1
|
Zhu H, Zhu D, Wu K, He W, Li L, Li T, Liu L, Liu Z, Song X, Cheng W, Mo J, Yao Y, Li J. Establishment and evaluation of a qPCR method for the detection of pfmdr1 mutations in Plasmodium falciparum, the causal agent of fatal malaria. Diagn Microbiol Infect Dis 2024; 110:116400. [PMID: 38909426 DOI: 10.1016/j.diagmicrobio.2024.116400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Drug resistance surveillance is a major integral part of malaria control programs. Molecular methods play a pivotal role in drug resistance detection and related molecular research. This study aimed to develop a rapid and accurate detection method for drug resistance of Plasmodium falciparum (P. falciparum). A quantitative real-time PCR (qPCR) assay has been developed that identifies the mutation at locus A256T in the P.falciparum multi-drug resistance(pfmdr1) gene producing amino acid change at position 86. The results of 198 samples detected by qPCR were consistent with nested PCR and sequencing, giving an accuracy of 94.3%. The sensitivity, specificity, positive and negative predictive value of qPCR were 85.7%, 97.6%, 90.0% and 96.4%, respectively. The results of qPCR are basically consistent with the nested PCR, which is expected to replace the nested PCR as a new molecular biological method for drug resistance detection, providing reliable technical support for global malaria prevention and control.
Collapse
Affiliation(s)
- Huiyin Zhu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China; Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Daiqian Zhu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Kai Wu
- Wuhan Centers for Disease Prevention and Control, Wuhan 430024, PR China
| | - Wei He
- Jiangnan University, Wuxi 442000, PR China
| | - Liugen Li
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Tongfei Li
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Long Liu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Zhixin Liu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Xiaonan Song
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Weijia Cheng
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Jinyu Mo
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China
| | - Yi Yao
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Jian Li
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, PR China.
| |
Collapse
|
2
|
Okore W, Ouma C, Okoth RO, Yeda R, Ingasia LO, Mwakio EW, Ochora DO, Wakoli DM, Amwoma JG, Chemwor GC, Juma JA, Okudo CO, Cheruiyot AC, Opot BH, Juma D, Egbo TE, Andagalu B, Roth A, Kamau E, Akala HM. Increased sensitivity of malaria parasites to common antimalaria drugs after the introduction of artemether-lumefantrine: Implication of policy change and implementation of more effective drugs in fight against malaria. PLoS One 2024; 19:e0298585. [PMID: 38900782 PMCID: PMC11189199 DOI: 10.1371/journal.pone.0298585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/28/2024] [Indexed: 06/22/2024] Open
Abstract
Single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum multi-drug resistance protein 1 (Pfmrp1) gene have previously been reported to confer resistance to Artemisinin-based Combination Therapies (ACTs) in Southeast Asia. A total of 300 samples collected from six sites between 2008 and 2019 under an ongoing malaria drug sensitivity patterns in Kenya study were evaluated for the presence of SNPs at Pfmrp1 gene codons: H191Y, S437A, I876V, and F1390I using the Agena MassARRAY® platform. Each isolate was further tested against artemisinin (ART), lumefantrine (LU), amodiaquine (AQ), mefloquine (MQ), quinine (QN), and chloroquine (CQ) using malaria the SYBR Green I-based method to determine their in vitro drug sensitivity. Of the samples genotyped, polymorphism at Pfmrp1 codon I876V was the most frequent, with 59.3% (163/275) mutants, followed by F1390I, 7.2% (20/278), H191Y, 4.0% (6/151), and S437A, 3.3% (9/274). A significant decrease in median 50% inhibition concentrations (IC50s) and interquartile range (IQR) was noted; AQ from 2.996 ng/ml [IQR = 2.604-4.747, n = 51] in 2008 to 1.495 ng/ml [IQR = 0.7134-3.318, n = 40] (P<0.001) in 2019, QN from 59.64 ng/ml [IQR = 29.88-80.89, n = 51] in 2008 to 18.10 ng/ml [IQR = 11.81-26.92, n = 42] (P<0.001) in 2019, CQ from 35.19 ng/ml [IQR = 16.99-71.20, n = 30] in 2008 to 6.699 ng/ml [IQR = 4.976-9.875, n = 37] (P<0.001) in 2019, and ART from 2.680 ng/ml [IQR = 1.608-4.857, n = 57] in 2008 to 2.105 ng/ml [IQR = 1.266-3.267, n = 47] (P = 0.0012) in 2019, implying increasing parasite sensitivity to the drugs over time. However, no significant variations were observed in LU (P = 0.2692) and MQ (P = 0.0939) respectively, suggesting stable parasite responses over time. There was no statistical significance between the mutation at 876 and parasite sensitivity to selected antimalarials tested, suggesting stable sensitivity for the parasites with 876V mutations. These findings show that Kenyan parasite strains are still sensitive to AQ, QN, CQ, ART, LU, and MQ. Despite the presence of Pfmrp1 mutations in parasites among the population.
Collapse
Affiliation(s)
- Winnie Okore
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
- Department of Biomedical Sciences and Technology, Maseno University, Kisumu, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, Maseno University, Kisumu, Kenya
| | - Raphael O. Okoth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Redemptah Yeda
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Luicer O. Ingasia
- Sydney Brenner Institute of Molecular Biosciences, University of Witwatersrand, Johannesburg, South Africa
| | - Edwin W. Mwakio
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Douglas O. Ochora
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
- Department of Biological Sciences, Kisii University, Kisii, Kenya
| | - Duncan M. Wakoli
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
| | - Joseph G. Amwoma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Gladys C. Chemwor
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Jackline A. Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Charles O. Okudo
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Agnes C. Cheruiyot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Benjamin H. Opot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Dennis Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Timothy E. Egbo
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kisumu, Kenya
| | - Ben Andagalu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Amanda Roth
- Medical Communications for Combat Casualty Care, Fort Detrick, Maryland, United States of America
| | - Edwin Kamau
- Department of Pathology and Area Laboratory Services, Tripler Army Medical Center, Honolulu, Honolulu, United States of America
| | - Hoseah M. Akala
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| |
Collapse
|
3
|
Tchuenkam PVK, Ngum LN, Ali IM, Chedjou JPK, Nji AM, Netongo PM, Ngwafor R, Niba PTN, Tah CF, Nana WD, Ekoyol G, Bigoga JD, Ashu DF, Tume CB, Mbacham WF. Plasmodium falciparum dhps and dhfr markers of resistance to sulfadoxine-pyrimethamine five years (2016-2020) after the implementation of seasonal malaria chemoprevention in Cameroon. Wellcome Open Res 2024; 9:323. [PMID: 39649624 PMCID: PMC11624434 DOI: 10.12688/wellcomeopenres.22347.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 12/11/2024] Open
Abstract
Background Antimalarial drug resistance is a major challenge in the fight against malaria. Cameroon implemented seasonal malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine and amodiaquine (SPAQ) to over 1.5 million children aged 3-59 months from 2016, raising concerns whether drug pressure may lead to a selection of known parasite resistance mutations. This study aimed at assessing the profiles of plasmodium falciparum dihydrofolate reductase (DHFR) and plasmodium falciparum dihydropteroate synthase (DHPS) gene mutations that encode enzyme targeting SP before and 5 years after the introduction of SMC in the northern part of Cameroon. Methods Dried blood spots were prepared from symptomatic P. falciparum-positive children prior to SPAQ administration in 2016 and after the SMC round of 2020. DNA was extracted using the Chelex-100 method, and dhfr and dhps mutations were determined after a nested polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique and agarose gel electrophoresis. Results 405 children with acute uncomplicated malaria were recruited. Of 405 samples, 201/405 (49.63%) were collected in 2016 and 204/405 (50.37%) were collected in 2020. High levels of mutant alleles S108N, C59R, N51I of dhfr were obtained both in 2016 and 2020 (174 (100%), 166 (95.4%), 131 (75.3%)); (140 (99.4%), 131 (92.2%), 114 (80.3%)) while the frequency of dhps mutant alleles in the A437G and K540E loci stood at 93 (51.9%) and 6 (3.4%) in 2016 and 73 (52.5%) and 4 (2.8%) in 2020, respectively. The quintuple resistant haplotype IRNGE was found in two (1.1%) and one (0.7%) in 2016 and 2020, respectively. No significant difference was observed in the frequency of the studied mutations between the two time points, although we noted a rise in the resistance conferring haplotype IRNG in 2020. Conclusions Continuous monitoring is recommended to preempt the widespread occurrence of high-grade resistance bearing parasites in the northern regions of Cameroon.
Collapse
Affiliation(s)
- Pacome V. K. Tchuenkam
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, West region, Cameroon
- MARCAD Program, The biotechnology Centre, University of Yaounde I, Yaounde, Centre, P 0 Box 8094, Cameroon
| | - Lesley N. Ngum
- MARCAD Program, The biotechnology Centre, University of Yaounde I, Yaounde, Centre, P 0 Box 8094, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde, Centre, Cameroon
- Institute of Medical Research and Medicinal Plants Studies, IMPM/MINRESI, Yaoundé, Centre, BP 13033, Cameroon
| | - Innocent M. Ali
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, West region, Cameroon
- MARCAD Program, The biotechnology Centre, University of Yaounde I, Yaounde, Centre, P 0 Box 8094, Cameroon
| | - Jean Paul K. Chedjou
- MARCAD Program, The biotechnology Centre, University of Yaounde I, Yaounde, Centre, P 0 Box 8094, Cameroon
- Department of Biochemistry, University of Buea, Buea, Southwest, P O box 63, Cameroon
| | - Akindeh M. Nji
- MARCAD Program, The biotechnology Centre, University of Yaounde I, Yaounde, Centre, P 0 Box 8094, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde, Centre, Cameroon
| | - Palmer M. Netongo
- MARCAD Program, The biotechnology Centre, University of Yaounde I, Yaounde, Centre, P 0 Box 8094, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde, Centre, Cameroon
| | - Randolph Ngwafor
- MARCAD Program, The biotechnology Centre, University of Yaounde I, Yaounde, Centre, P 0 Box 8094, Cameroon
| | - Peter Thelma N. Niba
- MARCAD Program, The biotechnology Centre, University of Yaounde I, Yaounde, Centre, P 0 Box 8094, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde, Centre, Cameroon
| | - Calvino F. Tah
- MARCAD Program, The biotechnology Centre, University of Yaounde I, Yaounde, Centre, P 0 Box 8094, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde, Centre, Cameroon
| | - William D. Nana
- MARCAD Program, The biotechnology Centre, University of Yaounde I, Yaounde, Centre, P 0 Box 8094, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde, Centre, Cameroon
| | - Germaine Ekoyol
- National Malaria Control Program, Ministry of Public Health, Yaoundé, Centre, BP 14386, Cameroon
| | - Jude D. Bigoga
- MARCAD Program, The biotechnology Centre, University of Yaounde I, Yaounde, Centre, P 0 Box 8094, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde, Centre, Cameroon
| | - Dorothy F. Ashu
- National Malaria Control Program, Ministry of Public Health, Yaoundé, Centre, BP 14386, Cameroon
| | - Christopher B. Tume
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, West region, Cameroon
- Department of Biochemistry, Faculty of Science, Universof Bamenda, Bamenda, Northwest, P.O box 39, Cameroon
| | - Wilfried F. Mbacham
- MARCAD Program, The biotechnology Centre, University of Yaounde I, Yaounde, Centre, P 0 Box 8094, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde, Centre, Cameroon
- Centre for Health Implementation and Translation Research, The Fobang Institute, Yaoundé, Centre, BP 8094, Cameroon
| |
Collapse
|
4
|
Magboul AM, Nour BYM, Tamomh AG, Abdul-Ghani R, Albushra SM, Eltahir HB. Unraveling Key Chloroquine Resistance-Associated Alleles Among Plasmodium falciparum Isolates in South Darfur State, Sudan Twelve Years After Drug Withdrawal. Infect Drug Resist 2024; 17:221-227. [PMID: 38283109 PMCID: PMC10822104 DOI: 10.2147/idr.s439875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024] Open
Abstract
Background Due to the increasing resistance of Plasmodium falciparum to chloroquine (CQ) in Sudan, a shift from CQ to artesunate combined with sulfadoxine/pyrimethamine as a first-line treatment for uncomplicated falciparum malaria was adopted in 2004. This study aimed to determine the frequency distribution of K76T and N86Y mutations in P. falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes as key markers of resistance to CQ among P. falciparum isolates from patients in Nyala district of South Darfur state, west of Sudan. Methods A descriptive, cross-sectional study was conducted among 75 P. falciparum isolates from Sudanese patients diagnosed with falciparum malaria mono-infection. Parasite DNA was extracted from dried blood spots and amplified using a nested polymerase chain reaction (PCR). Then, restriction fragment length polymorphism (RFLP) was used to detect the genetic polymorphisms in codons 76 of pfcrt and 86 of pfmdr1. PCR-RFLP products were analyzed using 1.5% gel electrophoresis to identify the genetic polymorphisms in the studied codons. The wild-type (pfcrt K76 and pfmdr1 N86), mutant (pfcrt 76T and pfmdr1 86Y) and mixed-type (pfcrt K76T and pfmdr1 N86Y) alleles were expressed as frequencies and proportions. Results The wild-type pfcrt K76 allele was observed among 34.7% of isolates and the mutant 76T allele among 20% of isolates, while the mixed-type K76T allele was observed among 45.3% of isolates. On the other hand, 54.7% of isolates harbored the wild-type pfmdr1 N86 allele and 5.3% of isolates had the mutant 86Y allele, while the mixed-type N86Y allele was observed among 40% of isolates. Conclusion The key molecular markers associated with CQ resistance (pfcrt 76T and pfmdr1 86Y) are still circulating in high frequency among P. falciparum isolates in South Darfur state, about twelve years after the official withdrawal of the drug as a treatment for uncomplicated falciparum malaria.
Collapse
Affiliation(s)
- Abdalmoneim M Magboul
- Department of Parasitology & Medical Entomology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, Sudan
| | - Bakri Y M Nour
- Department of Parasitology, Faculty of Medical Laboratory Sciences, University of Gezira, Wad Madani, Sudan
| | - Abdelhakam G Tamomh
- Department of Parasitology & Medical Entomology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, Sudan
| | - Rashad Abdul-Ghani
- Department of Medical Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
- Tropical Disease Research Center, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
| | - Sayed Mustafa Albushra
- Department of Internal Medicine, Faculty of Medicine, University of Gezira, Wad Madani, Sudan
| | - Hanan Babiker Eltahir
- Department of Biochemistry, Faculty of Medicine, University of El Imam El Mahdi, Kosti, Sudan
| |
Collapse
|
5
|
Eisenberg SL, Krieger AE. A comprehensive approach to optimizing malaria prevention in pregnant women: evaluating the efficacy, cost-effectiveness, and resistance of IPTp-SP and IPTp-DP. Glob Health Action 2023; 16:2231257. [PMID: 37459385 DOI: 10.1080/16549716.2023.2231257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Malaria during pregnancy is a major global health concern, with approximately 10,000 pregnant women dying from malaria-related anaemia each year. The World Health Organization has suggested intermittent preventive treatment with sulphadoxine-pyrimethamine (IPTp-SP) to avert malaria infection in pregnant women in malaria-endemic areas, but this intermittent preventive (IP) treatment is at risk of becoming ineffective due to parasite resistance and the contraindication in HIV-infected women. This paper argues that alternative IP treatments such as dihydroartemisinin-piperaquine (DP) should be explored, alongside the urgent need to investigate antimalarial cycling strategies. Additionally, the cost-effectiveness of IPTp-DP should be evaluated, as well as potential barriers to IP treatment such as medication stockouts, late attendance at antenatal clinics, lack of autonomy and freedom among women, and lack of knowledge about malaria prevention. Health education focusing on malaria prevention should be incorporated into routine antenatal care programmes to improve patient compliance. A comprehensive approach that includes the administration of IPTp-DP alone along with other measures such as insecticide-treated nets and medical education is the key to addressing the devastating effects of malaria infection in pregnant women.
Collapse
Affiliation(s)
- Sarah-Leah Eisenberg
- Mailman School of Public Health, Columbia University, New York, NY, USA
- Faculty of Medicine, Technion, Haifa, Israel
| | - Adam E Krieger
- Faculty of Medicine, Technion, Haifa, Israel
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Okitwi M, Orena S, Thomas K, Tumwebaze PK, Byaruhanga O, Nsobya SL, Conrad MD, Bayles BR, Rosenthal PJ, Cooper RA. Impact of Short-Term Storage on Ex Vivo Antimalarial Susceptibilities of Fresh Ugandan Plasmodium falciparum Isolates. Antimicrob Agents Chemother 2022; 66:e0143721. [PMID: 35266828 PMCID: PMC9017344 DOI: 10.1128/aac.01437-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/07/2022] [Indexed: 11/20/2022] Open
Abstract
We measured susceptibilities of Ugandan Plasmodium falciparum isolates assayed on the day of collection or after storage at 4°C. Samples were incubated with serial dilutions of 8 antimalarials, and susceptibilities were determined from 72-h growth inhibition assays. Storage was associated with decreased growth and lower 50% inhibitory concentration values, but differences between assays beginning on day 0 or after 1 or 2 days of storage were modest, indicating that short-term storage before drug susceptibility determination is feasible.
Collapse
Affiliation(s)
- Martin Okitwi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Stephen Orena
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Katairo Thomas
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | | | - Melissa D. Conrad
- Department of Medicine, University of California, San Francisco, California, USA
| | - Brett R. Bayles
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California, USA
| | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, California, USA
| | - Roland A. Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California, USA
| |
Collapse
|
7
|
Plowe CV. Malaria chemoprevention and drug resistance: a review of the literature and policy implications. Malar J 2022; 21:104. [PMID: 35331231 PMCID: PMC8943514 DOI: 10.1186/s12936-022-04115-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/03/2022] [Indexed: 01/19/2023] Open
Abstract
Chemoprevention strategies reduce malaria disease and death, but the efficacy of anti-malarial drugs used for chemoprevention is perennially threatened by drug resistance. This review examines the current impact of chemoprevention on the emergence and spread of drug resistant malaria, and the impact of drug resistance on the efficacy of each of the chemoprevention strategies currently recommended by the World Health Organization, namely, intermittent preventive treatment in pregnancy (IPTp); intermittent preventive treatment in infants (IPTi); seasonal malaria chemoprevention (SMC); and mass drug administration (MDA) for the reduction of disease burden in emergency situations. While the use of drugs to prevent malaria often results in increased prevalence of genetic mutations associated with resistance, malaria chemoprevention interventions do not inevitably lead to meaningful increases in resistance, and even high rates of resistance do not necessarily impair chemoprevention efficacy. At the same time, it can reasonably be anticipated that, over time, as drugs are widely used, resistance will generally increase and efficacy will eventually be lost. Decisions about whether, where and when chemoprevention strategies should be deployed or changed will continue to need to be made on the basis of imperfect evidence, but practical considerations such as prevalence patterns of resistance markers can help guide policy recommendations.
Collapse
|
8
|
Amrane D, Primas N, Arnold CS, Hutter S, Louis B, Sanz-Serrano J, Azqueta A, Amanzougaghene N, Tajeri S, Mazier D, Verhaeghe P, Azas N, Botté C, Vanelle P. Antiplasmodial 2-thiophenoxy-3-trichloromethyl quinoxalines target the apicoplast of Plasmodium falciparum. Eur J Med Chem 2021; 224:113722. [PMID: 34364164 DOI: 10.1016/j.ejmech.2021.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
The identification of a plant-like Achille's Heel relict, i.e. the apicoplast, that is essential for Plasmodium spp., the causative agent of malaria lead to an attractive drug target for new antimalarials with original mechanism of action. Although it is not photosynthetic, the apicoplast retains several anabolic pathways that are indispensable for the parasite. Based on previously identified antiplasmodial hit-molecules belonging to the 2-trichloromethylquinazoline and 3-trichloromethylquinoxaline series, we report herein an antiplasmodial Structure-Activity Relationships (SAR) study at position two of the quinoxaline ring of 16 newly synthesized compounds. Evaluation of their activity toward the multi-resistant K1 Plasmodium falciparum strain and cytotoxicity on the human hepatocyte HepG2 cell line revealed a hit compound (3k) with a PfK1 EC50 value of 0.3 μM and a HepG2 CC50 value of 56.0 μM (selectivity index = 175). Moreover, hit-compound 3k was not cytotoxic on VERO or CHO cell lines and was not genotoxic in the in vitro comet assay. Activity cliffs were observed when the trichloromethyl group was replaced by CH3, CF3 or H, showing that this group played a key role in the antiplasmodial activity. Biological investigations performed to determine the target and mechanism of action of the compound 3k strongly suggest that the apicoplast is the putative target as showed by severe alteration of apicoplaste biogenesis and delayed death response. Considering that there are very few molecules that affect the Plasmodium apicoplast, our work provides, for the first time, evidence of the biological target of trichloromethylated derivatives.
Collapse
Affiliation(s)
- Dyhia Amrane
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385, Marseille Cedex 05, France
| | - Nicolas Primas
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385, Marseille Cedex 05, France; APHM, Hôpital Conception, Service Central de la Qualité et de l'Information Pharmaceutiques, 13005, Marseille, France.
| | | | - Sébastien Hutter
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, IRD, SSA, Mycology & Tropical Eucaryotic Pathogens, 13005, Marseille Cedex 05, France
| | - Béatrice Louis
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385, Marseille Cedex 05, France
| | - Julen Sanz-Serrano
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, CP 31008, Pamplona, Navarra, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, CP 31008, Pamplona, Navarra, Spain; Navarra Institute for Health Research, IdiSNA, Irunlarrea 3, 31008, Pamplona, Spain
| | - Nadia Amanzougaghene
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI, 75013, Paris, France
| | - Shahin Tajeri
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI, 75013, Paris, France
| | - Dominique Mazier
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI, 75013, Paris, France
| | - Pierre Verhaeghe
- LCC-CNRS Université de Toulouse, CNRS, UPS, 31400, Toulouse, France; CHU de Toulouse, Service Pharmacie, 330 Avenue de Grande-Bretagne, 31059, Toulouse Cedex 9, France
| | - Nadine Azas
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, IRD, SSA, Mycology & Tropical Eucaryotic Pathogens, 13005, Marseille Cedex 05, France
| | - Cyrille Botté
- ApicoLipid Team, Institute for Advanced Biosciences, Université Grenoble Alpes, La Tronche, France.
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385, Marseille Cedex 05, France; APHM, Hôpital Conception, Service Central de la Qualité et de l'Information Pharmaceutiques, 13005, Marseille, France.
| |
Collapse
|
9
|
Nkhoma SC, Ahmed AOA, Zaman S, Porier D, Baker Z, Stedman TT. Dissection of haplotype-specific drug response phenotypes in multiclonal malaria isolates. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 15:152-161. [PMID: 33780700 PMCID: PMC8039770 DOI: 10.1016/j.ijpddr.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 10/28/2022]
Abstract
Natural infections of Plasmodium falciparum, the parasite responsible for the deadliest form of human malaria, often comprise multiple parasite lineages (haplotypes). Multiclonal parasite isolates may exhibit variable phenotypes including different drug susceptibility profiles over time due to the presence of multiple haplotypes. To test this hypothesis, three P. falciparum Cambodian isolates IPC_3445 (MRA-1236), IPC_5202 (MRA-1240) and IPC_6403 (MRA-1285) suspected to be multiclonal were cloned by limiting dilution, and the resulting clones genotyped at 24 highly polymorphic single nucleotide polymorphisms (SNPs). Isolates harbored up to three constituent haplotypes, and exhibited significant variability (p < 0.05) in susceptibility to chloroquine, mefloquine, artemisinin and piperaquine as measured by half maximal drug inhibitory concentration (IC50) assays and parasite survival assays, which measure viability following exposure to pharmacologically relevant concentrations of antimalarial drugs. The IC50 of the most abundant haplotype frequently reflected that of the uncloned parental isolate, suggesting that a single haplotype dominates the antimalarial susceptibility profile and masks the effect of minor frequency haplotypes. These results indicate that phenotypic variability in parasite isolates is often due to the presence of multiple haplotypes. Depending on intended end-use, clinical isolates should be cloned to yield single parasite lineages with well-defined phenotypes and genotypes. The availability of such standardized clonal parasite lineages through NIAID's BEI Resources program will aid research directed towards the development of diagnostics and interventions including drugs against malaria.
Collapse
Affiliation(s)
- Standwell C Nkhoma
- BEI Resources, ATCC, 10801 University Boulevard, Manassas, VA, 20110-2209, USA.
| | - Amel O A Ahmed
- BEI Resources, ATCC, 10801 University Boulevard, Manassas, VA, 20110-2209, USA
| | - Sharmeen Zaman
- BEI Resources, ATCC, 10801 University Boulevard, Manassas, VA, 20110-2209, USA
| | - Danielle Porier
- BEI Resources, ATCC, 10801 University Boulevard, Manassas, VA, 20110-2209, USA
| | - Zachary Baker
- BEI Resources, ATCC, 10801 University Boulevard, Manassas, VA, 20110-2209, USA
| | - Timothy T Stedman
- BEI Resources, ATCC, 10801 University Boulevard, Manassas, VA, 20110-2209, USA.
| |
Collapse
|
10
|
Peraman R, Sure SK, Dusthackeer VNA, Chilamakuru NB, Yiragamreddy PR, Pokuri C, Kutagulla VK, Chinni S. Insights on recent approaches in drug discovery strategies and untapped drug targets against drug resistance. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:56. [PMID: 33686369 PMCID: PMC7928709 DOI: 10.1186/s43094-021-00196-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite the various strategies undertaken in the clinical practice, the mortality rate due to antibiotic-resistant microbes has been markedly increasing worldwide. In addition to multidrug-resistant (MDR) microbes, the "ESKAPE" bacteria are also emerging. Of course, the infection caused by ESKAPE cannot be treated even with lethal doses of antibiotics. Now, the drug resistance is also more prevalent in antiviral, anticancer, antimalarial and antifungal chemotherapies. MAIN BODY To date, in the literature, the quantum of research reported on the discovery strategies for new antibiotics is remarkable but the milestone is still far away. Considering the need of the updated strategies and drug discovery approaches in the area of drug resistance among researchers, in this communication, we consolidated the insights pertaining to new drug development against drug-resistant microbes. It includes drug discovery void, gene paradox, transposon mutagenesis, vitamin biosynthesis inhibition, use of non-conventional media, host model, target through quorum sensing, genomic-chemical network, synthetic viability to targets, chemical versus biological space, combinational approach, photosensitization, antimicrobial peptides and transcriptome profiling. Furthermore, we optimally briefed about antievolution drugs, nanotheranostics and antimicrobial adjuvants and then followed by twelve selected new feasible drug targets for new drug design against drug resistance. Finally, we have also tabulated the chemical structures of potent molecules against antimicrobial resistance. CONCLUSION It is highly recommended to execute the anti-drug resistance research as integrated approach where both molecular and genetic research needs to be as integrative objective of drug discovery. This is time to accelerate new drug discovery research with advanced genetic approaches instead of conventional blind screening.
Collapse
Affiliation(s)
- Ramalingam Peraman
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Sathish Kumar Sure
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - V. N. Azger Dusthackeer
- grid.417330.20000 0004 1767 6138ICMR-National Institute of Research in Tuberculosis, Chennai, Tamilnadu India
| | - Naresh Babu Chilamakuru
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Padmanabha Reddy Yiragamreddy
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Chiranjeevi Pokuri
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Vinay Kumar Kutagulla
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Santhivardhan Chinni
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| |
Collapse
|
11
|
Cowell AN, Winzeler EA. The genomic architecture of antimalarial drug resistance. Brief Funct Genomics 2019; 18:314-328. [PMID: 31119263 PMCID: PMC6859814 DOI: 10.1093/bfgp/elz008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 11/15/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax, the two protozoan parasite species that cause the majority of cases of human malaria, have developed resistance to nearly all known antimalarials. The ability of malaria parasites to develop resistance is primarily due to the high numbers of parasites in the infected person's bloodstream during the asexual blood stage of infection in conjunction with the mutability of their genomes. Identifying the genetic mutations that mediate antimalarial resistance has deepened our understanding of how the parasites evade our treatments and reveals molecular markers that can be used to track the emergence of resistance in clinical samples. In this review, we examine known genetic mutations that lead to resistance to the major classes of antimalarial medications: the 4-aminoquinolines (chloroquine, amodiaquine and piperaquine), antifolate drugs, aryl amino-alcohols (quinine, lumefantrine and mefloquine), artemisinin compounds, antibiotics (clindamycin and doxycycline) and a napthoquinone (atovaquone). We discuss how the evolution of antimalarial resistance informs strategies to design the next generation of antimalarial therapies.
Collapse
Affiliation(s)
- Annie N Cowell
- Division of Infectious Diseases and Global Health, Department of Medicine, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| |
Collapse
|
12
|
Dokunmu TM, Adjekukor CU, Yakubu OF, Bello AO, Adekoya JO, Akinola O, Amoo EO, Adebayo AH. Asymptomatic malaria infections and Pfmdr1 mutations in an endemic area of Nigeria. Malar J 2019; 18:218. [PMID: 31248414 PMCID: PMC6598231 DOI: 10.1186/s12936-019-2833-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/09/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Malaria eradication globally is yet to be achieved and transmission is sustained in many endemic countries. Plasmodium falciparum continues to develop resistance to currently available anti-malarial drugs, posing great problems for malaria elimination. This study evaluates the frequencies of asymptomatic infection and multidrug resistance-1 (mdr-1) gene mutations in parasite isolates, which form the basis for understanding persistently high incidence in South West, Nigeria. METHODS A total of 535 individuals aged from 6 months were screened during the epidemiological survey evaluating asymptomatic transmission. Parasite prevalence was determined by histidine-rich protein II rapid detection kit (RDT) in healthy individuals. Plasmodium falciparum mdr-1 gene mutations were detected by polymerase chain reaction (PCR) followed by restriction enzyme digest and electrophoresis to determine polymorphism in parasite isolates. Sequencing was done to confirm polymorphism. Proportions were compared using Chi-square test at p value < 0.05. RESULTS Malaria parasites were detected by RDT in 204 (38.1%) individuals. Asymptomatic infection was detected in 117 (57.3%) and symptomatic malaria confirmed in 87 individuals (42.6%). Overall, individuals with detectable malaria by RDT was significantly higher in individuals with symptoms, 87 of 197 (44.2%), than asymptomatic persons; 117 of 338 (34.6%), p = 0.02. In a sub-set of 75 isolates, 18(24%) and 14 (18.6%) individuals had Pfmdr1 86Y and 1246Y mutations. CONCLUSIONS There is still high malaria transmission rate in Nigeria with higher incidence of asymptomatic infections. These parasites harbour mutations on Pfmdr1 which contribute to artemisinin partner drug resistance; surveillance strategies to reduce the spread of drug resistance in endemic areas are needed to eliminate the reservoir of malaria parasites that can mitigate the eradication of malaria in Nigeria.
Collapse
Affiliation(s)
| | | | - Omolara F Yakubu
- Department of Biochemistry, Covenant University, Ota, 23401, Nigeria
| | - Adetutu O Bello
- Department of Biological Sciences, Covenant University, Ota, 23401, Nigeria
| | - Jarat O Adekoya
- Department of Biological Sciences, Covenant University, Ota, 23401, Nigeria
| | - Olugbenga Akinola
- Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, 24003, Nigeria
| | - Emmanuel O Amoo
- Demography and Social Statistics Unit, Department of Economics and Development Studies, Covenant University, Ota, 23401, Nigeria
| | - Abiodun H Adebayo
- Department of Biochemistry, Covenant University, Ota, 23401, Nigeria.
| |
Collapse
|
13
|
Apinjoh TO, Ouattara A, Titanji VPK, Djimde A, Amambua-Ngwa A. Genetic diversity and drug resistance surveillance of Plasmodium falciparum for malaria elimination: is there an ideal tool for resource-limited sub-Saharan Africa? Malar J 2019; 18:217. [PMID: 31242921 PMCID: PMC6595576 DOI: 10.1186/s12936-019-2844-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
The intensification of malaria control interventions has resulted in its global decline, but it remains a significant public health burden especially in sub-Saharan Africa (sSA). Knowledge on the parasite diversity, its transmission dynamics, mechanisms of adaptation to environmental and interventional pressures could help refine or develop new control and elimination strategies. Critical to this is the accurate assessment of the parasite’s genetic diversity and monitoring of genetic markers of anti-malarial resistance across all susceptible populations. Such wide molecular surveillance will require selected tools and approaches from a variety of ever evolving advancements in technology and the changing epidemiology of malaria. The choice of an effective approach for specific endemic settings remains challenging, particularly for countries in sSA with limited access to advanced technologies. This article examines the current strategies and tools for Plasmodium falciparum genetic diversity typing and resistance monitoring and proposes how the different tools could be employed in resource-poor settings. Advanced approaches enabling targeted deep sequencing is valued as a sensitive method for assessing drug resistance and parasite diversity but remains out of the reach of most laboratories in sSA due to the high cost of development and maintenance. It is, however, feasible to equip a limited number of laboratories as Centres of Excellence in Africa (CEA), which will receive and process samples from a network of peripheral laboratories in the continent. Cheaper, sensitive and portable real-time PCR methods can be used in peripheral laboratories to pre-screen and select samples for targeted deep sequence or genome wide analyses at these CEAs.
Collapse
Affiliation(s)
- Tobias O Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Amed Ouattara
- School of Medicine, University of Maryland, College Park, Baltimore, USA
| | - Vincent P K Titanji
- Faculty of Science, Engineering and Technology, Cameroon Christian University, Bali, Cameroon
| | - Abdoulaye Djimde
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | |
Collapse
|
14
|
Burrow R, Fanshawe TR, Humphreys GS. Diagnostic accuracy of molecular methods for detecting markers of antimalarial drug resistance in clinical samples of Plasmodium falciparum: protocol for an update to a systematic review and meta-analysis. Syst Rev 2018; 7:221. [PMID: 30518411 PMCID: PMC6280367 DOI: 10.1186/s13643-018-0891-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 11/22/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Each year, infection with Plasmodium causes millions of clinical cases of malaria and hundreds of thousands of deaths. Resistance to different antimalarial medications continues to develop and spread, threatening effective prophylaxis and treatment. Surveillance of resistance is required to inform health policy and preserve effective antimalarial drugs; molecular methods can be used to surveil likely parasite resistances. However, there is no consensus on the most accurate molecular methods, and large variation exists in practice. The objective of this update to this systematic review is to improve and update identification of the sensitivity and specificity of each molecular method for detecting selected antimalarial drug resistance markers. METHODS We will include diagnostic accuracy studies that compare at least two of any molecular methods to examine blood samples from patients diagnosed with, or suspected of having malaria, to detect at least one selected marker of antimalarial drug resistance. We will search PubMed, EMBASE, BIOSIS, and Web of Science from 2000 to present. Two reviewers will independently screen all results, extract data, consider applicability, and evaluate the methodological quality of included studies using QUADAS-2. We will carry out a meta-analysis and use statistical methods to compare results from homogenous studies. We will use narrative to synthesise and compare results of heterogeneous studies. DISCUSSION This review will help to identify sub-optimal molecular methods for antimalarial marker detection which may be discontinued and identify more sensitive and specific methods which may be adopted. More sensitive and specific detection of drug resistance can be used to improve the breadth and accuracy of surveillance. This would enable the identification of previously undiscovered areas of antimalarial resistances and susceptibilities, improve the precision of estimates of the prevalence of resistances, and improve our ability to detect smaller changes in these patterns. Higher-quality evidence generated by more accurate and detailed surveillance can be used to inform guidelines on the use of antimalarial drugs, leading to better outcomes for more patients. SYSTEMATIC REVIEW REGISTRATION This systematic review protocol was registered with PROSPERO on 22 November 2017 (registration number CRD42017082101 ).
Collapse
Affiliation(s)
- Rebekah Burrow
- Department for Continuing Education, University of Oxford, Oxford, UK
| | - Thomas R. Fanshawe
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
15
|
Diji-Geske IR, Olasehinde IG, Fadinad I, Arogundade D, Darby P. Epidemiological data of falciparum malaria in Ado-Odo/Ota, Southwest Ogun State, Nigeria. Data Brief 2018; 19:1398-1402. [PMID: 30246071 PMCID: PMC6141860 DOI: 10.1016/j.dib.2018.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/10/2018] [Accepted: 06/05/2018] [Indexed: 11/11/2022] Open
Abstract
In this data article, Blood and corresponding saliva samples from subjects presenting with fever and parasetaemia ≥2000 were obtained from selected hospitals in Ado-Odo/Ota, Ogun State over a period of two years and analyzed using Polymerase chain reaction-Restriction fragment Length Polymorphism (PCR/Nested PCR-RFLP) to detect genetic mutations of Plasmodium falciparum chloroquine resistance transporter (Pfcrt), Plasmodium falciparum multidrugs resistance (Pfmdr1) and non-synonymous Pkelch (pk13) mutated genes. The study confirmed the presence of resistance genes in the blood and saliva samples collected from the study site.
Collapse
Affiliation(s)
- I Ruth Diji-Geske
- Department of Biological Sciences, Covenant University, Ota, Nigeria
| | | | - Irawo Fadinad
- Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Damola Arogundade
- Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Precious Darby
- Department of Biological Sciences, Covenant University, Ota, Nigeria
| |
Collapse
|
16
|
Ghosh SK. Molecular monitoring of antimalarial drug resistance in India. Indian J Med Microbiol 2018; 35:155-156. [PMID: 28681800 DOI: 10.4103/ijmm.ijmm_15_548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Susanta Kumar Ghosh
- Department of Molecular Parasitology, National Institute of Malaria Research, ICMR, Bengaluru, Karnataka, India
| |
Collapse
|
17
|
Joy S, Mukhi B, Ghosh SK, Achur RN, Gowda DC, Surolia N. Drug resistance genes: pvcrt-o and pvmdr-1 polymorphism in patients from malaria endemic South Western Coastal Region of India. Malar J 2018; 17:40. [PMID: 29351800 PMCID: PMC5775544 DOI: 10.1186/s12936-018-2188-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/15/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Malaria is highly prevalent in many parts of India and is mostly caused by the parasite species Plasmodium vivax followed by Plasmodium falciparum. Chloroquine (CQ) is the first-line treatment for blood stage P. vivax parasites, but cases of drug resistance to CQ have been reported from India. One of the surveillance strategies which is used to monitor CQ drug resistance, is the analysis of single nucleotide polymorphisms (SNPs) of the associated gene markers. Susceptibility to CQ can also be determined by copy number assessment of multidrug resistant gene (mdr-1). The current study has examined the prevalence of SNPs in P. vivax orthologs of P. falciparum chloroquine resistant and multi-drug resistant genes (pvcrt-o and pvmdr-1, respectively) and pvmdr-1 copy number variations in isolates from the highly endemic Mangaluru city near the South Western Coastal region of India. METHODS A total of 140 blood samples were collected from P. vivax infected patients attending Wenlock Hospital Mangaluru during July 2014 to January 2016. Out of these 140 samples, sequencing was carried out for 54 (38.5%) and 85 (60.7%) isolates for pvcrt-o and pvmdr-1, respectively. Single nucleotide polymorphisms (SNPs) in the pvcrt-o and pvmdr-1 genes were analysed by direct sequencing method, while copy number variations of 60 isolates (42. 8%) were determined by real time PCR. RESULTS Out of 54 clinical isolates analysed for pvcrt-o, three (5.6%) showed K10 insertion and the rest had wild type sequence. This is the first report to show K10 insertion in P. vivax isolates from India. Further, out of 85 clinical isolates of P. vivax analysed for mutations in pvmdr-1 gene, only one isolate had wild type sequence (~ 1%) while the remaining (99%) carried mutant alleles. Seven non-synonymous mutations with two novel mutations (I946V and Y1028C) were observed. Of all the observed mutations in pvmdr-1 gene, T958M was most highly prevalent (present in 90% of samples) followed by F1076L (76%), and Y976F (7%). Amplification of pvmdr-1 gene was observed in 31.6% of the isolates, out of 60 amplified. CONCLUSION The observed variations both in pvmdr-1 and pvcrt-o genes indicate a trend towards parasite acquiring CQ resistance in this endemic area.
Collapse
Affiliation(s)
- Shiny Joy
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre For Advanced Scientific Research, Jakkur, Bangalore, India
| | - Benudhar Mukhi
- Department of Biological Control, National Institute of Malaria Research, Poojanahalli, Bangalore, India
| | - Susanta K Ghosh
- Department of Biological Control, National Institute of Malaria Research, Poojanahalli, Bangalore, India
| | - Rajeshwara N Achur
- Department of Biochemistry, Kuvempu University, Shivamogga District, Shankaraghatta, Karnataka, India
| | - D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Namita Surolia
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre For Advanced Scientific Research, Jakkur, Bangalore, India.
| |
Collapse
|
18
|
Pholwat S, Liu J, Stroup S, Jacob ST, Banura P, Moore CC, Huang F, Laufer MK, Houpt E, Guler JL. The Malaria TaqMan Array Card Includes 87 Assays for Plasmodium falciparum Drug Resistance, Identification of Species, and Genotyping in a Single Reaction. Antimicrob Agents Chemother 2017; 61:e00110-17. [PMID: 28264857 PMCID: PMC5404514 DOI: 10.1128/aac.00110-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/02/2017] [Indexed: 11/20/2022] Open
Abstract
Antimalarial drug resistance exacerbates the global disease burden and complicates eradication efforts. To facilitate the surveillance of resistance markers in countries of malaria endemicity, we developed a suite of TaqMan assays for known resistance markers and compartmentalized them into a single array card (TaqMan array card, TAC). We included 87 assays for species identification, for the detection of Plasmodium falciparum mutations associated with chloroquine, atovaquone, pyrimethamine, sulfadoxine, and artemisinin resistance, and for neutral single nucleotide polymorphism (SNP) genotyping. Assay performance was first optimized using DNA from common laboratory parasite lines and plasmid controls. The limit of detection was 0.1 to 10 pg of DNA and yielded 100% accuracy compared to sequencing. The tool was then evaluated on 87 clinical blood samples from around the world, and the malaria TAC once again achieved 100% accuracy compared to sequencing and in addition detected the presence of mixed infections in clinical samples. With its streamlined protocol and high accuracy, this malaria TAC should be a useful tool for large-scale antimalarial resistance surveillance.
Collapse
Affiliation(s)
- Suporn Pholwat
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jie Liu
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Suzanne Stroup
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Shevin T Jacob
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Patrick Banura
- Department of Community Health, Masaka Regional Referral Hospital, Masaka, Uganda
| | - Christopher C Moore
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Fang Huang
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Miriam K Laufer
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eric Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jennifer L Guler
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
19
|
Jovel IT, Björkman A, Roper C, Mårtensson A, Ursing J. Unexpected selections of Plasmodium falciparum polymorphisms in previously treatment-naïve areas after monthly presumptive administration of three different anti-malarial drugs in Liberia 1976-78. Malar J 2017; 16:113. [PMID: 28288632 PMCID: PMC5347173 DOI: 10.1186/s12936-017-1747-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
Background To assess the effect on malaria prevalence, village specific monthly administrations of pyrimethamine, chlorproguanil, chloroquine or placebo were given to children in four previously treatment-naïve Liberian villages, 1976–78. Plasmodium falciparum in vivo resistance developed to pyrimethamine only. Selection of molecular markers of P. falciparum resistance after 2 years of treatment are reported. Methods Blood samples were collected from 191 study children in a survey in 1978. Polymorphisms in pfcrt, pfmdr1, pfdhfr, pfdhps, pfmrp1 and pfnhe1 genes were determined using PCR-based methods. Results Pfcrt 72–76 CVIET was found in one chloroquine village sample, all remaining samples had pfcrt CVMNK. Pfmdr1 N86 prevalence was 100%. A pfmdr1 T1069ACT→ACG synonymous polymorphism was found in 30% of chloroquine village samples and 3% of other samples (P = 0.008). Variations in pfnhe1 block I were found in all except the chloroquine treated village (P < 0.001). Resistance associated pfdhfr 108N prevalence was 2% in the pyrimethamine village compared to 45–65% elsewhere, including the placebo village (P = 0.001). Conclusions Chloroquine treatment possibly resulted in the development of pfcrt 72–76 CVIET. Selection of pfmdr1 T1069ACG and a pfnhe1 block 1 genotypes indicates that chloroquine treatment exerted a selective pressure on P. falciparum. Pyrimethamine resistance associated pfdhfr 108N was present prior to the introduction of any drug. Decreased pfdhfr 108N frequency concurrent with development of pyrimethamine resistance suggests a non-pfdhfr polymorphisms mediated resistance mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1747-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irina T Jovel
- Malaria Research, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Anders Björkman
- Malaria Research, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Cally Roper
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health Unit, Uppsala University, Uppsala, Sweden
| | - Johan Ursing
- Malaria Research, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Danderyds Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Abstract
Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug resistance.
Collapse
Affiliation(s)
- Avinaba Mukherjee
- Department of Pharmaceutical Technology, Natural Science Laboratory, Jadavpur University, Kolkata, India
| | | |
Collapse
|
21
|
Muanda FT, Chaabane S, Boukhris T, Santos F, Sheehy O, Perreault S, Blais L, Bérard A. Antimalarial drugs for preventing malaria during pregnancy and the risk of low birth weight: a systematic review and meta-analysis of randomized and quasi-randomized trials. BMC Med 2015; 13:193. [PMID: 26275820 PMCID: PMC4537579 DOI: 10.1186/s12916-015-0429-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/17/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND It is known that antimalarial drugs reduce the risk of low birth weight (LBW) in pregnant patients. However, a previous Cochrane review did not evaluate whether the level of antimalarial drug resistance could modify the protective effect of antimalarial drugs in this regard. In addition, no systematic review exists comparing current recommendations for malaria prevention during pregnancy to alternative regimens in Africa. Therefore, we conducted a comprehensive systematic review and meta-analysis to assess the efficacy of antimalarial drugs for malaria prevention during pregnancy in reducing the risk of LBW. METHODS We searched PubMed, Embase and the Cochrane Central Register of Controlled Trials (CENTRAL) for articles published up to 21 November 2014, in English or French, and identified additional studies from reference lists. We included randomized and quasi-randomized studies reporting LBW as one of the outcomes. We extracted data and assessed the risk of bias in selected studies. All pooled analyses were based on a random effect model, and we used a funnel plot and trim and fill method to test and adjust for publication bias. RESULTS A total of 25 studies met the inclusion criteria (37,981 subjects). Compared to no use, all combined antimalarial drugs were associated with a 27% (RR 0.73, 95% CI 0.56-0.97, ten studies) reduction in the risk of LBW. The level of antimalarial drug resistance modified the protective effect of the antimalarial drug used for prevention of LBW during pregnancy. Sulfadoxine-pyrimethamine was not associated with a reduction in the risk of LBW in regions where the prevalence of the dihydropteroate synthase 540E mutation exceeds 50% (RR 0.99, 95% CI 0.80-1.22, three studies). The risk of LBW was similar when sulfadoxine-pyrimethamine was compared to mefloquine (RR 1.05, 95% CI 0.86-1.29, two studies). CONCLUSION Prophylactic antimalarial drugs and specifically sulfadoxine-pyrimethamine may no longer protect against the risk of LBW in areas of high-level resistance. In Africa, there are currently no suitable alternative drugs to replace sulfadoxine-pyrimethamine for malaria prevention during pregnancy.
Collapse
Affiliation(s)
- Flory Tsobo Muanda
- Faculty of Pharmacy, University of Montreal, 2940 Chemin de Polytechnique, Montreal, QC, H3T 1J4, Canada. .,Research Center, CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| | - Sonia Chaabane
- Faculty of Pharmacy, University of Montreal, 2940 Chemin de Polytechnique, Montreal, QC, H3T 1J4, Canada. .,Research Center, CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| | - Takoua Boukhris
- Faculty of Pharmacy, University of Montreal, 2940 Chemin de Polytechnique, Montreal, QC, H3T 1J4, Canada. .,Research Center, CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| | - Fabiano Santos
- Faculty of Medicine, McGill University, 3605 Rue de la Montagne, Montreal, QC, H3G 2M1, Canada.
| | - Odile Sheehy
- Research Center, CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| | - Sylvie Perreault
- Faculty of Pharmacy, University of Montreal, 2940 Chemin de Polytechnique, Montreal, QC, H3T 1J4, Canada.
| | - Lucie Blais
- Faculty of Pharmacy, University of Montreal, 2940 Chemin de Polytechnique, Montreal, QC, H3T 1J4, Canada.
| | - Anick Bérard
- Faculty of Pharmacy, University of Montreal, 2940 Chemin de Polytechnique, Montreal, QC, H3T 1J4, Canada. .,Research Center, CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| |
Collapse
|
22
|
Olasehinde G, Ojurongbe D, Akinjogunl O, Egwari L, Adeyeba A. Prevalence of Malaria and Predisposing Factors to Antimalarial Drug Resistance in Southwestern Nigeria. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/jp.2015.92.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Hopkins Sibley C. Artemisinin resistance: the more we know, the more complicated it appears. J Infect Dis 2014; 211:667-9. [PMID: 25180242 DOI: 10.1093/infdis/jiu469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Carol Hopkins Sibley
- WorldWide Antimalarial Resistance Network (WWARN), Department of Genome Sciences, University of Washington, Seattle
| |
Collapse
|
24
|
Abdul-Ghani R, Al-Maktari MT, Al-Shibani LA, Allam AF. A better resolution for integrating methods for monitoring Plasmodium falciparum resistance to antimalarial drugs. Acta Trop 2014; 137:44-57. [PMID: 24801884 DOI: 10.1016/j.actatropica.2014.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 12/16/2022]
Abstract
Effective chemotherapy is the mainstay of malaria control. However, resistance of falciparum malaria to antimalarial drugs compromised the efforts to eliminate the disease and led to the resurgence of malaria epidemics. Three main approaches are used to monitor antimalarial drug efficacy and drug resistance; namely, in vivo trials, in vitro/ex vivo assays and molecular markers of drug resistance. Each approach has its implications of use as well as its advantages and drawbacks. Therefore, there is a need to use an integrated approach that would give the utmost effect to detect resistance as early as its emergence and to track it once spread. Such integration becomes increasingly needed in the era of artemisinin-based combination therapy as a forward action to deter resistance. The existence of regional and global networks for the standardization of methodology, provision of high quality reagents for the assessment of antimalarial drug resistance and dissemination of open-access data would help in approaching an integrated resistance surveillance system on a global scale.
Collapse
|
25
|
Sibley CH. Understanding drug resistance in malaria parasites: basic science for public health. Mol Biochem Parasitol 2014; 195:107-14. [PMID: 24927641 DOI: 10.1016/j.molbiopara.2014.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/25/2014] [Accepted: 06/03/2014] [Indexed: 01/09/2023]
Abstract
The worlds of basic scientists and those involved in treating patients and making public health decisions do not always intersect. Yet, assuring that when patients are treated, they are efficiently and completely cured, and that public health decisions are based on solid evidence requires a broad foundation of up to date basic research. Research on the malaria parasite, Plasmodium falciparum provides a useful illustration of the role that basic scientific studies have played in the very long relationship between humans and this deadly parasite. Drugs have always been a principal tool in malaria treatment. The ongoing struggle between evolution of resistance to antimalarials by the parasite and public health responses is used here as an illustration of the key contributions of basic scientists to this long history.
Collapse
Affiliation(s)
- Carol Hopkins Sibley
- World Wide Antimalarial Resistance Network, Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA.
| |
Collapse
|
26
|
Jovel IT, Ferreira PE, Veiga MI, Malmberg M, Mårtensson A, Kaneko A, Zakeri S, Murillo C, Nosten F, Björkman A, Ursing J. Single nucleotide polymorphisms in Plasmodium falciparum V type H(+) pyrophosphatase gene (pfvp2) and their associations with pfcrt and pfmdr1 polymorphisms. INFECTION GENETICS AND EVOLUTION 2014; 24:111-5. [PMID: 24657918 DOI: 10.1016/j.meegid.2014.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/02/2014] [Accepted: 03/04/2014] [Indexed: 01/31/2023]
Abstract
BACKGROUND Chloroquine resistance in Plasmodium falciparum malaria has been associated with pfcrt 76T (chloroquine resistance transporter gene) and pfmdr1 86Y (multidrug resistance gene 1) alleles. Pfcrt 76T enables transport of protonated chloroquine out of the parasites digestive vacuole resulting in a loss of hydrogen ions (H(+)). V type H(+) pyrophosphatase (PfVP2) is thought to pump H(+) into the digestive vacuole. This study aimed to describe the geographic distribution of single nucleotide polymorphisms in pfvp2 and their possible associations with pfcrt and pfmdr1 polymorphisms. METHODS Blood samples from 384 patients collected (1981-2009) in Honduras (n=35), Colombia (n=50), Liberia (n=50), Guinea Bissau (n=50), Tanzania (n=50), Iran (n=50), Thailand (n=49) and Vanuatu (n=50) were analysed. The pfcrt 72-76 haplotype, pfmdr1 copy numbers, pfmdr1 N86Y and pfvp2 V405I, K582R and P711S alleles were identified using PCR based methods. RESULTS Pfvp2 was amplified in 344 samples. The pfvp2 allele proportions were V405 (97%), 405I (3%), K582 (99%), 582R (1%), P711 (97%) and 711S (3%). The number of patients with any of pfvp2 405I, 582R and/or 711S were as follows: Honduras (2/30), Colombia (0/46), Liberia (7/48), Guinea-Bissau (4/50), Tanzania (3/48), Iran (3/50), Thailand (1/49) and Vanuatu (0/31). The alleles were most common in Liberia (P=0.01) and Liberia+Guinea-Bissau (P=0.01). The VKP haplotype was found in 189/194 (97%) and 131/145 (90%) samples harbouring pfcrt 76T and pfcrt K76 respectively (P=0.007). CONCLUSIONS The VKP haplotype was dominant. Most pfvp2 405I, 582R and 711S SNPs were seen where CQ resistance was not highly prevalent at the time of blood sampling possibly due to greater genetic variation prior to the bottle neck event of spreading CQ resistance. The association between the pfvp2 VKP haplotype and pfcrt 76T, which may indicate that pfvp2 is involved in CQ resistance, should therefore be interpreted with caution.
Collapse
Affiliation(s)
- Irina Tatiana Jovel
- Malaria Research, Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital/Karolinska Institutet, Retzius väg 10, 171 77 Stockholm, Sweden; Departamento de Parasitología, Escuela de Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras (UNAH), Tegucigalpa, Honduras.
| | - Pedro Eduardo Ferreira
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden; School of Biological Sciences, Nanyang Technological University, Singapore.
| | - Maria Isabel Veiga
- Malaria Research, Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital/Karolinska Institutet, Retzius väg 10, 171 77 Stockholm, Sweden; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Maja Malmberg
- Malaria Research, Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital/Karolinska Institutet, Retzius väg 10, 171 77 Stockholm, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Section of Virology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Andreas Mårtensson
- Malaria Research, Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital/Karolinska Institutet, Retzius väg 10, 171 77 Stockholm, Sweden; Global Health, Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden.
| | - Akira Kaneko
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| | - Sedigheh Zakeri
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Iran.
| | - Claribel Murillo
- Centro Internacional de Entrenamiento e Investigaciones Médicas, Cali, Colombia.
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mae Sot Tak, Thailand; Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Nuffield Department of Clinical Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom.
| | - Anders Björkman
- Malaria Research, Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital/Karolinska Institutet, Retzius väg 10, 171 77 Stockholm, Sweden.
| | - Johan Ursing
- Malaria Research, Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital/Karolinska Institutet, Retzius väg 10, 171 77 Stockholm, Sweden.
| |
Collapse
|
27
|
Taylor AR, Flegg JA, Nsobya SL, Yeka A, Kamya MR, Rosenthal PJ, Dorsey G, Sibley CH, Guerin PJ, Holmes CC. Estimation of malaria haplotype and genotype frequencies: a statistical approach to overcome the challenge associated with multiclonal infections. Malar J 2014; 13:102. [PMID: 24636676 PMCID: PMC4004158 DOI: 10.1186/1475-2875-13-102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/26/2014] [Indexed: 11/16/2022] Open
Abstract
Background Reliable measures of anti-malarial resistance are crucial for malaria control. Resistance is typically a complex trait: multiple mutations in a single parasite (a haplotype or genotype) are necessary for elaboration of the resistant phenotype. The frequency of a genetic motif (proportion of parasite clones in the parasite population that carry a given allele, haplotype or genotype) is a useful measure of resistance. In areas of high endemicity, malaria patients generally harbour multiple parasite clones; they have multiplicities of infection (MOIs) greater than one. However, most standard experimental procedures only allow measurement of marker prevalence (proportion of patient blood samples that test positive for a given mutation or combination of mutations), not frequency. It is misleading to compare marker prevalence between sites that have different mean MOIs; frequencies are required instead. Methods A Bayesian statistical model was developed to estimate Plasmodium falciparum genetic motif frequencies from prevalence data collected in the field. To assess model performance and computational speed, a detailed simulation study was implemented. Application of the model was tested using datasets from five sites in Uganda. The datasets included prevalence data on markers of resistance to sulphadoxine-pyrimethamine and an average MOI estimate for each study site. Results The simulation study revealed that the genetic motif frequencies that were estimated using the model were more accurate and precise than conventional estimates based on direct counting. Importantly, the model did not require measurements of the MOI in each patient; it used the average MOI in the patient population. Furthermore, if a dataset included partially genotyped patient blood samples, the model imputed the data that were missing. Using the model and the Ugandan data, genotype frequencies were estimated and four biologically relevant genotypes were identified. Conclusions The model allows fast, accurate, reliable estimation of the frequency of genetic motifs associated with resistance to anti-malarials using prevalence data collected from malaria patients. The model does not require per-patient MOI measurements and can easily analyse data from five markers. The model will be a valuable tool for monitoring markers of anti-malarial drug resistance, including markers of resistance to artemisinin derivatives and partner drugs.
Collapse
Affiliation(s)
- Aimee R Taylor
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abdul-Ghani R, Farag HF, Allam AF. Sulfadoxine-pyrimethamine resistance in Plasmodium falciparum: a zoomed image at the molecular level within a geographic context. Acta Trop 2013; 125:163-90. [PMID: 23131424 DOI: 10.1016/j.actatropica.2012.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
Abstract
Antimalarial chemotherapy is one of the main pillars in the prevention and control of malaria. Following widespread resistance of Plasmodium falciparum to chloroquine, sulfadoxine-pyrimethamine came to the scene as an alternative to the cheap and well-tolerated chloroquine. However, widespread resistance to sulfadoxine-pyrimethamine has been documented. In vivo efficacy tests are the gold standard for assessing drug resistance and treatment failure. However, they have many disadvantages, such as influence of host immunity and drug pharmacokinetics. In vitro tests of antimalarial drug efficacy also have many technical difficulties. Molecular markers of resistance have emerged as epidemiologic tools to investigate antimalarial drug resistance even before becoming clinically evident. Mutations in P. falciparum dihydrofolate reductase and dihydrofolate synthase have been extensively studied as molecular markers for resistance to pyrimethamine and sulfadoxine, respectively. This review highlights the resistance of P. falciparum at the molecular level presenting both supporting and opposing studies on the utility of molecular markers.
Collapse
|
29
|
Eradication of malaria through genetic engineering: the current situation. ASIAN PAC J TROP MED 2013; 6:85-94. [DOI: 10.1016/s1995-7645(13)60001-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 12/15/2012] [Accepted: 01/15/2013] [Indexed: 01/03/2023] Open
|
30
|
Tambo E, Adedeji AA, Huang F, Chen JH, Zhou SS, Tang LH. Scaling up impact of malaria control programmes: a tale of events in Sub-Saharan Africa and People's Republic of China. Infect Dis Poverty 2012; 1:7. [PMID: 23849299 PMCID: PMC3710198 DOI: 10.1186/2049-9957-1-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/12/2012] [Indexed: 11/10/2022] Open
Abstract
This review aims at providing synthetic information with scientific evidence on the trends in the malaria events from 1960 to 2011, with the hope that it will help policy makers to take informed decisions on public health issues and intervention designs on malaria control towards elimination in both Sub-Sahara Africa and in the People's Republic of China by highlighting the achievements, progress and challenges in research on moving malaria from epidemic status towards elimination. Our findings showed that since 1960, malaria control programmes in most countries have been disjointed and not harmonized. Interestingly, during the last decade, the causal factors of the unprecedented and substantial decline in malaria morbidity and mortality rates in most vulnerable groups in these endemic areas are multifaceted, including not only the spread of malaria and its related effects but also political and financial willingness, commitment and funding by governments and international donors. The benefits of scaling up the impact of malaria coverage interventions, improvement of health system approaches and sustained commitment of stakeholders are highlighted, although considerable efforts are still necessary in Sub-Sahara Africa. Furthermore, novel integrated control strategies aiming at moving malaria from epidemic status to control towards elimination, require solid research priorities both for sustainability of the most efficient existing tools and intervention coverage, and in gaining more insights in the understanding of the epidemiology, pathogenesis, vector dynamics, and socioeconomic aspects of the disease. In conclusion, political commitment and financial investment of stakeholders in sustaining the scaling up impact of malaria control interventions, networking between African and Chinese scientists, and their Western partners are urgently needed in upholding the recent gains, and in translating lessons learnt from the Chinese malaria control achievements and successes into practical interventions in malaria endemic countries in Africa and elsewhere.
Collapse
Affiliation(s)
- Ernest Tambo
- National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre on Malaria, Schisostomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Rd, Shanghai, 200025, People’s Republic of China
- School of Medicine & Pharmacy, Houdegbe North American University PK10, Route de Porto-Novo, 06 BP 2080, Cotonou, République du Bénin
| | - Ahmed Adebowale Adedeji
- Department of Pharmacology and Toxicology, Kampala International University Western Campus, P.O.Box 71, Ishaka, Bushenyi, Uganda
| | - Fang Huang
- National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre on Malaria, Schisostomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Rd, Shanghai, 200025, People’s Republic of China
| | - Jun-Hu Chen
- National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre on Malaria, Schisostomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Rd, Shanghai, 200025, People’s Republic of China
| | - Shui-Sen Zhou
- National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre on Malaria, Schisostomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Rd, Shanghai, 200025, People’s Republic of China
| | - Ling-Hua Tang
- National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre on Malaria, Schisostomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Rd, Shanghai, 200025, People’s Republic of China
| |
Collapse
|
31
|
Sibley CH, Price RN. Monitoring antimalarial drug resistance: Applying lessons learned from the past in a fast-moving present. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:126-33. [PMID: 24533274 DOI: 10.1016/j.ijpddr.2012.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 03/25/2012] [Accepted: 03/28/2012] [Indexed: 11/19/2022]
Abstract
The need for robust surveillance of antimalarial drugs is more urgent than it has ever been. In the western region of Cambodia, artemisinin resistance has emerged in Plasmodium falciparum and threatens to undermine the efficacy of highly effective artemisinin combination therapies. Although some manfestations of artemisinin tolerance are unique to this class of drug, many of its properties mirror previous experience in understanding and tracking resistance to other antimalarials. In this review we outline the spectrum of approaches that were developed to understand the evolution and spread of antifolate resistance, highlighting the importance of integrating information from different methodologies towards a better understanding of the underlying biologic processes. We consider how to apply our experience in investigating and attempting to contain antifolate resistance to inform our prospective assessment of novel antimalarial resistance patterns and their subsequent spread.
Collapse
Affiliation(s)
- Carol Hopkins Sibley
- WorldWide Antimalarial Resistance Network, Box 355065, University of Washington, Seattle, WA 98195 5065, USA
| | - Ric N Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia ; Center for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| |
Collapse
|
32
|
Abstract
Antimalarial chemotherapy is an important component of all malaria control programmes throughout the world. This is especially so in light of the fact that there are no antimalarial vaccines which are available for clinical use at present. Emergence and spread of malaria parasites which are resistant to many of the available antimalarials today is, therefore, a major cause for concern. Till date, resistance to all groups of antimalarials excluding artemisinin has been reported. In recent years, in vitro resistance to even artemisinin has been described. While resistance to antibacterial agents has come to prominence as a clinical problem in recent years, antiparasitic resistance in general and antimalarial resistance in particular has not received much attention, especially in the Indian scenario. The present review deals with commonly used antimalarial drugs and the mechanisms of resistance to them. Various methods of detecting antimalarial resistance and avoiding the same have also been dealt with. Newer parasite targets which can be used in developing newer antimalarial agents and antimalarials obtained from plants have also been mentioned.
Collapse
Affiliation(s)
- S C Parija
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India.
| | | |
Collapse
|
33
|
Mharakurwa S, Kumwenda T, Mkulama MAP, Musapa M, Chishimba S, Shiff CJ, Sullivan DJ, Thuma PE, Liu K, Agre P. Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes. Proc Natl Acad Sci U S A 2011; 108:18796-801. [PMID: 22065788 PMCID: PMC3219121 DOI: 10.1073/pnas.1116162108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Surveillance for drug-resistant parasites in human blood is a major effort in malaria control. Here we report contrasting antifolate resistance polymorphisms in Plasmodium falciparum when parasites in human blood were compared with parasites in Anopheles vector mosquitoes from sleeping huts in rural Zambia. DNA encoding P. falciparum dihydrofolate reductase (EC 1.5.1.3) was amplified by PCR with allele-specific restriction enzyme digestions. Markedly prevalent pyrimethamine-resistant mutants were evident in human P. falciparum infections--S108N (>90%), with N51I, C59R, and 108N+51I+59R triple mutants (30-80%). This resistance level may be from selection pressure due to decades of sulfadoxine/pyrimethamine use in the region. In contrast, cycloguanil-resistant mutants were detected in very low frequency in parasites from human blood samples-S108T (13%), with A16V and 108T+16V double mutants (∼4%). Surprisingly, pyrimethamine-resistant mutants were of very low prevalence (2-12%) in the midguts of Anopheles arabiensis vector mosquitoes, but cycloguanil-resistant mutants were highly prevalent-S108T (90%), with A16V and the 108T+16V double mutant (49-57%). Structural analysis of the dihydrofolate reductase by in silico modeling revealed a key difference in the enzyme within the NADPH binding pocket, predicting the S108N enzyme to have reduced stability but the S108T enzyme to have increased stability. We conclude that P. falciparum can bear highly host-specific drug-resistant polymorphisms, most likely reflecting different selective pressures found in humans and mosquitoes. Thus, it may be useful to sample both human and mosquito vector infections to accurately ascertain the epidemiological status of drug-resistant alleles.
Collapse
Affiliation(s)
- Sungano Mharakurwa
- The Malaria Institute at Macha, Choma, Zambia; and
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | | | | | | | | | - Clive J. Shiff
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - David J. Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Philip E. Thuma
- The Malaria Institute at Macha, Choma, Zambia; and
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Kun Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Peter Agre
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
34
|
Mubjer RA, Adeel AA, Chance ML, Hassan AA. Molecular markers of anti-malarial drug resistance in Lahj Governorate, Yemen: baseline data and implications. Malar J 2011; 10:245. [PMID: 21854642 PMCID: PMC3177815 DOI: 10.1186/1475-2875-10-245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 08/21/2011] [Indexed: 11/11/2022] Open
Abstract
Background This is an investigation of anti-malarial molecular markers coupled with a therapeutic efficacy test of chloroquine (CQ) against falciparum malaria in an area of unstable malaria in Lahj Governorate, Yemen. The study was aimed at assessment of therapeutic response to CQ and elucidation of baseline information on molecular markers for Plasmodium falciparum resistance against CQ and sulphadoxine/pyrimethamine (SP). Methods Between 2002 and 2003 the field test was conducted according to the standard WHO protocol to evaluate the therapeutic efficacy of CQ in 124 patients with falciparum malaria in an endemic area in Lahj Governorate in Yemen. Blood samples collected during this study were analysed for P. falciparum chloroquine resistance transporter gene (pfcrt)-76 polymorphisms, mutation pfcrt-S163R and the antifolate resistance-associated mutations dihydrofolate reductase (dhfr)-C59R and dihydropteroate synthase (dhps)-K540E. Direct DNA sequencing of the pfcrt gene from three representative field samples was carried out after DNA amplification of the 13 exons of the pfcrt gene. Results Treatment failure was detected in 61% of the 122 cases that completed the 14-day follow-up. The prevalence of mutant pfcrt T76 was 98% in 112 amplified pre-treatment samples. The presence of pfcrt T76 was poorly predictive of in vivo CQ resistance (PPV = 61.8%, 95% CI = 52.7-70.9). The prevalence of dhfr Arg-59 mutation in 99 amplified samples was 5%, while the dhps Glu-540 was not detected in any of 119 amplified samples. Sequencing the pfcrt gene confirmed that Yemeni CQ resistant P. falciparum carry the old world (Asian and African) CQ resistant haplotype CVIETSESI at positions 72,73,74,75,76,220,271, 326 and 371. Conclusion This is the first study to report baseline information on the characteristics and implications of anti-malarial drug resistance markers in Yemen. It is also the first report of the haplotype associated with CQR P. falciparum parasites from Yemen. Mutant pfcrtT76 is highly prevalent but it is a poor predictor of treatment failure in the study population. The prevalence of mutation dhfrArg59 is suggestive of emerging resistance to SP, which is currently a component of the recommended combination treatment of falciparum malaria in Yemen. More studies on these markers are recommended for surveillance of resistance in the study area.
Collapse
Affiliation(s)
- Reem A Mubjer
- Genetics and Immunology, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Aden University, Yemen.
| | | | | | | |
Collapse
|
35
|
Morford L. A theoretical application of selectable markers in bacterial episomes for a DNA cryptosystem. J Theor Biol 2011; 273:100-2. [DOI: 10.1016/j.jtbi.2010.12.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 11/28/2022]
|
36
|
Bin Dajem SM, Al-Sheikh AAH, Bohol MF, Alhawi M, Al-Ahdal MN, Al-Qahtani A. Detecting mutations in PfCRT and PfMDR1 genes among Plasmodium falciparum isolates from Saudi Arabia by pyrosequencing. Parasitol Res 2011; 109:291-6. [PMID: 21350795 DOI: 10.1007/s00436-011-2251-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 01/11/2011] [Indexed: 11/26/2022]
Abstract
The emergence of chloroquine resistance in Plasmodium falciparum is a significant public health problem where malaria is endemic. We aimed to evaluate the efficacy of pyrosequencing to assess chloroquine resistance among P. falciparum isolates from the southwestern region of Saudi Arabia by analyzing the K76T and N86Y mutations in the P. falciparum chloroquine resistance transporter (PfCRT) and P. falciparum multidrug resistance 1 (PfMDR1) genes, respectively. Blood samples (n = 121) from microscopically positive P. falciparum cases were collected. DNA was extracted, and fragments from each of the genes were amplified by PCR using new sets of primers. The amplicons were sequenced using a pyrosequencer. All of the 121 samples were amplified for assessment of the PfCRT K76T and PfMDR1 N86Y mutations. All of the samples amplified for the PfCRT 76T mutation harbored the ACA codon (121/121; 100%), indicating the presence of the 76T mutation. For the PfMDR1 N86Y mutation, 72/121 samples (59.5%) had the sequence AAT at that position, indicating the presence of the wild-type allele (86N). However, 49/121 samples (40.5%) had a TAT codon, indicating the mutant allele (Y) at position 86. This study shows that pyrosequencing could be useful as a high throughput, rapid, and sensitive assay for the detection of specific single nucleotide polymorphisms in drug-resistant P. falciparum strains. This will help health authorities in malaria-endemic regions to adopt new malaria control strategies that will be applicable for diagnostic and drug resistance assays for malaria and other life-threatening pathogens that are endemic in their respective countries.
Collapse
Affiliation(s)
- Saad M Bin Dajem
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
37
|
Patel JJ, Thacker D, Tan JC, Pleeter P, Checkley L, Gonzales JM, Deng B, Roepe PD, Cooper RA, Ferdig MT. Chloroquine susceptibility and reversibility in a Plasmodium falciparum genetic cross. Mol Microbiol 2010; 78:770-87. [PMID: 20807203 DOI: 10.1111/j.1365-2958.2010.07366.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mutations in the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT) are major determinants of verapamil (VP)-reversible CQ resistance (CQR). In the presence of mutant PfCRT, additional genes contribute to the wide range of CQ susceptibilities observed. It is not known if these genes influence mechanisms of chemosensitization by CQR reversal agents. Using quantitative trait locus (QTL) mapping of progeny clones from the HB3 × Dd2 cross, we show that the P. falciparum multidrug resistance gene 1 (pfmdr1) interacts with the South-East Asia-derived mutant pfcrt haplotype to modulate CQR levels. A novel chromosome 7 locus is predicted to contribute with the pfcrt and pfmdr1 loci to influence CQR levels. Chemoreversal via a wide range of chemical structures operates through a direct pfcrt-based mechanism. Direct inhibition of parasite growth by these reversal agents is influenced by pfcrt mutations and additional loci. Direct labelling of purified recombinant PfMDR1 protein with a highly specific photoaffinity CQ analogue, and lack of competition for photolabelling by VP, supports our QTL predictions. We find no evidence that pfmdr1 copy number affects CQ response in the progeny; however, inheritance patterns indicate that an allele-specific interaction between pfmdr1 and pfcrt is part of the complex genetic background of CQR.
Collapse
Affiliation(s)
- Jigar J Patel
- The Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, 205 Galvin Life Sciences, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sridaran S, McClintock SK, Syphard LM, Herman KM, Barnwell JW, Udhayakumar V. Anti-folate drug resistance in Africa: meta-analysis of reported dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) mutant genotype frequencies in African Plasmodium falciparum parasite populations. Malar J 2010; 9:247. [PMID: 20799995 PMCID: PMC2940896 DOI: 10.1186/1475-2875-9-247] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 08/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes of Plasmodium falciparum are associated with resistance to anti-folate drugs, most notably sulphadoxine-pyrimethamine (SP). Molecular studies document the prevalence of these mutations in parasite populations across the African continent. However, there is no systematic review examining the collective epidemiological significance of these studies. This meta-analysis attempts to: 1) summarize genotype frequency data that are critical for molecular surveillance of anti-folate resistance and 2) identify the specific challenges facing the development of future molecular databases. METHODS This review consists of 220 studies published prior to 2009 that report the frequency of select dhfr and dhps mutations in 31 African countries. Maps were created to summarize the location and prevalence of the highly resistant dhfr triple mutant (N51I, C59R, S108N) genotype and dhps double mutant (A437G and K540E) genotype in Africa. A hierarchical mixed effects logistic regression was used to examine the influence of various factors on reported mutant genotype frequency. These factors include: year and location of study, age and clinical status of sampled population, and reporting conventions for mixed genotype data. RESULTS A database consisting of dhfr and dhps mutant genotype frequencies from all African studies that met selection criteria was created for this analysis. The map illustrates particularly high prevalence of both the dhfr triple and dhps double mutant genotypes along the Kenya-Tanzania border and Malawi. The regression model shows a statistically significant increase in the prevalence of both the dhfr triple and dhps double mutant genotypes in Africa. CONCLUSION Increasing prevalence of the dhfr triple mutant and dhps double mutant genotypes in Africa are consistent with the loss of efficacy of SP for treatment of clinical malaria in most parts of this continent. Continued assessment of the effectiveness of SP for the treatment of clinical malaria and intermittent preventive treatment in pregnancy is needed. The creation of a centralized resistance data network, such as the one proposed by the WorldWide Antimalarial Resistance Network (WWARN), will become a valuable resource for planning timely actions to combat drug resistant malaria.
Collapse
Affiliation(s)
- Sankar Sridaran
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, 1600 Clifton road NE, Mail Stop D-67 Atlanta, GA, 30333, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Gama BE, Pereira-Carvalho GAL, Lutucuta Kosi FJI, Almeida de Oliveira NK, Fortes F, Rosenthal PJ, Daniel-Ribeiro CT, de Fátima Ferreira-da-Cruz M. Plasmodium falciparum isolates from Angola show the StctVMNT haplotype in the pfcrt gene. Malar J 2010; 9:174. [PMID: 20565881 PMCID: PMC2898790 DOI: 10.1186/1475-2875-9-174] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/18/2010] [Indexed: 12/03/2022] Open
Abstract
Background Effective treatment remains a mainstay of malaria control, but it is unfortunately strongly compromised by drug resistance, particularly in Plasmodium falciparum, the most important human malaria parasite. Although P. falciparum chemoresistance is well recognized all over the world, limited data are available on the distribution and prevalence of pfcrt and pfmdr1 haplotypes that mediate resistance to commonly used drugs and that show distinct geographic differences. Methods Plasmodium falciparum-infected blood samples collected in 2007 at four municipalities of Luanda, Angola, were genotyped using PCR and direct DNA sequencing. Single nucleotide polymorphisms in the P. falciparum pfcrt and pfmdr1 genes were assessed and haplotype prevalences were determined. Results and Discussion The most prevalent pfcrt haplotype was StctVMNT (representing amino acids at codons 72-76). This result was unexpected, since the StctVMNT haplotype has previously been seen mainly in parasites from South America and India. The CVIET, CVMNT and CVINT drug-resistance haplotypes were also found, and one previously undescribed haplotype (CVMDT) was detected. Regarding pfmdr1, the most prevalent haplotype was YEYSNVD (representing amino acids at codons 86, 130, 184, 1034, 1042, 1109 and 1246). Wild haplotypes for pfcrt and pfmdr1 were uncommon; 3% of field isolates harbored wild type pfcrt (CVMNK), whereas 21% had wild type pfmdr1 (NEYSNVD). The observed predominance of the StctVMNT haplotype in Angola could be a result of frequent travel between Brazil and Angola citizens in the context of selective pressure of heavy CQ use. Conclusions The high prevalence of the pfcrt SVMNT haplotype and the pfmdr1 86Y mutation confirm high-level chloroquine resistance and might suggest reduced efficacy of amodiaquine in Angola. Further studies must be encouraged to examine the in vitro sensitivity of pfcrt SVMNT parasites to artesunate and amodiaquine for better conclusive data.
Collapse
Affiliation(s)
- Bianca E Gama
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Michel R, Bardot S, Queyriaux B, Boutin JP, Touze JE. Doxycycline-chloroquine vs. doxycycline-placebo for malaria prophylaxis in nonimmune soldiers: a double-blind randomized field trial in sub-Saharan Africa. Trans R Soc Trop Med Hyg 2010; 104:290-7. [PMID: 20129634 DOI: 10.1016/j.trstmh.2009.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 12/14/2022] Open
Abstract
Failures of malaria chemoprophylaxis have been related to a lack of compliance with doxycycline due to its short elimination half-life. Adding a molecule with a long half-life to doxycycline could be useful to take over from this drug in case of occasional missed doses. A double-blind, placebo-controlled randomized field trial was designed to compare the tolerability of a doxycycline-chloroquine combination vs. doxycycline as malaria prophylaxis among French soldiers deployed in Africa. Data from 936 volunteers were analyzed. In both groups, the proportion of volunteers who reported at least one adverse effect was about 57%. Tolerability was similar in the groups except for a higher proportion of nausea or vomiting in the doxycycline-chloroquine group. The reported compliance rate was 86.6% and was similar in the two groups. Eight Plasmodium falciparum malaria cases were diagnosed in the doxycycline group and seven in the doxycycline-chloroquine group. The efficacy of the two chemoprophylaxis regimens was similar. Our study was the first randomized field trial to assess a doxycycline-chloroquine combination as malaria prophylaxis and showed no significant decrease of overall tolerability of the combination compared with doxycycline alone. Our results showed that a doxycycline-chloroquine combination could be a safe combination for malaria chemoprophylaxis.
Collapse
Affiliation(s)
- Rémy Michel
- Institut de Médecine Tropicale du Service de Santé des Armées, BP 46, 13998 Marseille Armées, France.
| | | | | | | | | |
Collapse
|
41
|
Babiker HA, Hastings IM, Swedberg G. Impaired fitness of drug-resistant malaria parasites: evidence and implication on drug-deployment policies. Expert Rev Anti Infect Ther 2009; 7:581-93. [PMID: 19485798 DOI: 10.1586/eri.09.29] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malaria, a leading parasitic disease, inflicts an enormous toll on human lives and is caused by protozoal parasites belonging to the genus Plasmodium. Antimalarial drugs targeting essential biochemical processes in the parasite are the primary resources for management and control. However, the parasite has established mutations, substantially reducing the efficacy of these drugs. First-line therapy is faced the with the consistent evolution of drug-resistant genotypes carrying these mutations. However, drug-resistant genotypes are likely to be less fit than the wild-type, suggesting that they might disappear by reducing the volume of drug pressure. A substantial body of epidemiological evidence confirmed that the frequency of resistant genotypes wanes when active drug selection declines. Drug selection on the parasite genome that removes genetic variation in the vicinity of drug-resistant genes (hitch-hiking) is common among resistant parasites in the field. This can further disadvantage drug-resistant strains and limit their variability in the face of a mounting immune response. Attempts to provide unequivocal evidence for the fitness cost of drug resistance have monitored the outcomes of laboratory competition experiments of deliberate mixtures of sensitive and resistant strains, in the absence of drug pressure, using isogenic clones produced either by drug selection or gene manipulation. Some of these experiments provided inconclusive results, but they all suggested reduced fitness of drug-resistant clones in the absence of drug pressure. In addition, biochemical analyses provided clearer information demonstrating that the mutation of some antimalarial-targeted enzymes lowers their activity compared with the wild-type enzyme. Here, we review current evidences for the disadvantage of drug-resistance mutations, and discuss some strategies of drug deployment to maximize the cost of resistance and limit its spread.
Collapse
Affiliation(s)
- Hamza A Babiker
- Biochemistry Department, Faculty of Medicine, Sultan Qaboos University, Alkhod, Muscat, Oman.
| | | | | |
Collapse
|
42
|
Zhang GQ, Guan YY, Zheng B, Wu S, Tang LH. Molecular assessment ofPlasmodium falciparumresistance to antimalarial drugs in China. Trop Med Int Health 2009; 14:1266-71. [DOI: 10.1111/j.1365-3156.2009.02342.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Hapuarachchi HC, Abeysundara S, Dayanath MYD, Manamperi A, Abeyewickreme W, de Silva NR. Molecular markers of chloroquine resistance in Plasmodium falciparum in Sri Lanka: frequency before revision of the antimalarial drug policy. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2009; 103:351-6. [PMID: 19508753 DOI: 10.1179/136485909x435067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H C Hapuarachchi
- Department of Parasitology, Faculty of Medicine, University of Kelaniya, P.O. Box 6, Thalagolla Road, Ragama, Sri Lanka
| | | | | | | | | | | |
Collapse
|
44
|
Picot S, Olliaro P, de Monbrison F, Bienvenu AL, Price RN, Ringwald P. A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria. Malar J 2009; 8:89. [PMID: 19413906 PMCID: PMC2681474 DOI: 10.1186/1475-2875-8-89] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 05/04/2009] [Indexed: 01/17/2023] Open
Abstract
Background An assessment of the correlation between anti-malarial treatment outcome and molecular markers would improve the early detection and monitoring of drug resistance by Plasmodium falciparum. The purpose of this systematic review was to determine the risk of treatment failure associated with specific polymorphisms in the parasite genome or gene copy number. Methods Clinical studies of non-severe malaria reporting on target genetic markers (SNPs for pfmdr1, pfcrt, dhfr, dhps, gene copy number for pfmdr1) providing complete information on inclusion criteria, outcome, follow up and genotyping, were included. Three investigators independently extracted data from articles. Results were stratified by gene, codon, drug and duration of follow-up. For each study and aggregate data the random effect odds ratio (OR) with 95%CIs was estimated and presented as Forest plots. An OR with a lower 95th confidence interval > 1 was considered consistent with a failure being associated to a given gene mutation. Results 92 studies were eligible among the selection from computerized search, with information on pfcrt (25/159 studies), pfmdr1 (29/236 studies), dhfr (18/373 studies), dhps (20/195 studies). The risk of therapeutic failure after chloroquine was increased by the presence of pfcrt K76T (Day 28, OR = 7.2 [95%CI: 4.5–11.5]), pfmdr1 N86Y was associated with both chloroquine (Day 28, OR = 1.8 [95%CI: 1.3–2.4]) and amodiaquine failures (OR = 5.4 [95%CI: 2.6–11.3, p < 0.001]). For sulphadoxine-pyrimethamine the dhfr single (S108N) (Day 28, OR = 3.5 [95%CI: 1.9–6.3]) and triple mutants (S108N, N51I, C59R) (Day 28, OR = 3.1 [95%CI: 2.0–4.9]) and dhfr-dhps quintuple mutants (Day 28, OR = 5.2 [95%CI: 3.2–8.8]) also increased the risk of treatment failure. Increased pfmdr1 copy number was correlated with treatment failure following mefloquine (OR = 8.6 [95%CI: 3.3–22.9]). Conclusion When applying the selection procedure for comparative analysis, few studies fulfilled all inclusion criteria compared to the large number of papers identified, but heterogeneity was limited. Genetic molecular markers were related to an increased risk of therapeutic failure. Guidelines are discussed and a checklist for further studies is proposed.
Collapse
Affiliation(s)
- Stéphane Picot
- Malaria Research Unit, EA 4170, University Lyon 1, Faculty of Medicine, Lyon, France.
| | | | | | | | | | | |
Collapse
|
45
|
de Almeida A, Arez AP, Cravo PVL, do Rosário VE. Analysis of genetic mutations associated with anti-malarial drug resistance in Plasmodium falciparum from the Democratic Republic of East Timor. Malar J 2009; 8:59. [PMID: 19358729 PMCID: PMC2672086 DOI: 10.1186/1475-2875-8-59] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Accepted: 04/09/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In response to chloroquine (CQ) resistance, the policy for the first-line treatment of uncomplicated malaria in the Democratic Republic of East Timor (DRET) was changed in early 2000. The combination of sulphadoxine-pyrimethamine (SP) was then introduced for the treatment of uncomplicated falciparum malaria. METHODS Blood samples were collected in two different periods (2003-2004 and 2004-2005) from individuals attending hospitals or clinics in six districts of the DRET and checked for Plasmodium falciparum infection. 112 PCR-positive samples were inspected for genetic polymorphisms in the pfcrt, pfmdr1, pfdhfr and pfdhps genes. Different alleles were interrogated for potential associations that could be indicative of non-random linkage. RESULTS Overall prevalence of mutations associated with resistance to CQ and SP was extremely high. The mutant form of Pfcrt (76T) was found to be fixed even after five years of alleged CQ removal. There was a significant increase in the prevalence of the pfdhps 437G mutation (X2 = 31.1; p = 0.001) from the first to second survey periods. A non-random association was observed between pfdhfr51/pfdhps437 (p = 0.001) and pfdhfr 59/pfdhps 437 (p = 0.013) alleles. CONCLUSION Persistence of CQ-resistant mutants even after supposed drug withdrawal suggests one or all of the following: local P. falciparum may still be inadvertently exposed to the drug, that mutant parasites are being "imported" into the country, and/or reduced genetic diversity and low parasite transmission help maintain mutant haplotypes. The association between pfdhfr51/pfdhps437 and pfdhfr 59/pfdhps 437 alleles indicates that these are undergoing concomitant positive selection in the DRET.
Collapse
Affiliation(s)
- Afonso de Almeida
- Universidade Nacional de Timor Leste, Avenida Cidade de Lisboa, Díli, Timor Leste
- Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 96, 1349-008 Lisboa, Portugal
| | - Ana Paula Arez
- Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 96, 1349-008 Lisboa, Portugal
| | - Pedro VL Cravo
- Unidade de Biologia Molecular, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 96, 1349-008 Lisboa, Portugal
| | - Virgílio E do Rosário
- Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 96, 1349-008 Lisboa, Portugal
| |
Collapse
|
46
|
Zhu J, Chen T, Liu J, Ma R, Lu W, Huang J, Li H, Li J, Jiang H. 2-(3,4-dihydro-4-oxothieno[2,3-d]pyrimidin-2-ylthio) acetamides as a new class of falcipain-2 inhibitors. 3. design, synthesis and biological evaluation. Molecules 2009; 14:785-97. [PMID: 19223827 PMCID: PMC6253991 DOI: 10.3390/molecules14020785] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 01/18/2009] [Accepted: 02/13/2009] [Indexed: 12/04/2022] Open
Abstract
The cysteine protease falcipain-2 (FP-2) of Plasmodium falciparum is a principal cysteine protease and an essential hemoglobinase of erythrocytic P. falciparum trophozoites, making it become an attractive target enzyme for developing anti-malarial drugs. In this study, a series of novel small molecule FP-2 inhibitors have been designed and synthesized based on compound 1, which was identified by using structure-based virtual screening in conjunction with an enzyme inhibition assay. All compounds showed high inhibitory effect against FP-2 with IC(50)s of 1.46-11.38 microM, and the inhibitory activity of compound 2a was ~2 times greater than that of prototype compound 1. The preliminary SARs are summarized and should be helpful for future inhibitor design, and the novel scaffold presented here, with its potent inhibitory activity against FP-2, also has potential application in discovery of new anti-malarial drugs.
Collapse
Affiliation(s)
- Jin Zhu
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P.R. China
| | - Tong Chen
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P.R. China
| | - Jie Liu
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P.R. China
| | - Ruoqun Ma
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P.R. China
| | - Weiqiang Lu
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P.R. China
| | - Jin Huang
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P.R. China
| | - Honglin Li
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P.R. China
| | - Jian Li
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P.R. China
| | - Hualiang Jiang
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P.R. China
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P.R. China
| |
Collapse
|
47
|
Zhu J, Chen T, Chen L, Lu W, Che P, Huang J, Li H, Li J, Jiang H. 2-amido-3-(1H-indol-3-yl)-N-substituted-propanamides as a new class of falcipain-2 inhibitors. 1. Design, synthesis, biological evaluation and binding model studies. Molecules 2009; 14:494-508. [PMID: 19158658 PMCID: PMC6253880 DOI: 10.3390/molecules14010494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Revised: 01/11/2009] [Accepted: 01/13/2009] [Indexed: 11/16/2022] Open
Abstract
The Plasmodium falciparum cysteine protease falcipain-2 (FP-2) is an important cysteine protease and an essential hemoglobinase of erythrocytic P. falciparum trophozoites. The discovery of new FP-2 inhibitors is now a hot topic in the search for potential malaria treatments. In this study, a series of novel small molecule FP-2 inhibitors have been designed and synthesized based on three regional optimizations of the lead (R)-2-phenoxycarboxamido-3-(1H-indol-3-yl)-N-benzylpropanamide(1), which was identified using structure-based virtual screening in conjunction with surface plasmon resonance (SPR)-based binding assays. Four compounds--1, 2b, 2k and 2l--showed moderate FP-2 inhibition activity, with IC(50) values of 10.0-39.4 microM, and the inhibitory activity of compound 2k was approximately 3-fold better than that of the prototype compound 1 and may prove useful for the development of micromolar level FP-2 inhibitors. Preliminary SAR data was obtained, while molecular modeling revealed that introduction of H-bond donor or/and acceptor atoms to the phenyl ring moiety in the C region would be likely to produce some additional H-bond interactions, which should consequently enhance molecular bioactivity.
Collapse
Affiliation(s)
- Jin Zhu
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P.R. China. E-Mails: (J. Z.); (T. C.); (W. L.); (P. C.); (H. J.)
| | - Tong Chen
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P.R. China. E-Mails: (J. Z.); (T. C.); (W. L.); (P. C.); (H. J.)
| | - Lili Chen
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P.R. China; E-Mail: (L. C.)
| | - Weiqiang Lu
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P.R. China. E-Mails: (J. Z.); (T. C.); (W. L.); (P. C.); (H. J.)
| | - Peng Che
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P.R. China. E-Mails: (J. Z.); (T. C.); (W. L.); (P. C.); (H. J.)
| | - Jin Huang
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P.R. China. E-Mails: (J. Z.); (T. C.); (W. L.); (P. C.); (H. J.)
| | - Honglin Li
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P.R. China. E-Mails: (J. Z.); (T. C.); (W. L.); (P. C.); (H. J.)
| | - Jian Li
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P.R. China. E-Mails: (J. Z.); (T. C.); (W. L.); (P. C.); (H. J.)
| | - Hualiang Jiang
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P.R. China. E-Mails: (J. Z.); (T. C.); (W. L.); (P. C.); (H. J.)
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P.R. China; E-Mail: (L. C.)
| |
Collapse
|
48
|
Marfurt J, de Monbrison F, Brega S, Barbollat L, Müller I, Sie A, Goroti M, Reeder JC, Beck HP, Picot S, Genton B. Molecular markers of in vivo Plasmodium vivax resistance to amodiaquine plus sulfadoxine-pyrimethamine: mutations in pvdhfr and pvmdr1. J Infect Dis 2008; 198:409-17. [PMID: 18582193 DOI: 10.1086/589882] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Molecular markers for sulfadoxine-pyrimethamine (SP) resistance in Plasmodium vivax have been reported. However, data on the molecular correlates involved in the development of resistance to 4-aminoquinolines and their association with the in vivo treatment response are scarce. METHODS We assessed pvdhfr (F57L/I, S58R, T61M, S117T/N, and I173F/L) and pvmdr1 (Y976F and F1076L) mutations in 94 patients who received amodiaquine (AQ) plus SP in Papua New Guinea (PNG). We then investigated the association between parasite genotype and treatment response. RESULTS The treatment failure (TF) rate reached 13%. Polymorphisms in pvdhfr F57L, S58R, T61M, and S117T/N and in pvmdr1 Y976F were detected in 60%, 67%, 20%, 40%, and 39% of the samples, respectively. The single mutant pvdhfr 57 showed the strongest association with TF (odds ratio [OR], 9.04; P= .01). The combined presence of the quadruple mutant pvdhfr 57L+58R+61M+117T and pvmdr1 mutation 976F was the best predictor of TF (OR, 8.56; P= .01). The difference in TF rates between sites was reflected in the genetic drug-resistance profile of the respective parasites. CONCLUSIONS The present study identified a new molecular marker in pvmdr1 that is associated with the in vivo response to AQ+SP. We suggest suitable marker sets with which to monitor P. vivax resistance against AQ+SP in countries where these drugs are used.
Collapse
Affiliation(s)
- Jutta Marfurt
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hastings IM, Smith TA. MalHaploFreq: a computer programme for estimating malaria haplotype frequencies from blood samples. Malar J 2008; 7:130. [PMID: 18627599 PMCID: PMC2490701 DOI: 10.1186/1475-2875-7-130] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 07/15/2008] [Indexed: 11/28/2022] Open
Abstract
Background Molecular markers, particularly those associated with drug resistance, are important surveillance tools that can inform policy choice. People infected with falciparum malaria often contain several genetically-distinct clones of the parasite; genotyping the patients' blood reveals whether or not the marker is present (i.e. its prevalence), but does not reveal its frequency. For example a person with four malaria clones may contain both mutant and wildtype forms of a marker but it is not possible to distinguish the relative frequencies of the mutant and wildtypes i.e. 1:3, 2:2 or 3:1. Methods An appropriate method for obtaining frequencies from prevalence data is by Maximum Likelihood analysis. A computer programme has been developed that allows the frequency of markers, and haplotypes defined by up to three codons, to be estimated from blood phenotype data. Results The programme has been fully documented [see Additional File 1] and provided with a user-friendly interface suitable for large scale analyses. It returns accurate frequencies and 95% confidence intervals from simulated dataset sets and has been extensively tested on field data sets. Conclusion The programme is included [see Additional File 2] and/or may be freely downloaded from [1]. It can then be used to extract molecular marker and haplotype frequencies from their prevalence in human blood samples. This should enhance the use of frequency data to inform antimalarial drug policy choice.
Collapse
Affiliation(s)
- Ian M Hastings
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | | |
Collapse
|
50
|
Multiplex PCR and oligonucleotide microarray for detection of single-nucleotide polymorphisms associated with Plasmodium falciparum drug resistance. J Clin Microbiol 2008; 46:2167-74. [PMID: 18448699 DOI: 10.1128/jcm.00081-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drug resistance in Plasmodium falciparum is a serious public health threat in the countries where this organism is endemic. Since resistance has been associated with specific single-nucleotide polymorphisms (SNPs) in parasite genes, molecular markers are becoming useful surrogates for monitoring the emergence and dispersion of drug resistance. In this study, a multiplex PCR (mPCR) and oligonucleotide microarray method was developed for the detection of these SNPs in genes encoding chloroquine resistance transporter (Pfcrt), multidrug resistance 1 (Pfmdr1), dihydrofolate reductase (Pfdhfr), dihydropteroate synthetase (Pfdhps), and ATPase 6 (PfATPase6) of P. falciparum. The results show that DNA microarray technology, combined with mPCR, is a promising and time-saving tool that supports conventional detection methods, allowing sensitive, accurate, simultaneous analysis of the SNPs associated with drug resistance in P. falciparum.
Collapse
|