1
|
Pratt BG, Lee SYJ, Chou GM, Tuthill JC. Miniature linear and split-belt treadmills reveal mechanisms of adaptive motor control in walking Drosophila. Curr Biol 2024; 34:4368-4381.e5. [PMID: 39216486 PMCID: PMC11461123 DOI: 10.1016/j.cub.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
To navigate complex environments, walking animals must detect and overcome unexpected perturbations. One technical challenge when investigating adaptive locomotion is measuring behavioral responses to precise perturbations during naturalistic walking; another is that manipulating neural activity in sensorimotor circuits often reduces spontaneous locomotion. To overcome these obstacles, we introduce miniature treadmill systems for coercing locomotion and tracking 3D kinematics of walking Drosophila. By systematically comparing walking in three experimental setups, we show that flies compelled to walk on the linear treadmill have similar stepping kinematics to freely walking flies, while kinematics of tethered walking flies are subtly different. Genetically silencing mechanosensory neurons altered step kinematics of flies walking on the linear treadmill across all speeds. We also discovered that flies can maintain a forward heading on a split-belt treadmill by specifically adapting the step distance of their middle legs. These findings suggest that proprioceptive feedback contributes to leg motor control irrespective of walking speed and that the fly's middle legs play a specialized role in stabilizing locomotion.
Collapse
Affiliation(s)
- Brandon G Pratt
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Su-Yee J Lee
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Grant M Chou
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Asinof SK, Card GM. Neural Control of Naturalistic Behavior Choices. Annu Rev Neurosci 2024; 47:369-388. [PMID: 38724026 DOI: 10.1146/annurev-neuro-111020-094019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
In the natural world, animals make decisions on an ongoing basis, continuously selecting which action to undertake next. In the lab, however, the neural bases of decision processes have mostly been studied using artificial trial structures. New experimental tools based on the genetic toolkit of model organisms now make it experimentally feasible to monitor and manipulate neural activity in small subsets of neurons during naturalistic behaviors. We thus propose a new approach to investigating decision processes, termed reverse neuroethology. In this approach, experimenters select animal models based on experimental accessibility and then utilize cutting-edge tools such as connectomes and genetically encoded reagents to analyze the flow of information through an animal's nervous system during naturalistic choice behaviors. We describe how the reverse neuroethology strategy has been applied to understand the neural underpinnings of innate, rapid decision making, with a focus on defensive behavioral choices in the vinegar fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Samuel K Asinof
- Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, Maryland, USA
- Janelia Research Campus, Ashburn, Virginia, USA
| | - Gwyneth M Card
- Howard Hughes Medical Institute, Department of Neuroscience, and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA;
- Janelia Research Campus, Ashburn, Virginia, USA
| |
Collapse
|
3
|
Medeiros AM, Hobbiss AF, Borges G, Moita M, Mendes CS. Mechanosensory bristles mediate avoidance behavior by triggering sustained local motor activity in Drosophila melanogaster. Curr Biol 2024; 34:2812-2830.e5. [PMID: 38861987 DOI: 10.1016/j.cub.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/12/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
During locomotion, most vertebrates-and invertebrates such as Drosophila melanogaster-are able to quickly adapt to terrain irregularities or avoid physical threats by integrating sensory information along with motor commands. Key to this adaptability are leg mechanosensory structures, which assist in motor coordination by transmitting external cues and proprioceptive information to motor centers in the central nervous system. Nevertheless, how different mechanosensory structures engage these locomotor centers remains poorly understood. Here, we tested the role of mechanosensory structures in movement initiation by optogenetically stimulating specific classes of leg sensory structures. We found that stimulation of leg mechanosensory bristles (MsBs) and the femoral chordotonal organ (ChO) is sufficient to initiate forward movement in immobile animals. While the stimulation of the ChO required brain centers to induce forward movement, unexpectedly, brief stimulation of leg MsBs triggered a fast response and sustained motor activity dependent only on the ventral nerve cord (VNC). Moreover, this leg-MsB-mediated movement lacked inter- and intra-leg coordination but preserved antagonistic muscle activity within joints. Finally, we show that leg-MsB activation mediates strong avoidance behavior away from the stimulus source, which is preserved even in the absence of a central brain. Overall, our data show that mechanosensory stimulation can elicit a fast motor response, independently of central brain commands, to evade potentially harmful stimuli. In addition, it sheds light on how specific sensory circuits modulate motor control, including initiation of movement, allowing a better understanding of how different levels of coordination are controlled by the VNC and central brain locomotor circuits.
Collapse
Affiliation(s)
- Alexandra M Medeiros
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Anna F Hobbiss
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal; Champalimaud Research, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
| | - Gonçalo Borges
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Marta Moita
- Champalimaud Research, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
| | - César S Mendes
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal.
| |
Collapse
|
4
|
Moreno-Sanchez A, Vasserman AN, Jang H, Hina BW, von Reyn CR, Ausborn J. Morphology and synapse topography optimize linear encoding of synapse numbers in Drosophila looming responsive descending neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.591016. [PMID: 38712267 PMCID: PMC11071487 DOI: 10.1101/2024.04.24.591016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Synapses are often precisely organized on dendritic arbors, yet the role of synaptic topography in dendritic integration remains poorly understood. Utilizing electron microscopy (EM) connectomics we investigate synaptic topography in Drosophila melanogaster looming circuits, focusing on retinotopically tuned visual projection neurons (VPNs) that synapse onto descending neurons (DNs). Synapses of a given VPN type project to non-overlapping regions on DN dendrites. Within these spatially constrained clusters, synapses are not retinotopically organized, but instead adopt near random distributions. To investigate how this organization strategy impacts DN integration, we developed multicompartment models of DNs fitted to experimental data and using precise EM morphologies and synapse locations. We find that DN dendrite morphologies normalize EPSP amplitudes of individual synaptic inputs and that near random distributions of synapses ensure linear encoding of synapse numbers from individual VPNs. These findings illuminate how synaptic topography influences dendritic integration and suggest that linear encoding of synapse numbers may be a default strategy established through connectivity and passive neuron properties, upon which active properties and plasticity can then tune as needed.
Collapse
Affiliation(s)
- Anthony Moreno-Sanchez
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| | - Alexander N. Vasserman
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| | - HyoJong Jang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Bryce W. Hina
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Catherine R. von Reyn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| |
Collapse
|
5
|
Simpson JH. Descending control of motor sequences in Drosophila. Curr Opin Neurobiol 2024; 84:102822. [PMID: 38096757 PMCID: PMC11215313 DOI: 10.1016/j.conb.2023.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 02/18/2024]
Abstract
The descending neurons connecting the fly's brain to its ventral nerve cord respond to sensory stimuli and evoke motor programs of varying complexity. Anatomical characterization of the descending neurons and their synaptic connections suggests how these circuits organize movements, while optogenetic manipulation of their activity reveals what behaviors they can induce. Monitoring their responses to sensory stimuli or during behavior performance indicates what information they may encode. Recent advances in all three approaches make the descending neurons an excellent place to better understand the sensorimotor integration and transformation required for nervous systems to govern the motor sequences that constitute animal behavior.
Collapse
Affiliation(s)
- Julie H Simpson
- Dept. Molecular Cellular and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, USA.
| |
Collapse
|
6
|
Dewell RB, Carroll-Mikhail T, Eisenbrandt MR, Mendoza AF, Halder B, Preuss T, Gabbiani F. Convergent escape behaviour from distinct visual processing of impending collision in fish and grasshoppers. J Physiol 2023; 601:4355-4373. [PMID: 37671925 PMCID: PMC10595048 DOI: 10.1113/jp284022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
In animal species ranging from invertebrate to mammals, visually guided escape behaviours have been studied using looming stimuli, the two-dimensional expanding projection on a screen of an object approaching on a collision course at constant speed. The peak firing rate or membrane potential of neurons responding to looming stimuli often tracks a fixed threshold angular size of the approaching stimulus that contributes to the triggering of escape behaviours. To study whether this result holds more generally, we designed stimuli that simulate acceleration or deceleration over the course of object approach on a collision course. Under these conditions, we found that the angular threshold conveyed by collision detecting neurons in grasshoppers was sensitive to acceleration whereas the triggering of escape behaviours was less so. In contrast, neurons in goldfish identified through the characteristic features of the escape behaviours they trigger, showed little sensitivity to acceleration. This closely mirrored a broader lack of sensitivity to acceleration of the goldfish escape behaviour. Thus, although the sensory coding of simulated colliding stimuli with non-zero acceleration probably differs in grasshoppers and goldfish, the triggering of escape behaviours converges towards similar characteristics. Approaching stimuli with non-zero acceleration may help refine our understanding of neural computations underlying escape behaviours in a broad range of animal species. KEY POINTS: A companion manuscript showed that two mathematical models of collision-detecting neurons in grasshoppers and goldfish make distinct predictions for the timing of their responses to simulated objects approaching on a collision course with non-zero acceleration. Testing these experimental predictions showed that grasshopper neurons are sensitive to acceleration while goldfish neurons are not, in agreement with the distinct models proposed previously in these species using constant velocity approaches. Grasshopper and goldfish escape behaviours occurred after the stimulus reached a fixed angular size insensitive to acceleration, suggesting further downstream processing in grasshopper motor circuits to match what was observed in goldfish. Thus, in spite of different sensory processing in the two species, escape behaviours converge towards similar solutions. The use of object acceleration during approach on a collision course may help better understand the neural computations implemented for collision avoidance in a broad range of species.
Collapse
Affiliation(s)
- Richard B Dewell
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Terri Carroll-Mikhail
- Hunter College and the Graduate Center, The City University of New York, New York, USA
| | | | | | - Bidisha Halder
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Thomas Preuss
- Hunter College and the Graduate Center, The City University of New York, New York, USA
| | - Fabrizio Gabbiani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Daly KC, Dacks A. The self as part of the sensory ecology: how behavior affects sensation from the inside out. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101053. [PMID: 37290318 DOI: 10.1016/j.cois.2023.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
Insects exhibit remarkable sensory and motor capabilities to successfully navigate their environment. As insects move, they activate sensory afferents. Hence, insects are inextricably part of their sensory ecology. Insects must correctly attribute self- versus external sources of sensory activation to make adaptive behavioral choices. This is achieved via corollary discharge circuits (CDCs), motor-to-sensory neuronal pathways providing predictive motor signals to sensory networks to coordinate sensory processing within the context of ongoing behavior. While CDCs provide predictive motor signals, their underlying mechanisms of action and functional consequences are diverse. Here, we describe inferred CDCs and identified corollary discharge interneurons (CDIs) in insects, highlighting their anatomical commonalities and our limited understanding of their synaptic integration into the nervous system. By using connectomics information, we demonstrate that the complexity with which identified CDIs integrate into the central nervous system (CNS) can be revealed.
Collapse
|
8
|
Wu Q, Zhang Y. Neural Circuit Mechanisms Involved in Animals' Detection of and Response to Visual Threats. Neurosci Bull 2023; 39:994-1008. [PMID: 36694085 PMCID: PMC10264346 DOI: 10.1007/s12264-023-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/30/2022] [Indexed: 01/26/2023] Open
Abstract
Evading or escaping from predators is one of the most crucial issues for survival across the animal kingdom. The timely detection of predators and the initiation of appropriate fight-or-flight responses are innate capabilities of the nervous system. Here we review recent progress in our understanding of innate visually-triggered defensive behaviors and the underlying neural circuit mechanisms, and a comparison among vinegar flies, zebrafish, and mice is included. This overview covers the anatomical and functional aspects of the neural circuits involved in this process, including visual threat processing and identification, the selection of appropriate behavioral responses, and the initiation of these innate defensive behaviors. The emphasis of this review is on the early stages of this pathway, namely, threat identification from complex visual inputs and how behavioral choices are influenced by differences in visual threats. We also briefly cover how the innate defensive response is processed centrally. Based on these summaries, we discuss coding strategies for visual threats and propose a common prototypical pathway for rapid innate defensive responses.
Collapse
Affiliation(s)
- Qiwen Wu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifeng Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
9
|
Li Q, Li H, Shen H, Yu Y, He H, Feng X, Sun Y, Mao Z, Chen G, Tian Z, Shen L, Zheng X, Ji A. An Aerial-Wall Robotic Insect That Can Land, Climb, and Take Off from Vertical Surfaces. RESEARCH (WASHINGTON, D.C.) 2023; 6:0144. [PMID: 37228637 PMCID: PMC10204747 DOI: 10.34133/research.0144] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Insects that can perform flapping-wing flight, climb on a wall, and switch smoothly between the 2 locomotion regimes provide us with excellent biomimetic models. However, very few biomimetic robots can perform complex locomotion tasks that combine the 2 abilities of climbing and flying. Here, we describe an aerial-wall amphibious robot that is self-contained for flying and climbing, and that can seamlessly move between the air and wall. It adopts a flapping/rotor hybrid power layout, which realizes not only efficient and controllable flight in the air but also attachment to, and climbing on, the vertical wall through a synergistic combination of the aerodynamic negative pressure adsorption of the rotor power and a climbing mechanism with bionic adhesion performance. On the basis of the attachment mechanism of insect foot pads, the prepared biomimetic adhesive materials of the robot can be applied to various types of wall surfaces to achieve stable climbing. The longitudinal axis layout design of the rotor dynamics and control strategy realize a unique cross-domain movement during the flying-climbing transition, which has important implications in understanding the takeoff and landing of insects. Moreover, it enables the robot to cross the air-wall boundary in 0.4 s (landing), and cross the wall-air boundary in 0.7 s (taking off). The aerial-wall amphibious robot expands the working space of traditional flying and climbing robots, which can pave the way for future robots that can perform autonomous visual monitoring, human search and rescue, and tracking tasks in complex air-wall environments.
Collapse
Affiliation(s)
- Qian Li
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Haoze Li
- College of Aerospace Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Huan Shen
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yangguang Yu
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Haoran He
- College of Aerospace Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xincheng Feng
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yi Sun
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhiyuan Mao
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Guangming Chen
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zongjun Tian
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Lida Shen
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiangming Zheng
- College of Aerospace Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Aihong Ji
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
- State Key Laboratory of Mechanics and Control for Aerospace Structures,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
10
|
Harada N, Tanaka H. Kinematic and hydrodynamic analyses of turning manoeuvres in penguins: body banking and wing upstroke generate centripetal force. J Exp Biol 2022; 225:286158. [PMID: 36408785 DOI: 10.1242/jeb.244124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022]
Abstract
Penguins perform lift-based swimming by flapping their wings. Previous kinematic and hydrodynamic studies have revealed the basics of wing motion and force generation in penguins. Although these studies have focused on steady forward swimming, the mechanism of turning manoeuvres is not well understood. In this study, we examined the horizontal turning of penguins via 3D motion analysis and quasi-steady hydrodynamic analysis. Free swimming of gentoo penguins (Pygoscelis papua) at an aquarium was recorded, and body and wing kinematics were analysed. In addition, quasi-steady calculations of the forces generated by the wings were performed. Among the selected horizontal swimming manoeuvres, turning was distinguished from straight swimming by the body trajectory for each wingbeat. During the turns, the penguins maintained outward banking through a wingbeat cycle and utilized a ventral force during the upstroke as a centripetal force to turn. Within a single wingbeat during the turns, changes in the body heading and bearing also mainly occurred during the upstroke, while the subsequent downstroke accelerated the body forward. We also found contralateral differences in the wing motion, i.e. the inside wing of the turn became more elevated and pronated. Quasi-steady calculations of the wing force confirmed that the asymmetry of the wing motion contributes to the generation of the centripetal force during the upstroke and the forward force during the downstroke. The results of this study demonstrate that the hydrodynamic force of flapping wings, in conjunction with body banking, is actively involved in the mechanism of turning manoeuvres in penguins.
Collapse
Affiliation(s)
- Natsuki Harada
- School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroto Tanaka
- School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
11
|
Wynne NE, Chandrasegaran K, Fryzlewicz L, Vinauger C. Visual threats reduce blood-feeding and trigger escape responses in Aedes aegypti mosquitoes. Sci Rep 2022; 12:21354. [PMID: 36494463 PMCID: PMC9734121 DOI: 10.1038/s41598-022-25461-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
The diurnal mosquitoes Aedes aegypti are vectors of several arboviruses, including dengue, yellow fever, and Zika viruses. To find a host to feed on, they rely on the sophisticated integration of olfactory, visual, thermal, and gustatory cues emitted by the hosts. If detected by their target, this latter may display defensive behaviors that mosquitoes need to be able to detect and escape in order to survive. In humans, a typical response is a swat of the hand, which generates both mechanical and visual perturbations aimed at a mosquito. Here, we used programmable visual displays to generate expanding objects sharing characteristics with the visual component of an approaching hand and quantified the behavioral response of female mosquitoes. Results show that Ae. aegypti is capable of using visual information to decide whether to feed on an artificial host mimic. Stimulations delivered in a LED flight arena further reveal that landed Ae. aegypti females display a stereotypical escape strategy by taking off at an angle that is a function of the direction of stimulus introduction. Altogether, this study demonstrates that mosquitoes landed on a host mimic can use isolated visual cues to detect and avoid a potential threat.
Collapse
Affiliation(s)
- Nicole E. Wynne
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| | - Karthikeyan Chandrasegaran
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| | - Lauren Fryzlewicz
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| | - Clément Vinauger
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
12
|
Luo L, Hina BW, McFarland BW, Saunders JC, Smolin N, von Reyn CR. An optogenetics device with smartphone video capture to introduce neurotechnology and systems neuroscience to high school students. PLoS One 2022; 17:e0267834. [PMID: 35522662 PMCID: PMC9075642 DOI: 10.1371/journal.pone.0267834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/16/2022] [Indexed: 11/22/2022] Open
Abstract
Although neurotechnology careers are on the rise, and neuroscience curriculums have significantly grown at the undergraduate and graduate levels, increasing neuroscience and neurotechnology exposure in high school curricula has been an ongoing challenge. This is due, in part, to difficulties in converting cutting-edge neuroscience research into hands-on activities that are accessible for high school students and affordable for high school educators. Here, we describe and characterize a low-cost, easy-to-construct device to enable students to record rapid Drosophila melanogaster (fruit fly) behaviors during optogenetics experiments. The device is generated from inexpensive Arduino kits and utilizes a smartphone for video capture, making it easy to adopt in a standard biology laboratory. We validate this device is capable of replicating optogenetics experiments performed with more sophisticated setups at leading universities and institutes. We incorporate the device into a high school neuroengineering summer workshop. We find student participation in the workshop significantly enhances their understanding of key neuroscience and neurotechnology concepts, demonstrating how this device can be utilized in high school settings and undergraduate research laboratories seeking low-cost alternatives.
Collapse
Affiliation(s)
- Liudi Luo
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Bryce W. Hina
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Brennan W. McFarland
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Jillian C. Saunders
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Natalie Smolin
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Catherine R. von Reyn
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Sato N, Shidara H, Kamo S, Ogawa H. Roles of neural communication between the brain and thoracic ganglia in the selection and regulation of the cricket escape behavior. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104381. [PMID: 35305989 DOI: 10.1016/j.jinsphys.2022.104381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
To survive a predator's attack, prey animals must exhibit escape responses that are appropriately regulated in terms of their moving speed, distance, and direction. Insect locomotion is considered to be controlled by an interaction between the brain, which is involved in behavioral decision-making, and the thoracic ganglia (TG), which are primary motor centers. However, it remains unknown which descending and ascending signals between these neural centers are involved in the regulation of the escape behavior. We addressed the distinct roles of the brain and TG in the wind-elicited escape behavior of crickets by assessing the effects of partial ablation of the intersegmental communications on escape responses. We unilaterally cut the ventral nerve cord (VNC) at different locations, between the brain and TG, or between the TG and terminal abdominal ganglion (TAG), a primary sensory center of the cercal system. The partial ablation of ascending signals to the brain greatly reduced the jumping response rather than running, indicating that sensory information processing in the brain is essential for the choice of escape responses. The ablation of descending signals from the brain to the TG impaired locomotor performance and directional control of the escape responses, suggesting that locomotion in the escape behavior largely depends on the descending signals from the brain. Finally, the extracellular recording from the cervical VNC indicated a difference in the descending activities preceding the escape responses between running and jumping. Our results demonstrated that the brain sends the descending signals encoding the behavioral choice and locomotor regulation to the TG, while the TG seem to have other specific roles, such as in the preparation of escape movement.
Collapse
Affiliation(s)
- Nodoka Sato
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shunsuke Kamo
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
14
|
Insect flight: Flies use a throttle to steer. Curr Biol 2022; 32:R218-R220. [DOI: 10.1016/j.cub.2022.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Sato N, Shidara H, Ogawa H. Action selection based on multiple-stimulus aspects in wind-elicited escape behavior of crickets. Heliyon 2022; 8:e08800. [PMID: 35111985 PMCID: PMC8790502 DOI: 10.1016/j.heliyon.2022.e08800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022] Open
Abstract
Escape behavior is essential for animals to avoid attacks by predators. In some species, multiple escape responses could be employed. However, it remains unknown what aspects of threat stimuli affect the choice of an escape response. We focused on two distinct escape responses (running and jumping) to short airflow in crickets and examined the effects of multiple stimulus aspects including the angle, velocity, and duration on the choice between these responses. The faster and longer the airflow, the more frequently the crickets jumped. This meant that the choice of an escape response depends on both the velocity and duration of the stimulus and suggests that the neural basis for choosing an escape response includes the integration process of multiple stimulus parameters. In addition, the moving speed and distance changed depending on the stimulus velocity and duration for running but not for jumping. Running away would be more adaptive escape behavior.
Collapse
Affiliation(s)
- Nodoka Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
16
|
Burrows M, Ghosh A, Sutton GP, Yeshwanth HM, Rogers SM, Sane SP. Jumping in lantern bugs (Hemiptera, Fulgoridae). J Exp Biol 2021; 224:273404. [PMID: 34755862 PMCID: PMC8714067 DOI: 10.1242/jeb.243361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022]
Abstract
Lantern bugs are amongst the largest of the jumping hemipteran bugs, with body lengths reaching 44 mm and masses reaching 0.7 g. They are up to 600 times heavier than smaller hemipterans that jump powerfully using catapult mechanisms to store energy. Does a similar mechanism also propel jumping in these much larger insects? The jumping performance of two species of lantern bugs (Hemiptera, Auchenorrhyncha, family Fulgoridae) from India and Malaysia was therefore analysed from high-speed videos. The kinematics showed that jumps were propelled by rapid and synchronous movements of both hind legs, with their trochantera moving first. The hind legs were 20–40% longer than the front legs, which was attributable to longer tibiae. It took 5–6 ms to accelerate to take-off velocities reaching 4.65 m s−1 in the best jumps by female Kalidasa lanata. During these jumps, adults experienced an acceleration of 77 g, required an energy expenditure of 4800 μJ and a power output of 900 mW, and exerted a force of 400 mN. The required power output of the thoracic jumping muscles was 21,000 W kg−1, 40 times greater than the maximum active contractile limit of muscle. Such a jumping performance therefore required a power amplification mechanism with energy storage in advance of the movement, as in their smaller relatives. These large lantern bugs are near isometrically scaled-up versions of their smaller relatives, still achieve comparable, if not higher, take-off velocities, and outperform other large jumping insects such as grasshoppers. Summary: Lantern bugs are large insects that jump at high-take-off velocities using a catapult mechanism that matches the performance of their much smaller planthopper relatives
Collapse
Affiliation(s)
- M Burrows
- National Centre for Biological Sciences, Tata Institute of Fundamental Research GKVK Campus, Bellary Road, Bengaluru 560 065, India.,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - A Ghosh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research GKVK Campus, Bellary Road, Bengaluru 560 065, India
| | - G P Sutton
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - H M Yeshwanth
- Department of Entomology, University of Agricultural Sciences, GKVK (Gandhi Krishi Vigyan Kendra), Bengaluru, 560 065, India
| | - S M Rogers
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - S P Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research GKVK Campus, Bellary Road, Bengaluru 560 065, India
| |
Collapse
|
17
|
Aguilar JI, Cheng MH, Font J, Schwartz AC, Ledwitch K, Duran A, Mabry SJ, Belovich AN, Zhu Y, Carter AM, Shi L, Kurian MA, Fenollar-Ferrer C, Meiler J, Ryan RM, Mchaourab HS, Bahar I, Matthies HJ, Galli A. Psychomotor impairments and therapeutic implications revealed by a mutation associated with infantile Parkinsonism-Dystonia. eLife 2021; 10:68039. [PMID: 34002696 PMCID: PMC8131106 DOI: 10.7554/elife.68039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/02/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson disease (PD) is a progressive, neurodegenerative disorder affecting over 6.1 million people worldwide. Although the cause of PD remains unclear, studies of highly penetrant mutations identified in early-onset familial parkinsonism have contributed to our understanding of the molecular mechanisms underlying disease pathology. Dopamine (DA) transporter (DAT) deficiency syndrome (DTDS) is a distinct type of infantile parkinsonism-dystonia that shares key clinical features with PD, including motor deficits (progressive bradykinesia, tremor, hypomimia) and altered DA neurotransmission. Here, we define structural, functional, and behavioral consequences of a Cys substitution at R445 in human DAT (hDAT R445C), identified in a patient with DTDS. We found that this R445 substitution disrupts a phylogenetically conserved intracellular (IC) network of interactions that compromise the hDAT IC gate. This is demonstrated by both Rosetta molecular modeling and fine-grained simulations using hDAT R445C, as well as EPR analysis and X-ray crystallography of the bacterial homolog leucine transporter. Notably, the disruption of this IC network of interactions supported a channel-like intermediate of hDAT and compromised hDAT function. We demonstrate that Drosophila melanogaster expressing hDAT R445C show impaired hDAT activity, which is associated with DA dysfunction in isolated brains and with abnormal behaviors monitored at high-speed time resolution. We show that hDAT R445C Drosophila exhibit motor deficits, lack of motor coordination (i.e. flight coordination) and phenotypic heterogeneity in these behaviors that is typically associated with DTDS and PD. These behaviors are linked with altered dopaminergic signaling stemming from loss of DA neurons and decreased DA availability. We rescued flight coordination with chloroquine, a lysosomal inhibitor that enhanced DAT expression in a heterologous expression system. Together, these studies shed some light on how a DTDS-linked DAT mutation underlies DA dysfunction and, possibly, clinical phenotypes shared by DTDS and PD.
Collapse
Affiliation(s)
- Jenny I Aguilar
- Department of Pharmacology, Vanderbilt University, Nashville, United States.,Department of Surgery, University of Alabama at Birmingham, Birmingham, United States
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Josep Font
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Alexandra C Schwartz
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, United States
| | - Kaitlyn Ledwitch
- Center for Structural Biology, Vanderbilt University, Nashville, United States.,Department of Chemistry, Vanderbilt University, Nashville, United States
| | - Amanda Duran
- Center for Structural Biology, Vanderbilt University, Nashville, United States.,Department of Chemistry, Vanderbilt University, Nashville, United States
| | - Samuel J Mabry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States
| | - Andrea N Belovich
- Department of Biomedical Sciences, Idaho College of Osteopathic Medicine, Meridian, United States
| | - Yanqi Zhu
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States
| | - Angela M Carter
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, NIDA, NIH, Baltimore, United States
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, University College London (UCL), London, United Kingdom
| | | | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, United States.,Department of Chemistry, Vanderbilt University, Nashville, United States.,Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Renae Monique Ryan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Hassane S Mchaourab
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, United States
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Heinrich Jg Matthies
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States.,Center for Inter-systemic Networks and Enteric Medical Advances, University of Alabama at Birmingham, Birmingham, United States
| |
Collapse
|
18
|
Kosaka T, Gan JH, Long LD, Umezu S, Sato H. Remote radio control of insect flight reveals why beetles lift their legs in flight while other insects tightly fold. BIOINSPIRATION & BIOMIMETICS 2021; 16:036001. [PMID: 33513597 DOI: 10.1088/1748-3190/abe138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
In the research and development of micro air vehicles, understanding and imitating the flight mechanism of insects presents a viable way of progressing forward. While research is being conducted on the flight mechanism of insects such as flies and dragonflies, research on beetles that can carry larger loads is limited. Here, we clarified the beetle midlegs' role in the attenuation and cessation of the wingbeat. We anatomically confirmed the connection between the midlegs and the elytra. We also further clarified which pair of legs are involved in the wingbeat attenuation mechanism, and lastly demonstrated free-flight control via remote leg muscle stimulation. Observation of multiple landings using a high-speed camera revealed that the wingbeat stopped immediately after their midlegs were lowered. Moreover, the action of lowering the midleg attenuated and often stopped the wingbeat. A miniature remote stimulation device (backpack) mountable on beetles was designed and utilized for the free-flight demonstration. Beetles in free flight were remotely induced into lowering (swing down) each leg pair via electrical stimulation, and they were found to lose significant altitude only when the midlegs were stimulated. Thus, the results of this study revealed that swinging down of the midlegs played a significant role in beetle wingbeat cessation. In the future, our findings on the wingbeat attenuation and cessation mechanism are expected to be helpful in designing bioinspired micro air vehicles.
Collapse
Affiliation(s)
- Takumi Kosaka
- Department of Modern Mechanical Engineering, Waseda University, Japan
| | - Jia Hui Gan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Le Duc Long
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Shinjiro Umezu
- Department of Modern Mechanical Engineering, Waseda University, Japan
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
19
|
Yarger AM, Jordan KA, Smith AJ, Fox JL. Takeoff diversity in Diptera. Proc Biol Sci 2021; 288:20202375. [PMID: 33434467 PMCID: PMC7892408 DOI: 10.1098/rspb.2020.2375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/07/2020] [Indexed: 11/12/2022] Open
Abstract
The order Diptera (true flies) are named for their two wings because their hindwings have evolved into specialized mechanosensory organs called halteres. Flies use halteres to detect body rotations and maintain stability during flight and other behaviours. The most recently diverged dipteran monophyletic subsection, the Calyptratae, is highly successful, accounting for approximately 12% of dipteran diversity, and includes common families like house flies. These flies move their halteres independently from their wings and oscillate their halteres during walking. Here, we demonstrate that this subsection of flies uses their halteres to stabilize their bodies during takeoff, whereas non-Calyptratae flies do not. We find that flies of the Calyptratae are able to take off more rapidly than non-Calyptratae flies without sacrificing stability. Haltere removal decreased both velocity and stability in the takeoffs of Calyptratae, but not other flies. The loss of takeoff velocity following haltere removal in Calyptratae (but not other flies) is a direct result of a decrease in leg extension speed. A closely related non-Calyptratae species (D. melanogaster) also has a rapid takeoff, but takeoff duration and stability are unaffected by haltere removal. Haltere use thus allows for greater speed and stability during fast escapes, but only in the Calyptratae clade.
Collapse
Affiliation(s)
| | | | | | - Jessica L. Fox
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| |
Collapse
|
20
|
Harris CM, Dinges GF, Haberkorn A, Gebehart C, Büschges A, Zill SN. Gradients in mechanotransduction of force and body weight in insects. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 58:100970. [PMID: 32702647 DOI: 10.1016/j.asd.2020.100970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Posture and walking require support of the body weight, which is thought to be detected by sensory receptors in the legs. Specificity in sensory encoding occurs through the numerical distribution, size and response range of sense organs. We have studied campaniform sensilla, receptors that detect forces as strains in the insect exoskeleton. The sites of mechanotransduction (cuticular caps) were imaged by light and confocal microscopy in four species (stick insects, cockroaches, blow flies and Drosophila). The numbers of receptors and cap diameters were determined in projection images. Similar groups of receptors are present in the legs of each species (flies lack Group 2 on the anterior trochanter). The number of receptors is generally related to the body weight but similar numbers are found in blow flies and Drosophila, despite a 30 fold difference in their weight. Imaging data indicate that the gradient (range) of cap sizes may more closely correlate with the body weight: the range of cap sizes is larger in blow flies than in Drosophila but similar to that found in juvenile cockroaches. These studies support the idea that morphological properties of force-detecting sensory receptors in the legs may be tuned to reflect the body weight.
Collapse
Affiliation(s)
- Christian M Harris
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA
| | - Gesa F Dinges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, 50923 Cologne, Germany
| | - Anna Haberkorn
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, 50923 Cologne, Germany
| | - Corinna Gebehart
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, 50923 Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, 50923 Cologne, Germany
| | - Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA.
| |
Collapse
|
21
|
Azevedo AW, Dickinson ES, Gurung P, Venkatasubramanian L, Mann RS, Tuthill JC. A size principle for recruitment of Drosophila leg motor neurons. eLife 2020; 9:e56754. [PMID: 32490810 PMCID: PMC7347388 DOI: 10.7554/elife.56754] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022] Open
Abstract
To move the body, the brain must precisely coordinate patterns of activity among diverse populations of motor neurons. Here, we use in vivo calcium imaging, electrophysiology, and behavior to understand how genetically-identified motor neurons control flexion of the fruit fly tibia. We find that leg motor neurons exhibit a coordinated gradient of anatomical, physiological, and functional properties. Large, fast motor neurons control high force, ballistic movements while small, slow motor neurons control low force, postural movements. Intermediate neurons fall between these two extremes. This hierarchical organization resembles the size principle, first proposed as a mechanism for establishing recruitment order among vertebrate motor neurons. Recordings in behaving flies confirmed that motor neurons are typically recruited in order from slow to fast. However, we also find that fast, intermediate, and slow motor neurons receive distinct proprioceptive feedback signals, suggesting that the size principle is not the only mechanism that dictates motor neuron recruitment. Overall, this work reveals the functional organization of the fly leg motor system and establishes Drosophila as a tractable system for investigating neural mechanisms of limb motor control.
Collapse
Affiliation(s)
- Anthony W Azevedo
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Evyn S Dickinson
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Pralaksha Gurung
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Lalanti Venkatasubramanian
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - John C Tuthill
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| |
Collapse
|
22
|
Byrne Rodgers J, Ryu WS. Targeted thermal stimulation and high-content phenotyping reveal that the C. elegans escape response integrates current behavioral state and past experience. PLoS One 2020; 15:e0229399. [PMID: 32218560 PMCID: PMC7100941 DOI: 10.1371/journal.pone.0229399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/05/2020] [Indexed: 12/03/2022] Open
Abstract
The ability to avoid harmful or potentially harmful stimuli can help an organism escape predators and injury, and certain avoidance mechanisms are conserved across the animal kingdom. However, how the need to avoid an imminent threat is balanced with current behavior and modified by past experience is not well understood. In this work we focused on rapidly increasing temperature, a signal that triggers an escape response in a variety of animals, including the nematode Caenorhabditis elegans. We have developed a noxious thermal response assay using an infrared laser that can be automatically controlled and targeted in order to investigate how C. elegans responds to noxious heat over long timescales and to repeated stimuli in various behavioral and sensory contexts. High-content phenotyping of behavior in individual animals revealed that the C. elegans escape response is multidimensional, with some features that extend for several minutes, and can be modulated by (i) stimulus amplitude; (ii) other sensory inputs, such as food context; (iii) long and short-term thermal experience; and (iv) the animal's current behavioral state.
Collapse
Affiliation(s)
- Jarlath Byrne Rodgers
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - William S. Ryu
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Sato N, Shidara H, Ogawa H. Trade-off between motor performance and behavioural flexibility in the action selection of cricket escape behaviour. Sci Rep 2019; 9:18112. [PMID: 31792301 PMCID: PMC6889515 DOI: 10.1038/s41598-019-54555-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022] Open
Abstract
To survive a predator’s attack successfully, animals choose appropriate actions from multiple escape responses. The motor performance of escape response governs successful survival, which implies that the action selection in escape behaviour is based on the trade-off between competing behavioural benefits. Thus, quantitative assessment of motor performance will shed light on the biological basis of decision-making. To explore the trade-off underlying the action selection, we focused on two distinct wind-elicited escape responses of crickets, running and jumping. We first hypothesized a trade-off between speed and directional accuracy. This hypothesis was rejected because crickets could control the escape direction in jumping as precisely as in running; further, jumping had advantages with regard to escape speed. Next, we assumed behavioural flexibility, including responsiveness to additional predator’s attacks, as a benefit of running. The double stimulus experiment revealed that crickets running in the first response could respond more frequently to a second stimulus and control the movement direction more precisely compared to when they chose jumping for the first response. These data suggest that not only the motor performance but also the future adaptability of subsequent behaviours are considered as behavioural benefits, which may be used for choosing appropriate escape reactions.
Collapse
Affiliation(s)
- Nodoka Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
24
|
van Veen WG, van Leeuwen JL, Muijres FT. Malaria mosquitoes use leg push-off forces to control body pitch during take-off. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 333:38-49. [PMID: 31403265 PMCID: PMC6916183 DOI: 10.1002/jez.2308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/15/2019] [Accepted: 06/19/2019] [Indexed: 11/10/2022]
Abstract
Escaping from a blood host with freshly acquired nutrition for her eggs is one of the most critical actions in the life of a female malaria mosquito. During this take-off, she has to carry a large payload, up to three times her body weight, while avoiding tactile detection by the host. What separates the malaria mosquito from most other insects is that the mosquito pushes off gently with its legs while producing aerodynamic forces with its wings. Apart from generating the required forces, the malaria mosquito has to produce the correct torques to pitch-up during take-off. Furthermore, the fed mosquito has to alter the direction of its aerodynamic force vector to compensate for the higher body pitch angle due to its heavier abdomen. Whether the mosquito generates these torques and redirection of the forces with its wings or legs remains unknown. By combining rigid-body inverse dynamics analyses with computational fluid dynamics simulations, we show that mosquitoes use leg push-off to control pitch torques and that the adaption of the aerodynamic force direction is synchronized with modulations in force magnitude. These results suggest that during the push-off phase of a take-off, mosquitoes use their flight apparatus primarily as a motor system and they use leg push-off forces for control.
Collapse
Affiliation(s)
- Wouter G van Veen
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Johan L van Leeuwen
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Florian T Muijres
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
25
|
Newhard CS, Walcott S, Swank DM. The load dependence of muscle's force-velocity curve is modulated by alternative myosin converter domains. Am J Physiol Cell Physiol 2019; 316:C844-C861. [PMID: 30865518 PMCID: PMC6620577 DOI: 10.1152/ajpcell.00494.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/15/2019] [Accepted: 03/05/2019] [Indexed: 01/07/2023]
Abstract
The hyperbolic shape of the muscle force-velocity relationship (FVR) is characteristic of all muscle fiber types. The degree of curvature of the hyperbola varies between muscle fiber types and is thought to be set by force-dependent properties of different myosin isoforms. However, the structural elements in myosin and the mechanism that determines force dependence are unresolved. We tested our hypothesis that the myosin converter domain plays a critical role in the force-velocity relationship (FVR) mechanism. Drosophila contains a single myosin heavy chain gene with five converters encoded by alternative exons. We measured FVR properties of Drosophila jump muscle fibers from five transgenic lines each expressing a single converter. Consistent with our hypothesis, we observed up to 2.4-fold alterations in FVR curvature. Maximum shortening velocity (v0) and optimal velocity for maximum power generation were also altered, but isometric tension and maximum power generation were unaltered. Converter 11a, normally found in the indirect flight muscle (IFM), imparted the highest FVR curvature and v0, whereas converter 11d, found in larval body wall muscle, imparted the most linear FVR and slowest v0. Jump distance strongly correlated with increasing FVR curvature and v0, meaning flies expressing the converter from the IFM jumped farther than flies expressing the native jump muscle converter. Fitting our data with Huxley's two-state model and a biophysically based four-state model suggest a testable hypothesis that the converter sets muscle type FVR curvature by influencing the detachment rate of negatively strained myosin via changes in the force dependence of product release.
Collapse
Affiliation(s)
- Christopher S Newhard
- Department of Biological Sciences, Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Sam Walcott
- Department of Mathematics, University of California , Davis, California
| | - Douglas M Swank
- Department of Biological Sciences, Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| |
Collapse
|
26
|
Burrows M, Ghosh A, Yeshwanth HM, Dorosenko M, Sane SP. Effectiveness and efficiency of two distinct mechanisms for take-off in a derbid planthopper insect. ACTA ACUST UNITED AC 2019; 222:jeb.191494. [PMID: 30446544 DOI: 10.1242/jeb.191494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/09/2018] [Indexed: 11/20/2022]
Abstract
Analysis of the kinematics of take-off in the planthopper Proutista moesta (Hemiptera, Fulgoroidea, family Derbidae) from high-speed videos showed that these insects used two distinct mechanisms involving different appendages. The first was a fast take-off (55.7% of 106 take-offs by 11 insects) propelled by a synchronised movement of the two hind legs and without participation of the wings. The body was accelerated in 1 ms or less to a mean take-off velocity of 1.7 m s-1 while experiencing average forces of more than 150 times gravity. The power required from the leg muscles implicated a power-amplification mechanism. Such take-offs propelled the insect along its trajectory a mean distance of 7.9 mm in the first 5 ms after take-off. The second and slower take-off mechanism (44.3% of take-offs) was powered by beating movements of the wings alone, with no discernible contribution from the hind legs. The resulting mean acceleration time was 16 times slower at 17.3 ms, the mean final velocity was six times lower at 0.27 m s-1, the g forces experienced were 80 times lower and the distance moved in 5 ms after take-off was 7 times shorter. The power requirements could be readily met by direct muscle contraction. The results suggest a testable hypothesis that the two mechanisms serve distinct behavioural actions: the fast take-offs could enable escape from predators and the slow take-offs that exert much lower ground reaction forces could enable take-off from more flexible substrates while also displacing the insect in a slower and more controllable trajectory.
Collapse
Affiliation(s)
- Malcolm Burrows
- National Centre for Biological Sciences, Tata Institute of Fundamental Research GKVK Campus, Bellary Road, Bangalore 560 065, India .,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Abin Ghosh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research GKVK Campus, Bellary Road, Bangalore 560 065, India
| | - H M Yeshwanth
- Department of Entomology, University of Agricultural Sciences, GKVK (Gandhi Krishi Vigyan Kendra), Bangalore, 560 065, India
| | - Marina Dorosenko
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Sanjay P Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research GKVK Campus, Bellary Road, Bangalore 560 065, India
| |
Collapse
|
27
|
Smith NM, Clayton GV, Khan HA, Dickerson AK. Mosquitoes modulate leg dynamics at takeoff to accommodate surface roughness. BIOINSPIRATION & BIOMIMETICS 2018; 14:016007. [PMID: 30479315 DOI: 10.1088/1748-3190/aaed87] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Insects perform takeoffs from a nearly unquantifiable number of surface permutations and many use their legs to initiate upward movement prior to the onset of wingbeats, including the mosquito. In this study we examine the unprovoked pre-takeoff mechanics of Aedes aegypti mosquitoes from two surfaces of contrasting roughness, one with roughness similar to polished glass and the other comparable to the human forearm. Using high-speed videography, we find mosquitos exhibit two distinct leg actions prior to takeoff, the widely observed push and a previously undocumented leg-strike, where one of the rearmost legs is raised and strikes the ground. Across 106 takeoff sequences we observe a greater incidence of leg-strikes from the smoother surface, and rationalize this observation by comparing the characteristic size of surface features on the mosquito tarsi and each test surface. Measurements of pre-takeoff kinematics reveal both strategies remain under the mechanosensory detection threshold of mammalian hair and produce nearly identical vertical body velocities. Lastly, we develop a model that explicates the measured leg velocity of striking legs utilized by mosquitoes, 0.59 m s-1.
Collapse
Affiliation(s)
- Nicholas M Smith
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, 32816, United States of America
| | | | | | | |
Collapse
|
28
|
Speed dependent descending control of freezing behavior in Drosophila melanogaster. Nat Commun 2018; 9:3697. [PMID: 30209268 PMCID: PMC6135764 DOI: 10.1038/s41467-018-05875-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/31/2018] [Indexed: 11/26/2022] Open
Abstract
The most fundamental choice an animal has to make when it detects a threat is whether to freeze, reducing its chances of being noticed, or to flee to safety. Here we show that Drosophila melanogaster exposed to looming stimuli in a confined arena either freeze or flee. The probability of freezing versus fleeing is modulated by the fly’s walking speed at the time of threat, demonstrating that freeze/flee decisions depend on behavioral state. We describe a pair of descending neurons crucially implicated in freezing. Genetic silencing of DNp09 descending neurons disrupts freezing yet does not prevent fleeing. Optogenetic activation of both DNp09 neurons induces running and freezing in a state-dependent manner. Our findings establish walking speed as a key factor in defensive response choices and reveal a pair of descending neurons as a critical component in the circuitry mediating selection and execution of freezing or fleeing behaviors. Looming discs are perceived as an innate threat by flies and elicit a survival response. Here, the authors report that flies exhibit either an escape or freezing response depending on their walking speed and identify the involvement of a pair of neurons in mediating the behavior.
Collapse
|
29
|
Gorostiza EA. Does Cognition Have a Role in Plasticity of "Innate Behavior"? A Perspective From Drosophila. Front Psychol 2018; 9:1502. [PMID: 30233444 PMCID: PMC6127854 DOI: 10.3389/fpsyg.2018.01502] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/30/2018] [Indexed: 11/22/2022] Open
Affiliation(s)
- E. Axel Gorostiza
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental de Córdoba-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
30
|
Fraimout A, Jacquemart P, Villarroel B, Aponte DJ, Decamps T, Herrel A, Cornette R, Debat V. Phenotypic plasticity of Drosophila suzukii wing to developmental temperature: implications for flight. ACTA ACUST UNITED AC 2018; 221:221/13/jeb166868. [PMID: 29987053 DOI: 10.1242/jeb.166868] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/16/2018] [Indexed: 12/27/2022]
Abstract
Phenotypic plasticity has been proposed as a mechanism that facilitates the success of biological invasions. In order to test the hypothesis of an adaptive role for plasticity in invasions, particular attention should be paid to the relationship between the focal plastic trait, the environmental stimulus and the functional importance of the trait. The Drosophila wing is particularly amenable to experimental studies of phenotypic plasticity. Wing morphology is known for its plastic variation under different experimental temperatures, but this plasticity has rarely been investigated in a functional context of flight. Here, we investigate the effect of temperature on wing morphology and flight in the invasive pest species Drosophila suzukii Although the rapid invasion of both Europe and North America was most likely facilitated by human activities, D. suzukii is also expected to disperse actively. By quantifying wing morphology and individual flight trajectories of flies raised under different temperatures, we tested whether (1) invasive populations of D. suzukii show higher phenotypic plasticity than their native counterparts, and (2) wing plasticity affects flight parameters. Developmental temperature was found to affect both wing morphology and flight parameters (in particular speed and acceleration), leaving open the possibility of an adaptive value for wing plasticity. Our results show no difference in phenotypic plasticity between invasive and native populations, rejecting a role for wing plasticity in the invasion success.
Collapse
Affiliation(s)
- Antoine Fraimout
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Pauline Jacquemart
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Bruno Villarroel
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France.,Mécanismes Adaptatifs et Evolution, MECADEV-UMR 7179, CNRS, MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - David J Aponte
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France.,Department of Cell Biology & Anatomy, University of Calgary, Calgary AB, Canada
| | - Thierry Decamps
- Mécanismes Adaptatifs et Evolution, MECADEV-UMR 7179, CNRS, MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution, MECADEV-UMR 7179, CNRS, MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| |
Collapse
|
31
|
Namiki S, Dickinson MH, Wong AM, Korff W, Card GM. The functional organization of descending sensory-motor pathways in Drosophila. eLife 2018; 7:e34272. [PMID: 29943730 PMCID: PMC6019073 DOI: 10.7554/elife.34272] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
In most animals, the brain controls the body via a set of descending neurons (DNs) that traverse the neck. DN activity activates, maintains or modulates locomotion and other behaviors. Individual DNs have been well-studied in species from insects to primates, but little is known about overall connectivity patterns across the DN population. We systematically investigated DN anatomy in Drosophila melanogaster and created over 100 transgenic lines targeting individual cell types. We identified roughly half of all Drosophila DNs and comprehensively map connectivity between sensory and motor neuropils in the brain and nerve cord, respectively. We find the nerve cord is a layered system of neuropils reflecting the fly's capability for two largely independent means of locomotion -- walking and flight -- using distinct sets of appendages. Our results reveal the basic functional map of descending pathways in flies and provide tools for systematic interrogation of neural circuits.
Collapse
Affiliation(s)
- Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael H Dickinson
- Division of Biology and BioengineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Allan M Wong
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
32
|
Muijres FT, Chang SW, van Veen WG, Spitzen J, Biemans BT, Koehl MAR, Dudley R. Escaping blood-fed malaria mosquitoes minimize tactile detection without compromising on take-off speed. ACTA ACUST UNITED AC 2018; 220:3751-3762. [PMID: 29046418 DOI: 10.1242/jeb.163402] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/14/2017] [Indexed: 11/20/2022]
Abstract
To escape after taking a blood meal, a mosquito must exert forces sufficiently high to take off when carrying a load roughly equal to its body weight, while simultaneously avoiding detection by minimizing tactile signals exerted on the host's skin. We studied this trade-off between escape speed and stealth in the malaria mosquito Anopheles coluzzii using 3D motion analysis of high-speed stereoscopic videos of mosquito take-offs and aerodynamic modeling. We found that during the push-off phase, mosquitoes enhanced take-off speed using aerodynamic forces generated by the beating wings in addition to leg-based push-off forces, whereby wing forces contributed 61% of the total push-off force. Exchanging leg-derived push-off forces for wing-derived aerodynamic forces allows the animal to reduce peak force production on the host's skin. By slowly extending their long legs throughout the push-off, mosquitoes spread push-off forces over a longer time window than insects with short legs, thereby further reducing peak leg forces. Using this specialized take-off behavior, mosquitoes are capable of reaching take-off speeds comparable to those of similarly sized fruit flies, but with weight-normalized peak leg forces that were only 27% of those of the fruit flies. By limiting peak leg forces, mosquitoes possibly reduce the chance of being detected by the host. The resulting combination of high take-off speed and low tactile signals on the host might help increase the mosquito's success in escaping from blood-hosts, which consequently also increases the chance of transmitting vector-borne diseases, such as malaria, to future hosts.
Collapse
Affiliation(s)
- F T Muijres
- Experimental Zoology Group, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - S W Chang
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - W G van Veen
- Experimental Zoology Group, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - J Spitzen
- Laboratory of Entomology, Wageningen University & Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - B T Biemans
- Experimental Zoology Group, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - M A R Koehl
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - R Dudley
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
33
|
Li Q, Zheng M, Pan T, Su G. Experimental and Numerical Investigation on Dragonfly Wing and Body Motion during Voluntary Take-off. Sci Rep 2018; 8:1011. [PMID: 29343709 PMCID: PMC5772656 DOI: 10.1038/s41598-018-19237-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/14/2017] [Indexed: 11/09/2022] Open
Abstract
We present a detailed analysis of the voluntary take-off procedure of a dragonfly. The motions of the body and wings are recorded using two high-speed cameras at Beihang University. The experimental results show that the dragonfly becomes airborne after approximately one wingbeat and then leaves the ground. During this process, the maximum vertical acceleration could reach 20 m/s2. Evidence also shows that acceleration is generated only by the aerodynamic force induced by the flapping of wings. The dragonfly voluntary take-off procedure is divided into four phases with distinctive features. The variation in phase difference between the forewing and hindwing and angle of attack in the down-stroke are calculated to explain the different features of the four phases. In terms of the key parameters of flapping, the phase difference increases from approximately 0 to 110 degrees; the angle of attack in down-stroke reaches the maximum at first and then decreases in the following take-off procedure. Due to experimental limitations, 2-D simulations are conducted using the immersed boundary method. The results indicate that the phase difference and the angle of attack are highly correlated with the unsteady fluid field around the dragonfly's wings and body, which determines the generation of aerodynamic forces.
Collapse
Affiliation(s)
- Qiushi Li
- National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics Collaborative Innovation Center of Advanced Aero-Engine, School of Energy and Power Engineering, Beihang University, Beijing, China
| | - Mengzong Zheng
- National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics Collaborative Innovation Center of Advanced Aero-Engine, School of Energy and Power Engineering, Beihang University, Beijing, China
| | - Tianyu Pan
- National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics Collaborative Innovation Center of Advanced Aero-Engine, School of Energy and Power Engineering, Beihang University, Beijing, China. .,Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| | - Guanting Su
- National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics Collaborative Innovation Center of Advanced Aero-Engine, School of Energy and Power Engineering, Beihang University, Beijing, China
| |
Collapse
|
34
|
Provini P, Abourachid A. Whole-body 3D kinematics of bird take-off: key role of the legs to propel the trunk. Naturwissenschaften 2018; 105:12. [PMID: 29330588 DOI: 10.1007/s00114-017-1535-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
Abstract
Previous studies showed that birds primarily use their hindlimbs to propel themselves into the air in order to take-off. Yet, it remains unclear how the different parts of their musculoskeletal system move to produce the necessary acceleration. To quantify the relative motions of the bones during the terrestrial phase of take-off, we used biplanar fluoroscopy in two species of birds, diamond dove (Geopelia cuneata) and zebra finch (Taeniopygia guttata). We obtained a detailed 3D kinematics analysis of the head, the trunk and the three long bones of the left leg. We found that the entire body assisted the production of the needed forces to take-off, during two distinct but complementary phases. The first one, a relatively slow preparatory phase, started with a movement of the head and an alignment of the different groups of bones with the future take-off direction. It was associated with a pitch down of the trunk and a flexion of the ankle, of the hip and, to a lesser extent, of the knee. This crouching movement could contribute to the loading of the leg muscles and store elastic energy that could be released in the propulsive phase of take-off, during the extension of the leg joints. Combined with the fact that the head, together with the trunk, produced a forward momentum, the entire body assisted the production of the needed forces to take-off. The second phase was faster with mostly horizontal forward and vertical upward translation motions, synchronous to an extension of the entire lower articulated musculoskeletal system. It led to the propulsion of the bird in the air with a fundamental role of the hip and ankle joints to move the trunk upward and forward. Take-off kinematics were similar in both studied species, with a more pronounced crouching movement in diamond dove, which can be related to a large body mass compared to zebra finch.
Collapse
Affiliation(s)
- Pauline Provini
- Department of Adaptations du Vivant, National Museum of Natural History, UMR 7179, AVIV, 57 rue Cuvier, case postale 55, Paris, 75231, France. .,Université Paris Descartes, 12 rue de l'Ecole de Médecine, 75270, Paris, France.
| | - Anick Abourachid
- Department of Adaptations du Vivant, National Museum of Natural History, UMR 7179, AVIV, 57 rue Cuvier, case postale 55, Paris, 75231, France
| |
Collapse
|
35
|
Urca T, Ribak G. The effect of air resistance on the jump performance of a small parasitoid wasp, Anagyrus pseudococci (Encyrtidae). J Exp Biol 2018; 221:jeb.177600. [DOI: 10.1242/jeb.177600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/15/2018] [Indexed: 01/31/2023]
Abstract
The distance a small insect moves through air during a jump is limited by the launch velocity at take-off and by air resistance. The launch velocity is limited by the length of the jumping legs and the maximum power that the jump apparatus can provide for pushing against the ground. The effect of air resistance is determined by the insect mass-to-area ratio. Both limitations are highly dependent on the body size, making high jumps a challenge for smaller insects. We studied both effects in the tiny Encyrtid wasp Anagyrus pseudococci. Males are smaller than females (mean body length 1.2 and 1.8 mm, respectively), but both sexes take-off in a powerful jump. Using high-speed cameras, we analyzed the relationship between take-off kinematics and distance traveled through air. We show that the velocity, acceleration and mass-specific power while leaving the ground places A. pseudococci among the most prominent jumpers of the insect world. However, the absolute distance moved through air is modest compared to other jumping insects, due to air resistance acting on the small body. A biomechanical model suggests that air resistance reduces the jump distance of these insects by 49%, compared to jumping in the absence of air resistance. The effect of air resistance is more pronounced in the smaller males resulting in a segregation of the jumping performance between sexes. The limiting effect of air resistance is inversely proportional to body mass, seriously constraining jumping as a form of moving through air in these and other small insects.
Collapse
Affiliation(s)
- Tomer Urca
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Israel
| | - Gal Ribak
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Israel
- The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv 6997801, Israel
| |
Collapse
|
36
|
Liu H, Ravi S, Kolomenskiy D, Tanaka H. Biomechanics and biomimetics in insect-inspired flight systems. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0390. [PMID: 27528780 PMCID: PMC4992714 DOI: 10.1098/rstb.2015.0390] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 11/12/2022] Open
Abstract
Insect- and bird-size drones-micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 10(4)-10(5) or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.
Collapse
Affiliation(s)
- Hao Liu
- Graduate School of Engineering, Chiba University, Chiba, Japan Shanghai-Jiao Tong University and Chiba University International Cooperative Research Centre (SJTU-CU ICRC), Shanghai, People's Republic of China
| | - Sridhar Ravi
- Graduate School of Engineering, Chiba University, Chiba, Japan School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Australia
| | | | - Hiroto Tanaka
- Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
37
|
Bode-Oke AT, Zeyghami S, Dong H. Aerodynamics and flow features of a damselfly in takeoff flight. BIOINSPIRATION & BIOMIMETICS 2017; 12:056006. [PMID: 28699620 DOI: 10.1088/1748-3190/aa7f52] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Flight initiation is fundamental for survival, escape from predators and lifting payload from one place to another in biological fliers and can be broadly classified into jumping and non-jumping takeoffs. During jumping takeoffs, the legs generate most of the initial impulse. Whereas the wings generate most of the forces in non-jumping takeoffs, which are usually voluntary, slow, and stable. It is of great interest to understand how these non-jumping takeoffs occur and what strategies insects use to generate large amount of forces required for this highly demanding flight initiation mode. Here, for the first time, we report accurate wing and body kinematics measurements of a damselfly during a non-jumping takeoff. Furthermore, using a high fidelity computational fluid dynamics simulation, we identify the 3D flow features and compute the wing aerodynamics forces to unravel the key mechanisms responsible for generating large flight forces. Our numerical results show that a damselfly generates about three times its body weight during the first half-stroke for liftoff. In generating these forces, the wings flap through a steeply inclined stroke plane with respect to the horizon, slicing through the air at high angles of attack (45°-50°). Consequently, a leading edge vortex (LEV) is formed during both the downstroke and upstroke on all the four wings. The formation of the LEV, however, is inhibited in the subsequent upstrokes following takeoff. Accordingly, we observe a drastic reduction in the magnitude of the aerodynamic force, signifying the importance of LEV in augmenting force production. Our analysis also shows that forewing-hindwing interaction plays a favorable role in enhancing both lift and thrust production during takeoff.
Collapse
Affiliation(s)
- Ayodeji T Bode-Oke
- Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22903, United States of America
| | | | | |
Collapse
|
38
|
von Reyn CR, Nern A, Williamson WR, Breads P, Wu M, Namiki S, Card GM. Feature Integration Drives Probabilistic Behavior in the Drosophila Escape Response. Neuron 2017. [PMID: 28641115 DOI: 10.1016/j.neuron.2017.05.036] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Animals rely on dedicated sensory circuits to extract and encode environmental features. How individual neurons integrate and translate these features into behavioral responses remains a major question. Here, we identify a visual projection neuron type that conveys predator approach information to the Drosophila giant fiber (GF) escape circuit. Genetic removal of this input during looming stimuli reveals that it encodes angular expansion velocity, whereas other input cell type(s) encode angular size. Motor program selection and timing emerge from linear integration of these two features within the GF. Linear integration improves size detection invariance over prior models and appropriately biases motor selection to rapid, GF-mediated escapes during fast looms. Our findings suggest feature integration, and motor control may occur as simultaneous operations within the same neuron and establish the Drosophila escape circuit as a model system in which these computations may be further dissected at the circuit level. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Catherine R von Reyn
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA; Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129, USA
| | - Aljoscha Nern
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - W Ryan Williamson
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Patrick Breads
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Ming Wu
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Shigehiro Namiki
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Gwyneth M Card
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
39
|
Abstract
ABSTRACT
Insects represent more than 60% of all multicellular life forms, and are easily among the most diverse and abundant organisms on earth. They evolved functional wings and the ability to fly, which enabled them to occupy diverse niches. Insects of the hyper-diverse orders show extreme miniaturization of their body size. The reduced body size, however, imposes steep constraints on flight ability, as their wings must flap faster to generate sufficient forces to stay aloft. Here, we discuss the various physiological and biomechanical adaptations of the thorax in flies which enabled them to overcome the myriad constraints of small body size, while ensuring very precise control of their wing motion. One such adaptation is the evolution of specialized myogenic or asynchronous muscles that power the high-frequency wing motion, in combination with neurogenic or synchronous steering muscles that control higher-order wing kinematic patterns. Additionally, passive cuticular linkages within the thorax coordinate fast and yet precise bilateral wing movement, in combination with an actively controlled clutch and gear system that enables flexible flight patterns. Thus, the study of thoracic biomechanics, along with the underlying sensory-motor processing, is central in understanding how the insect body form is adapted for flight.
Collapse
Affiliation(s)
- Tanvi Deora
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bellary Road, Bangalore, Karnataka 560065, India
| | - Namrata Gundiah
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sanjay P. Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bellary Road, Bangalore, Karnataka 560065, India
| |
Collapse
|
40
|
Chen MW, Wu JH, Sun M. Generation of the pitch moment during the controlled flight after takeoff of fruitflies. PLoS One 2017; 12:e0173481. [PMID: 28296907 PMCID: PMC5351871 DOI: 10.1371/journal.pone.0173481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/21/2017] [Indexed: 11/29/2022] Open
Abstract
In the present paper, the controlled flight of fruitflies after voluntary takeoff is studied. Wing and body kinematics of the insects after takeoff are measured using high-speed video techniques, and the aerodynamic force and moment are calculated by the computational fluid dynamics method based on the measured data. How the control moments are generated is analyzed by correlating the computed moments with the wing kinematics. A fruit-fly has a large pitch-up angular velocity owing to the takeoff jump and the fly controls its body attitude by producing pitching moments. It is found that the pitching moment is produced by changes in both the aerodynamic force and the moment arm. The change in the aerodynamic force is mainly due to the change in angle of attack. The change in the moment arm is mainly due to the change in the mean stroke angle and deviation angle, and the deviation angle plays a more important role than the mean stroke angle in changing the moment arm (note that change in deviation angle implies variation in the position of the aerodynamic stroke plane with respect to the anatomical stroke plane). This is unlike the case of fruitflies correcting pitch perturbations in steady free flight, where they produce pitching moment mainly by changes in mean stroke angle.
Collapse
Affiliation(s)
- Mao Wei Chen
- School of Transportation Science and Engineering, Beihang University, Beijing, China
- * E-mail:
| | - Jiang Hao Wu
- School of Transportation Science and Engineering, Beihang University, Beijing, China
| | - Mao Sun
- Institute of Fluid Mechanics, Beihang University, Beijing, China
| |
Collapse
|
41
|
Sen R, Wu M, Branson K, Robie A, Rubin GM, Dickson BJ. Moonwalker Descending Neurons Mediate Visually Evoked Retreat in Drosophila. Curr Biol 2017; 27:766-771. [PMID: 28238656 DOI: 10.1016/j.cub.2017.02.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/20/2017] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
Insects, like most animals, tend to steer away from imminent threats [1-7]. Drosophila melanogaster, for example, generally initiate an escape take-off in response to a looming visual stimulus, mimicking a potential predator [8]. The escape response to a visual threat is, however, flexible [9-12] and can alternatively consist of walking backward away from the perceived threat [11], which may be a more effective response to ambush predators such as nymphal praying mantids [7]. Flexibility in escape behavior may also add an element of unpredictability that makes it difficult for predators to anticipate or learn the prey's likely response [3-6]. Whereas the fly's escape jump has been well studied [8, 9, 13-18], the neuronal underpinnings of evasive walking remain largely unexplored. We previously reported the identification of a cluster of descending neurons-the moonwalker descending neurons (MDNs)-the activity of which is necessary and sufficient to trigger backward walking [19], as well as a population of visual projection neurons-the lobula columnar 16 (LC16) cells-that respond to looming visual stimuli and elicit backward walking and turning [11]. Given the similarity of their activation phenotypes, we hypothesized that LC16 neurons induce backward walking via MDNs and that turning while walking backward might reflect asymmetric activation of the left and right MDNs. Here, we present data from functional imaging, behavioral epistasis, and unilateral activation experiments that support these hypotheses. We conclude that LC16 and MDNs are critical components of the neural circuit that transduces threatening visual stimuli into directional locomotor output.
Collapse
Affiliation(s)
- Rajyashree Sen
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Ming Wu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Kristin Branson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Alice Robie
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
42
|
Wu M, Nern A, Williamson WR, Morimoto MM, Reiser MB, Card GM, Rubin GM. Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs. eLife 2016; 5. [PMID: 28029094 PMCID: PMC5293491 DOI: 10.7554/elife.21022] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022] Open
Abstract
Visual projection neurons (VPNs) provide an anatomical connection between early visual processing and higher brain regions. Here we characterize lobula columnar (LC) cells, a class of Drosophila VPNs that project to distinct central brain structures called optic glomeruli. We anatomically describe 22 different LC types and show that, for several types, optogenetic activation in freely moving flies evokes specific behaviors. The activation phenotypes of two LC types closely resemble natural avoidance behaviors triggered by a visual loom. In vivo two-photon calcium imaging reveals that these LC types respond to looming stimuli, while another type does not, but instead responds to the motion of a small object. Activation of LC neurons on only one side of the brain can result in attractive or aversive turning behaviors depending on the cell type. Our results indicate that LC neurons convey information on the presence and location of visual features relevant for specific behaviors.
Collapse
Affiliation(s)
- Ming Wu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - W Ryan Williamson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Mai M Morimoto
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
43
|
Zazo Seco C, Castells-Nobau A, Joo SH, Schraders M, Foo JN, van der Voet M, Velan SS, Nijhof B, Oostrik J, de Vrieze E, Katana R, Mansoor A, Huynen M, Szklarczyk R, Oti M, Tranebjærg L, van Wijk E, Scheffer-de Gooyert JM, Siddique S, Baets J, de Jonghe P, Kazmi SAR, Sadananthan SA, van de Warrenburg BP, Khor CC, Göpfert MC, Qamar R, Schenck A, Kremer H, Siddiqi S. A homozygous FITM2 mutation causes a deafness-dystonia syndrome with motor regression and signs of ichthyosis and sensory neuropathy. Dis Model Mech 2016; 10:105-118. [PMID: 28067622 PMCID: PMC5312003 DOI: 10.1242/dmm.026476] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
A consanguineous family from Pakistan was ascertained to have a novel deafness-dystonia syndrome with motor regression, ichthyosis-like features and signs of sensory neuropathy. By applying a combined strategy of linkage analysis and whole-exome sequencing in the presented family, a homozygous nonsense mutation, c.4G>T (p.Glu2*), in FITM2 was identified. FITM2 and its paralog FITM1 constitute an evolutionary conserved protein family involved in partitioning of triglycerides into cellular lipid droplets. Despite the role of FITM2 in neutral lipid storage and metabolism, no indications for lipodystrophy were observed in the affected individuals. In order to obtain independent evidence for the involvement of FITM2 in the human pathology, downregulation of the single Fitm ortholog, CG10671, in Drosophila melanogaster was pursued using RNA interference. Characteristics of the syndrome, including progressive locomotor impairment, hearing loss and disturbed sensory functions, were recapitulated in Drosophila, which supports the causative nature of the FITM2 mutation. Mutation-based genetic counseling can now be provided to the family and insight is obtained into the potential impact of genetic variation in FITM2. Editors' choice: Loss of FITM2 function in humans causes syndromic hearing loss without any signs of a lipodystrophy, although FITM2 is known to function in lipid droplet synthesis and metabolism.
Collapse
Affiliation(s)
- Celia Zazo Seco
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands.,The Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Anna Castells-Nobau
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Seol-Hee Joo
- Department of Cellular Neurobiology, University of Göttingen, Göttingen 37077, Germany
| | - Margit Schraders
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Jia Nee Foo
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Monique van der Voet
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - S Sendhil Velan
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, A*STAR, Clinical Imaging Research Centre, NUS-A*STAR, Singapore 138667, Singapore.,Singapore Institute for Clinical Sciences, A*STAR, Clinical Imaging Research Centre, NUS-A*STAR, Singapore 117609, Singapore
| | - Bonnie Nijhof
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Jaap Oostrik
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Radoslaw Katana
- Department of Cellular Neurobiology, University of Göttingen, Göttingen 37077, Germany
| | - Atika Mansoor
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| | - Martijn Huynen
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Radek Szklarczyk
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Martin Oti
- The Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands.,Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands.,Department of Molecular Developmental Biology, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Lisbeth Tranebjærg
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine (ICMM), The Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark.,Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Bispebjerg Hospital/Rigshospitalet, Copenhagen 2400, Denmark.,Clinical Genetic Clinic, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup 2600, Denmark
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Jolanda M Scheffer-de Gooyert
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Saadat Siddique
- National Institute of Rehabilitation Medicine (NIRM), Islamabad 44000, Pakistan
| | - Jonathan Baets
- Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Antwerp 2610, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp 2000, Belgium.,Laboratories of Neurogenetics and Neuropathology, Institute Born-Bunge, University of Antwerp, Antwerp 2000, Belgium
| | - Peter de Jonghe
- Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Antwerp 2610, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp 2000, Belgium.,Laboratories of Neurogenetics and Neuropathology, Institute Born-Bunge, University of Antwerp, Antwerp 2000, Belgium
| | - Syed Ali Raza Kazmi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| | - Suresh Anand Sadananthan
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, A*STAR, Clinical Imaging Research Centre, NUS-A*STAR, Singapore 138667, Singapore.,Singapore Institute for Clinical Sciences, A*STAR, Clinical Imaging Research Centre, NUS-A*STAR, Singapore 117609, Singapore
| | - Bart P van de Warrenburg
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands.,Department of Neurology, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Chiea Chuen Khor
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore.,Singapore Eye Research Institute, Singapore 168751, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 168751, Singapore
| | - Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, Göttingen 37077, Germany
| | - Raheel Qamar
- COMSATS Institute of Information Technology, Islamabad 45550, Pakistan.,Al-Nafees Medical College & Hospital, Isra University, Islamabad 45600, Pakistan
| | - Annette Schenck
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Hannie Kremer
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Saima Siddiqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| |
Collapse
|
44
|
Jang EV, Ramirez-Vizcarrondo C, Aizenman CD, Khakhalin AS. Emergence of Selectivity to Looming Stimuli in a Spiking Network Model of the Optic Tectum. Front Neural Circuits 2016; 10:95. [PMID: 27932957 PMCID: PMC5121234 DOI: 10.3389/fncir.2016.00095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/08/2016] [Indexed: 11/13/2022] Open
Abstract
The neural circuits in the optic tectum of Xenopus tadpoles are selectively responsive to looming visual stimuli that resemble objects approaching the animal at a collision trajectory. This selectivity is required for adaptive collision avoidance behavior in this species, but its underlying mechanisms are not known. In particular, it is still unclear how the balance between the recurrent spontaneous network activity and the newly arriving sensory flow is set in this structure, and to what degree this balance is important for collision detection. Also, despite the clear indication for the presence of strong recurrent excitation and spontaneous activity, the exact topology of recurrent feedback circuits in the tectum remains elusive. In this study we take advantage of recently published detailed cell-level data from tadpole tectum to build an informed computational model of it, and investigate whether dynamic activation in excitatory recurrent retinotopic networks may on its own underlie collision detection. We consider several possible recurrent connectivity configurations and compare their performance for collision detection under different levels of spontaneous neural activity. We show that even in the absence of inhibition, a retinotopic network of quickly inactivating spiking neurons is naturally selective for looming stimuli, but this selectivity is not robust to neuronal noise, and is sensitive to the balance between direct and recurrent inputs. We also describe how homeostatic modulation of intrinsic properties of individual tectal cells can change selectivity thresholds in this network, and qualitatively verify our predictions in a behavioral experiment in freely swimming tadpoles.
Collapse
Affiliation(s)
- Eric V Jang
- Department of Neuroscience, Brown University Providence, RI, USA
| | | | | | | |
Collapse
|
45
|
Peek MY, Card GM. Comparative approaches to escape. Curr Opin Neurobiol 2016; 41:167-173. [DOI: 10.1016/j.conb.2016.09.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/09/2016] [Accepted: 09/19/2016] [Indexed: 11/26/2022]
|
46
|
Hale ME, Katz HR, Peek MY, Fremont RT. Neural circuits that drive startle behavior, with a focus on the Mauthner cells and spiral fiber neurons of fishes. J Neurogenet 2016; 30:89-100. [DOI: 10.1080/01677063.2016.1182526] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Ribak G, Dafni E, Gerling D. Whiteflies stabilize their take-off with closed wings. J Exp Biol 2016; 219:1639-48. [PMID: 27045098 DOI: 10.1242/jeb.127886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/08/2016] [Indexed: 11/20/2022]
Abstract
The transition from ground to air in flying animals is often assisted by the legs pushing against the ground as the wings start to flap. Here, we show that when tiny whiteflies (Bemisia tabaci, body length ca. 1 mm) perform take-off jumps with closed wings, the abrupt push against the ground sends the insect into the air rotating forward in the sagittal (pitch) plane. However, in the air, B. tabaci can recover from this rotation remarkably fast (less than 11 ms), even before spreading its wings and flapping. The timing of body rotation in air, a simplified biomechanical model and take-off in insects with removed wings all suggest that the wings, resting backwards alongside the body, stabilize motion through air to prevent somersaulting. The increased aerodynamic force at the posterior tip of the body results in a pitching moment that stops body rotation. Wing deployment increases the pitching moment further, returning the body to a suitable angle for flight. This inherent stabilizing mechanism is made possible by the wing shape and size, in which half of the wing area is located behind the posterior tip of the abdomen.
Collapse
Affiliation(s)
- Gal Ribak
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eyal Dafni
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dan Gerling
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
48
|
Kolomenskiy D, Maeda M, Engels T, Liu H, Schneider K, Nave JC. Aerodynamic Ground Effect in Fruitfly Sized Insect Takeoff. PLoS One 2016; 11:e0152072. [PMID: 27019208 PMCID: PMC4809487 DOI: 10.1371/journal.pone.0152072] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/07/2016] [Indexed: 11/18/2022] Open
Abstract
Aerodynamic ground effect in flapping-wing insect flight is of importance to comparative morphologies and of interest to the micro-air-vehicle (MAV) community. Recent studies, however, show apparently contradictory results of either some significant extra lift or power savings, or zero ground effect. Here we present a numerical study of fruitfly sized insect takeoff with a specific focus on the significance of leg thrust and wing kinematics. Flapping-wing takeoff is studied using numerical modelling and high performance computing. The aerodynamic forces are calculated using a three-dimensional Navier-Stokes solver based on a pseudo-spectral method with volume penalization. It is coupled with a flight dynamics solver that accounts for the body weight, inertia and the leg thrust, while only having two degrees of freedom: the vertical and the longitudinal horizontal displacement. The natural voluntary takeoff of a fruitfly is considered as reference. The parameters of the model are then varied to explore possible effects of interaction between the flapping-wing model and the ground plane. These modified takeoffs include cases with decreased leg thrust parameter, and/or with periodic wing kinematics, constant body pitch angle. The results show that the ground effect during natural voluntary takeoff is negligible. In the modified takeoffs, when the rate of climb is slow, the difference in the aerodynamic forces due to the interaction with the ground is up to 6%. Surprisingly, depending on the kinematics, the difference is either positive or negative, in contrast to the intuition based on the helicopter theory, which suggests positive excess lift. This effect is attributed to unsteady wing-wake interactions. A similar effect is found during hovering.
Collapse
Affiliation(s)
- Dmitry Kolomenskiy
- Graduate School of Engineering, Chiba University, Chiba, Japan
- Department of Mathematics and Statistics, McGill University, Montreal, QC, Canada
- * E-mail: (DK); (HL)
| | | | - Thomas Engels
- M2P2–CNRS, Université d’Aix-Marseille, Marseille, France
- Institut für Strömungmechanik und Technische Akustik (ISTA), TU Berlin, Berlin, Germany
| | - Hao Liu
- Graduate School of Engineering, Chiba University, Chiba, Japan
- Shanghai-Jiao Tong University and Chiba University International Cooperative Research Center, Shanghai, China
- * E-mail: (DK); (HL)
| | - Kai Schneider
- M2P2–CNRS, Université d’Aix-Marseille, Marseille, France
| | - Jean-Christophe Nave
- Department of Mathematics and Statistics, McGill University, Montreal, QC, Canada
| |
Collapse
|
49
|
Abstract
UNLABELLED Sensorimotor delays decouple behaviors from the events that drive them. The brain compensates for these delays with predictive mechanisms, but the efficacy and timescale over which these mechanisms operate remain poorly understood. Here, we assess how prediction is used to compensate for prey movement that occurs during visuomotor processing. We obtained high-speed video records of freely moving, tongue-projecting salamanders catching walking prey, emulating natural foraging conditions. We found that tongue projections were preceded by a rapid head turn lasting ∼ 130 ms. This motor lag, combined with the ∼ 100 ms phototransduction delay at photopic light levels, gave a ∼ 230 ms visuomotor response delay during which prey typically moved approximately one body length. Tongue projections, however, did not significantly lag prey position but were highly accurate instead. Angular errors in tongue projection accuracy were consistent with a linear extrapolation model that predicted prey position at the time of tongue contact using the average prey motion during a ∼ 175 ms period one visual latency before the head movement. The model explained successful strikes where the tongue hit the fly, and unsuccessful strikes where the fly turned and the tongue hit a phantom location consistent with the fly's earlier trajectory. The model parameters, obtained from the data, agree with the temporal integration and latency of retinal responses proposed to contribute to motion extrapolation. These results show that the salamander predicts future prey position and that prediction significantly improves prey capture success over a broad range of prey speeds and light levels. SIGNIFICANCE STATEMENT Neural processing delays cause actions to lag behind the events that elicit them. To cope with these delays, the brain predicts what will happen in the future. While neural circuits in the retina and beyond have been suggested to participate in such predictions, few behaviors have been explored sufficiently to constrain circuit function. Here we show that salamanders aim their tongues by using extrapolation to estimate future prey position, thereby compensating for internal delays from both visual and motor processing. Predictions made just before a prey turn resulted in the tongue being projected to a position consistent with the prey's pre-turn trajectory. These results define the computations and operating regimen for neural circuits that predict target motion.
Collapse
|
50
|
Hong W, Kennedy A, Burgos-Artizzu XP, Zelikowsky M, Navonne SG, Perona P, Anderson DJ. Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning. Proc Natl Acad Sci U S A 2015; 112:E5351-60. [PMID: 26354123 PMCID: PMC4586844 DOI: 10.1073/pnas.1515982112] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A lack of automated, quantitative, and accurate assessment of social behaviors in mammalian animal models has limited progress toward understanding mechanisms underlying social interactions and their disorders such as autism. Here we present a new integrated hardware and software system that combines video tracking, depth sensing, and machine learning for automatic detection and quantification of social behaviors involving close and dynamic interactions between two mice of different coat colors in their home cage. We designed a hardware setup that integrates traditional video cameras with a depth camera, developed computer vision tools to extract the body "pose" of individual animals in a social context, and used a supervised learning algorithm to classify several well-described social behaviors. We validated the robustness of the automated classifiers in various experimental settings and used them to examine how genetic background, such as that of Black and Tan Brachyury (BTBR) mice (a previously reported autism model), influences social behavior. Our integrated approach allows for rapid, automated measurement of social behaviors across diverse experimental designs and also affords the ability to develop new, objective behavioral metrics.
Collapse
Affiliation(s)
- Weizhe Hong
- Division of Biology and Biological Engineering 156-29, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125;
| | - Ann Kennedy
- Division of Biology and Biological Engineering 156-29, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
| | - Xavier P Burgos-Artizzu
- Division of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125
| | - Moriel Zelikowsky
- Division of Biology and Biological Engineering 156-29, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
| | - Santiago G Navonne
- Division of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125
| | - Pietro Perona
- Division of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125
| | - David J Anderson
- Division of Biology and Biological Engineering 156-29, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125;
| |
Collapse
|