1
|
Zimmer AM. Ammonia excretion by the fish gill: discoveries and ideas that shaped our current understanding. J Comp Physiol B 2024; 194:697-715. [PMID: 38849577 DOI: 10.1007/s00360-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
The fish gill serves many physiological functions, among which is the excretion of ammonia, the primary nitrogenous waste in most fishes. Although it is the end-product of nitrogen metabolism, ammonia serves many physiological functions including acting as an acid equivalent and as a counter-ion in mechanisms of ion regulation. Our current understanding of the mechanisms of ammonia excretion have been influenced by classic experimental work, clever mechanistic approaches, and modern molecular and genetic techniques. In this review, I will overview the history of the study of ammonia excretion by the gills of fishes, highlighting the important advancements that have shaped this field with a nearly 100-year history. The developmental and evolutionary implications of an ammonia and gill-dominated nitrogen regulation strategy in most fishes will also be discussed. Throughout the review, I point to areas in which more work is needed to push forward this field of research that continues to produce novel insights and discoveries that will undoubtedly shape our overall understanding of fish physiology.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, Saint John, New Brunswick, E2L 4L5, Canada.
| |
Collapse
|
2
|
Quijada-Rodriguez AR, Fehsenfeld S, Marini AM, Wilson JM, Nash MT, Sachs M, Towle DW, Weihrauch D. Branchial CO 2 and ammonia excretion in crustaceans: Involvement of an apical Rhesus-like glycoprotein. Acta Physiol (Oxf) 2024; 240:e14078. [PMID: 38205922 DOI: 10.1111/apha.14078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
AIM To determine whether the crustacean Rh1 protein functions as a dual CO2 /ammonia transporter and investigate its role in branchial ammonia excretion and acid-base regulation. METHODS Sequence analysis of decapod Rh1 proteins was used to determine the conservation of amino acid residues putatively involved in ammonia transport and CO2 binding in human and bacterial Rh proteins. Using the Carcinus maenas Rh1 protein (CmRh1) as a representative of decapod Rh1 proteins, we test the ammonia and CO2 transport capabilities of CmRh1 through heterologous expression in yeast and Xenopus oocytes coupled with site-directed mutagenesis. Quantitative PCR was used to assess the distribution of CmRh1 mRNA in various tissues. Western blotting was used to assess CmRh1 protein expression changes in response to high environmental ammonia and CO2 . Further, immunohistochemistry was used to assess sub-cellular localization of CmRh1 and a membrane-bound carbonic anhydrase (CmCAg). RESULTS Sequence analysis of decapod Rh proteins revealed high conservation of several amino acid residues putatively involved in conducting ammonia transport and CO2 binding. Expression of CmRh1 in Xenopus oocytes enhanced both ammonia and CO2 transport which was nullified in CmRh1 D180N mutant oocytes. Transport of the ammonia analog methylamine by CmRh1 is dependent on both ionized and un-ionized ammonia/methylamine species. CmRh1 was co-localized with CmCAg to the apical membrane of the crustacean gill and only experienced decreased protein expression in the anterior gills when exposed to high environmental ammonia. CONCLUSION CmRh1 is the first identified apical transporter-mediated route for ammonia and CO2 excretion in the crustacean gill. Our findings shed further light on the potential universality of dual ammonia and CO2 transport capacity of Rhesus glycoproteins in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Alex R Quijada-Rodriguez
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Sandra Fehsenfeld
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Anna-Maria Marini
- Biology of Membrane Transport Laboratory, Molecular Biology Department, Université Libre de Bruxelles, Bruxelles, Belgium
- WELBIO, Wavre, Belgium
| | - Jonathan M Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Mikyla T Nash
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maria Sachs
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David W Towle
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Chen Y, Wisner AS, Schiefer IT, Williams FE, Hall FS. Methamphetamine-induced lethal toxicity in zebrafish larvae. Psychopharmacology (Berl) 2022; 239:3833-3846. [PMID: 36269378 PMCID: PMC10593407 DOI: 10.1007/s00213-022-06252-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/27/2022] [Indexed: 10/24/2022]
Abstract
RATIONALE The use of novel psychoactive substances has been steadily increasing in recent years. Given the rapid emergence of new substances and their constantly changing chemical structure, it is necessary to develop an efficient and expeditious approach to examine the mechanisms underlying their pharmacological and toxicological effects. Zebrafish (Danio rerio) have become a popular experimental subject for drug screening due to their amenability to high-throughput approaches. OBJECTIVES In this study, we used methamphetamine (METH) as an exemplary psychoactive substance to investigate its acute toxicity and possible underlying mechanisms in 5-day post-fertilization (5 dpf) zebrafish larvae. METHODS Lethality and toxicity of different concentrations of METH were examined in 5-dpf zebrafish larvae using a 96-well plate format. RESULTS METH induced lethality in zebrafish larvae in a dose-dependent manner, which was associated with initial sympathomimetic activation, followed by cardiotoxicity. This was evidenced by significant heart rate increases at low doses, followed by decreased cardiac function at high doses and later time points. Levels of ammonia in the excreted water were increased but decreased internally. There was also evidence of seizures. Co-administration of the glutamate AMPA receptor antagonist GYKI-52466 and the dopamine D2 receptor antagonist raclopride significantly attenuated METH-induced lethality, suggesting that this lethality may be mediated synergistically or independently by glutamatergic and dopaminergic systems. CONCLUSIONS These experiments provide a baseline for the study of the toxicity of related amphetamine compounds in 5-dpf zebrafish as well as a new high-throughput approach for investigating the toxicities of rapidly emerging new psychoactive substances.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave., MS 1015, Toledo, OH, 43614-2598, USA
- College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Ave Room 610, Memphis, TN, 38163, USA
| | - Alexander S Wisner
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave., MS 1015, Toledo, OH, 43614-2598, USA
| | - Isaac T Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Frederick E Williams
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave., MS 1015, Toledo, OH, 43614-2598, USA
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave., MS 1015, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
4
|
Huang M, Shang ZH, Wu MX, Zhang LJ, Zhang YL. Regulation of Rhesus glycoprotein-related genes in large-scale loach Paramisgurnus dabryanus during ammonia loading. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114077. [PMID: 36108439 DOI: 10.1016/j.ecoenv.2022.114077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/04/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Waterborne ammonia is one of the crucial issues that limited production and animal health in aquaculture. Ammonia-tolerant varieties are highly desired in intensive fish farming. Screening for the key regulatory genes of ammonia tolerance is essential for variety breeding. According to the previous hypothesis, Rh glycoproteins play an important role in ammonia excretion in teleosts. However, the ammonia defensive mechanisms are not well described at present for large-scale loach (Paramisgurnus dabryanus), a typical air-breathing and commercially important fish in East Asia. Here we show that the transcription of Rh glycoprotein-related genes was significantly affected by ammonia exposure in this species. Probit analysis showed that 96 h-LC50 of NH4Cl at 23 ℃ and pH 7.2 was 92.64 mmol/L. A significant increase of Rhcg expression in gills was observed after 48 h of 60 mmol/L and 36 h of 80 mmol/L NH4Cl exposure, suggesting that Rhcg present on the apical side of the branchial epithelium facilitates NH3 excretion out of gills. A high concentration of acute ammonia exposure induced elevated Rhbg transcript in the gills of large-scale loaches, while a slight change in Rhbg expression was observed in response to lower ammonia, suggesting that transcriptions of Rhbg genes are activated by a considerably high level of ambient ammonia to eliminate excessive endogenous nitrogen. The Rhag mRNA level in gills of large-scale loaches increased markedly with the prolonging of exposure time from 0 to 36 h of ammonia loading, suggesting Rhag localized in gills may be primarily associated with ammonia handling. During 7-21 days of ammonia exposure, the expression of most Rh glycoproteins-related genes in the gills decreased, indicating that the functional role of Rh glycoproteins is not primarily associated with ammonia defense over a long period (more than 7 days). Although a significant transcript of Rhbg was found in the skin of a large-scale loach, the lack of Rhcg and down-regulation of Rhag may indicate that the skin is not an essential location of ammonia excretion, at least when submerged to high levels of ammonia in the environment. In conclusion, Rh glycoproteins localized in gills as ammonia transporters play a momentous role in ammonia detoxification in this species during acute ammonia loading. However, it does not show a positive function during long-term ammonia exposure. Furthermore, the physiological function of Rh glycoproteins localized in the skin is still unclear and deserves further study.
Collapse
Affiliation(s)
- Mei Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Ze-Hao Shang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Meng-Xiao Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Lin-Jiang Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Yun-Long Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
5
|
Soares SS, Costa GG, Brito LB, de Oliveira GAR, Scalize PS. Assessment of surface water quality of the bois river (Goiás, Brazil) using an integrated physicochemical, microbiological and ecotoxicological approach. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:242-249. [PMID: 35505496 DOI: 10.1080/10934529.2022.2060026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The data on water pollution is scarce in developing countries, including Brazil. The water quality assessment is important implementing the monitoring and remediation programs to minimize the risk of hazardous substances in freshwaters. Thus, this study evaluated the surface water quality of a stretch of the Bois River (Brazil), based on the physicochemical, microbiological and ecotoxicological analyses conducted in 2017, using Standard Methods and fish embryo acute toxicity (FET) test with zebrafish (Danio rerio). The results indicated that the quality of water samples located close to the discharge of tannery effluents was most impaired. Total phosphorus, BOD, DO, ammoniacal nitrogen, and thermotolerant coliforms parameters in P4 were not in accordance with the standards of current Brazilian legislation. Iron, lead, and copper levels were higher than environmental standards. The physicochemical quality of water samples was lower in the dry season than the rainy season. All samples (P1, P3, and P5) in rainy and dry seasons did not induce significant acute toxicity for zebrafish early-life stage; however other trophic levels (algae and microcrustacean) should be investigated to gain a better understanding of the toxicity during water quality analysis. In conclusion, the physicochemical and microbiological changes in the water of the Bois River can affect aquatic organisms as well as humans when it is used for drinking or in agriculture.
Collapse
Affiliation(s)
- Samara Silva Soares
- Graduate Program in Environmental and Sanitary Engineering, Laboratory of Water Analysis, School of Civil and Environmental Engineering, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Gessyca Gonçalves Costa
- Graduate Program in Pharmaceutical Sciences, Environmental Toxicology Research Laboratory (EnvTox), Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lara Barroso Brito
- Graduate Program in Pharmaceutical Sciences, Environmental Toxicology Research Laboratory (EnvTox), Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Gisele Augusto Rodrigues de Oliveira
- Graduate Program in Pharmaceutical Sciences, Environmental Toxicology Research Laboratory (EnvTox), Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Paulo Sérgio Scalize
- Graduate Program in Environmental and Sanitary Engineering, Laboratory of Water Analysis, School of Civil and Environmental Engineering, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
6
|
Naser FJ, Jackstadt MM, Fowle-Grider R, Spalding JL, Cho K, Stancliffe E, Doonan SR, Kramer ET, Yao L, Krasnick B, Ding L, Fields RC, Kaufman CK, Shriver LP, Johnson SL, Patti GJ. Isotope tracing in adult zebrafish reveals alanine cycling between melanoma and liver. Cell Metab 2021; 33:1493-1504.e5. [PMID: 33989520 PMCID: PMC9275394 DOI: 10.1016/j.cmet.2021.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/08/2021] [Accepted: 04/19/2021] [Indexed: 12/29/2022]
Abstract
The cell-intrinsic nature of tumor metabolism has become increasingly well characterized. The impact that tumors have on systemic metabolism, however, has received less attention. Here, we used adult zebrafish harboring BRAFV600E-driven melanoma to study the effect of cancer on distant tissues. By applying metabolomics and isotope tracing, we found that melanoma consume ~15 times more glucose than other tissues measured. Despite this burden, circulating glucose levels were maintained in disease animals by a tumor-liver alanine cycle. Excretion of glucose-derived alanine from tumors provided a source of carbon for hepatic gluconeogenesis and allowed tumors to remove excess nitrogen from branched-chain amino acid catabolism, which we found to be activated in zebrafish and human melanoma. Pharmacological inhibition of the tumor-liver alanine cycle in zebrafish reduced tumor burden. Our findings underscore the significance of metabolic crosstalk between tumors and distant tissues and establish the adult zebrafish as an attractive model to study such processes.
Collapse
Affiliation(s)
- Fuad J Naser
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA; Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Madelyn M Jackstadt
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA; Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ronald Fowle-Grider
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA; Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Jonathan L Spalding
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA; Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Kevin Cho
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA; Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ethan Stancliffe
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA; Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven R Doonan
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA; Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Eva T Kramer
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Lijun Yao
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Bradley Krasnick
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan C Fields
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Charles K Kaufman
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA; Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Stephen L Johnson
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA; Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
7
|
West AC, Mizoro Y, Wood SH, Ince LM, Iversen M, Jørgensen EH, Nome T, Sandve SR, Martin SAM, Loudon ASI, Hazlerigg DG. Immunologic Profiling of the Atlantic Salmon Gill by Single Nuclei Transcriptomics. Front Immunol 2021; 12:669889. [PMID: 34017342 PMCID: PMC8129531 DOI: 10.3389/fimmu.2021.669889] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/05/2022] Open
Abstract
Anadromous salmonids begin life adapted to the freshwater environments of their natal streams before a developmental transition, known as smoltification, transforms them into marine-adapted fish. In the wild, smoltification is a photoperiod-regulated process, involving radical remodeling of gill function to cope with the profound osmotic and immunological challenges of seawater (SW) migration. While prior work has highlighted the role of specialized "mitochondrion-rich" cells (MRCs) and accessory cells (ACs) in delivering this phenotype, recent RNA profiling experiments suggest that remodeling is far more extensive than previously appreciated. Here, we use single-nuclei RNAseq to characterize the extent of cytological changes in the gill of Atlantic salmon during smoltification and SW transfer. We identify 20 distinct cell clusters, including known, but also novel gill cell types. These data allow us to isolate cluster-specific, smoltification-associated changes in gene expression and to describe how the cellular make-up of the gill changes through smoltification. As expected, we noted an increase in the proportion of seawater mitochondrion-rich cells, however, we also identify previously unknown reduction of several immune-related cell types. Overall, our results provide fresh detail of the cellular complexity in the gill and suggest that smoltification triggers unexpected immune reprogramming.
Collapse
Affiliation(s)
- Alexander C. West
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Yasutaka Mizoro
- Unit of Animal Genomics, GIGA Institute, University of Liège, Liège, Belgium
| | - Shona H. Wood
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Louise M. Ince
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marianne Iversen
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Even H. Jørgensen
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Torfinn Nome
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Simen Rød Sandve
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Samuel A. M. Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Andrew S. I. Loudon
- Division of Diabetes, Endocrinology & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David G. Hazlerigg
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
8
|
Jung EH, Smich J, Rubino JG, Wood CM. An in vitro study of urea and ammonia production and transport by the intestinal tract of fed and fasted rainbow trout: responses to luminal glutamine and ammonia loading. J Comp Physiol B 2021; 191:273-287. [PMID: 33415429 DOI: 10.1007/s00360-020-01335-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022]
Abstract
Digestion of dietary protein in teleosts results in high ammonia levels within the intestinal chyme that may reach concentrations that are many-fold greater than blood plasma levels. We used in vitro gut sac preparations of the ammoniotelic rainbow trout (Oncorhynchus mykiss) to investigate the role of the intestine in producing and transporting ammonia and urea, with specific focus on feeding versus fasting, and on responses to loading of the lumen with 2 mmol L-1 glutamine or 2 mmol L-1 ammonia. Feeding increased not only ammonia production and both mucosal and serosal fluxes, but also increased urea production and serosal fluxes. Elevated urea production was accompanied by an increase in arginase activity but minimal CPS III activity, suggesting that urea may be produced by direct arginolysis. The ammonia production and serosal fluxes increased in fasted preparations with glutamine loading, indicating an ability of the intestinal tissue to deaminate glutamine and perhaps use it as an energy source. However, there was little evidence of urea production or transport resulting from the presence of glutamine. Furthermore, the intestinal tissues did not appear to convert surplus ammonia to urea as a detoxification mechanism, as urea production and serosal flux rates decreased in fed preparations, with minimal changes in fasted preparations. Nevertheless, there was indirect evidence of detoxification by another pathway, as ammonia production rate decreased with ammonia loading in fed preparations. Overall, our study suggests that intestinal tissues of rainbow trout have the ability to produce urea and detoxify ammonia, likely via arginolysis.
Collapse
Affiliation(s)
- Ellen H Jung
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
| | - Joanna Smich
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada.,Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Julian G Rubino
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.,Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
9
|
Porteus C, Kumai Y, Abdallah SJ, Yew HM, Kwong RW, Pan Y, Milsom WK, Perry SF. Respiratory responses to external ammonia in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2021; 251:110822. [DOI: 10.1016/j.cbpa.2020.110822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 01/03/2023]
|
10
|
Ellingsen S, Narawane S, Fjose A, Verri T, Rønnestad I. Sequence analysis and spatiotemporal developmental distribution of the Cat-1-type transporter slc7a1a in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2281-2298. [PMID: 32980952 PMCID: PMC7584565 DOI: 10.1007/s10695-020-00873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Cationic amino acid transporter 1 (Cat-1 alias Slc7a1) is a Na+-independent carrier system involved in transport and absorption of the cationic amino acids lysine, arginine, histidine, and ornithine and has also been shown to be indispensable in a large variety of biological processes. Starting from isolated full-length zebrafish (Danio rerio) cDNA for slc7a1a, we performed comparative and phylogenetic sequence analysis, investigated the conservation of the gene during vertebrate evolution, and defined tissue expression during zebrafish development. Whole mount in situ hybridization first detected slc7a1a transcripts in somites, eyes, and brain at 14 h post-fertilization (hpf) with additional expression in the distal nephron at 24 hpf and in branchial arches at 3 days post-fertilization (dpf), with significant increase by 5 dpf. Taken together, the expression analysis of the zebrafish Cat-1 system gene slc7a1a suggests a functional role(s) during the early development of the central nervous system, muscle, gills, and kidney. Graphical abstract.
Collapse
Affiliation(s)
- Ståle Ellingsen
- Department of Molecular Biology, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
| | - Shailesh Narawane
- Department of Molecular Biology, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
| | - Anders Fjose
- Department of Molecular Biology, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Lecce-Monteroni, I-73100, Lecce, Italy
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway.
| |
Collapse
|
11
|
Sunga J, Wilson JM, Wilkie MP. Functional re-organization of the gills of metamorphosing sea lamprey (Petromyzon marinus): preparation for a blood diet and the freshwater to seawater transition. J Comp Physiol B 2020; 190:701-715. [PMID: 32852575 DOI: 10.1007/s00360-020-01305-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/31/2020] [Accepted: 06/18/2020] [Indexed: 11/28/2022]
Abstract
Sea lamprey (Petromyzon marinus) begin life as filter-feeding larvae (ammocoetes) before undergoing a complex metamorphosis into parasitic juveniles, which migrate to the sea where they feed on the blood of large-bodied fishes. The greater protein intake during this phase results in marked increases in the production of nitrogenous wastes (N-waste), which are excreted primarily via the gills. However, it is unknown how gill structure and function change during metamorphosis and how it is related to modes of ammonia excretion, nor do we have a good understanding of how the sea lamprey's transition from fresh water (FW) to sea water (SW) affects patterns and mechanisms of N-waste excretion in relation to ionoregulation. Using immunohistochemistry, we related changes in the gill structure of larval, metamorphosing, and juvenile sea lampreys to their patterns of ammonia excretion (Jamm) and urea excretion (Jurea) in FW, and following FW to artificial seawater (ASW) transfer. Rates of Jamm and Jurea were low in larval sea lamprey and increased in feeding juvenile, parasitic sea lamprey. In freshwater-dwelling ammocoetes, immunohistochemical analysis revealed that Rhesus glycoprotein C-like protein (Rhcg-like) was diffusely distributed on the lamellar epithelium, but following metamorphosis, Rhcg-like protein was restricted to SW mitochondrion-rich cells (MRCs; ionocytes) between the gill lamellae. Notably, these interlamellar Rhcg-like proteins co-localized with Na+/K+-ATPase (NKA), which increased in expression and activity by almost tenfold during metamorphosis. The distribution of V-type H+-ATPase (V-ATPase) on the lamellae decreased following metamorphosis, indicating it may have a more important role in acid-base regulation and Na+ uptake in FW, compared to SW. We conclude that the re-organization of the sea lamprey gill during metamorphosis not only plays a critical role in allowing them to cope with greater salinity following the FW-SW transition, but that it simultaneously reflects fundamental changes in methods used to excrete ammonia.
Collapse
Affiliation(s)
- Julia Sunga
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Jonathan M Wilson
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Michael P Wilkie
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
12
|
Skeletal Muscle and the Effects of Ammonia Toxicity in Fish, Mammalian, and Avian Species: A Comparative Review Based on Molecular Research. Int J Mol Sci 2020; 21:ijms21134641. [PMID: 32629824 PMCID: PMC7370143 DOI: 10.3390/ijms21134641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022] Open
Abstract
Typically, mammalian and avian models have been used to examine the effects of ammonia on skeletal muscle. Hyperammonemia causes sarcopenia or muscle wasting, in mammals and has been linked to sarcopenia in liver disease patients. Avian models of skeletal muscle have responded positively to hyperammonemia, differing from the mammalian response. Fish skeletal muscle has not been examined as extensively as mammalian and avian muscle. Fish skeletal muscle shares similarities with avian and mammalian muscle but has notable differences in growth, fiber distribution, and response to the environment. The wide array of body sizes and locomotion needs of fish also leads to greater diversity in muscle fiber distribution and growth between different fish species. The response of fish muscle to high levels of ammonia is important for aquaculture and quality food production but has not been extensively studied to date. Understanding the differences between fish, mammalian and avian species’ myogenic response to hyperammonemia could lead to new therapies for muscle wasting due to a greater understanding of the mechanisms behind skeletal muscle regulation and how ammonia effects these mechanisms. This paper provides an overview of fish skeletal muscle and ammonia excretion and toxicity in fish, as well as a comparison to avian and mammalian species.
Collapse
|
13
|
Zimmer AM, Perry SF. The Rhesus glycoprotein Rhcgb is expendable for ammonia excretion and Na + uptake in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2020; 247:110722. [PMID: 32437959 DOI: 10.1016/j.cbpa.2020.110722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 11/27/2022]
Abstract
In zebrafish (Danio rerio), the ammonia-transporting Rhesus glycoprotein Rhcgb is implicated in mechanisms of ammonia excretion and Na+ uptake. In particular, Rhcgb is thought to play an important role in maintaining ammonia excretion in response to alkaline conditions and high external ammonia (HEA) exposure, in addition to facilitating Na+ uptake via a functional metabolon with the Na+/H+-exchanger Nhe3b, specifically under low Na+ conditions. In the present study, we hypothesized that CRISPR/Cas9 knockout of rhcgb would reduce ammonia excretion and Na+ uptake capacity, particularly under the conditions listed above that have elicited increases in Rhcgb-mediated ammonia excretion and/or Na+ uptake. Contrary to this hypothesis, however, larval and juvenile rhcgb knockout (KO) mutants showed no reductions in ammonia excretion or Na+ uptake under any of the conditions tested in our study. In fact, under control conditions, rhcgb KO mutants generally displayed an increase in ammonia excretion, potentially due to increased transcript abundance of another rh gene, rhbg. Under alkaline conditions, rhcgb KO mutants were also able to maintain ammonia excretion, similar to wild-type fish, and stimulation of ammonia excretion after HEA exposure also was not affected by rhcgb KO. Surprisingly, ammonia excretion and Na+ uptake were unaffected by rhcgb or nhe3b KO in juvenile zebrafish acclimated to normal (800 μmol/L) or low (10 μmol/L) Na+ conditions. These results demonstrate that Rhcgb is expendable for ammonia excretion and Na+ uptake in zebrafish, highlighting the plasticity and flexibility of these physiological systems in this species.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Eom J, Fehsenfeld S, Wood CM. Is ammonia excretion affected by gill ventilation in the rainbow trout Oncorhynchus mykiss? Respir Physiol Neurobiol 2020; 275:103385. [DOI: 10.1016/j.resp.2020.103385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 02/08/2023]
|
15
|
Gao J, Zhu Y, Guo Z, Xu G, Xu P. Transcriptomic analysis reveals different responses to ammonia stress and subsequent recovery between Coilia nasus larvae and juveniles. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108710. [PMID: 31958509 DOI: 10.1016/j.cbpc.2020.108710] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/02/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
Excessive ammonia triggered negative effects on aquatic animals' health, growth, and mass death, especially at different developmental periods. However, the underlying responses to ammonia stress in fish larvae and juveniles were much less explored. Transcriptomic analysis of Coilia nasus larvae and juveniles treated with ammonia stress and subsequent recovery in freshwater were performed. Total 958,213,132 clean reads were obtained. A total of 234,830 unigenes with an average length of 1397 bp and N50 value 2521 bp were assembled. 831 and 952 DEGs were identified in C. nasus larvae and juveniles, respectively. Transcriptomic analysis revealed that genes associated with purine metabolism, immune, inflammation, epigenetic modification, and nerve conduction presented different expression trends between C. nasus larvae and juveniles. Other genes related to purine metabolism (XDH) and epigenetic modifications (DNMT1, DNMT3A, and DNMT3B) detected by RT-qPCR also displayed different expression trends. These results indicated that ammonia detoxify strategies and gene regulation patterns were different in C. nasus larvae and juveniles. Higher TNF-α, ILF-2, and ILF-3 expression and reduced LZM, AKP, and ACP activities suggested that inflammation and declined immunity were triggered by ammonia stress. Additionally, nervous conduction was severely affected under ammonia stress in C. nasus juveniles. Furthermore, recovery in freshwater had positive effects on nervous conduction. However, it was worth noting that reduced immunity and inflammation were still existed after recovery in freshwater. In conclusion, our study would be beneficial to reveal the different responses to ammonia stress between larvae and juveniles.
Collapse
Affiliation(s)
- Jun Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China
| | - Yongxiang Zhu
- Nantong Longyang Aquatic Products Co., Ltd, Nantong 226600, China
| | - Zhenglong Guo
- Nantong Longyang Aquatic Products Co., Ltd, Nantong 226600, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China..
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China..
| |
Collapse
|
16
|
Shrivastava J, Ndugwa M, Caneos W, De Boeck G. Physiological trade-offs, acid-base balance and ion-osmoregulatory plasticity in European sea bass (Dicentrarchus labrax) juveniles under complex scenarios of salinity variation, ocean acidification and high ammonia challenge. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:54-69. [PMID: 31075620 DOI: 10.1016/j.aquatox.2019.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
In this era of global climate change, ocean acidification is becoming a serious threat to the marine ecosystem. Despite this, it remains almost unknown how fish will respond to the co-occurrence of ocean acidification with other conventional environmental perturbations typically salinity fluctuation and high ammonia threat. Therefore, the present work evaluated the interactive effects of elevated pCO2, salinity reduction and high environmental ammonia (HEA) on the ecophysiological performance of European sea bass (Dicentrarchus labrax). Fish were progressively acclimated to seawater (32 ppt), to brackish water (10 ppt) and to hyposaline water (2.5 ppt). Following acclimation to different salinities for at least two weeks, fish were exposed to CO2-induced water acidification representing present-day (control pCO2, 400 μatm, LoCO2) and future (high pCO2, 1000 μatm, HiCO2) sea-surface CO2 level for 3, 7 and 21 days. At the end of each exposure period, fish were challenged with HEA for 6 h (1.18 mM representing 50% of 96 h LC50). Results show that, in response to the individual HiCO2 exposure, fish within each salinity compensated for blood acidosis. Fish subjected to HiCO2 were able to maintain ammonia excretion rate (Jamm) within control levels, suggesting that HiCO2 exposure alone had no impact on Jamm at any of the salinities. For 32 and 10 ppt fish, up-regulated expression of Na+/K+-ATPase was evident in all exposure groups (HEA, HiCO2 and HEA/HiCO2 co-exposed), whereas Na+/K+/2Cl- co-transporter was up-regulated mainly in HiCO2 group. Plasma glucose and lactate content were augmented in all exposure conditions for all salinity regimes. During HEA and HEA/HiCO2, Jamm was inhibited at different time points for all salinities, which resulted in a significant build-up of ammonia in plasma and muscle. Branchial expressions of Rhesus glycoproteins (Rhcg isoforms and Rhbg) were upregulated in response to HiCO2 as well as HEA at 10 ppt, with a more moderate response in 32 ppt groups. Overall, our findings denote that the adverse effect of single exposures of ocean acidification or HEA is exacerbated when present together, and suggests that fish are more vulnerable to these environmental threats at low salinities.
Collapse
Affiliation(s)
- Jyotsna Shrivastava
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium.
| | - Moses Ndugwa
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Warren Caneos
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| |
Collapse
|
17
|
Ferreira MS, Wood CM, Harter TS, Dal Pont G, Val AL, Matthews PGD. Metabolic fuel use after feeding in the zebrafish ( Danio rerio): a respirometric analysis. ACTA ACUST UNITED AC 2019; 222:jeb.194217. [PMID: 30573666 DOI: 10.1242/jeb.194217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/18/2018] [Indexed: 01/17/2023]
Abstract
We used respirometric theory and a new respirometry apparatus to assess, for the first time, the sequential oxidation of the major metabolic fuels during the post-prandial period (10 h) in adult zebrafish fed with commercial pellets (51% protein, 2.12% ration). Compared with a fasted group, fed fish presented peak increases of oxygen consumption (78%), and carbon dioxide (80%) and nitrogen excretion rates (338%) at 7-8 h, and rates remained elevated at 10 h. The respiratory quotient increased slightly (0.89 to 0.97) whereas the nitrogen quotient increased greatly (0.072 to 0.140), representing peak amino acid/protein usage (52%) at this time. After 48-h fasting, endogenous carbohydrate and lipid were the major fuels, but in the first few hours after feeding, carbohydrate oxidation increased greatly, fueling the first part of the post-prandial specific dynamic action, whereas increased protein/amino acid usage predominated from 6 h onwards. Excess dietary protein/amino acids were preferentially metabolized for energy production.
Collapse
Affiliation(s)
- Marcio S Ferreira
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia (INPA), 69.067-375 Manaus, Brasil
| | - Chris M Wood
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia (INPA), 69.067-375 Manaus, Brasil.,Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Till S Harter
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Giorgi Dal Pont
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4.,Grupo Integrado de Aquicultura e Estudos Ambientais, Universidade Federal do Paraná (UFPR), 80.060-000 Curitiba, Brasil
| | - Adalberto L Val
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia (INPA), 69.067-375 Manaus, Brasil
| | - Philip G D Matthews
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4
| |
Collapse
|
18
|
Egnew N, Renukdas N, Ramena Y, Yadav AK, Kelly AM, Lochmann RT, Sinha AK. Physiological insights into largemouth bass (Micropterus salmoides) survival during long-term exposure to high environmental ammonia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:72-82. [PMID: 30530206 DOI: 10.1016/j.aquatox.2018.11.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Waterborne ammonia is an environmental pollutant that is toxic to all aquatic animals. However, ammonia induced toxicity as well as compensatory mechanisms to defend against high environmental ammonia (HEA) are not well documented at present for largemouth bass (Micropterus salmoides), a high value fish for culture and sport fisheries in the United States. To provide primary information on the sensitivity of this species to ammonia toxicity, a 96 h-LC50 test was conducted. Thereafter, responses at physiological, ion-regulatory and transcript levels were determined to get insights into the underlying adaptive strategies to ammonia toxicity. For this purpose, fish were progressively exposed to HEA (8.31 mg/L representing 25% of 96 h-LC50) for 3, 7, 14, 21 and 28 days. Temporal effects of HEA on oxygen consumption rate (MO2), ammonia and urea dynamics, plasma ions (Na+, Cl- and K+), branchial Na+/K+-ATPase (NKA) and H+-ATPase activity, muscle water content (MWC), energy store (glycogen, lipid and protein) as well as branchial mRNA expression of Rhesus (Rh) glycoproteins were assessed. Probit analysis showed that 96 h-LC50 of (total) ammonia (as NH4HCO3) at 25 °C and pH 7.8 was 33.24 mg/L. Results from sub-lethal end-points shows that ammonia excretion rate (Jamm) was strongly inhibited after 7 days of HEA, but was unaffected at 3, 14 and 21 days. At 28 days fish were able to increase Jamm efficiently and concurrently, plasma ammonia re-established to the basal level. Urea production was increased as evidenced by a considerable elevation of plasma urea, but urea excretion rate remained unaltered. Expression of Rhcg isoform (Rhcg2) mRNA was up-regulated in parallel with restored or increased Jamm, suggesting its ammonia excreting role in largemouth bass. Exposure to HEA also displayed pronounced augmentations in NKA activity, exemplified by a rise in plasma [Na+]. Furthermore, [K+], [Cl-] and MWC homeostasis were disrupted followed by recovery to the control levels. H+-ATPase activity was elevated but NKA did not appear to function preferentially as a Na+/NH4+-ATPase. From 14 days onwards MO2 was depressed, potentially an attempt towards minimizing catabolism. Glycogen content in liver and muscle were temporarily depleted, whereas a remarkable increment in protein was evident at the last exposure period. Overall, these data suggest that ammonia induced toxicity can disturb several biological processes in largemouth bass, however, it can adapt to the long-term sub-lethal ammonia concentrations by activating various components of ammonia excretory, ion-regulatory and metabolic pathways.
Collapse
Affiliation(s)
- Nathan Egnew
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA.
| | - Nilima Renukdas
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA
| | - Yathish Ramena
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA; Great Salt Lake Brine Shrimp Cooperative, Inc., 1750 W 2450 S, Ogden, 84401, UT, USA
| | - Amit K Yadav
- Aquaculture Research Institute, Department of Animal and Veterinary Science, University of Idaho, Moscow, 83844, ID, USA
| | - Anita M Kelly
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA
| | - Rebecca T Lochmann
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA
| | - Amit Kumar Sinha
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA.
| |
Collapse
|
19
|
Fu J, Gong Z, Kelly BC. Metabolomic profiling of zebrafish (Danio rerio) embryos exposed to the antibacterial agent triclosan. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:240-249. [PMID: 30325051 DOI: 10.1002/etc.4292] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/11/2018] [Accepted: 10/03/2018] [Indexed: 05/23/2023]
Abstract
Triclosan, a widely used antibacterial and antifungal agent, is ubiquitously detected in the natural environment. There is increasing evidence that triclosan can produce cytotoxic, genotoxic, and endocrine disruptor effects in aquatic biota, including algae, crustaceans, and fish. Metabolomics can provide important information regarding molecular-level effects and toxicity of xenobiotic chemicals in aquatic organisms. The aim of the present study was to assess the toxicity of triclosan in developing zebrafish (Danio rerio) embryos using gas chromatography-mass spectrometry (GC-MS)-based metabolomics. The embryos were exposed to a wide range of triclosan concentrations (10 ng/L-500 µg/L). Endogenous metabolites were extracted using acetonitrile:isopropanol:water (3:3:2, v/v/v). Derivatization of metabolites was performed prior to identification and quantification via GC-MS analysis. A total of 29 metabolites were positively identified in embryos. Univariate (one-way analysis of variance) and multivariate (principal components analysis and projection to latent structure-discriminant analysis) analyses were employed to determine metabolic profile changes in triclosan-exposed embryos. Eight metabolites were significantly altered (p < 0.05) in embryos exposed to triclosan (urea, citric acid, D-(+)-galactose, D-glucose, stearic acid, L-proline, phenylalanine, and L-glutamic acid). The results suggest that triclosan exposure can result in impairment of several pathways in developing zebrafish embryos, with implications for energy metabolism and amino acid metabolism, as well as nitrogen metabolism and gill function. These findings will benefit future risk assessments of triclosan and other contaminants of emerging concern. Environ Toxicol Chem 2019;38:240-249. © 2018 SETAC.
Collapse
Affiliation(s)
- Jing Fu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Barry C Kelly
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| |
Collapse
|
20
|
Li Y, Zhou F, Huang J, Yang L, Jiang S, Yang Q, He J, Jiang S. Transcriptome reveals involvement of immune defense, oxidative imbalance, and apoptosis in ammonia-stress response of the black tiger shrimp (Penaeus monodon). FISH & SHELLFISH IMMUNOLOGY 2018; 83:162-170. [PMID: 30205201 DOI: 10.1016/j.fsi.2018.09.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Ammonia is a major aquatic environmental pollutant that negatively impacts shrimp health and commercial productivity. However, we currently do not fully understand the underlying molecular mechanisms of ammonia stress in shrimp. We therefore performed transcriptomic analysis of hepatopancreas from black tiger shrimp (Penaeus monodon) treated with ammonia-stress. We obtained 146,410,174 and 115,241,048 clean reads for the control and treatment groups, respectively. A total of 64,475 unigenes with an average length of 1275 bp and a N50 value of 2158 bp were assembled. A comparative transcriptome analysis identified 3462 differentially expressed genes, 177 of which are highly homologous with known proteins in aquatic species. Most of these genes showing the expression changes were related to immune function. Some significantly down-regulated genes are involved in purine metabolism and other metabolic pathways, which suggests that purineolytic capacity is an ammonia detoxification process in P. monodon, and metabolic depression is a strategy to reduce shrimp exposure to ammonia. Additionally, ammonia stress altered the expression patterns of key apoptosis genes (Bcl-xL, PERK, caspase 7, and caspase 10), confirmed that ammonia-stress induce oxidative stress and eventually even apoptosis. We also found evidence for the involvement of antioxidant defense in response to oxidative imbalance, given the regulation of peroxiredoxin 1, SOD, and CAT under ammonia stress. In conclusion, our study clarifies shrimp defensive response to ammonia toxicity and should benefit efforts to breed more ammonia-tolerant varieties.
Collapse
Affiliation(s)
- Yundong Li
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC)/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Falin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Jianhua Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Lishi Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Song Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qibin Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianguo He
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC)/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Shigui Jiang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC)/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China.
| |
Collapse
|
21
|
You X, Chen J, Bian C, Yi Y, Ruan Z, Li J, Zhang X, Yu H, Xu J, Shi Q. Transcriptomic evidence of adaptive tolerance to high environmental ammonia in mudskippers. Genomics 2018; 110:404-413. [PMID: 30261316 DOI: 10.1016/j.ygeno.2018.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 07/09/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022]
Abstract
Mudskippers are typical amphibious fishes and possess various strategies to ameliorate ammonia toxicity during exposure to environmental ammonia. The present study aimed to provide transcriptomic evidence through profiling the gill and liver transcriptomes of Boleophthalmus pectinirostris (BP) and Periophthalmus magnuspinnatus (PM), which were subjected to treatment with high environmental ammonia for up to 72 h. The results of gene function annotation showed that most of the differentially expressed genes were involved in metabolic pathways. After ammonia exposure, the protein and amino acid metabolism related genes in mudskippers were down-regulated, and PM had more down-regulated genes than BP. The expression levels of several representative genes involved in ammonia excretion in the gill were commonly increased. Interestingly, NH4+ transporting and H+ excreting related genes, including Na+/K+(NH4+)/2Cl- cotransporter (nkcc), Na+/K+(NH4+)-ATPase (nka), carbonic anhydrase 2 (ca2), H+-ATPase, Na+/H+ (NH4+)-exchanger (nhe), and carbonic anhydrase 15 (ca15), were up-regulated more significantly in BP than PM; however, the transcription levels of Rhesus glucoprotein b (Rhbg) and Rhesus glucoprotein c1 (Rhcg1), which constitute the NH3 transporting channels, were up-regulated more significantly in PM than BP. Furthermore, the present study provides molecular evidence for how mudskippers adopt partial amino acid catabolism to decrease the production of endogenous ammonia under high environmental ammonia loading.
Collapse
Affiliation(s)
- Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China.
| | - Jieming Chen
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Yunhai Yi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Hui Yu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Junmin Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China; BGI Zhenjiang Institute of Hydrobiology, Zhenjiang, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China; BGI Zhenjiang Institute of Hydrobiology, Zhenjiang, China; Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
22
|
Zimmer AM, Wright PA, Wood CM. Ammonia and urea handling by early life stages of fishes. ACTA ACUST UNITED AC 2018; 220:3843-3855. [PMID: 29093184 DOI: 10.1242/jeb.140210] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitrogen metabolism in fishes has been a focus of comparative physiologists for nearly a century. In this Review, we focus specifically on early life stages of fishes, which have received considerable attention in more recent work. Nitrogen metabolism and excretion in early life differs fundamentally from that of juvenile and adult fishes because of (1) the presence of a chorion capsule in embryos that imposes a limitation on effective ammonia excretion, (2) an amino acid-based metabolism that generates a substantial ammonia load, and (3) the lack of a functional gill, which is the primary site of nitrogen excretion in juvenile and adult fishes. Recent findings have shed considerable light on the mechanisms by which these constraints are overcome in early life. Perhaps most importantly, the discovery of Rhesus (Rh) glycoproteins as ammonia transporters and their expression in ion-transporting cells on the skin of larval fishes has transformed our understanding of ammonia excretion by fishes in general. The emergence of larval zebrafish as a model species, together with genetic knockdown techniques, has similarly advanced our understanding of ammonia and urea metabolism and excretion by larval fishes. It has also now been demonstrated that ammonia excretion is one of the primary functions of the developing gill in rainbow trout larvae, leading to new hypotheses regarding the physiological demands driving gill development in larval fishes. Here, we highlight and discuss the dramatic changes in nitrogen handling that occur over early life development in fishes.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N57
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.,Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
23
|
Williams TA, Bonham LA, Bernier NJ. High environmental ammonia exposure has developmental-stage specific and long-term consequences on the cortisol stress response in zebrafish. Gen Comp Endocrinol 2017; 254:97-106. [PMID: 28958860 DOI: 10.1016/j.ygcen.2017.09.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 12/15/2022]
Abstract
The capacity for early life environmental stressors to induce programming effects on the endocrine stress response in fish is largely unknown. In this study we determined the effects of high environmental ammonia (HEA) exposure on the stress response in larval zebrafish, assessed the tolerance of embryonic and larval stages to HEA, and evaluated whether early life HEA exposure has long-term consequences on the cortisol response to a novel stressor. Exposure to 500-2000μM NH4Cl for 16h did not affect the gene expression of corticotropin-releasing factor (CRF) system components in 1day post-fertilization (dpf) embryos, but differentially increased crfa, crfb and CRF binding protein (crfbp) expression and stimulated both dose- and time-dependent increases in the whole body cortisol of 5dpf larvae. Pre-acclimation to HEA at 1dpf did not affect the cortisol response to a subsequent NH4Cl exposure at 5dpf. In contrast, pre-acclimation to HEA at 5dpf caused a small but significant reduction in the cortisol response to a second NH4Cl exposure at 10dpf. While continuous exposure to 500-2000μM NH4Cl between 0 and 5dpf had a modest effect on mean survival time, exposure to 400-1000μM NH4Cl between 10 and 14dpf decreased mean survival time in a dose-dependent manner. Moreover, pre-acclimation to HEA at 5dpf significantly decreased the risk of mortality to continuous NH4Cl exposure between 10 and 14dpf. Finally, while HEA at 1dpf did not affect the cortisol stress response to a novel vortex stressor at 5dpf, the same HEA treatment at 5dpf abolished vortex stressor-induced increases in whole body cortisol at 10 and 60dpf. Together these results show that the impact of HEA on the cortisol stress response during development is life-stage specific and closely linked to ammonia tolerance. Further, we demonstrate that HEA exposure at the larval stage can have persistent effects on the capacity to respond to stressors in later life.
Collapse
Affiliation(s)
- Tegan A Williams
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Luke A Bonham
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
24
|
Chng YR, Ong JLY, Ching B, Chen XL, Hiong KC, Wong WP, Chew SF, Lam SH, Ip YK. Molecular characterization of three Rhesus glycoproteins from the gills of the African lungfish, Protopterus annectens, and effects of aestivation on their mRNA expression levels and protein abundance. PLoS One 2017; 12:e0185814. [PMID: 29073147 PMCID: PMC5657625 DOI: 10.1371/journal.pone.0185814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/20/2017] [Indexed: 11/19/2022] Open
Abstract
African lungfishes are ammonotelic in water. They can aestivate for long periods on land during drought. During aestivation, the gills are covered with dried mucus and ammonia excretion ceases. In fishes, ammonia excretion through the gills involves Rhesus glycoproteins (RhGP/Rhgp). This study aimed to obtain the complete cDNA coding sequences of rhgp from the gills of Protopterus annectens, and to determine their branchial mRNA and protein expression levels during the induction, maintenance and arousal phases of aestivation. Three isoforms of rhgp (rhag, rhbg and rhcg) were obtained in the gills of P. annectens. Their complete cDNA coding sequences ranged between 1311 and 1398 bp, coding for 436 to 465 amino acids with estimated molecular masses between 46.8 and 50.9 kDa. Dendrogramic analyses indicated that Rhag was grouped closer to fishes, while Rhbg and Rhcg were grouped closer to tetrapods. During the induction phase, the protein abundance of Rhag, but not its transcript level, was down-regulated in the gills, suggesting that there could be a decrease in the release of ammonia from the erythrocytes to the plasma. Furthermore, the branchial transcript levels of rhbg and rhcg decreased significantly, in preparation for the subsequent shutdown of gill functions. During the maintenance phase, the branchial expression levels of rhag/Rhag, rhbg/Rhbg and rhcg/Rhcg decreased significantly, indicating that their transcription and translation were down-regulated. This could be part of an overall mechanism to shut down branchial functions and save metabolic energy used for transcription and translation. It could also be regarded as an adaptive response to stop ammonia excretion. During the arousal phase, it is essential for the lungfish to regain the ability to excrete ammonia. Indeed, the protein abundance of Rhag, Rhbg and Rhcg recovered to the corresponding control levels after 1 day or 3 days of recovery from 6 months of aestivation.
Collapse
Affiliation(s)
- You R. Chng
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jasmine L. Y. Ong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Xiu L. Chen
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Kum C. Hiong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore
| | - Siew H. Lam
- Department of Biological Sciences, National University of Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
25
|
Chen XL, Zhang B, Chng YR, Ong JLY, Chew SF, Wong WP, Lam SH, Nakada T, Ip YK. Ammonia exposure affects the mRNA and protein expression levels of certain Rhesus glycoproteins in the gills of climbing perch. ACTA ACUST UNITED AC 2017; 220:2916-2931. [PMID: 28576822 DOI: 10.1242/jeb.157123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
Abstract
The freshwater climbing perch, Anabas testudineus, is an obligate air-breathing and euryhaline teleost capable of active ammonia excretion and tolerant of high concentrations of environmental ammonia. As Rhesus glycoproteins (RhGP/Rhgp) are known to transport ammonia, this study aimed to obtain the complete cDNA coding sequences of various rhgp isoforms from the gills of A. testudineus, and to determine their mRNA and protein expression levels during 6 days of exposure to 100 mmol l-1 NH4Cl. The subcellular localization of Rhgp isoforms in the branchial epithelium was also examined in order to elucidate the type of ionocyte involved in active ammonia excretion. Four rhgp (rhag, rhbg, rhcg1 and rhcg2) had been identified from the gills of A. testudineus They had conserved amino acid residues for NH4+ binding, NH4+ deprotonation, channel gating and lining of the vestibules. Despite inwardly directed NH3 and NH4+ gradients, there were significant increases in the mRNA expression levels of the four branchial rhgp in A. testudineus at certain time points during 6 days of ammonia exposure, with significant increases in the protein abundances of Rhag and Rhcg2 on day 6. Immunofluorescence microscopy revealed a type of ammonia-inducible Na+/K+-ATPase α1c-immunoreactive ionocyte with apical Rhag and basolateral Rhcg2 in the gills of fish exposed to ammonia for 6 days. Hence, active ammonia excretion may involve NH4+ entering the ionocyte through the basolateral Rhcg2 and being excreted through the apical Rhag, driven by a transapical membrane electrical potential generated by the apical cystic fibrosis transmembrane conductance regulator Cl- channel, as suggested previously.
Collapse
Affiliation(s)
- Xiu L Chen
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Biyan Zhang
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - You R Chng
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Jasmine L Y Ong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Siew H Lam
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore.,NUS Environmental Research Institute, National University of Singapore, Kent Ridge, Singapore 117411, Republic of Singapore
| | - Tsutomu Nakada
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| |
Collapse
|
26
|
LaBonty M, Pray N, Yelick PC. A Zebrafish Model of Human Fibrodysplasia Ossificans Progressiva. Zebrafish 2017; 14:293-304. [PMID: 28394244 DOI: 10.1089/zeb.2016.1398] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare, autosomal dominant genetic disorder in humans characterized by explosive inflammatory response to injury leading to gradual ossification within fibrous tissues, including skeletal muscle, tendons, and ligaments. A variety of animal models are needed to study and understand the etiology of human FOP. To address this need, here we present characterizations of the first adult zebrafish model for FOP. In humans, activating mutations in the Type I BMP/TGFβ family member receptor, ACVR1, are associated with FOP. Zebrafish acvr1l, previously known as alk8, is the functional ortholog of human ACVR1, and has been studied extensively in the developing zebrafish embryo, where it plays a role in early dorsoventral patterning. Constitutively active and dominant negative mutations in zebrafish acvr1l cause early lethal defects. Therefore, to study roles for activating acvr1l mutations in adult zebrafish, we created transgenic animals expressing mCherry-tagged, heat-shock-inducible constitutively active Acvr1l, Acvr1lQ204D, to investigate phenotypes in juvenile and adult zebrafish. Our studies showed that adult zebrafish expressing heat-shock-induced Acvr1lQ204D develop a number of human FOP-like phenotypes, including heterotopic ossification lesions, spinal lordosis, vertebral fusions, and malformed pelvic fins. Together, these results suggest that transgenic zebrafish expressing heat-shock-inducible Acvr1lQ204D can serve as a model for human FOP.
Collapse
Affiliation(s)
- Melissa LaBonty
- 1 Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine , Boston, Massachusetts.,2 Division of Craniofacial and Molecular Genetics, Department of Orthodontics, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Nicholas Pray
- 2 Division of Craniofacial and Molecular Genetics, Department of Orthodontics, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Pamela C Yelick
- 1 Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine , Boston, Massachusetts.,2 Division of Craniofacial and Molecular Genetics, Department of Orthodontics, Tufts University School of Dental Medicine , Boston, Massachusetts
| |
Collapse
|
27
|
Yeam CT, Chng YR, Ong JLY, Wong WP, Chew SF, Ip YK. Molecular characterization of two Rhesus glycoproteins from the euryhaline freshwater white-rimmed stingray, Himantura signifer, and changes in their transcript levels and protein abundance in the gills, kidney, and liver during brackish water acclimation. J Comp Physiol B 2017; 187:911-929. [PMID: 28324156 DOI: 10.1007/s00360-017-1067-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/05/2017] [Accepted: 02/21/2017] [Indexed: 11/29/2022]
Abstract
Himantura signifer is a freshwater stingray which inhabits rivers in Southeast Asia. It is ammonotelic in fresh water, but retains the capacities of urea synthesis and ureosmotic osmoregulation to survive in brackish water. This study aimed to elucidate the roles of Rhesus glycoproteins (Rhgp), which are known to transport ammonia, in conserving nitrogen (N) in H. signifer during brackish water acclimation when N became limited resulting from increased hepatic urea synthesis. The complete coding sequence of rhbg from H. signifer consisted of 1383 bp, encoding 460 amino acids with an estimated molecular mass of 50.5 kDa, while that of rhcg comprised 1395 bp, encoding for 464 amino acids with an estimated molecular mass of 50.8 kDa. The deduced amino sequences of Rhbg and Rhcg contained ammonia binding sites, which could recruit NH4+ to be deprotonated, and a hydrophobic pore with two histidine residues, which could mediate the transport of NH3. Our results indicated for the first time that brackish water acclimation resulted in significant decreases in the expression levels of rhbg/Rhbg and rhcg/Rhcg in the gills of H. signifer, which offered a mechanistic explanation of brackish water-related decreased ammonia excretion reported elsewhere. Furthermore, rhbg/Rhbg expression levels increased significantly in the liver of H. signifer during brackish water acclimation, indicating that the ammonia produced by extra-hepatic tissues and released into the blood could be channeled into the liver for increased urea synthesis. Overall, these results lend support to the proposition that H. signifer becomes N-limited upon utilizing urea as an osmolyte in brackish water.
Collapse
Affiliation(s)
- Cheng T Yeam
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543, Singapore
| | - You R Chng
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543, Singapore
| | - Jasmine L Y Ong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543, Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543, Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543, Singapore. .,The Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore, 119227, Singapore.
| |
Collapse
|
28
|
Talbot K, Kwong RWM, Gilmour KM, Perry SF. The water channel aquaporin-1a1 facilitates movement of CO₂ and ammonia in zebrafish (Danio rerio) larvae. ACTA ACUST UNITED AC 2017; 218:3931-40. [PMID: 26677259 DOI: 10.1242/jeb.129759] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The present study tested the hypothesis that zebrafish (Danio rerio) aquaporin-1a1 (AQP1a1) serves as a multi-functional channel for the transfer of the small gaseous molecules, CO2 and ammonia, as well as water, across biological membranes. Zebrafish embryos were microinjected with a translation-blocking morpholino oligonucleotide targeted to AQP1a1. Knockdown of AQP1a1 significantly reduced rates of CO2 and ammonia excretion, as well as water fluxes, in larvae at 4 days post fertilization (dpf). Because AQP1a1 is expressed both in ionocytes present on the body surface and in red blood cells, the haemolytic agent phenylhydrazine was used to distinguish between the contributions of AQP1a1 to gas transfer in these two locations. Phenylhydrazine treatment had no effect on AQP1a1-linked excretion of CO2 or ammonia, providing evidence that AQP1a1 localized to the yolk sac epithelium, rather than red blood cell AQP1a1, is the major site of CO2 and ammonia movements. The possibility that AQP1a1 and the rhesus glycoprotein Rhcg1, which also serves as a dual CO2 and ammonia channel, act in concert to facilitate CO2 and ammonia excretion was explored. Although knockdown of each protein did not affect the abundance of mRNA and protein of the other protein under control conditions, impairment of ammonia excretion by chronic exposure to high external ammonia triggered a significant increase in the abundance of AQP1a1 mRNA and protein in 4 dpf larvae experiencing Rhcg1 knockdown. Collectively, these results suggest that AQP1a1 in zebrafish larvae facilitates the movement of CO2 and ammonia, as well as water, in a physiologically relevant fashion.
Collapse
Affiliation(s)
- Krystle Talbot
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Raymond W M Kwong
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Kathleen M Gilmour
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
29
|
Sørhus E, Incardona JP, Furmanek T, Goetz GW, Scholz NL, Meier S, Edvardsen RB, Jentoft S. Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish. eLife 2017; 6:e20707. [PMID: 28117666 PMCID: PMC5302885 DOI: 10.7554/elife.20707] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/20/2017] [Indexed: 12/28/2022] Open
Abstract
Crude oil spills are a worldwide ocean conservation threat. Fish are particularly vulnerable to the oiling of spawning habitats, and crude oil causes severe abnormalities in embryos and larvae. However, the underlying mechanisms for these developmental defects are not well understood. Here, we explore the transcriptional basis for four discrete crude oil injury phenotypes in the early life stages of the commercially important Atlantic haddock (Melanogrammus aeglefinus). These include defects in (1) cardiac form and function, (2) craniofacial development, (3) ionoregulation and fluid balance, and (4) cholesterol synthesis and homeostasis. Our findings suggest a key role for intracellular calcium cycling and excitation-transcription coupling in the dysregulation of heart and jaw morphogenesis. Moreover, the disruption of ionoregulatory pathways sheds new light on buoyancy control in marine fish embryos. Overall, our chemical-genetic approach identifies initiating events for distinct adverse outcome pathways and novel roles for individual genes in fundamental developmental processes.
Collapse
Affiliation(s)
- Elin Sørhus
- Institute of Marine Research, Bergen, Norway
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - John P Incardona
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, United States
| | | | - Giles W Goetz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, United States
| | - Nathaniel L Scholz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, United States
| | | | | | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
30
|
Shrivastava J, Sinha AK, Datta SN, Blust R, De Boeck G. Pre-acclimation to low ammonia improves ammonia handling in common carp (Cyprinus carpio) when exposed subsequently to high environmental ammonia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:334-344. [PMID: 27788451 DOI: 10.1016/j.aquatox.2016.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
We tested whether exposing fish to low ammonia concentrations induced acclimation processes and helped fish to tolerate subsequent (sub)lethal ammonia exposure by activating ammonia excretory pathways. Common carp (Cyprinus carpio) were pre-exposed to 0.27mM ammonia (∼10% 96h LC50) for 3, 7 and 14days. Thereafter, each of these pre-exposed and parallel naïve groups were exposed to 1.35mM high environmental ammonia (HEA, ∼50% 96h LC50) for 12h and 48h to assess the occurrence of ammonia acclimation based on sub-lethal end-points, and to lethal ammonia concentrations (2.7mM, 96h LC50) in order to assess improved survival time. Results show that fish pre-exposed to ammonia for 3 and 7days had a longer survival time than the ammonia naïve fish. However, this effect disappeared after prolonged (14days) pre-exposure. Ammonia excretion rate (Jamm) was strongly inhibited (or even reversed) in the unacclimated groups during HEA. On the contrary, after 3days the pre-exposure fish maintained Jamm while after 7days these pre-acclimated fish were able to increase Jamm efficiently. Again, this effect disappeared after 14days of pre-acclimation. The efficient ammonia efflux in pre-acclimated fish was associated with the up-regulation of branchial mRNA expression of ammonia transporters and exchangers. Pre-exposure with ammonia for 3-7days stimulated an increment in the transcript level of gill Rhcg-a and Rhcg-b mRNA relative to the naïve control group and the up-regulation of these two Rhcg homologs was reinforced during subsequent HEA exposure. No effect of pre-exposure was noted for Rhbg. Relative to unacclimated fish, the transcript level of Na+/H+ exchangers (NHE-3) was raised in 3-7days pre-acclimated fish and remained higher during the subsequent HEA exposure while gill H+-ATPase activities and mRNA levels were not affected by pre-acclimation episodes. Likewise, ammonia pre-acclimated fish with or without HEA exposure displayed pronounced up-regulation in Na+/K+-ATPase activity and mRNA expression relative to the corresponding ammonia naïve groups. Overall, these data suggest that ammonia acclimation was evident for both lethal and the sub-lethal endpoints through priming mechanisms in ammonia excretory transcriptional processes, but these acclimation effects were transient and disappeared after prolonged pre-exposure.
Collapse
Affiliation(s)
- Jyotsna Shrivastava
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Amit Kumar Sinha
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium; Aquaculture/Fisheries Center, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff - 71601, AR, USA.
| | - Surjya Narayan Datta
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium; Department of Fisheries Resource Management, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141004, India
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| |
Collapse
|
31
|
Li T, Mao J, Huang L, Fu H, Chen S, Liu A, Liang Y. Huaiqihuang may protect from proteinuria by resisting MPC5 podocyte damage via targeting p-ERK/CHOP pathway. Bosn J Basic Med Sci 2016; 16:193-200. [PMID: 27186971 DOI: 10.17305/bjbms.2016.887] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 02/05/2023] Open
Abstract
The purpose of this study was to investigate the potential effects of Huaiqihuang (HQH) granule, a Chinese herbal medicine, in treating proteinuria and to reveal its possible mechanism. MPC5 podocytes were cultured in vitro at 37°C and induced with tunicamycin (TM). The TM-induced cells were treated with HQH at different concentrations. The cell proliferation was detected using the MTT assay. The optimal effective dose of HQH for MPC5 cells was determined by the MTT assay and LDH assay respectively. The influences of HQH on the proteinuria-related protein expression and the signaling pathway associated protein expression were also detected using quantitative reverse transcription PCR and Western blotting analysis. The results showed that the MPC5 cell model was successfully constructed in vitro. The HQH application could improve the harmful effects induced by TM on the MPC5 cells, including promoted cell proliferation and suppressed cell apoptosis. Furthermore, the protein expression, including podocin, nephrin, and synaptopodin was down-regulated by the TM treatment in the MPC5 cells. On contrary, the expression of these proteins was up-regulated after the HQH application. Also, the effect of TM on integrin α3 and integrin β1 expressions was also reversed by the HQH treatment. Moreover, the HQH application decreased the expression of p-ERK and DNA-damage-inducible transcript 3 (DDIT3 or CHOP) in the MPC5 cells, which was opposite to the effect observed in the cells treated with TM. Taken together, our study suggest that HQH application may protect podocytes from TM damage by suppressing the p-ERK/CHOP signaling pathway.
Collapse
Affiliation(s)
- Tingxia Li
- The Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Al-Reasi HA, Smith DS, Wood CM. The influence of dissolved organic matter (DOM) on sodium regulation and nitrogenous waste excretion in the zebrafish (Danio rerio). J Exp Biol 2016; 219:2289-99. [DOI: 10.1242/jeb.139444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022]
Abstract
Dissolved organic matter (DOM) is both ubiquitous and diverse in composition in natural waters, but its effects on the branchial physiology of aquatic organisms have received little attention relative to other variables (e.g. pH, hardness, salinity, alkalinity). Here we investigated the effects of four chemically distinct DOM isolates (three natural, one commercial, ranging from autochthonous to highly allochthonous, all at∼6 mg C L−1) on the physiology of gill ionoregulation and N-waste excretion in zebrafish acclimated to either circumneutral (7.0 – 8.0) or acidic pH (5.0). Overall, lower pH tended to increase net branchial ammonia excretion, net K+ loss, and [3H]PEG-4000 clearance rates (indicators of transcellular and paracellular permeability respectively). However unidirectional Na+ efflux, urea excretion, and drinking rates were unaffected. DOMs tended to stimulate unidirectional Na+ influx rate and exerted subtle effects on the concentration-dependent kinetics of Na+ uptake, increasing maximum transport capacity. All DOM sources reduced passive Na+ efflux rates regardless of pH, but exerted negligible effects on N-waste excretion, drinking rate, net K+ loss, or [3H]PEG-4000 clearance, so the mechanism of Na+ loss reduction remains unclear. Overall, these actions appear beneficial to ionoregulatory homeostasis in zebrafish, and some may be related to physico-chemical properties of the DOMs. They are very different from those seen in a recent parallel study on Daphnia magna using the same DOM isolates, indicating that DOM actions may be both species-specific and DOM-specific.
Collapse
Affiliation(s)
- Hassan A. Al-Reasi
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5
| | - D. Scott Smith
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5
| | - Chris M. Wood
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
33
|
Sinha AK, Kapotwe M, Dabi SB, Montes CDS, Shrivastava J, Blust R, Boeck GD. Differential modulation of ammonia excretion, Rhesus glycoproteins and ion-regulation in common carp (Cyprinus carpio) following individual and combined exposure to waterborne copper and ammonia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:129-141. [PMID: 26655657 DOI: 10.1016/j.aquatox.2015.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 06/05/2023]
Abstract
The main objective of this study was to understand the mode of interaction between waterborne copper (Cu) and high environmental ammonia (HEA) exposure on freshwater fish, and how they influence the toxicity of each other when present together. For this purpose, individual and combined effects of Cu and HEA were examined on selected physiological and ion-regulatory processes and changes at transcript level in the common carp (Cyprinus carpio). Juvenile carp were exposed to 2.6μM Cu (25% of the 96h LC50value) and to 0.65mM ammonia (25% of the 96h LC50value) singly and as a mixture for 12h, 24h, 48h, 84h and 180h. Responses such as ammonia (Jamm) and urea (Jurea) excretion rate, plasma ammonia and urea, plasma ions (Na(+), Cl(-) and K(+)), muscle water content (MWC) as well as branchial Na(+)/K(+)-ATPase (NKA) and H(+)-ATPase activity, and branchial mRNA expression of NKA, H(+)-ATPase, Na(+)/H(+) exchanger (NHE-3) and Rhesus (Rh) glycoproteins were investigated under experimental conditions. Results show that Jamm was inhibited during Cu exposure, while HEA exposed fish were able to increase excretion efficiently. In the combined exposure, Jamm remained at the control levels indicating that Cu and HEA abolished each other's effect. Expression of Rhcg (Rhcg-a and Rhcg-b) mRNA was upregulated during HEA, thereby facilitated ammonia efflux out of gills. On the contrary, Rhcg-a transcript level declined following Cu exposure which might account for Cu induced Jamm inhibition. Likewise, Rhcg-a was also down-regulated in Cu-HEA co-exposed fish whilst a temporary increment was noted for Rhch-b. Fish exposed to HEA displayed pronounced up-regulation in NKA expression and activity and stable plasma ion levels. In both the Cu exposure alone and combined Cu-HEA exposure, ion-osmo homeostasis was adversely affected, exemplified by the significant reduction in plasma [Na(+)] and [Cl(-)], and elevated plasma [K(+)], along with an elevation in MWC. These changes were accompanied by a decline in NKA activity. Gill H(+)-ATPase mRNA levels and activities were not affected by either Cu or HEA or both. Likewise, NHE-3 expression remained unaltered but tended to be numerically higher during HEA exposure. Overall, these data suggest that at equitoxic concentrations (25% of 96h LC50), the individual effect of Cu is more harmful while HEA induces quicker adaptive responses. Our findings also denote a competitive mode of interaction, exemplified by the inhibition of HEA -mediated adaptive responses in the presence of Cu.
Collapse
Affiliation(s)
- Amit Kumar Sinha
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium.
| | - Mumba Kapotwe
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Shambel Boki Dabi
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Caroline da Silva Montes
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium; Laboratory of Immunohistochemical and Cellular Ultrastructure, Federal University of Para, Campus Guamá, Rua Augusto Corrêa 1, 66075-900, Belém, Pará, Brazil
| | - Jyotsna Shrivastava
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| |
Collapse
|
34
|
Liew HJ, Fazio A, Faggio C, Blust R, De Boeck G. Cortisol affects metabolic and ionoregulatory responses to a different extent depending on feeding ration in common carp, Cyprinus carpio. Comp Biochem Physiol A Mol Integr Physiol 2015. [DOI: 10.1016/j.cbpa.2015.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Bettini S, Lazzari M, Ferrando S, Gallus L, Franceschini V. Histopathological analysis of the olfactory epithelium of zebrafish (Danio rerio) exposed to sublethal doses of urea. J Anat 2015; 228:59-69. [PMID: 26510631 DOI: 10.1111/joa.12397] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 12/26/2022] Open
Abstract
Chronic renal disease is known to alter olfactory function, but the specific changes induced in olfactory organs during this process remain unclear. Of the uraemic toxins generated during renal disease, high levels of urea are known to induce hyposmic conditions. In this study, the effects of environmental exposure to elevated concentrations of urea (7, 13.5 and 20 g L(-1)) on the sensory mucosa of zebrafish in acute toxicity and chronic toxicity tests were described. It was observed that lamellae maintained structural integrity and epithelial thickness was slightly reduced, but only following exposure to the highest concentrations of urea. Pan-neuronal labelling with anti-Hu revealed a negative correlation with levels of urea, leading to investigation of whether distinct neuronal subtypes were equally sensitive. Using densitometric analysis of immunolabelled tissues, numbers of Gα olf-, TRPC2- and TrkA-expressing cells were compared, representing ciliated, microvillous and crypt neurons, respectively. The three neuronal subpopulations responded differently to increasing levels of urea. In particular, crypt cells were more severely affected than the other cell types, and Gα olf-immunoreactivity was found to increase when fish were exposed to low doses of urea. It can be concluded that exposure to moderate levels of urea leads to sensory toxicity directly affecting olfactory organs, in accordance with the functional olfactometric measurements previously reported in the literature.
Collapse
Affiliation(s)
- Simone Bettini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Sara Ferrando
- Department of Earth, Environmental and Life Science, University of Genoa, Genoa, Italy
| | - Lorenzo Gallus
- Department of Earth, Environmental and Life Science, University of Genoa, Genoa, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
Esbaugh AJ, Ern R, Nordi WM, Johnson AS. Respiratory plasticity is insufficient to alleviate blood acid–base disturbances after acclimation to ocean acidification in the estuarine red drum, Sciaenops ocellatus. J Comp Physiol B 2015; 186:97-109. [DOI: 10.1007/s00360-015-0940-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/23/2015] [Accepted: 10/04/2015] [Indexed: 01/10/2023]
|
37
|
Ren Q, Pan L, Zhao Q, Si L. Ammonia and urea excretion in the swimming crab Portunus trituberculatus exposed to elevated ambient ammonia-N. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:48-54. [DOI: 10.1016/j.cbpa.2015.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/30/2015] [Accepted: 04/24/2015] [Indexed: 01/10/2023]
|
38
|
Sinha AK, Rasoloniriana R, Dasan AF, Pipralia N, Blust R, De Boeck G. Interactive effect of high environmental ammonia and nutritional status on ecophysiological performance of European sea bass (Dicentrarchus labrax) acclimated to reduced seawater salinities. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 160:39-56. [PMID: 25625520 DOI: 10.1016/j.aquatox.2015.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/04/2015] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
We investigated the interactive effect of ammonia toxicity, salinity challenge and nutritional status on the ecophysiological performance of European sea bass (Dicentrarchus labrax). Fish were progressively acclimated to normal seawater (32ppt), to brackish water (20ppt and 10ppt) and to hyposaline water (2.5ppt). Following acclimation to different salinities for two weeks, fish were exposed to high environmental ammonia (HEA, 20mg/L ∼1.18mM representing 50% of 96h LC50 value for ammonia) for 12h, 48h, 84h and 180h, and were either fed (2% body weight) or fasted (unfed for 7 days prior to HEA exposure). Biochemical responses such as ammonia (Jamm) and urea excretion rate, plasma ammonia, urea and lactate, plasma ions (Na(+), Cl(-) and K(+)) and osmolality, muscle water content (MWC) and liver and muscle energy budget (glycogen, lipid and protein), as well as branchial Na(+)/K(+)-ATPase (NKA) and H(+)-ATPase activity, and branchial mRNA expression of NKA and Na(+)/K(+)/2Cl(-) co-transporter (NKCC1) were investigated in order to understand metabolic and ion- osmoregulatory consequences of the experimental conditions. During HEA, Jamm was inhibited in fasted fish at 10ppt, while fed fish were still able to excrete efficiently. At 2.5ppt, both feeding groups subjected to HEA experienced severe reductions and eventually a reversion in Jamm. Overall, the build-up of plasma ammonia in HEA exposed fed fish was much lower than fasted ones. Unlike fasted fish, fed fish acclimated to lower salinities (10ppt-2.5ppt) could maintain plasma osmolality, [Na(+)], [Cl(-)] and MWC during HEA exposure. Thus fed fish were able to sustain ion-osmotic homeostasis which was associated with a more pronounced up-regulation in NKA expression and activity. At 2.5ppt both feeding groups activated H(+)-ATPase. The expression of NKCC1 was down-regulated at lower salinities in both fed and fasted fish, but was upregulated within each salinity after a few days of HEA exposure. Though an increment in plasma lactate content and a decline in energy stores were noted for both feeding regimes, the effect was more severe in feed deprived fish. Overall, several different physiological processes were disturbed in fasted sea bass during HEA exposure while feeding alleviated adverse effects of high ammonia and salinity challenge. This suggests that low food availability can render fish more vulnerable to external ammonia, especially at reduced seawater salinities.
Collapse
Affiliation(s)
- Amit Kumar Sinha
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium.
| | - Rindra Rasoloniriana
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Antony Franklin Dasan
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Nitin Pipralia
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| |
Collapse
|
39
|
Kumai Y, Harris J, Al-Rewashdy H, Kwong RWM, Perry SF. Nitrogenous Waste Handling by Larval Zebrafish Danio rerio in Alkaline Water. Physiol Biochem Zool 2015; 88:137-45. [DOI: 10.1086/679628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Zhang L, Michele Nawata C, De Boeck G, Wood CM. Rh protein expression in branchial neuroepithelial cells, and the role of ammonia in ventilatory control in fish. Comp Biochem Physiol A Mol Integr Physiol 2014; 186:39-51. [PMID: 25465530 DOI: 10.1016/j.cbpa.2014.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 01/02/2023]
Abstract
Bill Milsom has made seminal contributions to our understanding of ventilatory control in a wide range of vertebrates. Teleosts are particularly interesting, because they produce a 3rd, potentially toxic respiratory gas (ammonia) in large amounts. Fish are well known to hyperventilate under high environmental ammonia (HEA), but only recently has the potential role of ammonia in normal ventilatory control been investigated. It is now clear that ammonia can act directly as a ventilatory stimulant in trout, independent of its effects on acid-base balance. Even in ureotelic dogfish sharks, acute elevations in ammonia cause increases in ventilation. Peripherally, the detection of elevated ammonia resides in gill arches I and II in trout, and in vitro, neuroepithelial cells (NECs) from these arches are sensitive to ammonia, responding with elevations in intracellular Ca(2+) ([Ca(2+)]i). Centrally, hyperventilatory responses to ammonia correlate more closely with concentrations of ammonia in the brain than in plasma or CSF. After chronic HEA exposure, ventilatory responsiveness to ammonia is lost, associated with both an attenuation of the [Ca(2+)]i response in NECs, and the absence of elevation in brain ammonia concentration. Chronic exposure to HEA also causes increases in the mRNA expression of several Rh proteins (ammonia-conductive channels) in both brain and gills. "Single cell" PCR techniques have been used to isolate the individual responses of NECs versus other gill cell types. We suggest several circumstances (post-feeding, post-exercise) where the role of ammonia as a ventilatory stimulant may have adaptive benefits for O2 uptake in fish.
Collapse
Affiliation(s)
- Li Zhang
- Dept. of Biology, McMaster University, Hamilton, Canada; Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Guangzhou, China
| | - C Michele Nawata
- Dept. of Biology, McMaster University, Hamilton, Canada; Dept. of Physiology, University of Arizona, Tucson, USA; Bamfield Marine Sciences Centre, Bamfield, Canada
| | - Gudrun De Boeck
- Bamfield Marine Sciences Centre, Bamfield, Canada; SPHERE, Dept. of Biology, University of Antwerp, Antwerp, Belgium
| | - Chris M Wood
- Dept. of Biology, McMaster University, Hamilton, Canada; Bamfield Marine Sciences Centre, Bamfield, Canada; Dept. of Zoology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
41
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Wood CM, Nawata CM, Wilson JM, Laurent P, Chevalier C, Bergman HL, Bianchini A, Maina JN, Johannsson OE, Bianchini LF, Kavembe GD, Papah MB, Ojoo RO. Rh proteins and NH4(+)-activated Na+-ATPase in the Magadi tilapia (Alcolapia grahami), a 100% ureotelic teleost fish. ACTA ACUST UNITED AC 2014; 216:2998-3007. [PMID: 23885087 DOI: 10.1242/jeb.078634] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The small cichlid fish Alcolapia grahami lives in Lake Magadi, Kenya, one of the most extreme aquatic environments on Earth (pH ~10, carbonate alkalinity ~300 mequiv l(-1)). The Magadi tilapia is the only 100% ureotelic teleost; it normally excretes no ammonia. This is interpreted as an evolutionary adaptation to overcome the near impossibility of sustaining an NH3 diffusion gradient across the gills against the high external pH. In standard ammoniotelic teleosts, branchial ammonia excretion is facilitated by Rh glycoproteins, and cortisol plays a role in upregulating these carriers, together with other components of a transport metabolon, so as to actively excrete ammonia during high environmental ammonia (HEA) exposure. In Magadi tilapia, we show that at least three Rh proteins (Rhag, Rhbg and Rhcg2) are expressed at the mRNA level in various tissues, and are recognized in the gills by specific antibodies. During HEA exposure, plasma ammonia levels and urea excretion rates increase markedly, and mRNA expression for the branchial urea transporter mtUT is elevated. Plasma cortisol increases and branchial mRNAs for Rhbg, Rhcg2 and Na(+),K(+)-ATPase are all upregulated. Enzymatic activity of the latter is activated preferentially by NH4(+) (versus K(+)), suggesting it can function as an NH4(+)-transporter. Model calculations suggest that active ammonia excretion against the gradient may become possible through a combination of Rh protein and NH4(+)-activated Na(+)-ATPase function.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
A urea transporter protein in the kidney was first proposed in 1987. The first urea transporter cDNA was cloned in 1993. The SLC14a urea transporter family contains two major subgroups: SLC14a1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14a2, the UT-A group originally isolated from kidney inner medulla. Slc14a1, the human UT-B gene, arises from a single locus located on chromosome 18q12.1-q21.1, which is located close to Slc14a2. Slc14a1 includes 11 exons, with the coding region extending from exon 4 to exon 11, and is approximately 30 kb in length. The Slc14a2 gene is a very large gene with 24 exons, is approximately 300 kb in length, and encodes 6 different isoforms. Slc14a2 contains two promoter elements: promoter I is located in the typical position, upstream of exon 1, and drives the transcription of UT-A1, UT-A1b, UT-A3, UT-A3b, and UT-A4; while promoter II is located within intron 12 and drives the transcription of UT-A2 and UT-A2b. UT-A1 and UT-A3 are located in the inner medullary collecting duct, UT-A2 in the thin descending limb and liver, UT-A5 in testis, UT-A6 in colon, UT-B1 primarily in descending vasa recta and erythrocytes, and UT-B2 in rumen.
Collapse
Affiliation(s)
- Jeff M Sands
- Renal Division, Department of Medicine and Department of Physiology, Emory University School of Medicine, WMB Room 338, 1639 Pierce Drive, NE, Atlanta, GA, 30322, USA,
| | | |
Collapse
|
44
|
Yeh CM, Glöck M, Ryu S. An optimized whole-body cortisol quantification method for assessing stress levels in larval zebrafish. PLoS One 2013; 8:e79406. [PMID: 24223943 PMCID: PMC3815139 DOI: 10.1371/journal.pone.0079406] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/30/2013] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids serve important regulatory functions for many physiological processes and are critical mediators of the stress response. The stress response is a set of bodily processes aimed at counteracting a state of threatened homeostasis. Proper stress response is critical for the survival of an animal, however prolonged or abnormal stress response can be detrimental and is implicated in a number of human diseases such as depression and metabolic diseases. To dissect the underlying mechanism of this complex and important response, the zebrafish, Danio rerio offer important advantages such as ease of genetic manipulations and high-throughput behavioral analyses. However, there is a paucity of suitable methods to measure stress level in larval zebrafish. Therefore, an efficient low-cost method to monitor stress hormone levels will greatly facilitate stress research in zebrafish larvae. In this study, we optimized sample collection as well as cortisol extraction methods and developed a home-made ELISA protocol for measuring whole-body cortisol level in zebrafish larvae. Further, using our customized protocols, we characterized the response of larval zebrafish to a variety of stressors. This assay, developed for efficient cortisol quantification, will be useful for systematic and large-scale stress analyses in larval zebrafish.
Collapse
Affiliation(s)
- Chen-Min Yeh
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Mario Glöck
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Soojin Ryu
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
45
|
Sinha AK, Liew HJ, Nawata CM, Blust R, Wood CM, De Boeck G. Modulation of Rh glycoproteins, ammonia excretion and Na+ fluxes in three freshwater teleosts when exposed chronically to high environmental ammonia. J Exp Biol 2013; 216:2917-30. [PMID: 23661781 DOI: 10.1242/jeb.084574] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
We investigated relationships among branchial unidirectional Na(+) fluxes, ammonia excretion, urea excretion, plasma ammonia, plasma cortisol, and gill transporter expression and function in three freshwater fish differing in their sensitivity to high environmental ammonia (HEA). The highly ammonia-sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less ammonia-sensitive cyprinid Cyprinus carpio (common carp) and the highly ammonia-resistant cyprinid Carassius auratus (goldfish) were exposed chronically (12-168 h) to 1 mmol l(-1) ammonia (as NH4HCO3; pH 7.9). During HEA exposure, carp and goldfish elevated ammonia excretion (JAmm) and Na(+) influx rates ( ) while trout experienced higher plasma ammonia (TAmm) and were only able to restore control rates of JAmm and . All three species exhibited increases in Na(+) efflux rate ( ). At the molecular level, there was evidence for activation of a 'Na(+)/NH4(+) exchange metabolon' probably in response to elevated plasma cortisol and TAmm, though surprisingly, some compensatory responses preceded molecular responses in all three species. Expression of Rhbg, Rhcg (Rhcg-a and Rhcg-b), H(+)-ATPase (V-type, B-subunit) and Na(+)/K(+)-ATPase (NKA) mRNA was upregulated in goldfish, Rhcg-a and NKA in carp, and Rhcg2, NHE-2 (Na(+)/H(+) exchanger) and H(+)-ATPase in trout. Branchial H(+)-ATPase activity was elevated in goldfish and trout, and NKA activity in goldfish and carp, but NKA did not appear to function preferentially as a Na(+)/NH4(+)-ATPase in any species. Goldfish alone increased urea excretion rate during HEA, in concert with elevated urea transporter mRNA expression in gills. Overall, goldfish showed more effective compensatory responses towards HEA than carp, while trout were least effective.
Collapse
Affiliation(s)
- Amit Kumar Sinha
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium.
| | | | | | | | | | | |
Collapse
|
46
|
Bucking C, Lemoine CMR, Walsh PJ. Waste nitrogen metabolism and excretion in zebrafish embryos: effects of light, ammonia, and nicotinamide. ACTA ACUST UNITED AC 2013; 319:391-403. [PMID: 23754660 DOI: 10.1002/jez.1802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/28/2013] [Accepted: 04/01/2013] [Indexed: 11/08/2022]
Abstract
Bony fish primarily excrete ammonia as adults however the persistence of urea cycle genes may reflect a beneficial role for urea production during embryonic stages in protecting the embryo from toxic effects of ammonia produced from a highly nitrogenous yolk. This study aimed to examine the dynamic scope for changes in rates of urea synthesis and excretion in one such species (zebrafish, Danio rerio) by manipulating the intrinsic developmental rate (by alteration of light:dark cycles), as well as by direct chemical manipulation via ammonia injection (to potentially activate urea production) and nicotinamide exposure (to potentially inhibit urea production). Continuous dark exposure delayed development in embryos as evidenced by delayed appearance of hallmark anatomical features (heartbeat, eye pigmentation, body pigmentation, lateral line, fin buds) at 30 and 48 hr post-fertilization, as well by a lower hatching rate compared to embryos reared in continuous light. Both ammonia and urea excretion were similarly effected and were generally higher in embryos continuously exposed to light. Ammonia injection resulted in significant increases (up to fourfold) of urea N excretion and no changes to ammonia excretion rates along with modest increases in yolk ammonia content during 2-6 hr post-injection. Nicotinamide (an inhibitor of urea synthesis in mammals) reduced the ammonia-induced increase in urea excretion and led to retention of ammonia in the yolk and body of the embryo. Our results indicate that there is a relatively rapid and large scope for increases in urea production/excretion rates in developing embryos. Potential mechanisms for these increases are discussed.
Collapse
Affiliation(s)
- Carol Bucking
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | | | | |
Collapse
|
47
|
Bucking C, Edwards SL, Tickle P, Smith CP, McDonald MD, Walsh PJ. Immunohistochemical localization of urea and ammonia transporters in two confamilial fish species, the ureotelic gulf toadfish (Opsanus beta) and the ammoniotelic plainfin midshipman (Porichthys notatus). Cell Tissue Res 2013; 352:623-37. [PMID: 23512140 DOI: 10.1007/s00441-013-1591-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/14/2013] [Indexed: 12/29/2022]
Abstract
This study aims to illustrate potential transport mechanisms behind the divergent approaches to nitrogen excretion seen in the ureotelic toadfish (Opsanus beta) and the ammoniotelic plainfin midshipman (Porichthys notatus). Specifically, we wish to confirm the expression of a urea transporter (UT), which is found in the gill of the toadfish and which is responsible for the unique "pulsing" nature of urea excretion and to localize the transporter within specific gill cells and at specific cellular locations. Additionally, the localization of ammonia transporters (Rhesus glycoproteins; Rhs) within the gill of both the toadfish and midshipman was explored. Toadfish UT (tUT) was found within Na(+)-K(+)-ATPase (NKA)-enriched cells, i.e., ionocytes (probably mitochondria-rich cells), especially along the basolateral membrane and potentially on the apical membrane. In contrast, midshipman UT (pnUT) immunoreactivity did not colocalize with NKA immunoreactivity and was not found along the filaments but instead within the lamellae. The cellular location of Rh proteins was also dissimilar between the two fish species. In toadfish gills, the Rh isoform Rhcg1 was expressed in both NKA-reactive cells and non-reactive cells, whereas Rhbg and Rhcg2 were only expressed in the latter. In contrast, Rhbg, Rhcg1 and Rhcg2 were expressed in both NKA-reactive and non-reactive cells of midshipman gills. In an additional transport epithelium, namely the intestine, the expression of both UTs and Rhs was similar between the two species, with only subtle differences being observed.
Collapse
Affiliation(s)
- Carol Bucking
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | | | | | | | | | | |
Collapse
|
48
|
Bucking C, LeMoine CMR, Craig PM, Walsh PJ. Nitrogen metabolism of the intestine during digestion in a teleost fish, the plainfin midshipman (Porichthys notatus). ACTA ACUST UNITED AC 2013; 216:2821-32. [PMID: 23619402 DOI: 10.1242/jeb.081562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Digestion affects nitrogen metabolism in fish, as both exogenous and endogenous proteins and amino acids are catabolized, liberating ammonia in the process. Here we present a model of local detoxification of ammonia by the intestinal tissue of the plainfin midshipman (Porichthys notatus) during digestion, resulting in an increase in urea excretion of gastrointestinal origin. Corroborating evidence indicated whole-animal ammonia and urea excretion increased following feeding, and ammonia levels within the lumen of the midshipman intestine increased to high levels (1.8±0.4 μmol N g(-1)). We propose that this ammonia entered the enterocytes and was detoxified to urea via the ornithine-urea cycle (O-UC) enzymes, as evidenced by a 1.5- to 2.9-fold post-prandial increase in glutamine synthetase activity (0.14±0.05 and 0.28±0.02 μmol min(-1) g(-1) versus 0.41±0.03 μmol min(-1) g(-1)) and an 8.7-fold increase in carbamoyl phosphate synthetase III activity (0.3±1.2 versus 2.6±0.4 nmol min(-1) g(-1)). Furthermore, digestion increased urea production by isolated gastrointestinal tissue 1.7-fold, supporting our hypothesis that intestinal tissue synthesizes urea in response to feeding. We further propose that the intestinal urea may have been excreted into the intestinal lumen via an apical urea transporter as visualized using immunohistochemistry. A portion of the urea was then excreted to the environment along with the feces, resulting in the observed increase in urea excretion, while another portion may have been used by intestinal ureolytic bacteria. Overall, we propose that P. notatus produces urea within the enterocytes via a functional O-UC, which is then excreted into the intestinal lumen. Our model of intestinal nitrogen metabolism does not appear to be universal as we were unab le to activate the O-UC in the intestine of fed rainbow trout. However, literature values suggest that multiple fish species could follow this model.
Collapse
Affiliation(s)
- Carol Bucking
- Department of Biology, University of Ottawa, ON, Canada and Bamfield Marine Science Center, Bamfield, BC, Canada.
| | | | | | | |
Collapse
|
49
|
Shih TH, Horng JL, Lai YT, Lin LY. Rhcg1 and Rhbg mediate ammonia excretion by ionocytes and keratinocytes in the skin of zebrafish larvae: H+-ATPase-linked active ammonia excretion by ionocytes. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1130-8. [PMID: 23594610 DOI: 10.1152/ajpregu.00550.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In zebrafish, Rhcg1 was found in apical membranes of skin ionocytes [H⁺-ATPase-rich (HR) cells], which are similar to α-type intercalated cells in mammalian collecting ducts. However, the cellular distribution and role of Rhbg in zebrafish larvae have not been well investigated. In addition, HR cells were hypothesized to excrete ammonia against concentration gradients. In this study, we attempted to compare the roles of Rhbg and Rhcg1 in ammonia excretion by larval skin and compare the capability of skin cells to excrete ammonia against concentration gradients. Using in situ hybridization and immunohistochemistry, Rhbg was localized to both apical and basolateral membranes of skin keratinocytes. A scanning ion-selective electrode technique (SIET) was applied to measure the NH₄⁺ flux at the apical surface of keratinocytes and HR cells. Knockdown of Rhbg with morpholino oligonucleotides suppressed ammonia excretion by keratinocytes and induced compensatory ammonia excretion by HR cells. To compare the capability of cells to excrete ammonia against gradients, NH₄⁺ flux of cells was determined in larvae exposed to serial concentrations of external NH₄⁺. Results showed that HR cells excreted NH₄⁺ against higher NH₄⁺ concentration than did keratinocytes. Knockdown of the expression of either Rhcg1 or H⁺ -ATPase in HR cells suppressed the capability of HR cells.
Collapse
Affiliation(s)
- Tin-Han Shih
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | |
Collapse
|
50
|
LeMoine CMR, Walsh PJ. Ontogeny of ornithine-urea cycle gene expression in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 2013; 304:R991-1000. [PMID: 23576614 DOI: 10.1152/ajpregu.00411.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the majority of adult teleosts excrete most of their nitrogenous wastes as ammonia, several fish species are capable of producing urea early in development. In zebrafish, it is unclear whether this results from a functional ornithine-urea cycle (O-UC) and, if so, how it might be regulated. This study examined the spatiotemporal patterns of gene expression of four major O-UC enzymes: carbamoyl phosphate synthase III (CPSIII), ornithine transcarboxylase, arginosuccinate synthetase, and arginosuccinate lyase, using real-time PCR and whole mount in situ hybridization. In addition, we hypothesized that CPSIII gene expression was epigenetically regulated through methylation of its promoter, a widespread mode of differential gene regulation between tissues and life stages in vertebrates. Furthermore, to assess CPSIII functionality, we used morpholinos to silence CPSIII in zebrafish embryos and assessed their nitrogenous waste handling during development, and in response to ammonia injections. Our results suggest that mRNAs of O-UC enzymes are expressed early in zebrafish development and colocalize to the embryonic endoderm. In addition, the methylation status of CPSIII promoter is not consistent with the patterns of expression observed in developing larvae or adult tissues, suggesting other means of transcriptional regulation of this enzyme. Finally, CPSIII morphants exhibited a transient reduction in CPSIII enzyme activity 24 h postfertilization, which was paralleled by reduced urea production during development and in response to an ammonia challenge. Overall, we conclude that the O-UC is functional in zebrafish embryos, providing further evidence that the capacity to produce urea via the O-UC is widespread in developing teleosts.
Collapse
|