1
|
Johnston W, Adil S, Cao C, Nipu N, Mennigen JA. Fish models to explore epigenetic determinants of hypoxia-tolerance. Comp Biochem Physiol A Mol Integr Physiol 2025; 302:111811. [PMID: 39778711 DOI: 10.1016/j.cbpa.2025.111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/03/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The occurrence of environmental hypoxia in freshwater and marine aquatic systems has increased over the last century and is predicted to further increase with climate change. As members of the largest extant vertebrate group, freshwater fishes, and to a much lesser extent marine fishes, are vulnerable to increased occurrence of hypoxia. This is important as fishes render important ecosystem services and have important cultural and economic roles. Evolutionarily successful, fishes have adapted to diverse aquatic freshwater and marine habitats with different oxygen conditions. While some fishes exhibit genetic adaptions to tolerate hypoxia and even anoxia, others are limited to oxygen-rich habitats. Recent advances in molecular epigenetics have shown that some epigenetic machinery, especially histone- and DNA demethylases, is directly dependent on oxygen and modulates important transcription-regulating epigenetic marks in the process. At the post-transcriptional level, hypoxia has been shown to affect non-coding microRNA abundance. Together, this evidence adds a new molecular epigenetic basis to study hypoxia tolerance in fishes. Here, we review the documented and predicted changes in environmental hypoxia in aquatic systems and discuss the diversity and comparative physiology of hypoxia tolerance in fishes, including molecular and physiological adaptations. We then discuss how recent mechanistic advances in environmental epigenetics can inform future work probing the role of oxygen-dependent epigenetic marks in shaping organismal hypoxia-tolerance in fishes with a focus on within- and between-species variation, acclimation, inter- and multigenerational plasticity, and multiple climate-change stressors. We conclude by describing the translational potential of this approach for conservation physiology, ecotoxicology, and aquaculture.
Collapse
Affiliation(s)
- William Johnston
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Sally Adil
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Catherine Cao
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Niepukolie Nipu
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Liu J, Sun X, Wu Y, Lv Z, Zhou N, Bian C, Sun S. Hypoxia induces ferroptotic cell death mediated by activation of the inner mitochondrial membrane fission protein MTP18/Drp1 in invertebrates. J Biol Chem 2025:108326. [PMID: 39971157 DOI: 10.1016/j.jbc.2025.108326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
Hypoxia and ischemia damage sensitive organelles such as mitochondria, thus mitochondrial dysfunction contributes to metabolic disorders in crustaceans under hypoxia. The mechanisms associated with ferroptosis in hypoxic disorders have not been determined in crustaceans. In particular, the early molecular events of mitochondrial dynamics in crustaceans require clarification. In this study, two evolutionarily conserved mitochondrial fission proteins, Drp1 and MTP18, were identified in the oriental river prawn (Macrobrachium nipponense). In vitro, ferroptosis-mediated impairment of mitochondrial membrane potential was induced by hypoxia in oriental river prawn hemocytes. In hypoxia-induced hemocytes, activation of Drp1 by increased phosphorylation at S616 was identified. Drp1 mitochondrial translocation also increased, and mitochondrial fusion-related protein expression decreased in vivo. Altered mitochondrial fission-fusion dynamics have been linked to mitochondrial dysfunction, inducing a classic ferroptosis mechanism. Marf overexpression or Drp1 knockdown protected against mitochondrial dysfunction and ferroptotic cell death in vitro. Furthermore, hypoxia-induced mitochondrial fission was verified to be driven by the Drp1/MTP18 interaction. Under hypoxia, MTP18 transcription was increased by the binding of activated HIF-1α to hypoxia response elements (HREs) in its promoter. Conjointly, MTP18 knockdown resulted in less apoptosis and decreased prawn mortality in gill tissue in vitro; suggesting that adaptation to hypoxia involves a vital function of MTP18. In conclusion, we uncovered a conserved role of mitochondrial fission in hypoxia-induced ferroptotic cell death. Therefore, we suggest that specific modulation of MTP18/DRP1-mediated mitochondrial dynamics might be a potential therapeutic strategy in hypoxic stress-induced tissue injury of invertebrates.
Collapse
Affiliation(s)
- Jiaqi Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Xichao Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Yijie Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Zhimin Lv
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Na Zhou
- School of Pharmacy and State Key Laboratory for Quality Research of Chinese Medicines, (R & D Center) Lab. for Drug Discovery from Natural Resource,Macau University of Science and Technology, Taipa, Macau, China
| | - Chao Bian
- College of Life and Marine Sciences, Shenzhen University, Shenzhen 518060, China
| | - Shengming Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| |
Collapse
|
3
|
Bai X, Zhang L, Liang H, Huang D, Ren M, Mi H. Dietary γ-Aminobutyric Acid Promotes Growth and Immune System Performance and Improves Erythropoiesis and Angiogenesis in Gibel Carp ( Carassius auratus gibelio). Animals (Basel) 2025; 15:125. [PMID: 39858125 PMCID: PMC11758609 DOI: 10.3390/ani15020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
This experiment aimed to investigate the effect of dietary supplementation of γ-aminobutyric acid (GABA) on the growth performance, immune response, and oxygen-transport-related factors of Gibel carp (Carassius auratus gibelio). An eight-week culturing experiment was designed with five experimental diets, with the actual GABA content being 368 mg/kg (G1, control group), 449 mg/kg (G2), 527 mg/kg (G3), 602 mg/kg (G4), and 675 mg/kg (G5). The results showed that the level of 527 mg/kg (G3) of GABA significantly increased the specific growth rate (SGR), weight gain rate (WGR), and final body weight (FBW) of Gibel carp, while the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), and glucose (GLU) were also increased significantly. In addition, 527 mg/kg (G3) and 602 mg/kg (G4) of GABA significantly increased the total antioxidant capacity (T-AOC). The mRNA expression of tnf-α, tgf-β, and il-10 was significantly increased at the level of 449 mg/kg (G2). In terms of oxygen-carrying capacity, the mRNA expression of epo, tf, tfr1, ho-1, and vegf was markedly increased at the level of 449 mg/kg (G2). In conclusion, dietary GABA supplementation can boost growth performance, enhance the immune system, and increase oxygen-carrying capacity in Gibel carp.
Collapse
Affiliation(s)
- Xinlan Bai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
| | - Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
| | - Haifeng Mi
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| |
Collapse
|
4
|
Zhang C, Deng D, Wu Y, Song L, Geng J, Feng H, Jiang S, Zhang K, Cheng Y, Yin S. New insights into the neurophysiological effects of heat stress on the Chinese mitten crab (Eriocheir sinensis). J Therm Biol 2025; 127:104055. [PMID: 39818005 DOI: 10.1016/j.jtherbio.2025.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Climate warming and frequent incidents of extreme high temperatures are serious global concerns. Heat stress induced by high temperature has many adverse effects on animal physiology, especially in aquatic poikilotherms. Chinese mitten crab (Eriocheir sinensis) is sensitive to high temperatures, this study evaluated the harmful effects of heat stress on the neurotoxicity, intestinal health, microbial diversity, and metabolite profiles. The results showed that heat stress caused histopathological damages and altered the ultrastructure of lesions in the cranial ganglia. Heat stress significantly upregulated the mRNA expression of apoptosis-related genes, and significantly altered the expression of neurotransmitter receptors. In addition, heat stress induced significant intestinal damages that mainly manifested as a significant increase in the activity of diamine oxidase in the serum and contents of histamine in the intestine. The diversity and abundance of intestinal microbiota altered abnormally in E. sinensis exposed to heat stress, and the bacteria that exhibited significant variations in abundance were closely related to the production of neurotransmitters and neuromodulators. Heat stress caused significant changes in the intestinal metabolite profiles, which mainly involved the amino acid and lipid metabolism pathways. Analysis of the correlation showed that the abnormal changes in metabolites were closely related to differences in the abundance of intestinal microbiota. Therefore, this study showed that heat stress could cause neurophysiological toxic effects, which may be related to intestinal ecological imbalance.
Collapse
Affiliation(s)
- Cong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China.
| | - Dunqian Deng
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China
| | - Yi Wu
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China
| | - Lexue Song
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China
| | - Jiayin Geng
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China
| | - Huixia Feng
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China
| | - Su Jiang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China
| | - Yongxu Cheng
- Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China.
| |
Collapse
|
5
|
Gerber L, Torp MK, Nilsson GE, Lefevre S, Stensløkken KO. Differential production of mitochondrial reactive oxygen species between mouse (Mus musculus) and crucian carp (Carassius carassius). Acta Physiol (Oxf) 2024; 240:e14244. [PMID: 39463199 DOI: 10.1111/apha.14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
AIM In most vertebrates, oxygen deprivation and subsequent re-oxygenation are associated with mitochondrial impairment and excess production of reactive oxygen species (ROS) like hydrogen peroxide (H2O2). This in turn triggers a cascade of cell-damaging events in a temperature-dependent manner. The crucian carp (Carassius carassius) is one of few vertebrates that survives months without oxygen at cold temperatures and overcomes oxidative damage during re-oxygenation periods. Mitochondria of this anoxia-tolerant species therefore serve as an excellent model in translational research to study adaptation and resilience to low oxygen conditions and thermal variability. METHODS Here, we used high-resolution respirometry on isolated mitochondria from hearts of crucian carp and the anoxia-intolerant mouse (Mus musculus), at 37 and 8°C; two temperatures relevant for transplantation medicine (i.e., graft preservation and subsequent rewarming). RESULTS We find: (1) a striking difference in H2O2 release between the two species at 37°C despite comparable mitochondrial efficiency and capacity, (2) a massive H2O2 release after inhibition of complex V in mouse at 37°C that is absent in crucian carp, and prevented in mouse by incubation at 8°C or uncoupling with a protonophore at 37°C, and (3) indications that differences in mitochondrial complex I and II capacity and thermal sensitivity influence the release of mitochondrial H2O2 relative to respiration. CONCLUSION Our findings provide comparative insights into a spectrum of mitochondrial adaptations in vertebrates and the importance of thermal variability. Furthermore, the species- and temperature-related changes associated with mitochondria highlighted in this study may help identify mitochondria-based targets for translational medicine.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Biosciences, Section for Physiology and Cellular Biology, University of Oslo, Oslo, Norway
| | - May-Kristin Torp
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Göran E Nilsson
- Department of Biosciences, Section for Physiology and Cellular Biology, University of Oslo, Oslo, Norway
| | - Sjannie Lefevre
- Department of Biosciences, Section for Physiology and Cellular Biology, University of Oslo, Oslo, Norway
| | - Kåre-Olav Stensløkken
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Amaral-Silva L, Santin J. Neural Processing without O 2 and Glucose Delivery: Lessons from the Pond to the Clinic. Physiology (Bethesda) 2024; 39:0. [PMID: 38624246 PMCID: PMC11573265 DOI: 10.1152/physiol.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024] Open
Abstract
Neuronal activity requires a large amount of ATP, leading to a rapid collapse of brain function when aerobic respiration fails. Here, we summarize how rhythmic motor circuits in the brain stem of adult frogs, which normally have high metabolic demands, transform to produce proper output during severe hypoxia associated with emergence from hibernation. We suggest that general principles underlying plasticity in brain bioenergetics may be uncovered by studying nonmammalian models that face extreme environments, yielding new insights to combat neurological disorders involving dysfunctional energy metabolism.
Collapse
Affiliation(s)
- Lara Amaral-Silva
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States
- Division of Biology, University of Missouri, Columbia, Missouri, United States
| | - Joseph Santin
- Division of Biology, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
7
|
Waller MJ, Humphries NE, Womersley FC, Loveridge A, Jeffries AL, Watanabe Y, Payne N, Semmens J, Queiroz N, Southall EJ, Sims DW. The vulnerability of sharks, skates, and rays to ocean deoxygenation: Physiological mechanisms, behavioral responses, and ecological impacts. JOURNAL OF FISH BIOLOGY 2024; 105:482-511. [PMID: 38852616 DOI: 10.1111/jfb.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
Levels of dissolved oxygen in open ocean and coastal waters are decreasing (ocean deoxygenation), with poorly understood effects on marine megafauna. All of the more than 1000 species of elasmobranchs (sharks, skates, and rays) are obligate water breathers, with a variety of life-history strategies and oxygen requirements. This review demonstrates that although many elasmobranchs typically avoid hypoxic water, they also appear capable of withstanding mild to moderate hypoxia with changes in activity, ventilatory responses, alterations to circulatory and hematological parameters, and morphological alterations to gill structures. However, such strategies may be insufficient to withstand severe, progressive, or prolonged hypoxia or anoxia where anaerobic metabolic pathways may be used for limited periods. As water temperatures increase with climate warming, ectothermic elasmobranchs will exhibit elevated metabolic rates and are likely to be less able to tolerate the effects of even mild hypoxia associated with deoxygenation. As a result, sustained hypoxic conditions in warmer coastal or surface-pelagic waters are likely to lead to shifts in elasmobranch distributions. Mass mortalities of elasmobranchs linked directly to deoxygenation have only rarely been observed but are likely underreported. One key concern is how reductions in habitat volume as a result of expanding hypoxia resulting from deoxygenation will influence interactions between elasmobranchs and industrial fisheries. Catch per unit of effort of threatened pelagic sharks by longline fisheries, for instance, has been shown to be higher above oxygen minimum zones compared to adjacent, normoxic regions, and attributed to vertical habitat compression of sharks overlapping with increased fishing effort. How a compound stressor such as marine heatwaves alters vulnerability to deoxygenation remains an open question. With over a third of elasmobranch species listed as endangered, a priority for conservation and management now lies in understanding and mitigating ocean deoxygenation effects in addition to population declines already occurring from overfishing.
Collapse
Affiliation(s)
- Matt J Waller
- Marine Biological Association, The Laboratory, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | | | | | | | - Amy L Jeffries
- Marine Biological Association, The Laboratory, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | - Yuuki Watanabe
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Kanagawa, Japan
| | - Nicholas Payne
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jayson Semmens
- Institue for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Nuno Queiroz
- CIBIO/InBIO, Universidade do Porto, Vairão, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | | | - David W Sims
- Marine Biological Association, The Laboratory, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| |
Collapse
|
8
|
Johansen A, Thiede B, Anonsen JH, Nilsson GE. Phosphoproteomic changes in response to anoxia are tissue-specific in the anoxia-tolerant crucian carp ( Carassius carassius). Front Physiol 2024; 15:1407834. [PMID: 38872833 PMCID: PMC11170284 DOI: 10.3389/fphys.2024.1407834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Crucian carp (Carassius carassius), a freshwater fish, can survive chronic anoxia for several months at low temperatures. Consequently, anoxia-related physiological and biochemical adaptations in this species have been studied for more than half a century. Still, despite for the well-known role of protein phosphorylation in regulating cellular processes, no studies have comprehensively characterized the phosphoproteome in crucian carp. In this study, we report the global phosphoproteome in crucian carp brain and liver during anoxia and reoxygenation. By applying a bottom-up proteomic approach on enriched phosphopeptides we found that the brain phosphoproteome shows surprisingly few changes during anoxia-reoxygenation exposure with only 109 out of 4200 phosphopeptides being differentially changed compared to normoxic controls. By contrast, in the liver 395 out of 1287 phosphopeptides changed. Although most changes occurred in the liver phosphoproteome, the pattern of changes indicated metabolic depression and decreased translation in both brain and liver. We also found changes in phosphoproteins involved in apoptotic regulation and reactive oxygen species handling in both tissues. In the brain, some of the most changed phosphopeptides belonged to proteins involved in central nervous system development and neuronal activity at the synaptic cleft. Changed phosphoproteins specific for liver tissue were related to glucose metabolism, such as glycolytic flux and glycogenolysis. In conclusion, protein phosphorylation in response to anoxia and reoxygenation showed both common and tissue-specific changes related to the functional differences between brain and liver.
Collapse
Affiliation(s)
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jan Haug Anonsen
- Department of Biosciences, University of Oslo, Oslo, Norway
- Norwegian Research Centre AS, Climate and Environment Department, Stavanger, Norway
| | | |
Collapse
|
9
|
Duh OA, McDonald MD. Gulf toadfish (Opsanus beta) gill neuroepithelial cells in response to hypoxia exposure. J Comp Physiol B 2024; 194:167-177. [PMID: 38622281 DOI: 10.1007/s00360-024-01547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/13/2024] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
Neuroepithelial cells (NECs) within the fish gill contain the monoamine neurochemical serotonin (5-HT), sense changes in the partial pressure of oxygen (PO2) in the surrounding water and blood, and initiate the cardiovascular and ventilatory responses to hypoxia. The distribution of neuroepithelial cells (NECs) within the gill is known for some fish species but not for the Gulf toadfish, Opsanus beta, a fish that has always been considered hypoxia tolerant. Furthermore, whether NEC size, number, or distribution changes after chronic exposure to hypoxia, has never been tested. We hypothesize that toadfish NECs will respond to hypoxia with an increase in NEC size, number, and a change in distribution. Juvenile toadfish (N = 24) were exposed to either normoxia (21.4 ± 0.0 kPa), mild hypoxia (10.2 ± 0.3 kPa), or severe hypoxia (3.1 ± 0.2 kPa) for 7 days and NEC size, number, and distribution for each O2 regime were measured. Under normoxic conditions, juvenile toadfish have similar NEC size, number, and distribution as other fish species with NECs along their filaments but not throughout the lamellae. The distribution of NECs did not change with hypoxia exposure. Mild hypoxia exposure had no effect on NEC size or number, but fish exposed to severe hypoxia had a higher NEC density (# per mm filament) compared to mild hypoxia-exposed fish. Fish exposed to severe hypoxia also had longer gill filament lengths that could not be explained by body weight. These results point to signs of phenotypic plasticity in these juvenile, lab-bred fish with no previous exposure to hypoxia and a strategy to deal with hypoxia exposure that differs in toadfish compared to other fish.
Collapse
Affiliation(s)
- Orianna A Duh
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149-1098, USA
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149-1098, USA.
| |
Collapse
|
10
|
Elbassiouny AA, Buck LT, Abatti LE, Mitchell JA, Crampton WGR, Lovejoy NR, Chang BSW. Evolution of a novel regulatory mechanism of hypoxia inducible factor in hypoxia-tolerant electric fishes. J Biol Chem 2024; 300:105727. [PMID: 38325739 PMCID: PMC10958119 DOI: 10.1016/j.jbc.2024.105727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
Hypoxia is a significant source of metabolic stress that activates many cellular pathways involved in cellular differentiation, proliferation, and cell death. Hypoxia is also a major component in many human diseases and a known driver of many cancers. Despite the challenges posed by hypoxia, there are animals that display impressive capacity to withstand lethal levels of hypoxia for prolonged periods of time and thus offer a gateway to a more comprehensive understanding of the hypoxic response in vertebrates. The weakly electric fish genus Brachyhypopomus inhabits some of the most challenging aquatic ecosystems in the world, with some species experiencing seasonal anoxia, thus providing a unique system to study the cellular and molecular mechanisms of hypoxia tolerance. In this study, we use closely related species of Brachyhypopomus that display a range of hypoxia tolerances to probe for the underlying molecular mechanisms via hypoxia inducible factors (HIFs)-transcription factors known to coordinate the cellular response to hypoxia in vertebrates. We find that HIF1⍺ from hypoxia tolerant Brachyhypopomus species displays higher transactivation in response to hypoxia than that of intolerant species, when overexpressed in live cells. Moreover, we identified two SUMO-interacting motifs near the oxygen-dependent degradation and transactivation domains of the HIF1⍺ protein that appear to boost transactivation of HIF1, regardless of the genetic background. Together with computational analyses of selection, this shows that evolution of HIF1⍺ are likely to underlie adaptations to hypoxia tolerance in Brachyhypopomus electric fishes, with changes in two SUMO-interacting motifs facilitating the mechanism of this tolerance.
Collapse
Affiliation(s)
- Ahmed A Elbassiouny
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| | - Leslie T Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Luis E Abatti
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Nathan R Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada; Department of Biological Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Hasan MM, Sekiya R, Zhang X, Yassouf MY, Li TS. Comparison of hypoxia- and hyperoxia-induced alteration of epigene expression pattern in lungs of Pleurodeles waltl and Mus musculus. PLoS One 2024; 19:e0299661. [PMID: 38416753 PMCID: PMC10901355 DOI: 10.1371/journal.pone.0299661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
Epigenetics is an emerging field of research because of its involvement in susceptibility to diseases and aging. Hypoxia and hyperoxia are known to be involved widely in various pathophysiologies. Here, we compared the differential epigene expression pattern between Pleurodeles waltl and Mus musculus (commonly known as Iberian ribbed newt and mouse, respectively) exposed to hypoxia and hyperoxia. Adult healthy newts and mice were exposed to normobaric hypoxia (8% O2) and hyperoxia (80% O2) for 2 hours. We collected the lungs and analyzed the expression of hypoxia-inducible factor 1 alpha (Hif1α) and several key epigenes from DNA methyltransferase (DNMT) family, histone deacetylase (HDAC) family, and methyl-CpG binding domain (MBD) family. The exposure to hypoxia significantly increased the mRNA levels of DNA methyltransferase 3 alpha (Dnmt3α), methyl-CpG binding domain protein 2 (Mbd2), Mbd3, and histone deacetylase 2 (Hdac2) in lungs of newts, but decreased the mRNA levels of DNA methyltransferase 1 (Dnmt1) and Dnmt3α in lungs of mice. The exposure to hyperoxia did not significantly change the expression of any gene in either newts or mice. The differential epigene expression pattern in response to hypoxia between newts and mice may provide novel insights into the prevention and treatment of disorders developed due to hypoxia exposure.
Collapse
Affiliation(s)
- Md. Mahmudul Hasan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Reiko Sekiya
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Xu Zhang
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Mhd Yousuf Yassouf
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| |
Collapse
|
12
|
Ducros L, Touaibia M, Pichaud N, Lamarre SG. Resilience and phenotypic plasticity of Arctic char ( Salvelinus alpinus) facing cyclic hypoxia: insights into growth, energy stores and hepatic metabolism. CONSERVATION PHYSIOLOGY 2023; 11:coad099. [PMID: 38107465 PMCID: PMC10724465 DOI: 10.1093/conphys/coad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Arctic char (Salvelinus alpinus) is facing the decline of its southernmost populations due to several factors including rising temperatures and eutrophication. These conditions are also conducive to episodes of cyclic hypoxia, another possible threat to this species. In fact, lack of oxygen and reoxygenation can both have serious consequences on fish as a result of altered ATP balance and an elevated risk of oxidative burst. Thus, fish must adjust their phenotype to survive and equilibrate their energetic budget. However, their energy allocation strategy could imply a reduction in growth which could be deleterious for their fitness. Although the impact of cyclic hypoxia is a major issue for ecosystems and fisheries worldwide, our knowledge on how salmonid deal with high oxygen fluctuations remains limited. Our objective was to characterize the effects of cyclic hypoxia on growth and metabolism in Arctic char. We monitored growth parameters (specific growth rate, condition factor), hepatosomatic and visceral indexes, relative heart mass and hematocrit of Arctic char exposed to 30 days of cyclic hypoxia. We also measured the hepatic protein synthesis rate, hepatic triglycerides as well as muscle glucose, glycogen and lactate and quantified hepatic metabolites during this treatment. The first days of cyclic hypoxia slightly reduce growth performance with a downward trend in specific growth rate in mass and condition factor variation compared to the control group. This acute exposure also induced a profound metabolome reorganization in the liver with an alteration of amino acid, carbohydrate and lipid metabolisms. However, fish rebalanced their metabolic activities and successfully maintained their growth and energetic reserves after 1 month of cyclic hypoxia. These results demonstrate the impressive ability of Arctic char to cope with its changing environment but also highlight a certain vulnerability of this species during the first days of a cyclic hypoxia event.
Collapse
Affiliation(s)
- Loïck Ducros
- Département de Biologie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
- Département de Chimie et Biochimie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
| | - Mohamed Touaibia
- Département de Chimie et Biochimie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
| | - Nicolas Pichaud
- Département de Chimie et Biochimie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
| | - Simon G Lamarre
- Département de Biologie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
| |
Collapse
|
13
|
Watanabe YY, Payne NL. Thermal sensitivity of metabolic rate mirrors biogeographic differences between teleosts and elasmobranchs. Nat Commun 2023; 14:2054. [PMID: 37045817 PMCID: PMC10097821 DOI: 10.1038/s41467-023-37637-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Environmental temperature affects physiological functions, representing a barrier for the range expansions of ectothermic species. To understand the link between thermal physiology and biogeography, a key question is whether among-species thermal sensitivity of metabolic rates is mechanistically constrained or buffered through physiological remodeling over evolutionary time. The former conception, the Universal Temperature Dependence hypothesis, predicts similar among- and within-species thermal sensitivity. The latter conception, the Metabolic Cold Adaptation hypothesis, predicts lower among-species thermal sensitivity than within-species sensitivity. Previous studies that tested these hypotheses for fishes overwhelmingly investigated teleosts with elasmobranchs understudied. Here, we show that among-species thermal sensitivity of resting metabolic rates is lower than within-species sensitivity in teleosts but not in elasmobranchs. Further, species richness declines with latitude more rapidly in elasmobranchs than in teleosts. Metabolic Cold Adaptation exhibited by teleosts might underpin their high diversity at high latitudes, whereas the inflexible thermal sensitivity approximated by Universal Temperature Dependence of elasmobranchs might explain their low diversity at high latitudes.
Collapse
Affiliation(s)
- Yuuki Y Watanabe
- National Institute of Polar Research, Tachikawa, Tokyo, Japan.
- Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Tokyo, Japan.
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan.
| | - Nicholas L Payne
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Hua Y, Huang W, Wang F, Jing Z, Li J, Wang Q, Zhao Y. Metabolites, gene expression, and gut microbiota profiles suggest the putative mechanisms via which dietary creatine increases the serum taurine and g-ABA contents in Megalobrama amblycephala. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:253-274. [PMID: 36897433 DOI: 10.1007/s10695-023-01177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/01/2023] [Indexed: 05/04/2023]
Abstract
A 90-day experiment was conducted to explore the effects of creatine on growth performance, liver health status, metabolites, and gut microbiota in Megalobrama amblycephala. There were 6 treatments as follows: control (CD, 29.41% carbohydrates), high carbohydrate (HCD, 38.14% carbohydrates), betaine (BET, 1.2% betaine + 39.76% carbohydrates), creatine 1 (CRE1, 0.5% creatine + 1.2% betaine + 39.29% carbohydrates), creatine 2 (CRE2, 1% creatine + 1.2% betaine + 39.50% carbohydrates), and creatine 3 (CRE3, 2% creatine + 1.2% betaine + 39.44% carbohydrates). The results showed that supplementing creatine and betaine together reduced the feed conversion ratio significantly (P < 0.05, compared to CD and HCD) and improved liver health (compared to HCD). Compared with the BET group, dietary creatine significantly increased the abundances of Firmicutes, Bacteroidota, ZOR0006, and Bacteroides and decreased the abundances of Proteobacteria, Fusobacteriota, Vibrio, Crenobacter, and Shewanella in the CRE1 group. Dietary creatine increased the content of taurine, arginine, ornithine, γ-aminobutyric acid (g-ABA), and creatine (CRE1 vs. BET group) and the expression of creatine kinase (ck), sulfinoalanine decarboxylase (csad), guanidinoacetate N-methyltransferase (gamt), glycine amidinotransferase (gatm), agmatinase (agmat), diamine oxidase1 (aoc1), and glutamate decarboxylase (gad) in the CRE1 group. Overall, these results suggested that dietary supplementation of creatine (0.5-2%) did not affect the growth performance, but it altered the gut microbial composition at the phylum and genus levels, which might be beneficial to the gut health of M. amblycephala; dietary creatine also increased the serum content of taurine by enhancing the expressions of ck and csad and increased the serum content of g-ABA by enhancing the arginine content and the expressions of gatm, agmat, gad, and aoc1.
Collapse
Affiliation(s)
- Yizhuo Hua
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Wangwang Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Fan Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Zhao Jing
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Juntao Li
- Institute of Tropical Bioscience and Biotechnology, Haikou, 570102, China
| | - Qingchao Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Yuhua Zhao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
15
|
Zhang C, Liu J, Wang X, Li E, Song M, Yang Y, Qin C, Qin J, Chen L. Comprehensive transcriptional and metabolomic analysis reveals the neuroprotective mechanism of dietary gamma-aminobutyric acid response to hypoxic stress in the Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2023; 135:108663. [PMID: 36898515 DOI: 10.1016/j.fsi.2023.108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/07/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Hypoxia is one of the serious stress challenges that aquatic animals face throughout their life. Our previous study found that hypoxia stress could induce neural excitotoxicity and neuronal apoptosis in Eriocheir sinensis, and observed that gamma-aminobutyric acid (GABA) has a positive neuroprotective effect on juvenile crabs under hypoxia. To reveal the neuroprotective pathway and metabolic regulatory mechanism of GABA in E. sinensis exposed to hypoxia stress, an 8-week feeding trial and acute hypoxia challenge were performed. Subsequently, we performed a comprehensive transcriptomic and metabolomic analysis of the thoracic ganglia of juvenile crabs. Differential genes and differential metabolites were co-annotated to 11 KEGG pathways, and further significant analysis showed that only the sphingolipid signaling pathway and the arachidonic acid metabolism pathway were significantly enriched. In the sphingolipid signaling pathway, GABA treatment significantly increased long-chain ceramide content in thoracic ganglia, which exerted neuroprotective effects by activating downstream signals to inhibit hypoxia-induced apoptosis. Moreover, in the arachidonic acid metabolism pathway, GABA could increase the content of neuroprotective active substances and reduce the content of harmful metabolites by regulating the metabolism of arachidonic acid for inflammatory regulation and neuroprotection. Furthermore, the decrease of glucose and lactate levels in the hemolymph suggests the positive role of GABA in metabolic regulation. This study reveals the neuroprotective pathways and possible mechanisms of GABA in juvenile E. sinensis exposed to hypoxia stress and inspires the discovery of new targets for improving hypoxia tolerance in aquatic animals.
Collapse
Affiliation(s)
- Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Jiadai Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Mingqi Song
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Yiwen Yang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan, 641100, PR China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
16
|
Shuang L, Chen SL, Ren C, Su XL, Xu XN, Zheng GD, Zou SM. Effects of hypoxia and reoxygenation on oxidative stress, histological structure, and apoptosis in a new hypoxia-tolerant variety of blunt snout bream (Megalobrama amblycephala). Comp Biochem Physiol A Mol Integr Physiol 2023; 278:111358. [PMID: 36572142 DOI: 10.1016/j.cbpa.2022.111358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
A new hypoxia-tolerant variety of blunt snout bream was obtained by successive breeding of the wild population, which markedly improved hypoxia tolerance. In this study, the hypoxia-tolerant variety was exposed to hypoxia (2.0 mg O2·L-1) for 4, 7 days. The contents of blood biochemical indicators including the number of red blood cells (RBC), total cholesterol (T-CHO), total protein (TP), triglyceride (TG), glucose (GLU), and lactic acid (LD) increased significantly (P < 0.05) under hypoxia. The glycogen content in the liver and muscle decreased significantly (P < 0.05) and the LD content in the brain, muscle and liver increased significantly (P < 0.05) under hypoxia. The levels of oxidative stress-related indicators i.e., superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), catalase (CAT), and total antioxidant capacity (T-AOC) also changed significantly (P < 0.05) in the heart, liver, and intestine of the new variety under hypoxia. Additionally, hypoxia has caused injuries to the heart, liver, and intestine, but it shows amazing repair ability during reoxygenation. The apoptotic cells and apoptosis rate in the heart, liver, and intestine increased under hypoxia. Under hypoxia, the expression of the B-cell lymphomas 2 (Bcl-2) gene in the heart, liver, and intestine was significantly (P < 0.05) down-regulated, while the expression of the BCL2-associated agonist of cell death (Bad) gene was significantly (P < 0.05) up-regulated. These results are of great significance for enriching the basic data of blunt snout bream new variety in response to hypoxia and promoting the healthy development of its culture industry.
Collapse
Affiliation(s)
- Liang Shuang
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China
| | - Song-Lin Chen
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China
| | - Chao Ren
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China
| | - Xiao-Lei Su
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China
| | - Xiao-Na Xu
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China
| | - Guo-Dong Zheng
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China.
| | - Shu-Ming Zou
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China.
| |
Collapse
|
17
|
Zhao SS, Su XL, Yang HQ, Zheng GD, Zou SM. Functional exploration of SNP mutations in HIF2αb gene correlated with hypoxia tolerance in blunt snout bream (Megalobrama amblycephala). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:239-251. [PMID: 36859574 DOI: 10.1007/s10695-023-01173-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 02/13/2023] [Indexed: 05/04/2023]
Abstract
Blunt snout bream (Megalobrama amblycephala) is sensitive to hypoxia environment. Hypoxia-inducible factor (HIF) is the most critical factor in the HIF pathway, which strictly regulates the hypoxia stress process of fish. In this study, we found six hifα genes in blunt snout bream that demonstrated different expressions under hypoxia conditions. In HEK293T cells, all six hifαs were detected to activate the HRE region by luciferase reporter assay. More importantly, we identified two linkage-disequilibrium SNP sites at exon 203 and 752 of the hif2αb gene in blunt snout bream. Haplotype II (A203A752) and its homozygous diplotype II (A203A203A752A752) appeared frequently in a selected strain of blunt snout bream with hypoxia tolerance. Diplotype II has a lower oxygen tension threshold for loss of equilibrium (LOEcrit) over a similar range of temperatures. Moreover, its erythrocyte number increased significantly (p < 0.05) than those in diplotype I and diplotype III strains at 48 h of hypoxia. The enzymes related with hypoxia tolerant traits, i.e., reduced glutathione, superoxide dismutase, and catalase, were also significantly (p < 0.05) induced in diplotype II than in diplotype I or III. In addition, the expression of epo in the liver of diplotype II was significantly (p < 0.01) higher than that in the diplotype I or III strains at 48 h of hypoxia. Taken together, our results found that the hypoxia-tolerant-related diplotype II of hif2αb has the potential to be used as a molecular marker in future genetic breeding of hypoxia-tolerant strain.
Collapse
Affiliation(s)
- Shan-Shan Zhao
- National Demonstration Center for Experimental Fisheries Science Education, Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
- Zhejiang Ocean University, Zhejiang, 316022, China
| | - Xiao-Lei Su
- National Demonstration Center for Experimental Fisheries Science Education, Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Hui-Qi Yang
- National Demonstration Center for Experimental Fisheries Science Education, Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Guo-Dong Zheng
- National Demonstration Center for Experimental Fisheries Science Education, Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| | - Shu-Ming Zou
- National Demonstration Center for Experimental Fisheries Science Education, Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
18
|
Johansen A, Thiede B, Anonsen JH, Nilsson GE. Surviving without oxygen involves major tissue specific changes in the proteome of crucian carp ( Carassius carassius). PeerJ 2023; 11:e14890. [PMID: 36915662 PMCID: PMC10007964 DOI: 10.7717/peerj.14890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 03/10/2023] Open
Abstract
The crucian carp (Carassius carassius) can survive complete oxygen depletion (anoxia) for several months at low temperatures, making it an excellent model for studying molecular adaptations to anoxia. Still, little is known about how its global proteome responds to anoxia and reoxygenation. By applying mass spectrometry-based proteome analyses on brain, heart and liver tissue from crucian carp exposed to normoxia, five days anoxia, and reoxygenation, we found major changes in particularly cardiac and hepatic protein levels in response to anoxia and reoxygenation. These included tissue-specific differences in mitochondrial proteins involved in aerobic respiration and mitochondrial membrane integrity. Enzymes in the electron transport system (ETS) decreased in heart and increased massively in liver during anoxia and reoxygenation but did not change in the brain. Importantly, the data support a special role for the liver in succinate handling upon reoxygenation, as suggested by a drastic increase of components of the ETS and uncoupling protein 2, which could allow for succinate metabolism without excessive formation of reactive oxygen species (ROS). Also during reoxygenation, the levels of proteins involved in the cristae junction organization of the mitochondria changed in the heart, possibly functioning to suppress ROS formation. Furthermore, proteins involved in immune (complement) system activation changed in the anoxic heart compared to normoxic controls. The results emphasize that responses to anoxia are highly tissue-specific and related to organ function.
Collapse
Affiliation(s)
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jan Haug Anonsen
- Department of Biosciences, University of Oslo, Oslo, Norway
- Climate & Environment Department, NORCE, Norwegian Research Centre AS, Stavanger, Norway
| | | |
Collapse
|
19
|
Molina JM, Kunzmann A, Reis JP, Guerreiro PM. Metabolic Responses and Resilience to Environmental Challenges in the Sedentary Batrachoid Halobatrachus didactylus (Bloch & Schneider, 1801). Animals (Basel) 2023; 13:ani13040632. [PMID: 36830420 PMCID: PMC9951689 DOI: 10.3390/ani13040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
In the context of climate change, warming of the seas and expansion of hypoxic zones are challenges that most species of fish are, or will be subjected to. Understanding how different species cope with these changes in their environment at the individual level can shed light on how populations and ecosystems will be affected. We provide first-time estimates on the metabolic rates, thermal, and oxygen-related limits for Halobatrachus didactylus, a coastal sedentary fish that lives in intertidal environments of the Northeast Atlantic. Using respirometry in different experimental designs, we found that this species is highly resistant to acute thermal stress (CTmax: 34.82 ± 0.66 °C) and acute hypoxia (Pcrit: 0.59-1.97 mg O2 L-1). We found size-specific differences in this stress response, with smaller individuals being more sensitive. We also quantified its aerobic scope and daily activity patterns, finding this fish to be extremely sedentary, with one of the lowest standard metabolic rates found in temperate fish (SMR: 14.96 mg O2 kg-1h-1). H. didactylus activity increases at night, when its metabolic rate increases drastically (RMR: 36.01 mg O2 kg-1h-1). The maximum metabolic rate of H. didactylus was estimated to be 67.31 mg O2 kg-1h-1, producing an aerobic scope of 52.35 mg O2 kg-1h-1 (77.8% increase). The metrics obtained in this study prove that H. didactylus is remarkably resilient to acute environmental variations in temperature and oxygen content, which might enable it to adapt to the extreme abiotic conditions forecasted for the world's oceans in the near future.
Collapse
Affiliation(s)
- Juan Manuel Molina
- Instituto Argentino de Oceanografía (CONICET), Bahía Blanca B8000, Argentina
- Leibniz-Zentrum für Marine Tropenforschung (ZMT), 28359 Bremen, Germany
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence:
| | - Andreas Kunzmann
- Leibniz-Zentrum für Marine Tropenforschung (ZMT), 28359 Bremen, Germany
| | - João Pena Reis
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | | |
Collapse
|
20
|
Zhang C, He J, Wang X, Yang Y, Huang Q, Qiao F, Shi Q, Qin J, Chen L. Gamma-aminobutyric acid enhances hypoxia tolerance of juvenile Chinese mitten crab (Eriocheir sinensis) by regulating respiratory metabolism and alleviating neural excitotoxicity. Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109409. [PMID: 35830953 DOI: 10.1016/j.cbpc.2022.109409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
With climate change and intensive aquaculture development, environmental hypoxia in aquaculture water has become a common challenge for many aquatic species. Therefore, it is crucial to improve the hypoxic tolerance of animals through nutritional strategies. This study explored the positive role of dietary gamma-aminobutyric acid (GABA) supplementation in enhancing hypoxia tolerance of juvenile Eriocheir sinensis through respiratory regulation and alleviation of hypoxia-induced neural excitotoxicity. Acute hypoxia stress significantly up-regulated the mRNA expression level of hypoxia-inducible factor 1α, oxygen consumption rate and anaerobic respiratory metabolism-related enzyme activities. On the other hand, aerobic respiratory metabolism-related enzyme activities were significantly decreased. However, dietary GABA supplementation remodeled the respiratory metabolism pattern of juvenile crabs exposed to hypoxia stress. In addition, acute hypoxic stress significantly increased the contents of free glutamate and GABA in the nervous tissue. The expression levels of N-Methyl-d-aspartate-related receptor genes and calcium-dependent degradation enzyme-related genes were significantly up-regulated. Similarly, neuronal apoptosis rates, expression levels of apoptosis-related genes, and vesicular glutamate transporter genes were also significantly increased. The high-affinity neuronal glutamate transporter decreased significantly in the crabs exposed to hypoxia stress. However, dietary GABA supplementation could effectively prevent acute hypoxia stress-induced neural excitotoxicity. Furthermore, dietary GABA could significantly improve the redox status in vivo exposed to hypoxia stress. In conclusion, acute hypoxia stress can affect respiratory metabolism and redox state and induce neural excitotoxicity in juvenile E. sinensis. GABA supplementation could improve hypoxia tolerance through multiple physiological regulation pathways.
Collapse
Affiliation(s)
- Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Jiaqi He
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| | - Yiwen Yang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Qincheng Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Qingchao Shi
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan 641100, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| |
Collapse
|
21
|
Rosenfeld J, Lee R. Thresholds for Reduction in Fish Growth and Consumption Due to Hypoxia: Implications for Water Quality Guidelines to Protect Aquatic Life. ENVIRONMENTAL MANAGEMENT 2022; 70:431-447. [PMID: 35792915 DOI: 10.1007/s00267-022-01678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Control of hypoxia is a key element of water quality management, and guidelines are usually based on qualitative reviews of hypoxia impacts. In this study we use segmented regression to identify both thresholds for growth reduction and rate of decline of fish growth and food consumption under hypoxia; and then evaluate whether current freshwater guidelines for dissolved oxygen based on qualitative reviews are consistent with the quantitative analysis of hypoxia thresholds. Segmented regressions were fit to data from published growth-hypoxia studies for freshwater (N = 17) and marine fishes (N = 13). To understand potential drivers of hypoxia tolerance, we also modelled thresholds as simple functions of environmental and ecological covariates for each species including trophic level, marine vs. freshwater environment, maximum fish length, fish weight, and maximum temperature tolerance. The average threshold for growth reduction (Gcrit; 5.1 mg·l-1 DO) and decreased food consumption (Ccrit = 5.6 mg·l-1 DO) were not significantly different, and did not differ between marine and freshwater taxa. However, salmonids showed a significantly steeper decline in growth with increasing hypoxia relative to other taxa. Growth declined by 22% for every mg·l-1 reduction in DO below average Gcrit, and significant regressions indicate that warmwater (R2 = 0.25) and smaller-bodied (R2 = 0.44) species are more likely to be hypoxia tolerant. Observed mean Gcrit and Ccrit in the range of 5-6 mg·l-1 broadly match minimum water quality guidelines for the protection of aquatic life in freshwater in representative industrialized countries. However, this is much higher than the definition of hypoxia typically used in marine systems (2-2.5 mg·l-1), indicating a need to reconcile definition of hypoxia in the marine environment with empirical data. The principal challenge in freshwater hypoxia management is now translating discretionary guidelines into effective regulatory frameworks to reduce the incidence and severity of hypoxia.
Collapse
Affiliation(s)
- Jordan Rosenfeld
- British Columbian Ministry of the Environment and University of British Columbia Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Rachel Lee
- J.O. Thomas and Associates Ltd., 1370 Kootenay Street, Vancouver, BC, V5K 4R1, Canada
| |
Collapse
|
22
|
Kolesnikova EE, Soldatov AA, Golovina IV, Sysoeva IV, Sysoev AA. Effect of acute hypoxia on the brain energy metabolism of the scorpionfish Scorpaena porcus Linnaeus, 1758: the pattern of oxidoreductase activity and adenylate system. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1105-1115. [PMID: 35851943 DOI: 10.1007/s10695-022-01103-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The activity of oxidoreductases, malate dehydrogenase and lactate dehydrogenase (MDH, 1.1.1.37; LDH, 1.1.1.27), as well as parameters of adenylate system-[ATP], [ADP], [AMP], total adenylate pool (AP), and adenylate energy charge (AEC) in medulla oblongata (MB) and forebrain, midbrain, and diencephalon (FDMB)-were studied in the scorpionfish under acute hypoxia (0.9-1.2 mg O2·L-1, 90 min). A higher MDH activity level was observed in MB and FDMB, as compared to LDH (p < 0.05). At the same time, MB showed a higher adenylate content and increased AP (p < 0.05). AEC did not exceed ~ 0.7 (vs. the maximum of this index ~ 0.9-1.0) in the brain of the scorpionfish indicating adaptation of the tissue energy status to hypoxia. A rapid decrease in MDH activity (p < 0.05) was observed in MB under acute hypoxia. These changes were accompanied by insignificant LDH activation. A pronounced LDH activation (p < 0.05), a decrease in MDH activity, and the highest AP raise (p < 0.05) were observed in FDMB, suggesting activation of glycolysis and simultaneous decrease in the rate of ATP consumption. MB and FDMB demonstrated the ability to a relative retention of AEC during hypoxia. The unidirectional metabolic adaptation was based on the intensification of glycolysis, a decrease of ATP consumption, and a subsequent increase in adenylate concentration that allowed the scorpionfish brain structures to maintain the energy status under acute hypoxia.
Collapse
Affiliation(s)
- Evgenia E Kolesnikova
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of Southern Seas RAS, 38 Leninsky Ave., Moscow, 119991, Russia.
| | - Aleksandr A Soldatov
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of Southern Seas RAS, 38 Leninsky Ave., Moscow, 119991, Russia
| | - Irina V Golovina
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of Southern Seas RAS, 38 Leninsky Ave., Moscow, 119991, Russia
| | - Inna V Sysoeva
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of Southern Seas RAS, 38 Leninsky Ave., Moscow, 119991, Russia
| | - Aleksandr A Sysoev
- Department of Functioning of Marine Ecosystem, A.O. Kovalevsky Institute of Biology of Southern Seas RAS, 38 Leninsky Ave., Moscow, 119991, Russia
| |
Collapse
|
23
|
Xu XN, Chen SL, Jiang ZX, Nissa MU, Zou SM. Gill remodeling increases the respiratory surface area of grass carp (Ctenopharyngodon idella) under hypoxic stress. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111278. [PMID: 35872080 DOI: 10.1016/j.cbpa.2022.111278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Seasonal changes, diurnal variations, and eutrophication result in periodic hypoxia in fish habitats, thus affecting the success of commercial aquaculture. In this study, the grass carp (Ctenopharyngodon idella) presented moderate hypoxia tolerance; they showed a medium critical oxygen tension during the loss of equilibrium. In response to 7 d of hypoxic exposure, the erythrocyte count and hemoglobin (Hb) concentration significantly increased (p < 0.01). To cope with the hypoxic environment, the grass carp underwent gill remodeling marked by reduction in the interlamellar cell mass (ILCM) and an increase in respiratory surface area. The gill remodeling under hypoxia was enabled by apoptosis induction. Although apoptotic signals were not found on ILCM cells, transferase dUTP nick end labeling (TUNEL) assay results indicated that after 1 d of hypoxic exposure, the number of TUNEL-positive cells per lamella increased until 4 d and then began to decrease. Consistent with the results of the TUNEL assay, the mRNA expression of apoptosis-related genes, caspase-3, Bax, and Bcl-2, increased at 1, 4, and 7 d of the hypoxia treatment. In addition, gill remodeling significantly (p < 0.01) decreased the concentration of sodium and chloride ions in the fish serum. These findings provide evidence that grass carps increase their respiratory surface area through gill remodeling by apoptosis in the gill filaments to acclimate to a hypoxic environment. This study expands our understanding of the morphological and physiological changes in grass carp in response to a hypoxic environment; therefore, it could be useful for maintaining grass carp production.
Collapse
Affiliation(s)
- Xiao-Na Xu
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Song-Lin Chen
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhu-Xiang Jiang
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Meher Un Nissa
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Shu-Ming Zou
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
24
|
Fu SJ, Dong YW, Killen SS. Aerobic scope in fishes with different lifestyles and across habitats: Trade-offs among hypoxia tolerance, swimming performance and digestion. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111277. [PMID: 35870773 DOI: 10.1016/j.cbpa.2022.111277] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
Exercise and aerobic scope in fishes have attracted scientists' attention for several decades. While it has been suggested that aerobic scope may limit behavioral expression and tolerance to environmental stressors in fishes, the exact importance of aerobic scope in an ecological context remains poorly understood. In this review, we examine the ecological relevance of aerobic scope by reconsidering and reanalyzing the existing literature on Chinese freshwater fishes across a wide-range of habitats and lifestyles. The available evidence suggests that natural selection in fast-flowing aquatic habitats may favor species with a high aerobic scope and anaerobic capacity for locomotion, whereas in relatively slow-flowing habitats, hypoxia tolerance may be favored at the cost of reduced locomotor capacity. In addition, while physical activity can usually cause fishes from fast-flowing habitats to reach their aerobic metabolic ceiling (i.e., maximum metabolic rate), possibly due to selection pressure on locomotion, most species from slow-flowing habitats can only reach their metabolic ceiling during digestion, either alone or in combination with physical activity. Overall, we suggest that fish exhibit a continuum of metabolic types, from a 'visceral metabolic type' with a higher digestive performance to a 'locomotion metabolic type' which appears to have reduced capacity for digestion but enhanced locomotor performance. Generally, locomotor-type species can either satisfy the demands of their high swimming capacity with a high oxygen uptake capacity or sacrifice digestion while swimming. In contrast, most visceral-type species show a pronounced decrease in swimming performance while digesting, probably owing to conflicts within their aerobic scope. In conclusion, the ecological relevance of aerobic scope and the consequent effects on other physiological functions are closely related to habitat and the lifestyle of a given species. These results suggest that swimming performance, digestion and hypoxia tolerance might coevolve due to dependence on metabolic traits such as aerobic scope.
Collapse
Affiliation(s)
- Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, College of Life Sciences, Chongqing Normal University, Chongqing 400047, China.
| | - Yun-Wei Dong
- Fisheries College, Ocean University of China, Qingdao 266100, China
| | - Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
25
|
Eaton L, Pamenter ME. What to do with low O 2: Redox adaptations in vertebrates native to hypoxic environments. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111259. [PMID: 35724954 DOI: 10.1016/j.cbpa.2022.111259] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) are important cellular signalling molecules but sudden changes in redox balance can be deleterious to cells and lethal to the whole organism. ROS production is inherently linked to environmental oxygen availability and many species live in variable oxygen environments that can range in both severity and duration of hypoxic exposure. Given the importance of redox homeostasis to cell and animal viability, it is not surprising that early studies in species adapted to various hypoxic niches have revealed diverse strategies to limit or mitigate deleterious ROS changes. Although research in this area is in its infancy, patterns are beginning to emerge in the suites of adaptations to different hypoxic environments. This review focuses on redox adaptations (i.e., modifications of ROS production and scavenging, and mitigation of oxidative damage) in hypoxia-tolerant vertebrates across a range of hypoxic environments. In general, evidence suggests that animals adapted to chronic lifelong hypoxia are in homeostasis, and do not encounter major oxidative challenges in their homeostatic environment, whereas animals exposed to seasonal chronic anoxia or hypoxia rapidly downregulate redox balance to match a hypometabolic state and employ robust scavenging pathways during seasonal reoxygenation. Conversely, animals adapted to intermittent hypoxia exposure face the greatest degree of ROS imbalance and likely exhibit enhanced ROS-mitigation strategies. Although some progress has been made, research in this field is patchy and further elucidation of mechanisms that are protective against environmental redox challenges is imperative for a more holistic understanding of how animals survive hypoxic environments.
Collapse
Affiliation(s)
- Liam Eaton
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
26
|
Di G, Li H, Zhao Y, Lin Y, Lan D, Kong X, Chen X. Comprehensive transcriptomic analysis reveals insights into the gill response to hypoxia and Poly I:C in Qihe crucian carp Carassius auratus. AQUACULTURE REPORTS 2022; 24:101154. [DOI: 10.1016/j.aqrep.2022.101154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
27
|
Zhan Y, Zha S, Peng Z, Lin Z, Bao Y. Hypoxia-mediated immunotoxicity in the blood clam Tegillarca granosa. MARINE ENVIRONMENTAL RESEARCH 2022; 177:105632. [PMID: 35439659 DOI: 10.1016/j.marenvres.2022.105632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
In marine ecosystems, dissolved oxygen (DO) is essential for maintaining intracellular energy balance during aerobic metabolism. Bivalve mollusks are frequently exposed to hypoxia environments due to tides, temperature changes, and anthropogenic activities. The blood clam, Tegillarca granosa, mainly inhabits intertidal mudflats and is more susceptible to low oxygen events. In this study, we investigated the effect of hypoxia on immune responses in clams, and showed that hypoxia exposure reduced total hemocyte counts (THC), hemoglobin concentrations, and intracellular reactive oxygen species (ROS) levels. Also, phagocytic and cell activities of hemocyte were significantly inhibited. Furthermore, immune-related gene expression was also down-regulated. In conclusion, hypoxia greatly affected immune functions in blood clams, and our research provided the foundation for further mechanistic studies on hypoxia tolerance in clams.
Collapse
Affiliation(s)
- Yu Zhan
- School of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, China
| | - Shanjie Zha
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, China
| | - Zhilan Peng
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, China
| | - Zhihua Lin
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China
| | - Yongbo Bao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China.
| |
Collapse
|
28
|
Hematogenesis Adaptation to Long-Term Hypoxia Acclimation in Zebrafish (Danio rerio). FISHES 2022. [DOI: 10.3390/fishes7030098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
When fish live in the wild or are cultured artificially, they will inevitably suffer from hypoxia. At the same time, blood physiological indexes represent the physiological state of fish. In order to study the effect of long-term hypoxia acclimation on fish hematogenesis, we cultured zebrafish embryos into adulthood in a hypoxia incubator (1.5 ± 0.2 mg/L). Then we compared the hematological parameters of zebrafish cultured in normoxia and hypoxia conditions. Transcriptome sequencing analysis of the main hematopoietic tissue, the head kidney, was also compared between the two groups. Results showed that the number of erythrocytes increased significantly in the long-term hypoxia acclimated group, while the size of several cell types, such as red blood cells, eosinophils, basophils, small lymphocytes and thrombocytes, decreased significantly. The transcriptomic comparisons revealed that there were 6475 differentially expressed genes (DEGs) between the two groups. A Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that hematopoiesis and cell proliferation signaling were the most significantly enriched pathways in the head kidney of hypoxia acclimated zebrafish. In addition, many genes involved in the hematopoietic process showed significantly higher levels of expression in the hypoxia acclimated zebrafish, when compared to the normoxia zebrafish. When considered together, these data allowed us to conclude that long-term hypoxia can promote the hematopoiesis process and cell proliferation signaling in the zebrafish head kidney, which resulted in higher red blood cell production. Higher numbers of red blood cells allow for better adaptation to the hypoxic environment. In conclusion, this study provides a basis for the in-depth understanding of the effects of hypoxia on hematogenesis in fish species.
Collapse
|
29
|
Farhat E, Talarico GGM, Grégoire M, Weber JM, Mennigen JA. Epigenetic and post-transcriptional repression support metabolic suppression in chronically hypoxic goldfish. Sci Rep 2022; 12:5576. [PMID: 35368037 PMCID: PMC8976842 DOI: 10.1038/s41598-022-09374-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Goldfish enter a hypometabolic state to survive chronic hypoxia. We recently described tissue-specific contributions of membrane lipid composition remodeling and mitochondrial function to metabolic suppression across different goldfish tissues. However, the molecular and especially epigenetic foundations of hypoxia tolerance in goldfish under metabolic suppression are not well understood. Here we show that components of the molecular oxygen-sensing machinery are robustly activated across tissues irrespective of hypoxia duration. Induction of gene expression of enzymes involved in DNA methylation turnover and microRNA biogenesis suggest a role for epigenetic transcriptional and post-transcriptional suppression of gene expression in the hypoxia-acclimated brain. Conversely, mechanistic target of rapamycin-dependent translational machinery activity is not reduced in liver and white muscle, suggesting this pathway does not contribute to lowering cellular energy expenditure. Finally, molecular evidence supports previously reported chronic hypoxia-dependent changes in membrane cholesterol, lipid metabolism and mitochondrial function via changes in transcripts involved in cholesterol biosynthesis, β-oxidation, and mitochondrial fusion in multiple tissues. Overall, this study shows that chronic hypoxia robustly induces expression of oxygen-sensing machinery across tissues, induces repressive transcriptional and post-transcriptional epigenetic marks especially in the chronic hypoxia-acclimated brain and supports a role for membrane remodeling and mitochondrial function and dynamics in promoting metabolic suppression.
Collapse
Affiliation(s)
- Elie Farhat
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Giancarlo G M Talarico
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Mélissa Grégoire
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Jean-Michel Weber
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
30
|
Zhang C, Wang X, He J, Huang Y, Huang Q, Qin C, Qin J, Chen L. Neural excitotoxicity and the toxic mechanism induced by acute hypoxia in Chinese mitten crab (Eriocheir sinensis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106131. [PMID: 35255275 DOI: 10.1016/j.aquatox.2022.106131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/05/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Hypoxia can induce neural excitotoxicity in mammals, but this adverse effect has not been investigated in aquatic animals to date, especially in crustaceans. This study explored the induction effect and toxic mechanism of acute hypoxia stress (1.0 ± 0.1 mg dissolved oxygen /L) for 24 h on neural excitotoxicity in juvenile Chinese mitten crab, Eriocheir sinensis. The results showed that hemolymph glucose and serum lactic acid content were significantly increased, and the mRNA expression of crustacean hyperglycemic hormone and hypoxia-inducible factor 1α were significantly up-regulated in the hypoxia group compared with control. RNA-Seq results confirmed that acute hypoxia stress had a more significant impact on carbohydrate metabolism than lipid and protein metabolism. In addition, the TUNEL assay showed that the apoptosis rate of nerve cells was significantly higher in the hypoxia group than in the control, and similar trends were observed in the expression of apoptosis-related genes. RNA-Seq results also showed that acute hypoxia stress-induced neuronal apoptosis by regulating multiple apoptosis-related pathways. Moreover, free glutamate and GABA contents in the nerve tissue of thoracic ganglia were significantly higher in the hypoxia group than in the control group. Furthermore, the mRNA expression of NMDA related receptors was significantly up-regulated in the hypoxia group compared with the control. Similar trends were observed in the expression of calcium-dependent degrading enzymes and endogenous antioxidant-related proteins or enzymes. Meanwhile, the mRNA expression level of high-affinity neuronal glutamate transporter in the hypoxia group was significantly up-regulated compared with the control, whereas the vesicular glutamate transporter was significantly down-regulated. Furthermore, NMDA-R antagonists (MK-801 and Ro25-6981) injection showed that NMDA-R served as the bridge and core position of glutamate-induced neural neurotoxicity. This study provides a new perspective and theoretical guidance for exploring the regulation of hypoxic tolerance in E. sinensis.
Collapse
Affiliation(s)
- Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Jiaqi He
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Yuxing Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Qincheng Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan, 641100, PR China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
31
|
Comparative transcriptome analysis provides novel insights into the molecular mechanism of the silver carp (Hypophthalmichthys molitrix) brain in response to hypoxia stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100951. [PMID: 34923202 DOI: 10.1016/j.cbd.2021.100951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023]
Abstract
The brain of fish plays an important role in regulating growth and adapting to environmental changes. However, few studies have been performed to address the changes in gene expression profiles in fish brains under hypoxic stress. In the present study, silver carp (Hypophthalmichthys molitrix) were kept under hypoxic experimental conditions by using the method of natural oxygen consumption, which resulted in a significant decrease in malondialdehyde (MDA) and glutathione (GSH) content and superoxide dismutase (SOD) activity in the brain. In addition, RNA sequencing (RNA-Seq) was performed to analyze transcriptional regulation in the brains of silver carp under normoxia (control group), hypoxia, semi-asphyxia, and asphyxia conditions. The results of KEGG enrichment pathway analysis showed that the immune system, such as antigen processing and presentation, natural killer cell-mediated cytotoxicity, was enriched in the hypoxia group; the nervous system (e.g., "glutamatergic synapse"), signal transduction (e.g., "calcium signaling pathway"; "foxo signaling pathway"), and signaling molecules and interactions (e.g., "neuroactive ligand-receptor interaction") were enriched in the semi-asphyxia group; and signaling molecules and interactions (e.g., "neuroactive ligand-receptor interaction") were enriched in the asphyxia group. These results provide novel insights into the molecular regulatory mechanism of the fish brain coping with hypoxia stress.
Collapse
|
32
|
Micaroni V, Strano F, McAllen R, Woods L, Turner J, Harman L, Bell JJ. Adaptive strategies of sponges to deoxygenated oceans. GLOBAL CHANGE BIOLOGY 2022; 28:1972-1989. [PMID: 34854178 DOI: 10.1111/gcb.16013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Ocean deoxygenation is one of the major consequences of climate change. In coastal waters, this process can be exacerbated by eutrophication, which is contributing to an alarming increase in the so-called 'dead zones' globally. Despite its severity, the effect of reduced dissolved oxygen has only been studied for a very limited number of organisms, compared to other climate change impacts such as ocean acidification and warming. Here, we experimentally assessed the response of sponges to moderate and severe simulated hypoxic events. We ran three laboratory experiments on four species from two different temperate oceans (NE Atlantic and SW Pacific). Sponges were exposed to a total of five hypoxic treatments, with increasing severity (3.3, 1.6, 0.5, 0.4 and 0.13 mg O2 L-1 , over 7-12-days). We found that sponges are generally very tolerant of hypoxia. All the sponges survived in the experimental conditions, except Polymastia crocea, which showed significant mortality at the lowest oxygen concentration (0.13 mg O2 L-1 , lethal median time: 286 h). In all species except Suberites carnosus, hypoxic conditions do not significantly affect respiration rate down to 0.4 mg O2 L-1 , showing that sponges can uptake oxygen at very low concentrations in the surrounding environment. Importantly, sponges displayed species-specific phenotypic modifications in response to the hypoxic treatments, including physiological, morphological and behavioural changes. This phenotypic plasticity likely represents an adaptive strategy to live in reduced or low oxygen water. Our results also show that a single sponge species (i.e., Suberites australiensis) can display different strategies at different oxygen concentrations. Compared to other sessile organisms, sponges generally showed higher tolerance to hypoxia, suggesting that sponges could be favoured and survive in future deoxygenated oceans.
Collapse
Affiliation(s)
- Valerio Micaroni
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Francesca Strano
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Rob McAllen
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Lisa Woods
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand
| | - John Turner
- School of Ocean Sciences, Bangor University, Anglesey, UK
| | - Luke Harman
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
33
|
Zhao SS, Su XL, Pan RJ, Lu LQ, Zheng GD, Zou SM. The transcriptomic responses of blunt snout bream (Megalobrama amblycephala) to acute hypoxia stress alone, and in combination with bortezomib. BMC Genomics 2022; 23:162. [PMID: 35216548 PMCID: PMC8876555 DOI: 10.1186/s12864-022-08399-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Blunt snout bream (Megalobrama amblycephala) is sensitive to hypoxia. A new blunt snout bream strain, "Pujiang No.2", was developed to overcome this shortcoming. As a proteasome inhibitor, bortezomib (PS-341) has been shown to affect the adaptation of cells to a hypoxic environment. In the present study, bortezomib was used to explore the hypoxia adaptation mechanism of "Pujiang No.2". We examined how acute hypoxia alone (hypoxia-treated, HN: 1.0 mg·L- 1), and in combination with bortezomib (hypoxia-bortezomib-treated, HB: Use 1 mg bortezomib for 1 kg fish), impacted the hepatic ultrastructure and transcriptome expression compared to control fish (normoxia-treated, NN). RESULTS Hypoxia tolerance was significantly decreased in the bortezomib-treated group (LOEcrit, loss of equilibrium, 1.11 mg·L- 1 and 1.32 mg·L- 1) compared to the control group (LOEcrit, 0.73 mg·L- 1 and 0.85 mg·L- 1). The HB group had more severe liver injury than the HN group. Specifically, the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the HB group (52.16 U/gprot, 32 U/gprot) were significantly (p < 0.01) higher than those in the HN group (32.85 U/gprot, 21. 68 U/gprot). In addition, more severe liver damage such as vacuoles, nuclear atrophy, and nuclear lysis were observed in the HB group. RNA-seq was performed on livers from the HN, HB and NN groups. KEGG pathway analysis disclosed that many DEGs (differently expressed genes) were enriched in the HIF-1, FOXO, MAPK, PI3K-Akt and AMPK signaling pathway and their downstream. CONCLUSION We explored the adaptation mechanism of "Pujiang No.2" to hypoxia stress by using bortezomib, and combined with transcriptome analysis, accurately captured the genes related to hypoxia tolerance advantage.
Collapse
Affiliation(s)
- Shan-Shan Zhao
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiao-Lei Su
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Rong-Jia Pan
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Li-Qun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guo-Dong Zheng
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China. .,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Shu-Ming Zou
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China. .,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
34
|
Abstract
ABSTRACT
Hypoxia is one of the strongest environmental drivers of cellular and physiological adaptation. Although most mammals are largely intolerant of hypoxia, some specialized species have evolved mitigative strategies to tolerate hypoxic niches. Among the most hypoxia-tolerant mammals are naked mole-rats (Heterocephalus glaber), a eusocial species of subterranean rodent native to eastern Africa. In hypoxia, naked mole-rats maintain consciousness and remain active despite a robust and rapid suppression of metabolic rate, which is mediated by numerous behavioural, physiological and cellular strategies. Conversely, hypoxia-intolerant mammals and most other hypoxia-tolerant mammals cannot achieve the same degree of metabolic savings while staying active in hypoxia and must also increase oxygen supply to tissues, and/or enter torpor. Intriguingly, recent studies suggest that naked mole-rats share many cellular strategies with non-mammalian vertebrate champions of anoxia tolerance, including the use of alternative metabolic end-products and potent pH buffering mechanisms to mitigate cellular acidification due to upregulation of anaerobic metabolic pathways, rapid mitochondrial remodelling to favour increased respiratory efficiency, and systemic shifts in energy prioritization to maintain brain function over that of other tissues. Herein, I discuss what is known regarding adaptations of naked mole-rats to a hypoxic lifestyle, and contrast strategies employed by this species to those of hypoxia-intolerant mammals, closely related African mole-rats, other well-studied hypoxia-tolerant mammals, and non-mammalian vertebrate champions of anoxia tolerance. I also discuss the neotenic theory of hypoxia tolerance – a leading theory that may explain the evolutionary origins of hypoxia tolerance in mammals – and highlight promising but underexplored avenues of hypoxia-related research in this fascinating model organism.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 9A7. University of Ottawa, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada, K1H 8M5
| |
Collapse
|
35
|
Intracellular Signaling. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Liu Y, Jiang T, Chen Y, Gu Y, Song F, Sun J, Luo J. Identification of Candidate Genes Associated With Hypoxia Tolerance in Trachinotus blochii Using Bulked Segregant Analysis and RNA-Seq. Front Genet 2022; 12:811685. [PMID: 34970306 PMCID: PMC8712738 DOI: 10.3389/fgene.2021.811685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Golden Pompano (Trachinotus blochii) has rapidly developed into the one of the main valuable fish species in Chinese marine aquaculture. Due to its rapid growth, active metabolism, and high oxygen consumption, hypoxia will increase its mortality and cause serious economic losses. We constructed two experimental groups of fish with different degrees of tolerance to hypoxia, used BSR-Seq analysis based on genome and genetic linkage groups to locate SNPs and genes that were related to the differences in hypoxia tolerance. The results showed that hypoxia tolerance SNPs of golden pompano may be jointly determined by multiple linkage groups, especially linkage groups 18 and 22. There were 768 and 348 candidate genes located in the candidate regions of the brain and liver, respectively. These genes were mainly involved in anaerobic energy metabolism, stress response, immune response, waste discharge, and cell death. The prostaglandin-endoperoxide synthase 2 (PTGS2) on LG8, which is involved in the metabolism of arachidonic acid, has a G/A nonsynonymous mutation at position 20641628, and the encoded amino acid was changed from hydrophobic aspartic acid to asparaginate. The specific pathway of the RIG-I-like receptor signaling pathway in the liver may mediate the metabolic system and the immune system, linking glucose metabolism with immune regulation. The death of the hypoxia-intolerant group may be due to the accumulation of lactic acid caused by the activation of anaerobic glycolysis during the early stage of hypoxia stress, and the activation of type I interferon was inhibited, which resulted in decreased immunity. Among the genes involved in the RIG-I-like receptor signaling pathway, the CYLD Lysine 63 Deubiquitinase (CYLD) located on LG16 had a G/T nonsynonymous mutation at position 13629651, and the encoded amino acid was changed from alanine acid to valine. The interferon induced with helicase C domain 1 (Ifih1) located on LG18 has a G/C nonsynonymous mutation at position 16153700, and the encoded hydrophilic glycine was changed to hydrophobic alanine. Our findings suggest these SNPs may assist in the molecular breeding of hypoxia-tolerant golden pompano, and speculate that the balance of glucose and lipid metabolism plays a key role in Trachinotus blochii under acute hypoxia.
Collapse
Affiliation(s)
- Yifan Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, China
| | - Tian Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, China
| | - Youming Chen
- Hainan Blue Granary Technology Co., Ltd, Sanya, China
| | - Yue Gu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, China
| | - Feibiao Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, China
| | - Junlong Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, China
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, China
| |
Collapse
|
37
|
Snell‐Rood EC, Smirnoff D, Cantrell H, Chapman K, Kirscht E, Stretch E. Bioinspiration as a method of problem-based STEM education: A case study with a class structured around the COVID-19 crisis. Ecol Evol 2021; 11:16374-16386. [PMID: 34900221 PMCID: PMC8646331 DOI: 10.1002/ece3.8044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022] Open
Abstract
Bioinspiration is a promising lens for biology instruction as it allows the instructor to focus on current issues, such as the COVID-19 pandemic. From social distancing to oxygen stress, organisms have been tackling pandemic-related problems for millions of years. What can we learn from such diverse adaptations in our own applications? This review uses a seminar course on the COVID-19 crisis to illustrate bioinspiration as an approach to teaching biology content. At the start of the class, students mind-mapped the entire problem; this range of subproblems was used to structure the biology content throughout the entire class. Students came to individual classes with a brainstormed list of biological systems that could serve as inspiration for a particular problem (e.g., absorptive leaves in response to the problem of toilet paper shortages). After exploration of relevant biology content, discussion returned to the focal problem. Students dug deeper into the literature in a group project on mask design and biological systems relevant to filtration and transparency. This class structure was an engaging way for students to learn principles from ecology, evolution, behavior, and physiology. Challenges with this course design revolved around the interdisciplinary and creative nature of the structure; for instance, the knowledge of the participants was often stretched by engineering details. While the present class was focused on the COVID-19 crisis, a course structured through a bioinspired approach can be applied to other focal problems, or subject areas, giving instructors a powerful method to deliver interdisciplinary content in an integrated and inquiry-driven way.
Collapse
Affiliation(s)
- Emilie C. Snell‐Rood
- Department of Ecology, Evolution and BehaviorUniversity of Minnesota‐Twin CitiesSaint PaulMinnesotaUSA
| | - Dimitri Smirnoff
- Department of Ecology, Evolution and BehaviorUniversity of Minnesota‐Twin CitiesSaint PaulMinnesotaUSA
- Department of Curriculum and InstructionSaint PaulMinnesotaUSA
| | - Hunter Cantrell
- Department of Ecology, Evolution and BehaviorUniversity of Minnesota‐Twin CitiesSaint PaulMinnesotaUSA
| | - Kaila Chapman
- Department of Ecology, Evolution and BehaviorUniversity of Minnesota‐Twin CitiesSaint PaulMinnesotaUSA
| | - Elizabeth Kirscht
- Department of Ecology, Evolution and BehaviorUniversity of Minnesota‐Twin CitiesSaint PaulMinnesotaUSA
| | | |
Collapse
|
38
|
Bao M, Shang F, Liu F, Hu Z, Wang S, Yang X, Yu Y, Zhang H, Jiang C, Jiang J, Liu Y, Wang X. Comparative transcriptomic analysis of the brain in Takifugu rubripes shows its tolerance to acute hypoxia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1669-1685. [PMID: 34460041 DOI: 10.1007/s10695-021-01008-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Hypoxia in water that caused by reduced levels of oxygen occurred frequently, due to the complex aquatic environment. Hypoxia tolerance for fish depends on a complete set of coping mechanisms such as oxygen perception and gene-protein interaction regulation. The present study examined the short-term effects of hypoxia on the brain in Takifugu rubripes. We sequenced the transcriptomes of the brain in T. rubripes to study their response mechanism to acute hypoxia. A total of 167 genes were differentially expressed in the brain of T. rubripes after exposed to acute hypoxia. Gene ontology and KEGG enrichment analysis indicated that hypoxia could cause metabolic and neurological changes, showing the clues of their adaptation to acute hypoxia. As the most complex and important organ, the brain of T. rubripes might be able to create a self-protection mechanism to resist or reduce damage caused by acute hypoxia stress.
Collapse
Affiliation(s)
- Mingxiu Bao
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Fengqin Shang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Fujun Liu
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Ziwen Hu
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Shengnan Wang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Xiao Yang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Yundeng Yu
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Hongbin Zhang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Chihang Jiang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Jielan Jiang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China.
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, DalianLiaoning, 116023, China.
| |
Collapse
|
39
|
Devereaux MEM, Campbell KL, Munro D, Blier PU, Pamenter ME. Burrowing star-nosed moles (Condylura cristata) are not hypoxia tolerant. J Exp Biol 2021; 224:272220. [PMID: 34533564 DOI: 10.1242/jeb.242972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/07/2021] [Indexed: 11/20/2022]
Abstract
Star-nosed moles (Condylura cristata) have an impressive diving performance and burrowing lifestyle, yet no ventilatory data are available for this or any other talpid mole species. We predicted that, like many other semi-aquatic and fossorial small mammals, star-nosed moles would exhibit: (i) a blunted (i.e. delayed or reduced) hypoxic ventilatory response, (ii) a reduced metabolic rate and (iii) a lowered body temperature (Tb) in hypoxia. We thus non-invasively measured these variables from wild-caught star-nosed moles exposed to normoxia (21% O2) or acute graded hypoxia (21-6% O2). Surprisingly, star-nosed moles did not exhibit a blunted HVR or decreased Tb in hypoxia, and only manifested a significant, albeit small (<8%), depression of metabolic rate at 6% O2 relative to normoxic controls. Unlike small rodents inhabiting similar niches, star-nosed moles are thus intolerant to hypoxia, which may reflect an evolutionary trade-off favouring the extreme sensory biology of this unusual insectivore.
Collapse
Affiliation(s)
| | - Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | - Daniel Munro
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Pierre U Blier
- Départment de Biologie, L'Université du Québec à Rimouski, Rimouski, QC, Canada, G5L 3A1
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5.,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada, K1H 8M5
| |
Collapse
|
40
|
Increased polyamine levels and maintenance of γ-aminobutyric acid (Gaba) homeostasis in the gills is indicative of osmotic plasticity in killifish. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110969. [PMID: 33915271 DOI: 10.1016/j.cbpa.2021.110969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/23/2022]
Abstract
The Fundulus genus of killifish includes species that inhabit marshes along the U.S. Atlantic coast and the Gulf of Mexico, but differ in their ability to adjust rapidly to fluctuations in salinity. Previous work suggests that euryhaline killifish stimulate polyamine biosynthesis and accumulate putrescine in the gills during acute hypoosmotic challenge. Despite evidence that polyamines have an osmoregulatory role in euryhaline killifish species, their function in marine species is unknown. Furthermore, the consequences of hypoosmotic-induced changes in polyamine synthesis on downstream pathways, such as ƴ-aminobutyric acid (Gaba) production, have yet to be explored. Here, we examined the effects of acute hypoosmotic exposure on polyamine, glutamate, and Gaba levels in the gills of a marine (F. majalis) and two euryhaline killifish species (F. heteroclitus and F. grandis). Fish acclimated to 32 ppt or 12 ppt water were transferred to fresh water, and concentrations of glutamate (Glu), Gaba, and the polyamines putrescine (Put), spermidine (Spd), and spermine (Spm) were measured in the gills using high-performance liquid chromatography. F. heteroclitus and F. grandis exhibited an increase in gill Put concentration, but showed no change in Glu or Gaba levels following freshwater transfer. F. heteroclitus also accumulated Spd in the gills, whereas F. grandis showed transient increases in Spd and Spm levels. In contrast, gill Put, Spm, Glu, and Gaba levels decreased in F. majalis following freshwater transfer. Together, these findings suggest that increasing polyamine levels and maintaining Glu and Gaba levels in the gills may enable euryhaline teleosts to acclimate to shifts in environmental salinity.
Collapse
|
41
|
Bergstedt JH, Pfalzgraff T, Skov PV. Hypoxia tolerance and metabolic coping strategies in Oreochromis niloticus. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110956. [PMID: 33857591 DOI: 10.1016/j.cbpa.2021.110956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
The Nile tilapia (Oreochromis niloticus) is widely farmed in tropical and subtropical pond culture. O. niloticus is recognized as a species that is tolerant of hypoxic conditions, a trait that may largely be responsible for the success of this species in aquaculture. Until now, neither coping mechanisms nor a comparison of various indices of hypoxia tolerance to characterize the response to hypoxia, have been described. In the present study, Nile tilapia were subjected to hypoxia of increasing severity and duration to examine effects on metabolic rate (MO2) and post hypoxic oxygen debt. MO2 was measured during periods of severe hypoxia at 2.1 kPa O2 (10% oxygen saturation) lasting between 2 and 24 h at 27 °C. Hypoxia tolerance was assessed by determining the critical oxygen tension (Pcrit) and the pO2 at which loss of equilibrium (LOE) occurred. We show that the tolerance of Nile tilapia to severe hypoxia is largely achieved through a capacity for metabolic depression. Despite prolonged exposure to dissolved oxygen levels below Pcrit, the fish showed little excess post-hypoxic oxygen consumption (EPHOC) upon return to normoxic conditions. LOE did not occur until conditions became near-anoxic. Blood pH was not affected by severe hypoxia (2.1 kPa O2), but a significant acidosis occurred during LOE, accompanied by a significant elevation in lactate and glucose levels. The results from the present study indicate that Nile tilapia do not switch to anaerobic metabolism during hypoxia until pO2 falls below 2.1 kPa.
Collapse
Affiliation(s)
- Julie Hansen Bergstedt
- DTU Aqua, Technical University of Denmark, Section for Aquaculture, The North Sea Research Centre, DK-9850 Hirtshals, Denmark.
| | - Tilo Pfalzgraff
- DTU Aqua, Technical University of Denmark, Section for Aquaculture, The North Sea Research Centre, DK-9850 Hirtshals, Denmark
| | - Peter Vilhelm Skov
- DTU Aqua, Technical University of Denmark, Section for Aquaculture, The North Sea Research Centre, DK-9850 Hirtshals, Denmark
| |
Collapse
|
42
|
Cheng H, Munro D, Huynh K, Pamenter ME. Naked mole-rat skeletal muscle mitochondria exhibit minimal functional plasticity in acute or chronic hypoxia. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110596. [PMID: 33757832 DOI: 10.1016/j.cbpb.2021.110596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/10/2023]
Abstract
Oxidative phosphorylation is compromised in hypoxia, but many organisms live and exercise in low oxygen environments. Hypoxia-driven adaptations at the mitochondrial level are common and may enhance energetic efficiency or minimize deleterious reactive oxygen species (ROS) generation. Mitochondria from various hypoxia-tolerant animals exhibit robust functional changes following in vivo hypoxia and we hypothesized that similar plasticity would occur in naked mole-rat skeletal muscle. To test this, we exposed adult subordinate naked mole-rats to normoxia (21% O2) or acute (4 h, 7% O2) or chronic hypoxia (4-6 weeks, 11% O2) and then isolated skeletal muscle mitochondria. Using high-resolution respirometry and a fluorescent indicator of ROS production, we then probed for changes in: i) lipid- (palmitoylcarnitine-malate), ii) carbohydrate- (pyruvate-malate), and iii) succinate-fueled metabolism, and also iv) complex IV electron transfer capacity, and v) H2O2 production. Compared to normoxic values, a) lipid-fueled uncoupled respiration was reduced ~15% during acute and chronic hypoxia, b) complex I-II capacity and the rate of ROS efflux were both unaffected, and c) complex II and IV uncoupled respiration were supressed ~16% following acute hypoxia. Notably, complex II-linked H2O2 efflux was 33% lower after acute hypoxia, which may reduce deleterious ROS bursts during reoxygenation. These mild changes in lipid- and carbohydrate-fueled respiratory capacity may reflect the need for this animal to exercise regularly in highly variable and intermittently hypoxic environments in which more robust plasticity may be energetically expensive.
Collapse
Affiliation(s)
- Hang Cheng
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Munro
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Kenny Huynh
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
43
|
Zajic DE, Podrabsky JE. GABA metabolism is crucial for long-term survival of anoxia in annual killifish embryos. J Exp Biol 2020; 223:jeb229716. [PMID: 32859669 DOI: 10.1242/jeb.229716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 08/25/2023]
Abstract
In most vertebrates, a lack of oxygen quickly leads to irreparable damages to vital organs, such as the brain and heart. However, there are some vertebrates that have evolved mechanisms to survive periods of no oxygen (anoxia). The annual killifish (Austrofundulus limnaeus) survives in ephemeral ponds in the coastal deserts of Venezuela and their embryos have the remarkable ability to tolerate anoxia for months. When exposed to anoxia, embryos of A. limnaeus respond by producing significant amounts of γ-aminobutyric acid (GABA). This study aims to understand the role of GABA in supporting the metabolic response to anoxia. To explore this, we investigated four developmentally distinct stages of A. limnaeus embryos that vary in their anoxia tolerance. We measured GABA and lactate concentrations across development in response to anoxia and aerobic recovery. We then inhibited enzymes responsible for the production and degradation of GABA and observed GABA and lactate concentrations, as well as embryo mortality. Here, we show for the first time that GABA metabolism affects anoxia tolerance in A. limnaeus embryos. Inhibition of enzymes responsible for GABA production (glutamate decarboxylase) and degradation (GABA-transaminase and succinic acid semialdehyde dehydrogenase) led to increased mortality, supporting a role for GABA as an intermediate product and not a metabolic end-product. We propose multiple roles for GABA during anoxia and aerobic recovery in A. limnaeus embryos, serving as a neurotransmitter, an energy source, and an anti-oxidant.
Collapse
Affiliation(s)
- Daniel E Zajic
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
- Health, Human Performance, and Athletics Department, Linfield University, 900 SE Baker, McMinnville, OR 97128, USA
| | - Jason E Podrabsky
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
| |
Collapse
|
44
|
De Novo Transcriptomic and Metabolomic Analyses Reveal the Ecological Adaptation of High-Altitude Bombus pyrosoma. INSECTS 2020; 11:insects11090631. [PMID: 32937786 PMCID: PMC7563474 DOI: 10.3390/insects11090631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022]
Abstract
Bombus pyrosoma is one of the most abundant bumblebee species in China, with a distribution range of very varied geomorphology and vegetation, which makes it an ideal pollinator species for research into high-altitude adaptation. Here, we sequenced and assembled transcriptomes of B. pyrosoma from the low-altitude North China Plain and the high-altitude Tibet Plateau. Subsequent comparative analysis of de novo transcriptomes from the high- and low-altitude groups identified 675 common upregulated genes (DEGs) in the high-altitude B. pyrosoma. These genes were enriched in metabolic pathways and corresponded to enzyme activities involved in energy metabolism. Furthermore, according to joint analysis with comparative metabolomics, we suggest that the metabolism of coenzyme A (CoA) and the metabolism and transport of energy resources contribute to the adaptation of high-altitude B. pyrosoma. Meanwhile, we found many common upregulated genes enriched in the Toll and immune deficiency (Imd)signaling pathways that act as important immune defenses in insects, and hypoxia and cold temperatures could induce the upregulation of immune genes in insects. Therefore, we suppose that the Toll and Imd signaling pathways also participated in the high-altitude adaptation of B. pyrosoma. Like other organisms, we suggest that the high-altitude adaptation of B. pyrosoma is controlled by diverse mechanisms.
Collapse
|
45
|
Soldatov AA, Golovina IV, Kolesnikova EE, Sysoeva IV, Sysoev AA, Kukhareva TA, Kladchenko ES. Activity of Energy Metabolism Enzymes
and ATP Content
in the Brain and Gills of the Black Sea Scorpionfish Scorpaena porcus under Short-Term
Hypoxia. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020030059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Chen RY, Ngoc Hieu BT, Audira G, Lou B, Lin MD, Hsiao CD. Meta-Transcriptomic Analysis of RNAseq Data Reveals Pacu and Loach Fish with Unusually High Levels of Myoglobin Expression in Skeletal Muscles. Animals (Basel) 2020; 10:ani10071130. [PMID: 32635168 PMCID: PMC7401541 DOI: 10.3390/ani10071130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/20/2020] [Accepted: 06/27/2020] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Oxygen-binding proteins that mediate oxygen-binding for storage and consumption, to reduce energy, are very diverse in fish, depending on their habitats. In the present study, oxygen-binding protein gene expression in the skeletal muscle of 25 diverse fish species was examined by a meta-transcriptomic approach. By using RNAseq data, this is the first study to examine the high level of myoglobin, one of the oxygen-binding proteins, transcripts in pacu and loach fish that might be related to their high tolerance for the oxygen-deficient environment. In addition, this study presents the power of the current method to compare the fish oxygen-binding protein expression and its putative gene expansion event. Abstract Oxygen-binding proteins, such as myoglobin, hemoglobin, neuroglobin, and cytoglobin, play a role in oxygen binding and delivery to tissues. In icefish, the loss of myoglobin and hemoglobin genes has been reported to be an adaptive evolution event. This interesting finding prompted us to exam oxygen-binding protein expression in diverse fish species. Taking advantage of substantial RNAseq data deposited in the NCBI (National Center for Biotechnology Information) database, we adopted a meta-transcriptomic approach to explore and compare four oxygen-binding protein gene expression levels in the skeletal muscle of 25 diverse fish species for the first time. RNAseq data were downloaded from the NCBI Sequence Read Archive (SRA) database, and de novo assembly was performed to generate transcript contigs. The genes encoding oxygen-binding proteins were then identified by the BLAST search, and the relative expression level of oxygen-binding protein genes was normalized by the RPKM (Reads per Kilobase Million) method. By performing expression profiling, hierarchy clustering, and principal component analysis, pacu and loach fish were noticed by their high myoglobin expression levels in skeletal muscle tissues among 25 diverse fish species. In conclusion, we demonstrated that meta-transcriptomic analysis of RNAseq data is an informative approach to compare the oxygen-binding protein expression and putative gene expansion event in fish.
Collapse
Affiliation(s)
- Rui-Yi Chen
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Marine Fisheries Research Institute of Zhejiang, Zhoushan 316100, China;
- Marine and Fishery Institute, Zhejiang Ocean University, Zhoushan 316100, China
| | - Bui Thi Ngoc Hieu
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (B.T.N.H.); (G.A.)
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (B.T.N.H.); (G.A.)
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Bao Lou
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Shiqiao Road 198, Hangzhou 310021, China
- Correspondence: (B.L.); (M.-D.L.); (C.-D.H.)
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, 701 Zhongyang Rd, Sec. 3, Hualien 97004, Taiwan
- Correspondence: (B.L.); (M.-D.L.); (C.-D.H.)
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (B.T.N.H.); (G.A.)
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
- Correspondence: (B.L.); (M.-D.L.); (C.-D.H.)
| |
Collapse
|
47
|
Van Dusen RA, Lanz C, Robertson RM. Role of adenosine in functional recovery following anoxic coma in Locusta migratoria. JOURNAL OF INSECT PHYSIOLOGY 2020; 124:104057. [PMID: 32416084 DOI: 10.1016/j.jinsphys.2020.104057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
When exposed to prolonged anoxia insects enter a reversible coma during which neural and muscular systems temporarily shut down. Nervous system shut down is a result of spreading depolarization throughout neurons and glial cells. Upon return to normoxia, recovery occurs following the restoration of ion gradients. However, there is a delay in the functional recovery of synaptic transmission following membrane repolarization. In mammals, the build-up of extracellular adenosine following spreading depolarization contributes to this delay. Adenosine accumulation is a marker of metabolic stress and it has many downstream effects through the activation of adenosine receptors, including the inhibition of cAMP production. Here we demonstrate that adenosine lengthens the time to functional recovery following anoxic coma in locusts. Caffeine, used as an adenosine receptor antagonist, decreased the time to recovery in intact animals and lengthened the time to recovery in semi-intact animals. A cAMP inhibitor, NKH 477, delayed recovery time in male animals. Our results show that the rate of recovery in insect systems is affected by the presence of adenosine.
Collapse
|
48
|
Mattiasen EG, Kashef NS, Stafford DM, Logan CA, Sogard SM, Bjorkstedt EP, Hamilton SL. Effects of hypoxia on the behavior and physiology of kelp forest fishes. GLOBAL CHANGE BIOLOGY 2020; 26:3498-3511. [PMID: 32153086 DOI: 10.1111/gcb.15076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/23/2020] [Indexed: 05/14/2023]
Abstract
Forecasts from climate models and oceanographic observations indicate increasing deoxygenation in the global oceans and an elevated frequency and intensity of hypoxic events in the coastal zone, which have the potential to affect marine biodiversity and fisheries. Exposure to low dissolved oxygen (DO) conditions may have deleterious effects on early life stages in fishes. This study aims to identify thresholds to hypoxia while testing behavioral and physiological responses of two congeneric species of kelp forest fish to four DO levels, ranging from normoxic to hypoxic (8.7, 6.0, 4.1, and 2.2 mg O2 /L). Behavioral tests identified changes in exploratory behavior and turning bias (lateralization), whereas physiological tests focused on determining changes in hypoxia tolerance (pCrit), ventilation rates, and metabolic rates, with impacts on the resulting capacity for aerobic activity. Our findings indicated that copper rockfish (Sebastes caurinus) and blue rockfish (Sebastes mystinus) express sensitivity to hypoxia; however, the strength of the response differed between species. Copper rockfish exhibited reduced absolute lateralization and increased escape time at the lowest DO levels, whereas behavioral metrics for blue rockfish did not vary with oxygen level. Both species exhibited decreases in aerobic scope (as a function of reduced maximum metabolic rate) and increases in ventilation rates to compensate for decreasing oxygen levels. Blue rockfish had a lower pCrit and stronger acclimation response compared to copper rockfish. The differences expressed by each species suggest that acclimatization to changing ocean conditions may vary, even among related species that recruit to the same kelp forest habitat, leading to winners and losers under future ocean conditions. Exposure to hypoxia can decrease individual physiological fitness through metabolic and aerobic depression and changes to anti-predator behavior, with implications for the outcome of ecological interactions and the management of fish stocks in the face of climate change.
Collapse
Affiliation(s)
| | - Neosha S Kashef
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA, USA
- Marine Science Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - David M Stafford
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA, USA
- Marine Science Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Cheryl A Logan
- California State University Monterey Bay, Seaside, CA, USA
| | - Susan M Sogard
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA, USA
| | - Eric P Bjorkstedt
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA, USA
- Department of Fisheries Biology, Humboldt State University, Trinidad, CA, USA
| | | |
Collapse
|
49
|
Hadj-Moussa H, Storey KB. The OxymiR response to oxygen limitation: a comparative microRNA perspective. J Exp Biol 2020; 223:223/10/jeb204594. [DOI: 10.1242/jeb.204594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT
From squid at the bottom of the ocean to humans at the top of mountains, animals have adapted to diverse oxygen-limited environments. Surviving these challenging conditions requires global metabolic reorganization that is orchestrated, in part, by microRNAs that can rapidly and reversibly target all biological functions. Herein, we review the involvement of microRNAs in natural models of anoxia and hypoxia tolerance, with a focus on the involvement of oxygen-responsive microRNAs (OxymiRs) in coordinating the metabolic rate depression that allows animals to tolerate reduced oxygen levels. We begin by discussing animals that experience acute or chronic periods of oxygen deprivation at the ocean's oxygen minimum zone and go on to consider more elevated environments, up to mountain plateaus over 3500 m above sea level. We highlight the commonalities and differences between OxymiR responses of over 20 diverse animal species, including invertebrates and vertebrates. This is followed by a discussion of the OxymiR adaptations, and maladaptations, present in hypoxic high-altitude environments where animals, including humans, do not enter hypometabolic states in response to hypoxia. Comparing the OxymiR responses of evolutionarily disparate animals from diverse environments allows us to identify species-specific and convergent microRNA responses, such as miR-210 regulation. However, it also sheds light on the lack of a single unified response to oxygen limitation. Characterizing OxymiRs will help us to understand their protective roles and raises the question of whether they can be exploited to alleviate the pathogenesis of ischemic insults and boost recovery. This Review takes a comparative approach to addressing such possibilities.
Collapse
Affiliation(s)
- Hanane Hadj-Moussa
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| |
Collapse
|
50
|
Bundgaard A, Ruhr IM, Fago A, Galli GL. Metabolic adaptations to anoxia and reoxygenation: New lessons from freshwater turtles and crucian carp. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.coemr.2020.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|