr. Henze & Partner GbR, 06116 Halle (Saale), Germany
| | - Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Marten Szibor
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
2
|
Szibor M, Mühlon M, Doenst T, Pohjoismäki JLO. Spatial adjustment of bioenergetics, a possible determinant of contractile adaptation and development of contractile failure. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1305960. [PMID: 39086691 PMCID: PMC11285667 DOI: 10.3389/fmmed.2023.1305960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/23/2023] [Indexed: 08/02/2024]
Abstract
Cardiomyocytes depend on mitochondrial oxidative phosphorylation (OXPHOS) for energy metabolism, which is facilitated by the mitochondrial electron transfer system (ETS). In a series of thermogenic redox reactions, electrons are shuttled through the ETS to oxygen as the final electron acceptor. This electron transfer is coupled to proton translocation across the inner mitochondrial membrane, which itself is the main driving force for ATP production. Oxygen availability is thus a prerequisite for ATP production and consequently contractility. Notably, cardiomyocytes are exceptionally large cells and densely packed with contractile structures, which constrains intracellular oxygen distribution. Moreover, oxygen must pass through layers of actively respiring mitochondria to reach the ones located in the innermost contractile compartment. Indeed, uneven oxygen distribution was observed in cardiomyocytes, suggesting that local ATP supply may also vary according to oxygen availability. Here, we discuss how spatial adjustment of bioenergetics to intracellular oxygen fluctuations may underlie cardiac contractile adaptation and how this adaptation may pose a risk for the development of contractile failure.
Collapse
Affiliation(s)
- Marten Szibor
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich-Schiller University of Jena, Jena, Germany
- BioMediTech and Tampere University Hospital, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marie Mühlon
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich-Schiller University of Jena, Jena, Germany
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich-Schiller University of Jena, Jena, Germany
| | - Jaakko L. O. Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
3
|
Vodopivec M, Lah L, Narat M, Curk T. Metabolomic profiling of CHO fed-batch growth phases at 10, 100, and 1,000 L. Biotechnol Bioeng 2019; 116:2720-2729. [PMID: 31184374 DOI: 10.1002/bit.27087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/17/2019] [Accepted: 06/03/2019] [Indexed: 01/08/2023]
Abstract
Established bioprocess monitoring is based on quick and reliable methods, including cell count and viability measurement, extracellular metabolite measurement, and the measurement of physicochemical qualities of the cultivation medium. These methods are sufficient for monitoring of process performance, but rarely give insight into the actual physiological states of the cell culture. However, understanding of the latter is essential for optimization of bioprocess development. Our study used LC-MS metabolomics as a tool for additional resolution of bioprocess monitoring and was designed at three bioreactors scales (10 L, 100 L, and 1,000 L) to gain insight into the basal metabolic states of the Chinese hamster ovary (CHO) cell culture during fed-batch. Metabolites characteristics of the four growth stages (early and late exponential phase, stationary phase, and the phase of decline) were identified by multivariate analysis. Enriched metabolic pathways were then established for each growth phase using the CHO metabolic network model. Biomass generation and nucleotide synthesis were enriched in early exponential phase, followed by increased protein production and imbalanced glutathione metabolism in late exponential phase. Glycolysis became downregulated in stationary phase and amino-acid metabolism increased. Phase of culture decline resulted in rise of oxidized glutathione and fatty acid concentrations. Intracellular metabolic profiles of the CHO fed-batch culture were also shown to be consistent with scale and thus demonstrate metabolomic profiling as an informative method to gain physiological insight into the cell culture states during bioprocess regardless of scale.
Collapse
Affiliation(s)
- Maja Vodopivec
- Bioprocess Development, Technical Development Biologics Mengeš, Novartis Technical Research & Development, Lek Pharmaceuticals d.d, Slovenia
| | - Ljerka Lah
- Bioprocess Development, Technical Development Biologics Mengeš, Novartis Technical Research & Development, Lek Pharmaceuticals d.d, Slovenia
| | - Mojca Narat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaž Curk
- Bioinformatics Laboratory, Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenija
| |
Collapse
|
4
|
Body and organ metabolic rates of a cave fish, Triplophysa rosa: influence of light and ontogenetic variation. J Comp Physiol B 2018; 188:947-955. [PMID: 30094506 DOI: 10.1007/s00360-018-1178-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/07/2018] [Accepted: 08/05/2018] [Indexed: 10/28/2022]
Abstract
Triplophysa rosa is a typical species of cave-dwelling fish distributed throughout Wulong County, Chongqing, China. This study aimed to test whether T. rosa has a low metabolic level as a cave species and how the metabolic rate of this fish responds to light stimulation. The whole body and organ (including brain, heart, and liver) oxygen consumption rates ([Formula: see text]) and several blood parameters related to oxygen carrying were compared between T. rosa acclimated in constant dark and those in regular photoperiod conditions. No significant changes in any variables were observed between the regular photoperiod fish and the dark fish, suggesting that the metabolic consumption of T. rosa is not light sensitive, which may be attributed to the highly degraded eyes of this cave species. The average mass-specific resting [Formula: see text] of T. rosa was 38.3 mgO2 kg- 1 h- 1 and was lower than many other fish species. One possible explanation for the low metabolic level of T. rosa can be due to its highly degraded eyes and small brain size. Whole-organ [Formula: see text] of the brain, heart, and liver were on average responsible for 8.18%, 3.55%, and 8.61% of the body resting [Formula: see text], respectively. Both heart mass and liver mass increased with increasing body mass; however, brain mass did not correlate with body mass. Maintaining a small brain size throughout ontogeny suggests energy-saving advantages for this cave species.
Collapse
|
5
|
Microcirculation-mediated preconditioning and intracellular hypothermia. Med Hypotheses 2018; 115:8-12. [PMID: 29685204 DOI: 10.1016/j.mehy.2018.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/19/2018] [Indexed: 01/08/2023]
Abstract
Microcirculation is a network of perfused capillaries that connects macrocirculation with the cells. Although research has provided insight into microcirculatory blood flow, our knowledge remains limited. In this article, we propose a new role of microcirculation in physiological and shock states. In healthy individuals, microcirculation maintains cellular homeostasis via preconditioning. When blood volume decreases, the ensuing microcirculatory changes result in heterogeneity of perfusion and tissue oxygenation. Initially, this is partly compensated by the preserved autoregulation and the increase in the metabolism rate of cells, but at later stages, the loss of autoregulation activates the cascade of intracellular hypothermia.
Collapse
|
6
|
50 years of comparative biochemistry: The legacy of Peter Hochachka. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:1-11. [PMID: 29501788 DOI: 10.1016/j.cbpb.2018.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/29/2022]
Abstract
Peter Hochachka was an early pioneer in the field of comparative biochemistry. He passed away in 2002 after 4 decades of research in the discipline. To celebrate his contributions and to coincide with what would have been his 80th birthday, a group of his former students organized a symposium that ran as a satellite to the 2017 Canadian Society of Zoologists annual meeting in Winnipeg, Manitoba (Canada). This Special Issue of CBP brings together manuscripts from symposium attendees and other authors who recognize the role Peter played in the evolution of the discipline. In this article, the symposium organizers and guest editors look back on his career, celebrating his many contributions to research, acknowledging his role in training of generations of graduate students and post-doctoral fellows in comparative biochemistry and physiology.
Collapse
|
7
|
Scavuzzo CJ, Moulton CJ, Larsen RJ. The use of magnetic resonance spectroscopy for assessing the effect of diet on cognition. Nutr Neurosci 2016; 21:1-15. [DOI: 10.1080/1028415x.2016.1218191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Claire J. Scavuzzo
- Neuroscience Program, University of Illinois at Urbana-Champaign, USA
- Department of Psychology, University of Alberta, Edmonton, Canada
| | | | - Ryan J. Larsen
- Biomedical Imaging Center, Beckman Institute, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
8
|
Bain AR, Nybo L, Ainslie PN. Cerebral Vascular Control and Metabolism in Heat Stress. Compr Physiol 2016; 5:1345-80. [PMID: 26140721 DOI: 10.1002/cphy.c140066] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review provides an in-depth update on the impact of heat stress on cerebrovascular functioning. The regulation of cerebral temperature, blood flow, and metabolism are discussed. We further provide an overview of vascular permeability, the neurocognitive changes, and the key clinical implications and pathologies known to confound cerebral functioning during hyperthermia. A reduction in cerebral blood flow (CBF), derived primarily from a respiratory-induced alkalosis, underscores the cerebrovascular changes to hyperthermia. Arterial pressures may also become compromised because of reduced peripheral resistance secondary to skin vasodilatation. Therefore, when hyperthermia is combined with conditions that increase cardiovascular strain, for example, orthostasis or dehydration, the inability to preserve cerebral perfusion pressure further reduces CBF. A reduced cerebral perfusion pressure is in turn the primary mechanism for impaired tolerance to orthostatic challenges. Any reduction in CBF attenuates the brain's convective heat loss, while the hyperthermic-induced increase in metabolic rate increases the cerebral heat gain. This paradoxical uncoupling of CBF to metabolism increases brain temperature, and potentiates a condition whereby cerebral oxygenation may be compromised. With levels of experimentally viable passive hyperthermia (up to 39.5-40.0 °C core temperature), the associated reduction in CBF (∼ 30%) and increase in cerebral metabolic demand (∼ 10%) is likely compensated by increases in cerebral oxygen extraction. However, severe increases in whole-body and brain temperature may increase blood-brain barrier permeability, potentially leading to cerebral vasogenic edema. The cerebrovascular challenges associated with hyperthermia are of paramount importance for populations with compromised thermoregulatory control--for example, spinal cord injury, elderly, and those with preexisting cardiovascular diseases.
Collapse
Affiliation(s)
- Anthony R Bain
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna, Canada
| | - Lars Nybo
- Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philip N Ainslie
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna, Canada
| |
Collapse
|
9
|
Dennis A, Thomas AG, Rawlings NB, Near J, Nichols TE, Clare S, Johansen-Berg H, Stagg CJ. An Ultra-High Field Magnetic Resonance Spectroscopy Study of Post Exercise Lactate, Glutamate and Glutamine Change in the Human Brain. Front Physiol 2015; 6:351. [PMID: 26732236 PMCID: PMC4681779 DOI: 10.3389/fphys.2015.00351] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/09/2015] [Indexed: 12/01/2022] Open
Abstract
During strenuous exercise there is a progressive increase in lactate uptake and metabolism into the brain as workload and plasma lactate levels increase. Although it is now widely accepted that the brain can metabolize lactate, few studies have directly measured brain lactate following vigorous exercise. Here, we used ultra-high field magnetic resonance spectroscopy of the brain to obtain static measures of brain lactate, as well as brain glutamate and glutamine after vigorous exercise. The aims of our experiment were to (a) track the changes in brain lactate following recovery from exercise, and (b) to simultaneously measure the signals from brain glutamate and glutamine. The results of our experiment showed that vigorous exercise resulted in a significant increase in brain lactate. Furthermore, both glutamate and glutamine were successfully resolved, and as expected, although contrary to some previous reports, we did not observe any significant change in either amino acid after exercise. We did however observe a negative correlation between glutamate and a measure of fitness. These results support the hypothesis that peripherally derived lactate is taken up by the brain when available. Our data additionally highlight the potential of ultra-high field MRS as a non-invasive way of measuring multiple brain metabolite changes with exercise.
Collapse
Affiliation(s)
- Andrea Dennis
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford Oxford, UK
| | - Adam G Thomas
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of OxfordOxford, UK; Section on Functional Imaging Methods, National Institute of Mental Health, National Institutes of Health, Department of Health and Human ServicesBethesda, MD, USA
| | - Nancy B Rawlings
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford Oxford, UK
| | - Jamie Near
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of OxfordOxford, UK; Douglas Mental Health University Institute and Department of Psychiatry, McGill UniversityMontreal, QC, Canada
| | - Thomas E Nichols
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of OxfordOxford, UK; Department of Statistics and Warwick Manufacturing Group, University of WarwickCoventry, UK
| | - Stuart Clare
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford Oxford, UK
| | - Heidi Johansen-Berg
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford Oxford, UK
| | - Charlotte J Stagg
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of OxfordOxford, UK; Physiological Neuroimaging Group, Oxford Centre for Human Brain Activity (OHBA), University of OxfordOxford, UK
| |
Collapse
|
10
|
Dietary carbohydrate and control of hepatic gene expression: mechanistic links from ATP and phosphate ester homeostasis to the carbohydrate-response element-binding protein. Proc Nutr Soc 2015; 75:10-18. [PMID: 26264689 DOI: 10.1017/s0029665115002451] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes and non-alcoholic fatty liver disease (NAFLD) are associated with elevated hepatic glucose production and fatty acid synthesis (de novo lipogenesis (DNL)). High carbohydrate diets also increase hepatic glucose production and lipogenesis. The carbohydrate-response element-binding protein (ChREBP, encoded by MLXIPL) is a transcription factor with a major role in the hepatic response to excess dietary carbohydrate. Because its target genes include pyruvate kinase (PKLR) and enzymes of lipogenesis, it is regarded as a key regulator for conversion of dietary carbohydrate to lipid for energy storage. An alternative hypothesis for ChREBP function is to maintain hepatic ATP homeostasis by restraining the elevation of phosphate ester intermediates in response to elevated glucose. This is supported by the following evidence: (i) A key stimulus for ChREBP activation and induction of its target genes is elevation of phosphate esters; (ii) target genes of ChREBP include key negative regulators of the hexose phosphate ester pool (GCKR, G6PC, SLC37A4) and triose phosphate pool (PKLR); (iii) ChREBP knock-down models have elevated hepatic hexose phosphates and triose phosphates and compromised ATP phosphorylation potential; (iv) gene defects in G6PC and SLC37A4 and common variants of MLXIPL, GCKR and PKLR in man are associated with elevated hepatic uric acid production (a marker of ATP depletion) or raised plasma uric acid levels. It is proposed that compromised hepatic phosphate homeostasis is a contributing factor to the elevated hepatic glucose production and lipogenesis that associate with type 2 diabetes, NAFLD and excess carbohydrate in the diet.
Collapse
|
11
|
Rapaport E, Salikhova A, Abraham EH. Continuous intravenous infusion of ATP in humans yields large expansions of erythrocyte ATP pools but extracellular ATP pools are elevated only at the start followed by rapid declines. Purinergic Signal 2015; 11:251-62. [PMID: 25917594 DOI: 10.1007/s11302-015-9450-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/15/2015] [Indexed: 01/18/2023] Open
Abstract
The pharmacokinetics of adenosine 5'-triphosphate (ATP) was investigated in a clinical trial that included 15 patients with advanced malignancies (solid tumors). ATP was administered by continuous intravenous infusions of 8 h once weekly for 8 weeks. Three values of blood ATP levels were determined. These were total blood (erythrocyte) and blood plasma (extracellular) ATP pools along with the initial rate of release of ATP into the blood plasma. We found that values related to erythrocyte ATP pools showed great variability (diversity) among individuals (standard deviation of about 30-40% of mean at baseline). It was discovered that erythrocyte baseline ATP pool sizes are unique to each individual and that they fall within a narrow range in each individual. At the end of an 8 h continuous intravenous infusion of ATP, intracellular erythrocyte ATP pools were increased in the range of 40-60% and extracellular ATP declined from elevated levels achieved at the beginning and middle of the infusion, to baseline levels. The ability of erythrocytes to sequester exogenously administered ATP to this degree, after its initial conversion to adenosine in the blood plasma is unexpected, considering that some of the adenosine is likely to have been degraded by in vivo catabolic activities or taken up by organs. The data suggest that administration of ATP by short-term intravenous infusions, of up to 4 h, may be a favorable way for elevating extracellular ATP pools. A large fraction of the total exogenously administered ATP is sequestered into the intracellular compartments of the erythrocytes after an 8 h intravenous infusion. Erythrocytes loaded with ATP are known to release their ATP pools by the application of previously established agents or conditions applied locally or globally to circulating erythrocytes. Rapid degradation of intravenously administered ATP to adenosine and subsequent accumulation of ATP inside erythrocytes indicate the existence of very effective mechanisms for uptake of adenosine from blood plasma. These in vivo studies offer an understanding as to how both adenosine and ATP can act as purinergic transmission signals. ATP levels in blood are always accompanied by adenosine formed by catabolism of ATP. The continuous uptake of adenosine enables both to act in transmission of sometimes opposite functions.
Collapse
|
12
|
Garland MA, Stillman JH, Tomanek L. The proteomic response of cheliped myofibril tissue in the eurythermal porcelain crab Petrolisthes cinctipes to heat shock following acclimation to daily temperature fluctuations. J Exp Biol 2015; 218:388-403. [DOI: 10.1242/jeb.112250] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The porcelain crab Petrolisthes cinctipes lives under rocks and in mussel beds in the mid-intertidal zone where it experiences immersion during high tide and saturating humid conditions in air during low tide, which can increase habitat temperature by up to 20°C. To identify the biochemical changes affected by increasing temperature fluctuations and subsequent heat shock, we acclimated P. cinctipes for 30 days to one of three temperature regimes: (1) constant 10°C, (2) daily temperature fluctuations between 10 and 20°C (5 h up-ramp to 20°C, 1 h down-ramp to 10°C) and (3) 10–30°C (up-ramp to 30°C). After acclimation, animals were exposed to either 10°C or a 30°C heat shock to analyze the proteomic changes in claw muscle tissue. Following acclimation to 10–30°C (measured at 10°C), enolase and ATP synthase increased in abundance. Following heat shock, isoforms of arginine kinase and glycolytic enzymes such as aldolase, triose phosphate isomerase and glyceraldehyde 3-phosphate dehydrogenase increased across all acclimation regimes. Full-length isoforms of hemocyanin increased abundance following acclimation to 10–30°C, but hemocyanin fragments increased after heat shock following constant 10°C and fluctuating 10–20°C, possibly playing a role as antimicrobial peptides. Following constant 10°C and fluctuating 10–20°C, paramyosin and myosin heavy chain type-B increased in abundance, respectively, whereas myosin light and heavy chain decreased with heat shock. Actin-binding proteins, which stabilize actin filaments (filamin and tropomyosin), increased during heat shock following 10–30°C; however, actin severing and depolymerization proteins (gelsolin and cofilin) increased during heat shock following 10–20°C, possibly promoting muscle fiber restructuring. RAF kinase inhibitor protein and prostaglandin reductase increased during heat shock following constant 10°C and fluctuating 10–20°C, possibly inhibiting an immune response during heat shock. The results suggest that ATP supply, muscle fiber restructuring and immune responses are all affected by temperature fluctuations and subsequent acute heat shock in muscle tissue. Furthermore, although heat shock after acclimation to constant 10°C and fluctuating 10–30°C showed the greatest effects on the proteome, moderately fluctuating temperatures (10–20°C) broadened the temperature range over which claw muscle was able to respond to an acute heat shock with limited changes in the muscle proteome.
Collapse
Affiliation(s)
- Michael A. Garland
- California Polytechnic State University, Department of Biological Sciences, Center for Coastal Marine Studies, Environmental Proteomics Laboratory, 1 Grand Avenue, San Luis Obispo, CA 93407-0401, USA
| | - Jonathon H. Stillman
- Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3152 Paradise Drive, Tiburon, CA 94920-1205, USA
| | - Lars Tomanek
- California Polytechnic State University, Department of Biological Sciences, Center for Coastal Marine Studies, Environmental Proteomics Laboratory, 1 Grand Avenue, San Luis Obispo, CA 93407-0401, USA
| |
Collapse
|
13
|
Combustion, respiration and intermittent exercise: a theoretical perspective on oxygen uptake and energy expenditure. BIOLOGY 2014; 3:255-63. [PMID: 24833508 PMCID: PMC4085606 DOI: 10.3390/biology3020255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/02/2014] [Accepted: 03/05/2014] [Indexed: 11/23/2022]
Abstract
While no doubt thought about for thousands of years, it was Antoine Lavoisier in the late 18th century who is largely credited with the first “modern” investigations of biological energy exchanges. From Lavoisier’s work with combustion and respiration a scientific trend emerges that extends to the present day: the world gains a credible working hypothesis but validity goes missing, often for some time, until later confirmed using proper measures. This theme is applied to glucose/glycogen metabolism where energy exchanges are depicted as conversion from one form to another and, transfer from one place to another made by both the anaerobic and aerobic biochemical pathways within working skeletal muscle, and the hypothetical quantification of these components as part of an oxygen (O2) uptake measurement. The anaerobic and aerobic energy exchange components of metabolism are represented by two different interpretations of O2 uptake: one that contains a glycolytic component (1 L O2 = 21.1 kJ) and one that does not (1 L O2 = 19.6 kJ). When energy exchange transfer and oxygen-related expenditures are applied separately to exercise and recovery periods, an increased energy cost for intermittent as compared to continuous exercise is hypothesized to be a direct result.
Collapse
|
14
|
Ferguson DM, Gerrard DE. Regulation of post-mortem glycolysis in ruminant muscle. ANIMAL PRODUCTION SCIENCE 2014. [DOI: 10.1071/an13088] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As a tissue, muscle has the unique ability to switch its metabolic source of ATP, the energy currency underpinning muscle function. During oxygen debt, such as that occurring immediately following the death of animals, anaerobic metabolism is initiated in an attempt to restore homeostasis within the muscle. The cascade of biochemical events that are initiated is paramount in the context of meat quality. This review revisits this reasonably well-known subject but takes a new perspective by drawing on the understanding outside the traditional discipline of meat science. Our understanding of the intrinsic regulators of glycolytic flux has improved but knowledge gaps remain. Further efforts to understand how the glycolytic enzyme kinetics are influenced by both pre- and post-slaughter factors will be beneficial in the ongoing quest to maximise fresh meat quality.
Collapse
|
15
|
Marden JH. Nature's inordinate fondness for metabolic enzymes: why metabolic enzyme loci are so frequently targets of selection. Mol Ecol 2013; 22:5743-64. [PMID: 24106889 DOI: 10.1111/mec.12534] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 01/01/2023]
Abstract
Metabolic enzyme loci were some of the first genes accessible for molecular evolution and ecology research. New technologies now make the whole genome, transcriptome or proteome readily accessible, allowing unbiased scans for loci exhibiting significant differences in allele frequency or expression level and associated with phenotypes and/or responses to natural selection. With surprising frequency and in many cases in proportions greater than chance relative to other genes, glycolysis and TCA cycle enzyme loci appear among the genes with significant associations in these studies. Hence, there is an ongoing need to understand the basis for fitness effects of metabolic enzyme polymorphisms. Allele-specific effects on the binding affinity and catalytic rate of individual enzymes are well known, but often of uncertain significance because metabolic control theory and in vivo studies indicate that many individual metabolic enzymes do not affect pathway flux rate. I review research, so far little used in evolutionary biology, showing that metabolic enzyme substrates affect signalling pathways that regulate cell and organismal biology, and that these enzymes have moonlighting functions. To date there is little knowledge of how alleles in natural populations affect these phenotypes. I discuss an example in which alleles of a TCA enzyme locus associate with differences in a signalling pathway and development, organismal performance, and ecological dynamics. Ultimately, understanding how metabolic enzyme polymorphisms map to phenotypes and fitness remains a compelling and ongoing need for gaining robust knowledge of ecological and evolutionary processes.
Collapse
Affiliation(s)
- James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
16
|
Yang JM, Yang H, Lin L. Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. ACS NANO 2011; 5:5067-71. [PMID: 21574616 DOI: 10.1021/nn201142f] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The local temperature response inside single living cells upon external chemical and physical stimuli was characterized using quantum dots as nano thermometers. The photoluminescence spectral shifts from endocytosed quantum dots were used to map intracellular heat generation in NIH/3T3 cells following Ca(2+) stress and cold shock. The direct observation of inhomogeneous intracellular temperature progression raises interesting new possibilities, including further innovations in nanomaterials for sensing local responses, as well as the concept of subcellular temperature gradient for signaling and regulation in cells.
Collapse
Affiliation(s)
- Jui-Ming Yang
- Berkeley Sensor and Actuator Center, Department of Mechanical Engineering, University of California at Berkeley, Berkeley California 94720, United States
| | | | | |
Collapse
|
17
|
Abstract
Lactate production in skeletal muscle has now been studied for nearly two centuries and still its production and functional role at rest and during exercise is much debated. In the early days skeletal muscle was mainly seen as the site of lactate production during contraction and lactate production associated with a lack of muscle oxygenation and fatigue. Later it was recognized that skeletal muscle not only played an important role in lactate production but also in lactate clearance and this led to a renewed interest, not the least from the Copenhagen School in the 1930s, in the metabolic role of lactate in skeletal muscle. With the introduction of lactate isotopes muscle lactate kinetics and oxidation could be studied and a simultaneous lactate uptake and release was observed, not only in muscle but also in other tissues. Therefore, this review will discuss in vivo human: (1) skeletal muscle lactate metabolism at rest and during exercise and suggestions are put forward to explain the simultaneous lactate uptake and release; and (2) lactate metabolism in the heart, liver, kidneys, brain, adipose tissue and lungs will be discussed and its potential importance in these tissues.
Collapse
Affiliation(s)
- Gerrit van Hall
- Metabolic Mass-Spectrometry Facility, Rigshospitalet and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Abstract
In addition to their role in providing myelin for rapid impulse propagation, the glia that ensheath long axons are required for the maintenance of normal axon transport and long-term survival. This presumably ancestral function seems to be independent of myelin membrane wrapping. Here, I propose that ensheathing glia provide trophic support to axons that are metabolically isolated, and that myelin itself might cause such isolation. This glial support of axonal integrity may be relevant for a number of neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Klaus-Armin Nave is at the Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Herrmann-Rein-Strasse 3, D-37075 Goettingen, Germany.
| |
Collapse
|
19
|
Forgan LG, Forster ME. Oxygen-dependence of metabolic rate in the muscles of craniates. J Comp Physiol B 2010; 180:715-29. [DOI: 10.1007/s00360-010-0455-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/04/2010] [Accepted: 02/07/2010] [Indexed: 10/19/2022]
|
20
|
de Groof AJC, te Lindert MM, van Dommelen MMT, Wu M, Willemse M, Smift AL, Winer M, Oerlemans F, Pluk H, Fransen JAM, Wieringa B. Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype. Mol Cancer 2009; 8:54. [PMID: 19646236 PMCID: PMC2734543 DOI: 10.1186/1476-4598-8-54] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 07/31/2009] [Indexed: 12/11/2022] Open
Abstract
Background The Warburg phenotype in cancer cells has been long recognized, but there is still limited insight in the consecutive metabolic alterations that characterize its establishment. We obtained better understanding of the coupling between metabolism and malignant transformation by studying mouse embryonic fibroblast-derived cells with loss-of-senescence or H-RasV12/E1A-transformed phenotypes at different stages of oncogenic progression. Results Spontaneous immortalization or induction of senescence-bypass had only marginal effects on metabolic profiles and viability. In contrast, H-RasV12/E1A transformation initially caused a steep increase in oxygen consumption and superoxide production, accompanied by massive cell death. During prolonged culture in vitro, cell growth rate increased gradually, along with tumor forming potential in in vitro anchorage-independent growth assays and in vivo tumor formation assays in immuno-deficient mice. Notably, glucose-to-lactic acid flux increased with passage number, while cellular oxygen consumption decreased. This conversion in metabolic properties was associated with a change in mitochondrial NAD+/NADH redox, indicative of decreased mitochondrial tricarboxic acid cycle and OXPHOS activity. Conclusion The high rate of oxidative metabolism in newly transformed cells is in marked contrast with the high glycolytic rate in cells in the later tumor stage. In our experimental system, with cells growing under ambient oxygen conditions in nutrient-rich media, the shift towards this Warburg phenotype occurred as a step-wise adaptation process associated with augmented tumorigenic capacity and improved survival characteristics of the transformed cells. We hypothesize that early-transformed cells, which potentially serve as founders for new tumor masses may escape therapies aimed at metabolic inhibition of tumors with a fully developed Warburg phenotype.
Collapse
Affiliation(s)
- Ad J C de Groof
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Lactate is a potential energy source for the brain. The aim of this study was to establish whether systemic lactate is a brain energy source. We measured in vivo cerebral lactate kinetics and oxidation rates in 6 healthy individuals at rest with and without 90 mins of intravenous lactate infusion (36 mumol per kg bw per min), and during 30 mins of cycling exercise at 75% of maximal oxygen uptake while the lactate infusion continued to establish arterial lactate concentrations of 0.89+/-0.08, 3.9+/-0.3, and 6.9+/-1.3 mmol/L, respectively. At rest, cerebral lactate utilization changed from a net lactate release of 0.06+/-0.01 to an uptake of 0.16+/-0.07 mmol/min during lactate infusion, with a concomitant decrease in the net glucose uptake. During exercise, the net cerebral lactate uptake was further increased to 0.28+/-0.16 mmol/min. Most (13)C-label from cerebral [1-(13)C]lactate uptake was released as (13)CO(2) with 100%+/-24%, 86%+/-15%, and 87%+/-30% at rest with and without lactate infusion and during exercise, respectively. The contribution of systemic lactate to cerebral energy expenditure was 8%+/-2%, 19%+/-4%, and 27%+/-4% for the respective conditions. In conclusion, systemic lactate is taken up and oxidized by the human brain and is an important substrate for the brain both under basal and hyperlactatemic conditions.
Collapse
|
22
|
Mangia S, Giove F, Tkác I, Logothetis NK, Henry PG, Olman CA, Maraviglia B, Di Salle F, Uğurbil K. Metabolic and hemodynamic events after changes in neuronal activity: current hypotheses, theoretical predictions and in vivo NMR experimental findings. J Cereb Blood Flow Metab 2009; 29:441-63. [PMID: 19002199 PMCID: PMC2743443 DOI: 10.1038/jcbfm.2008.134] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unraveling the energy metabolism and the hemodynamic outcomes of excitatory and inhibitory neuronal activity is critical not only for our basic understanding of overall brain function, but also for the understanding of many brain disorders. Methodologies of magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are powerful tools for the noninvasive investigation of brain metabolism and physiology. However, the temporal and spatial resolution of in vivo MRS and MRI is not suitable to provide direct evidence for hypotheses that involve metabolic compartmentalization between different cell types, or to untangle the complex neuronal microcircuitry, which results in changes of electrical activity. This review aims at describing how the current models of brain metabolism, mainly built on the basis of in vitro evidence, relate to experimental findings recently obtained in vivo by (1)H MRS, (13)C MRS, and MRI. The hypotheses related to the role of different metabolic substrates, the metabolic neuron-glia interactions, along with the available theoretical predictions of the energy budget of neurotransmission will be discussed. In addition, the cellular and network mechanisms that characterize different types of increased and suppressed neuronal activity will be considered within the sensitivity-constraints of MRS and MRI.
Collapse
Affiliation(s)
- Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
van Hall G, Lundby C, Araoz M, Calbet JAL, Sander M, Saltin B. The lactate paradox revisited in lowlanders during acclimatization to 4100 m and in high-altitude natives. J Physiol 2009; 587:1117-29. [PMID: 19139048 PMCID: PMC2673779 DOI: 10.1113/jphysiol.2008.160846] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 01/06/2009] [Indexed: 11/08/2022] Open
Abstract
Chronic hypoxia has been proposed to induce a closer coupling in human skeletal muscle between ATP utilization and production in both lowlanders (LN) acclimatizing to high altitude and high-altitude natives (HAN), linked with an improved match between pyruvate availability and its use in mitochondrial respiration. This should result in less lactate being formed during exercise in spite of the hypoxaemia. To test this hypothesis six LN (22-31 years old) were studied during 15 min warm up followed by an incremental bicycle exercise to exhaustion at sea level, during acute hypoxia and after 2 and 8 weeks at 4100 m above sea level (El Alto, Bolivia). In addition, eight HAN (26-37 years old) were studied with a similar exercise protocol at altitude. The leg net lactate release, and the arterial and muscle lactate concentrations were elevated during the exercise in LN in acute hypoxia and remained at this higher level during the acclimatization period. HAN had similar high values; however, at the moment of exhaustion their muscle lactate, ADP and IMP content and Cr/PCr ratio were higher than in LN. In conclusion, sea-level residents in the course of acclimatization to high altitude did not exhibit a reduced capacity for the active muscle to produce lactate. Thus, the lactate paradox concept could not be demonstrated. High-altitude natives from the Andes actually exhibit a higher anaerobic energy production than lowlanders after 8 weeks of acclimatization reflected by an increased muscle lactate accumulation and enhanced adenine nucleotide breakdown.
Collapse
Affiliation(s)
- G van Hall
- The Copenhagen Muscle Research Centre, Rigshospitalet section 7652, 9 Blegdamsvej, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | | | | | |
Collapse
|
24
|
Coquin L, Feala JD, McCulloch AD, Paternostro G. Metabolomic and flux-balance analysis of age-related decline of hypoxia tolerance in Drosophila muscle tissue. Mol Syst Biol 2008; 4:233. [PMID: 19096360 PMCID: PMC2615305 DOI: 10.1038/msb.2008.71] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 11/04/2008] [Indexed: 11/09/2022] Open
Abstract
The fruitfly Drosophila melanogaster is increasingly used as a model organism for studying acute hypoxia tolerance and for studying aging, but the interactions between these two factors are not well known. Here we show that hypoxia tolerance degrades with age in post-hypoxic recovery of whole-body movement, heart rate and ATP content. We previously used (1)H NMR metabolomics and a constraint-based model of ATP-generating metabolism to discover the end products of hypoxic metabolism in flies and generate hypotheses for the biological mechanisms. We expand the reactions in the model using tissue- and age-specific microarray data from the literature, and then examine metabolomic profiles of thoraxes after 4 h at 0.5% O(2) and after 5 min of recovery in 40- versus 3-day-old flies. Model simulations were constrained to fluxes calculated from these data. Simulations suggest that the decreased ATP production during reoxygenation seen in aging flies can be attributed to reduced recovery of mitochondrial respiration pathways and concomitant overdependence on the acetate production pathway as an energy source.
Collapse
|
25
|
Forgan LG, Forster ME. Oxygen consumption and blood flow distribution in perfused skeletal muscle of chinook salmon. J Comp Physiol B 2008; 179:359-68. [DOI: 10.1007/s00360-008-0320-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 11/13/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
|
26
|
Functions and effects of creatine in the central nervous system. Brain Res Bull 2008; 76:329-43. [DOI: 10.1016/j.brainresbull.2008.02.035] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 02/15/2008] [Accepted: 02/25/2008] [Indexed: 12/12/2022]
|
27
|
Riera JJ, Schousboe A, Waagepetersen HS, Howarth C, Hyder F. The micro-architecture of the cerebral cortex: functional neuroimaging models and metabolism. Neuroimage 2008; 40:1436-59. [PMID: 18343162 PMCID: PMC4348032 DOI: 10.1016/j.neuroimage.2007.12.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 01/22/2023] Open
Abstract
In order to interpret/integrate data obtained with different functional neuroimaging modalities (e.g. fMRI, EEG/MEG, PET/SPECT, fNIRS), forward-generative models of a diversity of brain mechanisms at the mesoscopic level are considered necessary. For the cerebral cortex, the brain structure with possibly the most relevance for functional neuroimaging, a variety of such biophysical models has been proposed over the last decade. The development of technological tools to investigate in vitro the physiological, anatomical and biochemical principles at the microscopic scale in comparative studies formed the basis for such theoretical progresses. However, with the most recent introduction of systems to record electrical (e.g. miniaturized probes chronically/acutely implantable in the brain), optical (e.g. two-photon laser scanning microscopy) and atomic nuclear spectral (e.g. nuclear magnetic resonance spectroscopy) signals using living laboratory animals, the field is receiving even greater attention. Major advances have been achieved by combining such sophisticated recording systems with new experimental strategies (e.g. transgenic/knock-out animals, high resolution stereotaxic manipulation systems for probe-guidance and cellular-scale chemical-delivery). Theoreticians may now be encouraged to re-consider previously formulated mesoscopic level models in order to incorporate important findings recently made at the microscopic scale. In this series of reviews, we summarize the background at the microscopic scale, which we suggest will constitute the foundations for upcoming representations at the mesoscopic level. In this first part, we focus our attention on the nerve ending particles in order to summarize basic principles and mechanisms underlying cellular metabolism in the cerebral cortex. It will be followed by two parts highlighting major features in its organization/working-principles to regulate both cerebral blood circulation and neuronal activity, respectively. Contemporary theoretical models for functional neuroimaging will be revised in the fourth part, with particular emphasis in their applications, advantages/limitations and future prospects.
Collapse
Affiliation(s)
- Jorge J Riera
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | | | | | | | | |
Collapse
|
28
|
Barja G. Mitochondrial oxygen consumption and reactive oxygen species production are independently modulated: implications for aging studies. Rejuvenation Res 2007; 10:215-24. [PMID: 17523876 DOI: 10.1089/rej.2006.0516] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Various recent investigations relevant to the study of aging mechanisms have recently found that increases in longevity during dietary restriction can occur together with lack of decreases or even increases in O2 consumption. This is frequently interpreted as contradictory with the mitochondrial free radical theory of aging. But this is based on the erroneous assumption that increasing O2 consumption must increase the rate of mitochondrial oxygen radical generation. Here it is shown that the opposite occurs in many important situations. Strong decreases in absolute and relative (per unit of O2 consumed) mitochondrial oxygen radical production occur during aerobic exercise bouts, chronic exercise training, and hyperthyroidism, and notably, during dietary restriction. Mitochondrial oxygen radical generation is also lower in long-lived birds than in short-lived mammals of similar body size and metabolic rate. Total rates of reactive oxygen species generation can also vary between tissues in a way not linked to their differences in oxygen consumption. All this indicates that mitochondrial reactive oxygen species (ROS) production is not a simple byproduct of mitochondrial respiration. Instead, it is regulated independently of O2 consumption in many different physiologic situations, tissues, and animal species. Thus, the apparently paradoxical increases in O2 consumption observed in some models of dietary restriction do not discredit the mitochondrial free radical theory of aging, and they can further strengthen it.
Collapse
Affiliation(s)
- Gustavo Barja
- Department of Animal Physiology-II, Faculty of Biological Sciences, Complutense University, c/Antonio Novais-2, Madrid 28040, Spain.
| |
Collapse
|
29
|
Rissanen E, Tranberg HK, Nikinmaa M. Oxygen availability regulates metabolism and gene expression in trout hepatocyte cultures. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1507-15. [PMID: 16778071 DOI: 10.1152/ajpregu.00025.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We studied the metabolic rate, cellular energetic state, hypoxia-inducible factor-1 (HIF-1) activation, and expression of enzymes involved in energy metabolism using rainbow trout (Oncorhynchus mykiss) hepatocytes over the oxygen range from 21 to 1 kPa. Oxygen dependence of these factors was assessed by gradually reducing oxygen supply to cells from 21 kPa to 10, 5, 2, and 1 kPa. Moreover, time course experiments for up to 20 h at oxygen tensions of 1 and 2 kPa were carried out. Reduction of oxygen from 21 kPa to 10, 5, 2, and 1 kPa decreased metabolic rate of the cells by 14, 24, 37, and 46%, respectively. This response was instantaneous and fully reversible upon reoxygenation. Cellular ATP content and the expression of all mRNAs studied decreased when oxygen was reduced from 21 to 5 and 2 kPa. The lowest ATP levels, approximately 43% of the initial value, were measured at 5 kPa of oxygen, whereas the reduction in mRNA amounts was most pronounced at 2 kPa. At 1 kPa oxygen tension, both ATP content and mRNA amounts returned to normoxic (21 kPa) levels with a concomitant activation of HIF-1, indicating reorganization of energy metabolism in adaptation of cells to low oxygen supply. These results show that oxygen has a direct regulatory effect on metabolism of trout hepatocyte cultures, supporting the view that oxygen has a profound role in metabolic regulation in cells.
Collapse
Affiliation(s)
- Eeva Rissanen
- Centre of Excellence in Evolutionary Genetics and Physiology, Dept. of Biology, Univ. of Turku, FIN-20014, Turku, Finland.
| | | | | |
Collapse
|
30
|
Rezende EL, Gomes FR, Malisch JL, Chappell MA, Garland T. Maximal oxygen consumption in relation to subordinate traits in lines of house mice selectively bred for high voluntary wheel running. J Appl Physiol (1985) 2006; 101:477-85. [PMID: 16601309 DOI: 10.1152/japplphysiol.00042.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied relations between maximal O2 consumption (VO2 max) during forced exercise and subordinate traits associated with blood O2 transport and cellular respiration in four lines of mice selectively bred for high voluntary wheel running (S lines) and their four nonselected control (C) lines. Previously, we reported VO2 max of 59 females at three Po2 (hypoxia = 14% O2, normoxia = 21%, hyperoxia = 30%). Here, we test the hypothesis that variation in VO2 max can be explained, in part, by hemoglobin concentration and Po2 necessary to obtain 50% O2 saturation of Hb (an estimate of Hb affinity for O2) of the blood as well as citrate synthase activity and myoglobin concentration of ventricles and gastrocnemius muscle. Statistical analyses controlled for body mass, compared S and C lines, and also considered effects of the mini-muscle phenotype (present only in S lines and resulting from a Mendelian recessive allele), which reduces hindlimb muscle mass while increasing muscle mass-specific aerobic capacity. Although S lines had higher VO2 max than C, subordinate traits showed no statistical differences when the presence of the mini-muscle phenotype was controlled. However, subordinate traits did account for some of the individual variation in VO2 max. Ventricle size was a positive predictor of VO2 max at all three Po2. Blood Hb concentration was a positive predictor of VO2 max in S lines but a negative predictor in C lines, indicating that the physiological underpinnings of VO2 max have been altered by selective breeding. Mice with the mini-muscle phenotype had enlarged ventricles, with higher mass-specific citrate synthase activity and myoglobin concentration, which may account for their higher VO2 max in hypoxia.
Collapse
Affiliation(s)
- Enrico L Rezende
- Integrative Ecology Group, Estación Biológica Doñana, CSIC, Apdo. 1056, E-41080 Seville, Spain.
| | | | | | | | | |
Collapse
|
31
|
Saks V, Dzeja P, Schlattner U, Vendelin M, Terzic A, Wallimann T. Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J Physiol 2006; 571:253-73. [PMID: 16410283 PMCID: PMC1796789 DOI: 10.1113/jphysiol.2005.101444] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Accepted: 01/12/2006] [Indexed: 12/18/2022] Open
Abstract
The fundamental principle of cardiac behaviour is described by the Frank-Starling law relating force of contraction during systole with end-diastolic volume. While both work and respiration rates increase linearly with imposed load, the basis of mechano-energetic coupling in heart muscle has remained a long-standing enigma. Here, we highlight advances made in understanding of complex cellular and molecular mechanisms that orchestrate coupling of mitochondrial oxidative phosphorylation with ATP utilization for muscle contraction. Cardiac system bioenergetics critically depends on an interrelated metabolic infrastructure regulating mitochondrial respiration and energy fluxes throughout cellular compartments. The data reviewed indicate the significance of two interrelated systems regulating mitochondrial respiration and energy fluxes in cells: (1) the creatine kinase, adenylate kinase and glycolytic pathways that communicate flux changes generated by cellular ATPases within structurally organized enzymatic modules and networks; and (2) a secondary system based on mitochondrial participation in cellular calcium cycle, which adjusts substrate oxidation and energy-transducing processes to meet increasing cellular energy demands. By conveying energetic signals to metabolic sensors, coupled phosphotransfer reactions provide a high-fidelity regulation of the excitation-contraction cycle. Such integration of energetics with calcium signalling systems provides the basis for 'metabolic pacing', synchronizing the cellular electrical and mechanical activities with energy supply processes.
Collapse
Affiliation(s)
- Valdur Saks
- Structural and Quantitative Bioenergetics Research Group, Laboratory of Bioenergetics, Joseph Fourier University, 2280, Rue de la Piscine, BP53X -38041, Grenoble Cedex 9, France.
| | | | | | | | | | | |
Collapse
|
32
|
Rezende EL, Garland T, Chappell MA, Malisch JL, Gomes FR. Maximum aerobic performance in lines ofMusselected for high wheel-running activity: effects of selection, oxygen availability and the mini-muscle phenotype. J Exp Biol 2006; 209:115-27. [PMID: 16354783 DOI: 10.1242/jeb.01883] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
SUMMARYWe compared maximum aerobic capacity during forced exercise(V̇O2max) in hypoxia (PO2=14% O2), normoxia (21%) and hyperoxia (30%) of lines of house mice selectively bred for high voluntary wheel running (S lines) with their four unselected control (C) lines. We also tested for pleiotropic effects of the `mighty mini-muscle' allele, a Mendelian recessive that causes a 50% reduction in hind limb muscle but a doubling of mass-specific aerobic enzyme activity, among other pleiotropic effects. V̇O2max of female mice was measured during forced exercise on a motorized treadmill enclosed in a metabolic chamber that allowed altered PO2. Individual variation in V̇O2max was highly repeatable within each PO2, and values were also significantly correlated across PO2. Analysis of covariance showed that S mice had higher body-mass-adjusted V̇O2max than C at all PO2, ranging from +10.7% in hypoxia to +20.8% in hyperoxia. V̇O2maxof S lines increased practically linearly with PO2,whereas that of C lines plateaued from normoxia to hyperoxia, and respiratory exchange ratio (=CO2production/V̇O2max)was lower for S lines. These results suggest that the physiological underpinnings of V̇O2max differ between the S and C lines. Apparently, at least in S lines, peripheral tissues may sustain higher rates of oxidative metabolism if central organs provide more O2. Although the existence of central limitations in S lines cannot be excluded based solely on the present data, we have previously reported that both S and C lines can attain considerably higher V̇O2max during cold exposure in a He-O2 atmosphere, suggesting that limitations on V̇O2max depend on interactions between the central and peripheral organs involved. In addition,mini-muscle individuals had higher V̇O2max than did those with normal muscles, suggesting that the former might have higher hypoxia tolerance. This would imply that the mini-muscle phenotype could be a good model to test how exercise performance and hypoxia tolerance could evolve in a correlated fashion, as previous researchers have suggested.
Collapse
Affiliation(s)
- Enrico L Rezende
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | | | | | | | |
Collapse
|
33
|
Kidd T, Abu-Shumays R, Katzen A, Sisson JC, Jiménez G, Pinchin S, Sullivan W, Ish-Horowicz D. The epsilon-subunit of mitochondrial ATP synthase is required for normal spindle orientation during the Drosophila embryonic divisions. Genetics 2005; 170:697-708. [PMID: 15834145 PMCID: PMC1450411 DOI: 10.1534/genetics.104.037648] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe the maternal-effect and zygotic phenotypes of null mutations in the Drosophila gene for the epsilon-subunit of mitochondrial ATP synthase, stunted (sun). Loss of zygotic sun expression leads to a dramatic delay in the growth rate of first instar larvae and ultimately death. Embryos lacking maternally supplied sun (sun embryos) have a sixfold reduction in ATP synthase activity. Cellular analysis of sun embryos shows defects only after the nuclei have migrated to the cortex. During the cortical divisions the actin-based metaphase and cellularization furrows do not form properly, and the nuclei show abnormal spacing and division failures. The most striking abnormality is that nuclei and spindles form lines and clusters, instead of adopting a regular spacing. This is reflected in a failure to properly position neighboring nonsister centrosomes during the telophase-to-interphase transition of the cortical divisions. Our study is consistent with a role for Sun in mitochondrial ATP synthesis and suggests that reduced ATP levels selectively affect molecular motors. As Sun has been identified as the ligand for the Methuselah receptor that regulates aging, Sun may function both within and outside mitochondria.
Collapse
Affiliation(s)
- Thomas Kidd
- Developmental Genetics Laboratory, Cancer Research UK, London, England.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Storey KB. Adventures in oxygen metabolism. Comp Biochem Physiol B Biochem Mol Biol 2004; 139:359-69. [PMID: 15544961 DOI: 10.1016/j.cbpc.2004.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 02/02/2004] [Accepted: 02/03/2004] [Indexed: 10/26/2022]
Abstract
Peter W. Hochachka led a grand life of science adventure and left as his legacy a whole new field--biochemical adaptation. Oxygen was at the core of Peter's career and his laboratory made major contributions to our understanding of how animals deal with variation in oxygen availability in many forms. He analyzed the molecular mechanisms that support facultative anaerobiosis, studied muscle exercise metabolism for high speed flight, swimming and running, investigated mammalian diving on many trips to the Antarctic to study Weddell seals, and probed the metabolic and genetic adaptations that provide optimal hypoxia tolerance for humans residing at high altitudes. His work illuminated both biochemical and physiological mechanisms that are used to optimize aerobic metabolism, to compensate for hypoxic insults, and to conserve energy by strong metabolic rate depression under anoxia. His articles, books and lectures galvanized the field with leading-edge insights and theories and he consistently challenged comparative biochemists to use their unique model systems to explore the range and breadth of animal strategies of biochemical adaptation. Lessons drawn from my training in Peter's laboratory have led me on continuing explorations of adaptations in enzyme function, signal transduction, gene expression, and antioxidant defenses ranging over systems of anoxia tolerance, freezing survival, estivation, and mammalian hibernation.
Collapse
Affiliation(s)
- Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6.
| |
Collapse
|