1
|
Jia Y, Wang F, Chen S, Wang J, Gao Y. Long-term hypoxia-induced physiological response in turbot Scophthalmus maximus L. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2407-2421. [PMID: 39190213 DOI: 10.1007/s10695-024-01398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Hypoxia affects fish's survival, growth, and physiological metabolism processes. In this study, turbot plasma glucose and cortisol contents, hepatic glycolysis (hexokinase [HK], phosphofructokinase [PFK], pyruvate kinase [PK]) and lipolysis (fatty acid synthetase [FAS], lipoprotein lipase [LPL]) enzyme activities, anti-oxidant enzyme (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSH-Px]) activities, malondialdehyde (MDA), lactate and glycogen contents, gill histological parameters (lamellar length [SLL], width [SLW], interlamellar distance [ID]), respiratory frequency (RF), the proportion of the secondary lamellae available for gas exchange (PAGE), and hifs (hif-1α, hif-2α, hif-3α) expression were determined during long-term hypoxia and reoxygenation. Results showed that long-term hypoxia (3.34 ± 0.17 mg L-1) significantly elevated plasma cortisol and glucose contents; increased hepatic HK, PK, PFK, FAS, and LPL activity; decreased hepatic glycogen, lactate contents, and lipid drop numbers; and caused changes of hepatocyte (vacuolation, pyknotic, and lytic nucleus) after treatment for 4 weeks. Hepatic SOD, CAT, GSH-Px activity, and MDA contents; lamellar perimeter, SLL, ID, RF, and PAGE; and hepatic hif-1α, hif-2α, and hif-3α manifested similar results. Meanwhile, hif-1α is significantly higher than hif-2α, and hif-3α. Interestingly, females and males demonstrated no sex dimorphism significantly different from the above parameters (except hepatic FAS, LPL activity, and lipid drop number) under hypoxia. The above parameters recovered to normal levels after reoxygenation treatment for 4 weeks. Thus, long-term hypoxia promotes turbot hepatic glycogenolysis and lipolysis, induces oxidative damage and stimulates hepatic antioxidant capacity, and alters gill morphology to satisfy insufficient energy demand and alleviate potential damage, while hif-1α plays critical roles in the above physiological process.
Collapse
Affiliation(s)
- Yudong Jia
- Yellow Sea Fisheries Research Institute, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China.
| | - Feng Wang
- Yellow Sea Fisheries Research Institute, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Shuaiyu Chen
- Yellow Sea Fisheries Research Institute, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiawei Wang
- Yellow Sea Fisheries Research Institute, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Yuntao Gao
- Yellow Sea Fisheries Research Institute, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| |
Collapse
|
2
|
Negrete B, Ackerly KL, Esbaugh AJ. Hypoxia-acclimation adjusts skeletal muscle anaerobic metabolism and burst swim performance in a marine fish. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111734. [PMID: 39216551 DOI: 10.1016/j.cbpa.2024.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Red drum, Sciaenops ocellatus, are a marine teleost native to the Gulf of Mexico that routinely experiences periods of low oxygen (hypoxia). Recent work has demonstrated this species has the capacity to improve aerobic performance in hypoxia through respiratory acclimation. However, it remains unknown how hypoxia acclimation impacts anaerobic metabolism in red drum, and the consequences of exhaustive exercise and recovery. Juvenile fish were acclimated to normoxia (n = 15, DO 90.4 ± 6.42 %) or hypoxia (n = 15, DO 33.6 ± 7.2 %) for 8 days then sampled at three time points: at rest, after exercise, and after a 3 h recovery period. The resting time point was used to characterize the acclimated phenotype, while the remaining time points demonstrate how this phenotype responds to exhaustive exercise. Whole blood, red muscle, white muscle, and heart tissues were sampled for metabolites and enzyme activity. The resting phenotype was characterized by lower pHe and changes to skeletal muscle ATP. Exhaustive exercise increased muscle lactate, and decreased phosphocreatine and ATP with no effect of acclimation. Interestingly, hypoxia-acclimated fish had higher pHe and pHi than control in all exercise time points. Red muscle ATP was lower in hypoxia-acclimated fish versus control at each sample period. Moreover, acclimated fish increased lactate dehydrogenase activity in the red muscle. Hypoxia acclimation increased white muscle ATP and hexokinase activity, a glycolytic enzyme. In a gait-transition swim test, hypoxia-acclimated fish recruited anaerobic-powered burst swimming at lower speeds in normoxia compared to control fish. These data suggest that acclimation increases reliance on anaerobic metabolism, and does not benefit recovery from exhaustive exercise.
Collapse
Affiliation(s)
- Benjamin Negrete
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA; Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Kerri Lynn Ackerly
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA. https://twitter.com/KerriAckerlyPhD
| | - Andrew J Esbaugh
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
3
|
Makri V, Giantsis IA, Nathanailides C, Feidantsis K, Antonopoulou E, Theodorou JA, Michaelidis B. Seasonal energy investment and metabolic patterns in a farmed fish. J Therm Biol 2024; 123:103894. [PMID: 38879912 DOI: 10.1016/j.jtherbio.2024.103894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
The present research focuses on the seasonal changes in the energy content and metabolic patterns of red porgy (Pagrus pagrus) sampled in a fish farm in North Evoikos Gulf (Greece). The study was designed in an effort to evaluate the influence of seasonality in several physiological feauteres of high commercial importance that may affect feed intake and growth. We determined glycogen, lipids and proteins levels, and cellular energy allocation (CEA) as a valuable marker of exposure to stress, which integrates available energy (Ea) and energy consumption (Ec). Metabolic patterns and aerobic oxidation potential were based on the determination of glucose transporter (GLU), carnitine transporter (CTP), L-lactate dehydrogenase (L-LDH), citrate synthase (CS), cytochrome C oxidase subunit IV isoform 1 (COX1) and 3-hydroxyacyl CoA dehydrogenase (HOAD) relative gene expression. To integrate metabolic patterns and gene expression, L-LDH, CS, COX and HOAD activities were also determined. For further estimation of biological stores oxidized during seasonal acclimatization, we determined the blood levels of glucose, lipids and lactate. The results indicated seasonal changes in energy content, different patterns in gene expression and reorganization of metabolic patterns during cool acclimatization with increased lipid oxidation. During warm acclimatization, however, energy consumption was mostly based on carbohydrates oxidation. The decrease of Ec and COX1 activity in the warm exposed heart seem to be consistent with the OCLTT hypothesis, suggesting that the heart may be one of the first organs to be limited during seasonal warming. Overall, this study has profiled changes in energetics and metabolic patterns occurring at annual temperatures at which P. pagrus is currently farmed, suggesting that this species is living at the upper edge of their thermal window, at least during summer.
Collapse
Affiliation(s)
- Vasiliki Makri
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | | | | | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - John A Theodorou
- Department of Fisheries & Aquaculture, University of Patras, GR-26504, Mesolonghi, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece.
| |
Collapse
|
4
|
Wang H, Li B, Li A, An C, Liu S, Zhuang Z. Integrative Metabolomics, Enzymatic Activity, and Gene Expression Analysis Provide Insights into the Metabolic Profile Differences between the Slow-Twitch Muscle and Fast-Twitch Muscle of Pseudocaranx dentex. Int J Mol Sci 2024; 25:6131. [PMID: 38892319 PMCID: PMC11172523 DOI: 10.3390/ijms25116131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The skeletal muscles of teleost fish encompass heterogeneous muscle types, termed slow-twitch muscle (SM) and fast-twitch muscle (FM), characterized by distinct morphological, anatomical, histological, biochemical, and physiological attributes, driving different swimming behaviors. Despite the central role of metabolism in regulating skeletal muscle types and functions, comprehensive metabolomics investigations focusing on the metabolic differences between these muscle types are lacking. To reveal the differences in metabolic characteristics between the SM and FM of teleost, we conducted an untargeted metabolomics analysis using Pseudocaranx dentex as a representative model and identified 411 differential metabolites (DFMs), of which 345 exhibited higher contents in SM and 66 in FM. KEGG enrichment analysis showed that these DFMs were enriched in the metabolic processes of lipids, amino acids, carbohydrates, purines, and vitamins, suggesting that there were significant differences between the SM and FM in multiple metabolic pathways, especially in the metabolism of energy substances. Furthermore, an integrative analysis of metabolite contents, enzymatic activity assays, and gene expression levels involved in ATP-PCr phosphate, anaerobic glycolysis, and aerobic oxidative energy systems was performed to explore the potential regulatory mechanisms of energy metabolism differences. The results unveiled a set of differential metabolites, enzymes, and genes between the SM and FM, providing compelling molecular evidence of the FM achieving a higher anaerobic energy supply capacity through the ATP-PCr phosphate and glycolysis energy systems, while the SM obtains greater energy supply capacity via aerobic oxidation. These findings significantly advance our understanding of the metabolic profiles and related regulatory mechanisms of skeletal muscles, thereby expanding the knowledge of metabolic physiology and ecological adaptation in teleost fish.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| | - Busu Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Ang Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| | - Changting An
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| | - Shufang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhimeng Zhuang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| |
Collapse
|
5
|
Badaoui W, Marhuenda-Egea FC, Valero-Rodriguez JM, Sanchez-Jerez P, Arechavala-Lopez P, Toledo-Guedes K. Metabolomic and Lipidomic Tools for Tracing Fish Escapes from Aquaculture Facilities. ACS FOOD SCIENCE & TECHNOLOGY 2024; 4:871-879. [PMID: 38660052 PMCID: PMC11036387 DOI: 10.1021/acsfoodscitech.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/06/2024] [Accepted: 03/06/2024] [Indexed: 04/26/2024]
Abstract
During adverse atmospheric events, enormous damage can occur at marine aquaculture facilities, as was the case during Storm Gloria in the southeastern Spanish Mediterranean in January 2020, with massive fish escapes. Fishes that escape were caught by professional fishermen. The objective of this study was to identify biomarkers in fish that enable differentiation among wild fish, escaped farm-raised fish, and farm-raised fish kept in aquaculture facilities until their slaughter. We focused on gilthead sea bream (Sparus aurata). We used nuclear magnetic resonance to search for possible biomarkers. We found that wild gilthead sea bream showed higher levels of taurine and trimethylamine-N-oxide (TMAO) in their muscle and higher levels of ω-3 fatty acids, whereas farm-escaped and farmed gilthead sea bream raised until slaughter exhibit higher levels of ω-6 fatty acids. From choline, carnitine, creatinine, betaine, or lecithin, trimethylamine (TMA) is synthesized in the intestine by the action of bacterial microflora. In the liver, TMA is oxidized to TMAO and transported to muscle cells. The identified biomarkers will improve the traceability of gilthead sea bream by distinguishing wild specimens from those raised in aquaculture.
Collapse
Affiliation(s)
- Warda Badaoui
- Department
of Biochemistry and Molecular Biology and Agricultural Chemistry and
Edafology, University of Alicante, Carretera San Vicente del Raspeig
s/n, 03690 Alicante, Spain
| | - Frutos C. Marhuenda-Egea
- Department
of Biochemistry and Molecular Biology and Agricultural Chemistry and
Edafology, University of Alicante, Carretera San Vicente del Raspeig
s/n, 03690 Alicante, Spain
| | | | - Pablo Sanchez-Jerez
- Department
of Marine Sciences and Applied Biology, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain
| | - Pablo Arechavala-Lopez
- Mediterranean
Institute of Advanced Studies (IMEDEA-CSIC), C/Miquel Marquès 21, 07190 Esporles, Spain
| | - Kilian Toledo-Guedes
- Department
of Marine Sciences and Applied Biology, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain
| |
Collapse
|
6
|
Villalba AM, De la Llave-Propín Á, De la Fuente J, Pérez C, de Chavarri EG, Díaz MT, Cabezas A, González-Garoz R, Torrent F, Villarroel M, Bermejo-Poza R. Using underwater currents as an occupational enrichment method to improve the stress status in rainbow trout. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:463-475. [PMID: 38060080 DOI: 10.1007/s10695-023-01277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
This study investigated the effects of occupational enrichment, specifically underwater currents, on the stress status of rainbow trout (Oncorhynchus mykiss). A total of 540 fish were divided into three groups: control tanks without artificial currents (CO), tanks with randomly fired underwater currents (RFC), and tanks with continuous current throughout the day (CT). After 30 days, half of the fish in each group underwent a 5-day pre-slaughter fasting (5D), while the others were fed until the day before slaughter (0D). Fish in the RFC group exhibited lower levels of plasma cortisol and acetylcholinesterase enzyme activity in hypothalamus and optic tract than other groups, suggesting an improved stress status. RFC group also showed higher levels of non-esterified fatty acids (NEFA) in 5D fish and higher liver glycogen stores, suggesting improved energy reserves. In comparison, the CT group had higher LDH levels, possibly due to their increased swimming activity. The CO group had significantly lower NEFA levels at 5D compared to the RFC group, suggesting lower energy reserves. The RFC fish had darker and yellow-reddish skin and liver color, suggesting an improved stress status and lower lipid reserves, respectively. Overall, although a significant stress response was not observed in fasted individuals, possibly due to the relatively short fasting period, the study suggests that providing occupational enrichment using randomly fired underwater currents for 1 month helped to improve stress status in rainbow trout, indicating that occupational enrichment during the grow-out phase can positively impact the welfare of rainbow trout during routine handling procedures.
Collapse
Affiliation(s)
- Andrea Martínez Villalba
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avenida Puerta de Hierro S/N, 28040, VeterinariaMadrid, Spain
| | - Álvaro De la Llave-Propín
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avenida Puerta de Hierro S/N, 28040, VeterinariaMadrid, Spain
- CEIGRAM-ETSIAAB, Universidad Politécnica de Madrid, Avenida Complutense 3, 28040, Madrid, Spain
| | - Jesús De la Fuente
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avenida Puerta de Hierro S/N, 28040, VeterinariaMadrid, Spain
| | - Concepción Pérez
- Departamento de Fisiología Animal, Universidad Complutense de Madrid, Avenida Puerta de Hierro S/N, 28040, VeterinariaMadrid, Spain
| | - Elisabet González de Chavarri
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avenida Puerta de Hierro S/N, 28040, VeterinariaMadrid, Spain
| | - María Teresa Díaz
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avenida Puerta de Hierro S/N, 28040, VeterinariaMadrid, Spain
| | - Almudena Cabezas
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avenida Puerta de Hierro S/N, 28040, VeterinariaMadrid, Spain
| | - Roberto González-Garoz
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avenida Puerta de Hierro S/N, 28040, VeterinariaMadrid, Spain
| | - Fernando Torrent
- Departamento de Ingeniería y Gestión Forestal y Ambiental, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria S/N, 28040, Madrid, Spain
| | - Morris Villarroel
- CEIGRAM-ETSIAAB, Universidad Politécnica de Madrid, Avenida Complutense 3, 28040, Madrid, Spain
| | - Rubén Bermejo-Poza
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avenida Puerta de Hierro S/N, 28040, VeterinariaMadrid, Spain.
| |
Collapse
|
7
|
Rubin AM, Seebacher F. Feeding frequency does not interact with BPA exposure to influence metabolism or behaviour in zebrafish (Danio rerio). Physiol Behav 2024; 273:114403. [PMID: 37939830 DOI: 10.1016/j.physbeh.2023.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Resource limitation can constrain energy (ATP) production, and thereby affect locomotion and behaviour such as exploration of novel environments and boldness. Consequently, ecological processes such as dispersal and interactions within and between species may be influenced by food availability. Energy metabolism, and behaviour are regulated by endocrine signalling, and may therefore be impacted by endocrine disrupting compounds (EDCs) including bisphenol A (BPA) derived from plastic manufacture and pollution. It is important to determine the impacts of these novel environmental contexts to understand how human activity alters individual physiology and behaviour and thereby populations. Our aim was to determine whether BPA exposure interacts with feeding frequency to alter metabolism and behaviour. In a fully factorial experiment, we show that low feeding frequency reduced zebrafish (Danio rerio) mass, condition, resting metabolic rates, total distance moved and speed in a novel arena, as well as anxiety indicated by the number of times fish returned to a dark shelter. However, feeding frequency did not significantly affect maximal metabolic rates, aerobic scope, swimming performance, latency to leave a shelter, or metabolic enzyme activities (citrate synthase and lactate dehydrogenase). Natural or anthropogenic fluctuation in food resources can therefore impact energetics and movement of animals with repercussions for ecological processes such as dispersal. BPA exposure reduced LDH activity and body mass, but did not interact with feeding frequency. Hence, behaviour of adult fish is relatively insensitive to disruption by BPA. However, alteration of LDH activity by BPA could disrupt lactate metabolism and signalling and together with reduction in body mass could affect size-dependent reproductive output. BPA released by plastic manufacture and pollution can thereby impact conservation and management of natural resources.
Collapse
Affiliation(s)
- Alexander M Rubin
- School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Building A08, Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Building A08, Sydney, NSW 2006, Australia.
| |
Collapse
|
8
|
Talarico GGM, Thoral E, Farhat E, Teulier L, Mennigen JA, Weber JM. Lactate signaling and fuel selection in rainbow trout: mobilization of energy reserves. Am J Physiol Regul Integr Comp Physiol 2023; 325:R556-R567. [PMID: 37694336 DOI: 10.1152/ajpregu.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Lactate is now recognized as a regulator of fuel selection in mammals because it inhibits lipolysis by binding to the hydroxycarboxylic acid receptor 1 (HCAR1). The goals of this study were to quantify the effects of exogenous lactate on: 1) lipolytic rate or rate of appearance of glycerol in the circulation (Ra glycerol) and hepatic glucose production (Ra glucose), and 2) key tissue proteins involved in lactate signaling, glucose transport, glycolysis, gluconeogenesis, lipolysis, and β-oxidation in rainbow trout. Measurements of fuel mobilization kinetics show that lactate does not affect lipolysis as it does in mammals (Ra glycerol remains at 7.3 ± 0.5 µmol·kg-1·min-1), but strongly reduces hepatic glucose production (16.4 ± 2.0 to 8.9 ± 1.2 µmol·kg-1·min-1). This reduction is likely induced by decreasing gluconeogenic flux through the inhibition of cytosolic phosphoenolpyruvate carboxykinase (Pck1, alternatively called Pepck1; 60% and 24% declines in gene expression and protein level, respectively). It is also caused by lactate substituting for glucose as a fuel in all tissues except white muscle that increases glut4a expression and has limited capacity for monocarboxylate transporter (Mct)-mediated lactate import. We conclude that lipolysis is not affected by hyperlactatemia because trout show no activation of autocrine Hcar1 signaling (gene expression of the receptor is unchanged or even repressed in red muscle). Lactate regulates fuel mobilization via Pck1-mediated suppression of gluconeogenesis and by replacing glucose as a fuel. This study highlights important functional differences in the Hcar1 signaling system between fish and mammals for the regulation of fuel selection.
Collapse
Affiliation(s)
| | - Elisa Thoral
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, École Nationale des Travaux Publics de l'État, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Elie Farhat
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | - Loïc Teulier
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, École Nationale des Travaux Publics de l'État, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Jan A Mennigen
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
9
|
Da Silva EG, Finamor IA, Bressan CA, Schoenau W, Vencato MDS, Pavanato MA, Cargnelutti JF, Da Costa ST, Antoniazzi AQ, Baldisserotto B. Dietary Supplementation with R-(+)-Limonene Improves Growth, Metabolism, Stress, and Antioxidant Responses of Silver Catfish Uninfected and Infected with Aeromonas hydrophila. Animals (Basel) 2023; 13:3307. [PMID: 37958062 PMCID: PMC10650795 DOI: 10.3390/ani13213307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
R-(+)-limonene is a monoterpene from plants of the genus Citrus with diverse biological properties. This research evaluated the effects of dietary supplementation with R-(+)-limonene on growth, metabolic parameters in plasma and liver, and the antioxidant and stress responses in silver catfish, Rhamdia quelen, challenged or not with Aeromonas hydrophila. Fish were fed for 67 days with different doses of R-(+)-limonene in the diet (control 0.0, L0.5, L1.0, and L2.0 mL/kg of diet). On the 60th day, a challenge with A. hydrophila was performed. R-(+)-limonene in the diet potentiated the productive performance of the fish. The metabolic and antioxidant responses indicate that R-(+)-limonene did not harm the health of the animals and made them more resistant to the bacterial challenge. Histological findings showed the hepatoprotective effect of dietary R-(+)-limonene against A. hydrophila. Igf1 mRNA levels were upregulated in the liver of fish fed with an L2.0 diet but downregulated with bacterial challenge. The expression levels of crh mRNA were higher in the brains of fish fed with the L2.0 diet. However, the L2.0 diet downregulated crh and hspa12a mRNA expression in the brains of infected fish. In conclusion, the results indicated that R-(+)-limonene can be considered a good dietary supplement for silver catfish.
Collapse
Affiliation(s)
- Elisia Gomes Da Silva
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (E.G.D.S.); (I.A.F.); (C.A.B.); (W.S.); (M.A.P.); (A.Q.A.)
| | - Isabela Andres Finamor
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (E.G.D.S.); (I.A.F.); (C.A.B.); (W.S.); (M.A.P.); (A.Q.A.)
| | - Caroline Azzolin Bressan
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (E.G.D.S.); (I.A.F.); (C.A.B.); (W.S.); (M.A.P.); (A.Q.A.)
| | - William Schoenau
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (E.G.D.S.); (I.A.F.); (C.A.B.); (W.S.); (M.A.P.); (A.Q.A.)
| | - Marina De Souza Vencato
- Department of Morphology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (M.D.S.V.); (S.T.D.C.)
| | - Maria Amália Pavanato
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (E.G.D.S.); (I.A.F.); (C.A.B.); (W.S.); (M.A.P.); (A.Q.A.)
| | - Juliana Felipetto Cargnelutti
- Department of Preventive Veterinary Medicine, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
| | - Sílvio Teixeira Da Costa
- Department of Morphology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (M.D.S.V.); (S.T.D.C.)
| | - Alfredo Quites Antoniazzi
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (E.G.D.S.); (I.A.F.); (C.A.B.); (W.S.); (M.A.P.); (A.Q.A.)
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (E.G.D.S.); (I.A.F.); (C.A.B.); (W.S.); (M.A.P.); (A.Q.A.)
| |
Collapse
|
10
|
Abstract
The collective directional movement of animals occurs over both short distances and longer migrations, and is a critical aspect of feeding, reproduction and the ecology of many species. Despite the implications of collective motion for lifetime fitness, we know remarkably little about its energetics. It is commonly thought that collective animal motion saves energy: moving alone against fluid flow is expected to be more energetically expensive than moving in a group. Energetic conservation resulting from collective movement is most often inferred from kinematic metrics or from computational models. However, the direct measurement of total metabolic energy savings during collective motion compared with solitary movement over a range of speeds has yet to be documented. In particular, longer duration and higher speed collective motion must involve both aerobic and non-aerobic (high-energy phosphate stores and substrate-level phosphorylation) metabolic energy contributions, and yet no study to date has quantified both types of metabolic contribution in comparison to locomotion by solitary individuals. There are multiple challenging questions regarding the energetics of collective motion in aquatic, aerial and terrestrial environments that remain to be answered. We focus on aquatic locomotion as a model system to demonstrate that understanding the energetics and total cost of collective movement requires the integration of biomechanics, fluid dynamics and bioenergetics to unveil the hydrodynamic and physiological phenomena involved and their underlying mechanisms.
Collapse
Affiliation(s)
- Yangfan Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - George V Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
11
|
Virtanen MI, Brinchmann MF, Patel DM, Iversen MH. Chronic stress negatively impacts wound healing, welfare, and stress regulation in internally tagged Atlantic salmon (Salmo salar). Front Physiol 2023; 14:1147235. [PMID: 37078022 PMCID: PMC10106625 DOI: 10.3389/fphys.2023.1147235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
The desire to understand fish welfare better has led to the development of live monitoring sensor tags embedded within individuals for long periods. Improving and understanding welfare must not come at the cost of impaired welfare due to a tag’s presence and implantation process. When welfare is compromised, the individual will experience negative emotions such as fear, pain, and distress, impacting the stress response. In this study, Atlantic salmon (Salmo salar) underwent surgical implantation of a dummy tag. Additionally, half of this group was introduced to daily crowding stress. Both groups and an untagged group were followed for 8 weeks using triplicate tanks per group. Sampling took place once a week, and where stress was given, it was conducted 24 h before sampling. Stress-related measurements were taken to understand if tagging caused chronic stress and explore the chronic stress response and its impact on wound healing. Primary stress response hormones measured included CRH, dopamine, adrenocorticotropic hormone, and cortisol. Secondary stress response parameters measured included glucose, lactate, magnesium, calcium, chloride, and osmolality. Tertiary stress response parameters measured included weight, length, and five fins for fin erosion. Wound healing was calculated by taking the incision length and width, the inflammation length and width, and the inside wound length and width. The wound healing process showed that stressed fish have a larger and longer-lasting inflammation period and a slower wound healing process, as seen from the inside wound. The tagging of Atlantic salmon did not cause chronic stress. In contrast, daily stress led to an allostatic overload type two response. ACTH was elevated in the plasma after 4 weeks, and cortisol followed elevation after 6 weeks, highlighting a breakdown of the stress regulation. Fin erosion was elevated alongside cortisol increase in the stressed group. This data suggests that tagging previously unstressed fish in a controlled environment does not negatively affect welfare regarding stress responses. It also indicates that stress delays wound healing and increases the inflammatory response, highlighting how continued stress causes a breakdown in some stress responses. Ultimately, the tagging of Atlantic salmon can be successful under certain conditions where proper healing is observed, tag retention is high, and chronic stress is not present, which could allow for the possible measurement of welfare indicators via smart-tags.
Collapse
|
12
|
Messina M, Iacumin L, Pascon G, Tulli F, Tibaldi E, Cardinaletti G. Effect of feed restriction and refeeding on body condition, digestive functionality and intestinal microbiota in rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:169-189. [PMID: 36680627 PMCID: PMC9935662 DOI: 10.1007/s10695-023-01170-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The aim of the present work was to investigate the influence of fasting and refeeding on body condition, gut physiology and microbiota in reared O. mykiss. Ninety-six fish were randomly allotted among three groups subjected to different feeding plan: C (control, fed for 5 weeks); R (restricted ration over 3 weeks followed by 2 weeks feeding); F (fasted over 3 weeks followed by 2 weeks feeding) in a well's fresh water flow-through rearing plan. Sampling occurred at 0, 1, 2, 4, 7, 14 days during the refeeding period. At day 0 and throughout the feeding period until day 14, the weight of the fish was significantly affected by the feeding restriction. Feed deprivation reduced significantly the viscerosomatic and hepatosomatic indexes. Brush border membrane enzymes' specific activity was modulated by feeding regimes until day 7, to level in all experimental groups at day 14. At the end of the restricted/fasted period, the microbiota of the C group was made up of 70% of Actinobacteria, 24% of Proteobacteria, 4.2% of Firmicutes and < 1% of Bacteroides, while the restricted and fasted group were characterized by a strong reduction of Actinobacteria, and a significant increase in Bacteroidetes and Firmicutes. The feed deprivation determined a dysbiosis, allowing the development of different commensal or pathogenic bacteria. In conclusion, the effects of 2 weeks of feed deprivation, excluding those related to body weight, are gradually mitigated by refeeding, which allows the restoration of digestive functions and a healthy intestinal microbiota.
Collapse
Affiliation(s)
- Maria Messina
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| | - Lucilla Iacumin
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| | - Giulia Pascon
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| | - Francesca Tulli
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| | - Emilio Tibaldi
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| | - Gloriana Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| |
Collapse
|
13
|
Faught E, Vijayan MM. The Mineralocorticoid Receptor Functions as a Key Glucose Regulator in the Skeletal Muscle of Zebrafish. Endocrinology 2022; 163:6679268. [PMID: 36041019 DOI: 10.1210/endocr/bqac149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 11/19/2022]
Abstract
Glucocorticoids (GCs) are essential for maintaining energy homeostasis as part of the adaptive stress response. Most work to date has characterized the metabolic role of GCs via the activation of the glucocorticoid receptor (nr3c1; GR), which is activated under high GC conditions. However, GCs also bind to the mineralocorticoid receptor (nr3c2; MR), a high-affinity corticosteroid receptor active under basal GC conditions. Despite the expression of MR in skeletal muscles, almost nothing is known about its physiological role. Here we tested the hypothesis that the MR promotes anabolic processes during resting cortisol levels and curtails the catabolic actions of the GR during high (stressed) levels of cortisol. To determine the effect of MR, a zebrafish line with a ubiquitous MR knockout (MRca402/ca402) was utilized. The GR was activated in the same group by chronically treating fish with exogenous cortisol. In the muscle, MR primarily promoted nutrient storage, and restricted energy substrate mobilization under resting conditions, whereas GR activation resulted in increased nutrient utilization. Interestingly, MR loss improved GR-driven metabolic flexibility, suggesting that the activation state of these receptors is a key determinant of skeletal muscle ability to switch fuel sources. To determine if the anabolism-promoting nature of MR was due to an interaction with insulin, fish were co-injected with insulin and the fluorescent glucose analogue 2-NBDG. A loss of MR abolished insulin-stimulated glucose uptake in the skeletal muscle. Taken together, we postulate that MR acts as a key modulator of glucose metabolism in the musculature during basal and stress conditions.
Collapse
Affiliation(s)
- Erin Faught
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N1N4, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N1N4, Canada
| |
Collapse
|
14
|
Kurchaba N, Charette JM, LeMoine CMR. Metabolic consequences of PGC-1α dysregulation in adult zebrafish muscle. Am J Physiol Regul Integr Comp Physiol 2022; 323:R319-R330. [PMID: 35670765 DOI: 10.1152/ajpregu.00188.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The peroxisome proliferator activated receptor gamma co-activator 1 alpha (PGC-1α) is central to the regulation of cellular and mitochondrial energy homeostasis in mammals, but its role in other vertebrates remains unclear. Indeed, previous work suggests extensive structural and functional divergence of PGC-1α in teleosts but this remains to be directly tested. Here, we describe the initial characterization of heterozygous PGC-1α mutant zebrafish lines created by CRISPR-Cas9 disruptions of an evolutionarily conserved regulatory region of the PGC-1α proximal promoter. Using qPCR, we confirmed the disruption of PGC-1α gene expression in striated muscle, leading to a simultaneous 4-fold increase in mixed skeletal muscle PGC-1α mRNA levels and an opposite 4-fold downregulation in cardiac muscle. In mixed skeletal muscle, most downstream effector genes were largely unaffected yet two mitochondrial lipid transporters, carnitine palmitoyltransferase 1 and 2, were strongly induced. Conversely, PGC-1α depression in cardiac muscle reduced the expression of several transcriptional regulators (estrogen related receptor alpha, nuclear respiratory factor 1 and PGC-1β) without altering metabolic gene expression. Using high resolution respirometry, we determined that white muscle exhibited increased lipid oxidative capacity with little difference in markers of mitochondrial abundance. Finally, using whole animal intermittent respirometry, we show that mutant fish exhibit a 2-fold higher basal metabolism than their wildtype counterparts. Altogether, this new model confirms a central but complex role for PGC-1α in mediating energy utilization in zebrafish and we propose its use as a valuable tool to explore the intricate regulatory pathways of energy homeostasis in a popular biomedical model.
Collapse
Affiliation(s)
| | - J Michael Charette
- Department of Chemistry, Brandon University, Brandon, MB, Canada.,Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada.,CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
| | | |
Collapse
|
15
|
Wang H, Li B, Yang L, Jiang C, Zhang T, Liu S, Zhuang Z. Expression profiles and transcript properties of fast-twitch and slow-twitch muscles in a deep-sea highly migratory fish, Pseudocaranx dentex. PeerJ 2022; 10:e12720. [PMID: 35378928 PMCID: PMC8976474 DOI: 10.7717/peerj.12720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/09/2021] [Indexed: 01/07/2023] Open
Abstract
Fast-twitch and slow-twitch muscles are the two principal skeletal muscle types in teleost with obvious differences in metabolic and contractile phenotypes. The molecular mechanisms that control and maintain the different muscle types remain unclear yet. Pseudocaranx dentex is a highly mobile active pelagic fish with distinctly differentiated fast-twitch and slow-twitch muscles. Meanwhile, P. dentex has become a potential target species for deep-sea aquaculture because of its considerable economic value. To elucidate the molecular characteristics in the two muscle types of P. dentex, we generated 122 million and 130 million clean reads from fast-twitch and slow-witch muscles using RNA-Seq, respectively. Comparative transcriptome analysis revealed that 2,862 genes were differentially expressed. According to GO and KEGG analysis, the differentially expressed genes (DEGs) were mainly enriched in energy metabolism and skeletal muscle structure related pathways. Difference in the expression levels of specific genes for glycolytic and lipolysis provided molecular evidence for the differences in energy metabolic pathway between fast-twitch and slow-twitch muscles of P. dentex. Numerous genes encoding key enzymes of mitochondrial oxidative phosphorylation pathway were significantly upregulated at the mRNA expression level suggested slow-twitch muscle had a higher oxidative phosphorylation to ensure more energy supply. Meanwhile, expression patterns of the main skeletal muscle developmental genes were characterized, and the expression signatures of Sox8, Myod1, Calpain-3, Myogenin, and five insulin-like growth factors indicated that more myogenic cells of fast-twitch muscle in the differentiating state. The analysis of important skeletal muscle structural genes showed that muscle type-specific expression of myosin, troponin and tropomyosin may lead to the phenotypic structure differentiation. RT-qPCR analysis of twelve DEGs showed a good correlation with the transcriptome data and confirmed the reliability of the results presented in the study. The large-scale transcriptomic data generated in this study provided an overall insight into the thorough gene expression profiles of skeletal muscle in a highly mobile active pelagic fish, which could be valuable for further studies on molecular mechanisms responsible for the diversity and function of skeletal muscle.
Collapse
Affiliation(s)
- Huan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Busu Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Long Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, China,College of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Chen Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, China
| | - Tao Zhang
- Dalian Tianzheng Industry Co., Ltd., Dalian, Liaoning, China
| | - Shufang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Zhimeng Zhuang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| |
Collapse
|
16
|
Lotic Environment Affects Morphological Characteristics and Energy Metabolism of Juvenile Grass Carp Ctenopharyngodon idella. WATER 2022. [DOI: 10.3390/w14071019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the effect of a lotic environment on morphological characteristics and energy metabolism in juvenile grass carp Ctenopharyngodon idella. The fish were stocked in the lotic environment and forced to swim for 12 h per day for 4 weeks at three water current velocities of 0.5, 2, and 4 body length s−1 (Bl s−1). The control fish were stocked in the lentic environment with water current velocities of 0 Bl s−1. The results showed that lotic environment significantly increased body weight, body length, and condition factor of grass carp. The first principal component (PC1) characterized by measured overall body size suggested that fish in a lotic environment had body stoutness and wider tail stalk. Standard metabolic rate (SMR), maximum metabolic rate (MMR), and aerobic swimming performance (Ucrit) were elevated with the increased water flow and positively correlated with PC1. The 4 Bl s−1 group showed significantly decreased contents of serum glucose and muscular glycogen, and a significantly increased level of serum lactic acid. The mRNA expression levels of AMP-activated protein kinase-phosphorylate PPAR γ coactivator 1 α-nuclear respiratory factor 1 (AMPK-PGC1α-NRF1) pathway-related genes were significantly upregulated in red muscle of grass carp in the lotic environment. Water flow environment at 4 Bl s−1 significantly increased ratios of metabolic enzymes (lactate dehydrogenase/citrate synthase) and cytochrome c oxidase/citrate synthase) in the muscle. The relationship between morphological characteristics and metabolic capacity suggested that the body size of grass carp in a lotic environment was shaped to promote energy metabolism. The study identified the evidence of the mechanism and relationship of the trade-off between energy and morphology in grass carp.
Collapse
|
17
|
Interaction between the Effects of Sustained Swimming Activity and Dietary Macronutrient Proportions on the Redox Status of Gilthead Sea Bream Juveniles (Sparus aurata L.). Antioxidants (Basel) 2022; 11:antiox11020319. [PMID: 35204202 PMCID: PMC8868478 DOI: 10.3390/antiox11020319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
The combination of physical exercise and a balanced diet presents substantial health benefits and could improve fish production. However, the redox balance can be affected by training regimen, dietary macronutrient ratio and their interaction. In this study, we conjointly evaluated the effects of physical activity (by voluntary swimming (VS) or sustained swimming as exercise (Ex)) and diet composition (by high-protein (HP) or high-lipid (HE) commercial diets) after 6 weeks on oxidative stress status in liver, white muscle and red muscle of gilthead sea bream juveniles. The HE diet increased the biochemical redox markers’ thiobarbituric acid reactive substances (TBARS), advanced oxidation protein products (AOPP) and reduced thiols (-SH) in the different tissues. Exercise increased AOPP and -SH levels in liver but reduced TBARS levels in white muscle. Regarding the expression of oxidative stress, chaperones and apoptosis-related genes, the VSHE group showed the highest values and the VSHP the lowest, whereas the application of sustained swimming partially equalized those differences. Diet composition modulated the enzyme activity, prioritizing the superoxide dismutase and catalase in the HE-fed groups and the glutathione-related enzymes in the HP groups. Exercise also altered enzyme activity, but in a tissue-dependent manner. Overall, the redox balance in gilthead sea bream juveniles can be affected by diet composition and sustained swimming. However, the response will partly depend on the interaction between these factors and the tissue studied. Therefore, the combination of an adequate diet and sustained exercise could be used in fish production to improve the physiological redox status.
Collapse
|
18
|
Yu X, Ozorio ROA, Magnoni L. Sustained swimming exercise training decreases the individual variation in the metabolic phenotype of gilthead sea bream (Sparus aurata). Comp Biochem Physiol A Mol Integr Physiol 2021; 262:111077. [PMID: 34534677 DOI: 10.1016/j.cbpa.2021.111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Cultured fish can be induced to swim, although the suitability and benefits remain to be tested. Sustained swimming exercise (SSE) training and detraining (DET) were applied in juvenile gilthead sea bream (Sparus aurata) and the metabolic rates were investigated. Fish with a total body mass of 80.5 ± 1.5 g and total length 17.2 ± 0.1 cm were maintained untrained (spontaneously swimming activity, UNT), swim-trained (induced sustained swimming activity, SSE) at 1 BL s-1 for 28 days, or detrained (28 days of swimming followed by 10 days of untraining, DET). Standard metabolic rate (SMR), maximum metabolic rate (MMR), and excess post-exercise oxygen consumption (EPOC) were assessed (n = 10). In addition, the effects of SSE training (51 days) on blood and plasma parameters were investigated before and immediately after applying a high-intensity swimming (HIS) protocol. SMR, MMR, and EPOC values were not different between SSE, UNT, or DET fish (143.2, 465.5 mg O2 kg-1 h-1, and 459.1 mg O2 kg-1, respectively). Spite the lack of differences between treatments, the dispersion in the residuals for SMR, MMR, and absolute aerobic scope (AAS) values followed the order UNT > DET > SSE, indicating that swim training decreases the individual variation of these metabolic parameters. Haematological parameters, plasma glucose, lactate, and cortisol levels were similar between SSE and UNT groups before HIS. Plasma glucose and lactate levels increased in both groups after HIS, being higher in the SSE group. Plasma cortisol levels were similar between both groups after HIS. Results suggest that SSE training improves energy use and reduces individual variation in SMR and MMR, an effect that declines with detraining.
Collapse
Affiliation(s)
- Xiaoming Yu
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal; College of Fisheries and Life Science, Dalian Ocean University, China
| | - Rodrigo O A Ozorio
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - LeonardoJ Magnoni
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.
| |
Collapse
|
19
|
Jubouri M, Talarico GGM, Weber JM, Mennigen JA. Alanine alters the carbohydrate metabolism of rainbow trout: glucose flux and cell signaling. J Exp Biol 2021; 224:271235. [PMID: 34374410 DOI: 10.1242/jeb.232918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/06/2021] [Indexed: 11/20/2022]
Abstract
In rainbow trout, dietary carbohydrates are poorly metabolized compared with other macronutrients. One prevalent hypothesis suggests that high dietary amino acid levels could contribute to the poor utilization of carbohydrates in trout. In mammals, alanine is considered an important gluconeogenic precursor, but has recently been found to stimulate AMP-activated protein kinase (AMPK) to reduce glucose levels. In trout, the effect of alanine on glucose flux is unknown. The goal of this study was to determine the effects of 4 h exogenous alanine infusion on glucose metabolism in rainbow trout. Glucose flux, and the rate of glucose appearance (Ra) and disposal (Rd) were measured in vivo. Key glycolytic and gluconeogenic enzyme expression and activity, and cell signaling molecules relevant to glucose metabolism were assessed in the liver and muscle. The results show that alanine inhibits glucose Ra (from 13.2±2.5 to 7.3±1.6 μmol kg-1 min-1) and Rd (from 13.2±2.5 to 7.4±1.5 μmol kg-1 min-1) and the slight mismatch between Ra and Rd caused a reduction in glycemia, similar to the effects of insulin in trout. The reduction in glucose Rd can be partially explained by a reduction in glut4b expression in red muscle. In contrast to mammals, trout alanine-dependent glucose-lowering effects did not involve hepatic AMPK activation, suggesting a different mechanistic basis. Interestingly, protein kinase B (AKT) activation increased only in muscle, similar to effects observed in insulin-infused trout. We speculate that alanine-dependent effects were probably mediated through stimulation of insulin secretion, which could indirectly promote alanine oxidation to provide the needed energy.
Collapse
Affiliation(s)
- Mais Jubouri
- Biology Department, University of Ottawa, Ottawa, ON, Canada, K1N 6A5
| | | | - Jean-Michel Weber
- Biology Department, University of Ottawa, Ottawa, ON, Canada, K1N 6A5
| | - Jan A Mennigen
- Biology Department, University of Ottawa, Ottawa, ON, Canada, K1N 6A5
| |
Collapse
|
20
|
Mandic M, Bailey A, Perry SF. Hypoxia inducible factor 1-α is minimally involved in determining the time domains of the hypoxic ventilatory response in adult zebrafish (Danio rerio). Respir Physiol Neurobiol 2021; 294:103774. [PMID: 34375733 DOI: 10.1016/j.resp.2021.103774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/20/2021] [Accepted: 08/05/2021] [Indexed: 01/15/2023]
Abstract
In the current study, adult zebrafish (Danio rerio) were exposed to 72 h hypoxia (90 mmHg) to assess the time domains of the hypoxia ventilatory response (HVR) and the consequence on a subsequent more severe (40 mmHg) bout of acute hypoxia. Experiments were performed on wild-type fish and mutants in which one or both paralogs of hypoxia inducible factor-1α (hif-1α) were knocked out. Although there were subtle differences among the wild-type and knockout fish, resting fV was reestablished after 2-8 h of continuous hypoxia in both groups, a striking example of hypoxic ventilatory decline (HVD). When fish were subsequently exposed to more severe hypoxia, a rapid increase in fV was observed, the magnitude of which was independent of genotype or prior exposure history. During recovery, fish that had been exposed to 72 h of 90 mmHg hypoxia exhibited a pronounced undershoot in fV, which was absent in the hif-1α double knockouts. Overall, the results revealed distinct time domains of the HVR in zebrafish that were largely Hif-1α-independent.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N6N5 Canada.
| | - Adrian Bailey
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N6N5 Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N6N5 Canada
| |
Collapse
|
21
|
Jia Y, Gao Y, Wan J, Gao Y, Li J, Guan C. Altered physiological response and gill histology in black rockfish, Sebastes schlegelii, during progressive hypoxia and reoxygenation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1133-1147. [PMID: 34059979 DOI: 10.1007/s10695-021-00970-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Hypoxia has gradually become common in aquatic ecosystems and imposes a significant challenge for fish farming. The loss of equilibrium (LOE), 50% lethal time (LT50), plasma cortisol, glucose, red blood cells (RBC), hemoglobin (Hb), gill histological alteration, and related parameters (lamellar length [SLL] and width [SLW], interlamellar distance [ID], basal epithelial thickness [BET], lamellar surface area [LA], and gill surface area [GSA]); respiratory rate; the proportion of the secondary lamellae available for gas exchange (PAGE); and hypoxia-inducible factor (hif-1α, hif-2α) mRNA expression were determined during progressive hypoxia and reoxygenation (R-0, R-12, R-24 h) to illustrate the underlying physiological response mechanisms in black rockfish Sebastes schlegelii. Results showed that the DO concentration significantly decreased during progressive hypoxia, while DO at LOE and LT50 were 2.42 ± 0.10 mg L-1 and 1.67 ± 0.38 mg L-1, respectively. Cortisol and glucose were significantly increased at LOE and LT50, with the highest levels observed at LT50, and then gradually recovered to normal within reoxygenation 24 h. RBC number and Hb results were like those of glucose. Hypoxia stress resulted in lamellar clubbing, hypertrophy, and hyperplasia. Respiratory frequency significantly increased at LOE and decreased at LT50. Lamellar perimeters, SLL, ID, LA, GSA, and PAGE, significantly increased at LOE and LT50, with the highest values observed at LT50. However, SLW and BET significantly decreased at LOE, LT50, and R-0. These parameters recovered to nearly normal levels at R-24 h. hif-1α mRNAs in gill and liver were significantly upregulated at LOE and LT50, and recovery to normal after reoxygenation 24 h. hif-2α mRNAs in gill was similar to that of hif-1α, whereas hepatic hif-2α mRNAs remained unchanged during hypoxia-reoxygenation. These results indicated that progressive hypoxia stress elevated RBC number, Hb, cortisol, and glucose levels, induced the alteration of gill morphology, increased LA and GSA, stimulated respiratory frequency and PAGE, and upregulated the transcription of hif-1α and hif-2α in gill and liver. Reoxygenation treatment for 24 h alleviated the stress mentioned above effects. These findings expand current knowledge on hypoxia tolerance in black rockfish Sebastes schlegelii.
Collapse
Affiliation(s)
- Yudong Jia
- Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China.
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Yuntao Gao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinming Wan
- Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Yunhong Gao
- Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Juan Li
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Changtao Guan
- Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
22
|
Morash AJ, Speers-Roesch B, Andrew S, Currie S. The physiological ups and downs of thermal variability in temperate freshwater ecosystems. JOURNAL OF FISH BIOLOGY 2021; 98:1524-1535. [PMID: 33349944 DOI: 10.1111/jfb.14655] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Freshwater fish face a variety of spatiotemporal thermal challenges throughout their life. On a broad scale, temperature is an important driver of physiological, behavioural and ecological patterns and ultimately affects populations and overall distribution. These broad patterns are partly underpinned by the small-scale local effects of temperature on individuals within the population. Climate change is increasing the range of daily thermal variation in most freshwater ecosystems, altering behaviour and performance of resident fishes. The aim of this review is understanding how daily thermal variation in temperate rivers affects individual fish physiology, behaviour and overall performance. The following are highlighted in this study: (a) the physical characteristics of rivers that can either buffer or exacerbate thermal variability, (b) the effects of thermal variability on growth and metabolism, (c) the approaches for quantifying thermal variation and thermal stress and (d) how fish may acclimatize or adapt to our changing climate.
Collapse
Affiliation(s)
- Andrea J Morash
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Sean Andrew
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Suzanne Currie
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
23
|
Feidantsis K, Pörtner HO, Giantsis IA, Michaelidis B. Advances in understanding the impacts of global warming on marine fishes farmed offshore: Sparus aurata as a case study. JOURNAL OF FISH BIOLOGY 2021; 98:1509-1523. [PMID: 33161577 DOI: 10.1111/jfb.14611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Monitoring variations in proteins involved in metabolic processes, oxidative stress responses, cell signalling and protein homeostasis is a powerful tool for developing hypotheses of how environmental variations affect marine organisms' physiology and biology. According to the oxygen- and capacity-limited thermal tolerance hypothesis, thermal acclimation mechanisms such as adjusting the activities of enzymes of intermediary metabolism and of antioxidant defence mechanisms, inducing heat shock proteins (Hsps) or activating mitogen-activated protein kinases may all shift tolerance windows. Few studies have, however, investigated the molecular, biochemical and organismal responses by fishes to seasonal temperature variations in the field to link these to laboratory findings. Investigation of the impacts of global warming on fishes farmed offsore, in the open sea, can provide a stepping stone towards understanding effects on wild populations because they experience similar environmental fluctuations. Over the last 30 years, farming of the gilthead sea bream Sparus aurata (Linnaeus 1758) has become widespread along the Mediterranean coastline, rendering this species a useful case study. Based on available information, the prevailing seasonal temperature variations expose the species to the upper and lower limits of its thermal range. Evidence for this includes oxygen restriction, reduced feeding, reduced responsiveness to environmental stimuli, plus a range of molecular and biochemical indicators that change across the thermal range. Additionally, close relationships between biochemical pathways and seasonal patterns of metabolism indicate a connection between energy demand and metabolic processes on the one hand, and cellular stress responses such as oxidative stress, inflammation and autophagy on the other. Understanding physiological responses to temperature fluctuations in fishes farmed offshore can provide crucial background information for the conservation and successful management of aquaculture resources in the face of global change.
Collapse
Affiliation(s)
- Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hans O Pörtner
- Alfred-Wegener-Institut für Polar-und Meeresforschung, Physiologie Mariner Tiere, Bremerhaven, Germany
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
24
|
Kurhaluk N, Tkachenko H. Antioxidants, lysosomes and elements status during the life cycle of sea trout Salmo trutta m. trutta L. Sci Rep 2021; 11:5545. [PMID: 33692470 PMCID: PMC7970912 DOI: 10.1038/s41598-021-85127-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/22/2021] [Indexed: 11/09/2022] Open
Abstract
The aim of our study was to elucidate the effects of both development stages (parr, smolt, adult, spawner), and kelt as a survival form and sex (male, female) on the functional stability of the lysosomal complex, biomarkers of oxidative stress, and element contents in the muscle tissue of the sea trout (Salmo trutta m. trutta L.) sampled in the Pomerania region (northern Poland). We have evaluated the maximal activities of lysosomal enzymes (alanyl aminopeptidase, leucyl aminopeptidase, β-N-acetylglucosaminidase, and acid phosphatase), lipid peroxidation level, and protein carbonyl derivatives as indices of muscle tissue degradation. The relationship between lysosomal activity and oxidative stress biomarkers estimated by the lipid peroxidation level and protein carbonyl derivatives was also assessed, as well as the relationships between element levels and oxidative stress biomarkers. Trends of the main effects (i.e., the development stages and sex alone, the interaction of the sex and development stage simultaneously) on oxidative stress biomarkers, lysosomal functioning, and element contents in the muscle tissue were evaluated. The study has shown sex-related relationships between the pro- and antioxidant balance and the tissue type in the adult stage as well as modifications in the lysosomal functioning induced by long-term environmental stress associated with changing the habitats from freshwater to seawater and intense migrations. The highest level of toxic products generated in oxidative reactions and oxidative modification of proteins was noted in both the spawner stage and the kelt form. The holistic model of analysis of all parameters of antioxidant defense in all development stages and sex demonstrated the following dependencies for the level of lipid peroxidation, oxidative modification of proteins, lysosomal activities, and element contents: TBARS > OMP KD > OMP AD > TAC, AcP > NAG > LAP > AAP and Cu > Fe > Ca > Mn > Zn > Mg, respectively.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski Str. 22b, 76-200, Słupsk, Poland.
| | - Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski Str. 22b, 76-200, Słupsk, Poland
| |
Collapse
|
25
|
Gomez Isaza DF, Cramp RL, Franklin CE. Exposure to Nitrate Increases Susceptibility to Hypoxia in Fish. Physiol Biochem Zool 2021; 94:124-142. [DOI: 10.1086/713252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
26
|
Petitjean Q, Jacquin L, Riem L, Pitout M, Perrault A, Cousseau M, Laffaille P, Jean S. Intraspecific variability of responses to combined metal contamination and immune challenge among wild fish populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116042. [PMID: 33190983 DOI: 10.1016/j.envpol.2020.116042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Wild organisms are increasingly exposed to multiple anthropogenic and natural stressors that can interact in complex ways and lead to unexpected effects. In aquatic ecosystems, contamination by trace metals has deleterious effects on fish health and commonly co-occurs with pathogens, which affect similar physiological and behavioral traits. However, the combined effects of metal contamination and parasitism are still poorly known. In addition, the sensitivity to multiple stressors could be highly variable among different fish populations depending on their evolutionary history, but this intraspecific variability is rarely taken into account in existing ecotoxicological studies. Here, we investigated i) the interactive effects of metal contamination (i.e., realistic mixture of Cd, Cu and Zn) and immune challenge mimicking a parasite attack on fish health across biological levels. In addition, we compared ii) the physiological and behavioral responses among five populations of gudgeon fish (Gobio occitaniae) having evolved along a gradient of metal contamination. Results show that single stressors exposure resulted in an increase of immune defenses and oxidative stress at the expense of body mass (contamination) or fish swimming activity (immune challenge). Multiple stressors had fewer interactive effects than expected, especially on physiological traits, but mainly resulted in antagonistic effects on fish swimming activity. Indeed, the immune challenge modified or inhibited the effects of contamination on fish behavior in most populations, suggesting that multiple stressors could reduce behavioral plasticity. Interestingly, the effects of stressors were highly variable among populations, with lower deleterious effects of metal contamination in populations from highly contaminated environments, although the underlying evolutionary mechanisms remain to be investigated. This study highlights the importance of considering multiple stressors effects and intraspecific variability of sensitivity to refine our ability to predict the effects of environmental contaminants on aquatic wildlife.
Collapse
Affiliation(s)
- Quentin Petitjean
- Laboratoire Écologie Fonctionnelle et Environnement, UMR5245, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062, Toulouse, France; EDB, Laboratoire Évolution et Diversité Biologique, UMR5174 EDB, Université de Toulouse, CNRS, IRD, 118 Route de Narbonne, 31062, Toulouse, France; LTSER France, Zone Atelier PYGAR « Pyrénées-Garonne », Auzeville-Tolosane, France.
| | - Lisa Jacquin
- EDB, Laboratoire Évolution et Diversité Biologique, UMR5174 EDB, Université de Toulouse, CNRS, IRD, 118 Route de Narbonne, 31062, Toulouse, France; LTSER France, Zone Atelier PYGAR « Pyrénées-Garonne », Auzeville-Tolosane, France
| | - Louna Riem
- Laboratoire Écologie Fonctionnelle et Environnement, UMR5245, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062, Toulouse, France; EDB, Laboratoire Évolution et Diversité Biologique, UMR5174 EDB, Université de Toulouse, CNRS, IRD, 118 Route de Narbonne, 31062, Toulouse, France
| | - Mathilde Pitout
- Laboratoire Écologie Fonctionnelle et Environnement, UMR5245, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Annie Perrault
- Laboratoire Écologie Fonctionnelle et Environnement, UMR5245, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Myriam Cousseau
- Laboratoire Écologie Fonctionnelle et Environnement, UMR5245, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Pascal Laffaille
- Laboratoire Écologie Fonctionnelle et Environnement, UMR5245, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062, Toulouse, France; LTSER France, Zone Atelier PYGAR « Pyrénées-Garonne », Auzeville-Tolosane, France
| | - Séverine Jean
- Laboratoire Écologie Fonctionnelle et Environnement, UMR5245, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062, Toulouse, France; LTSER France, Zone Atelier PYGAR « Pyrénées-Garonne », Auzeville-Tolosane, France
| |
Collapse
|
27
|
Díaz-Rúa A, Chivite M, Velasco C, Comesaña S, Soengas JL, Conde-Sieira M. Periprandial response of central cannabinoid system to different feeding conditions in rainbow trout Oncorhynchus mykiss. Nutr Neurosci 2020; 25:1265-1276. [DOI: 10.1080/1028415x.2020.1853412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Adrián Díaz-Rúa
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Mauro Chivite
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Sara Comesaña
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
28
|
Kostyniuk DJ, Mennigen JA. Meta-analysis of differentially-regulated hepatic microRNAs identifies candidate post-transcriptional regulation networks of intermediary metabolism in rainbow trout. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100750. [PMID: 33038710 DOI: 10.1016/j.cbd.2020.100750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/14/2020] [Accepted: 09/25/2020] [Indexed: 12/01/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs which act as post-transcriptional regulators by decreasing targeted mRNA translation and stability. Principally targeting small 3' UTR elements of protein-coding mRNAs through complementary base-pairing, miRNAs are promiscuous regulators of the transcriptome. While potent roles for hepatic miRNAs in the regulation of energy metabolism have emerged in rodent models, comparative roles in other vertebrates remain largely unexplored. Indeed, while several miRNAs are deeply conserved among vertebrates, the acquisition of lineage- and species-specific miRNAs, as well as the rewiring between miRNA-mRNA target relationships beg the question of regulatory and functional conservation and innovation of miRNAs and their targets involved in energy metabolism. Here we provide a meta-analysis of differentially expressed hepatic miRNAs in rainbow trout, a scientifically and economically important teleost species with a 'glucose-intolerant' phenotype. Following exposure to nutritional and social context-dependent metabolic challenges, we analyzed differential miRNA expression from small-RNA-sequencing datasets generated with a consistent bioinformatics pipeline in conjunction with an in silico target prediction of metabolic transcripts and pathways. We provide evidence for evolutionary conserved (let-7, miRNA-27 family) and rewired (miRNA-30 family, miRNA-152, miRNA-722) miRNA-metabolic target gene networks in the context of the salmonid genome. These findings represent important first steps in our understanding of the comparative regulation and function of hepatic miRNAs in rainbow trout energy metabolism. We propose that the identified miRNA families should be prioritized for future comparative functional investigation in the context of hepatic energy- and glucose metabolism in rainbow trout.
Collapse
Affiliation(s)
- Daniel J Kostyniuk
- Department of Biology, University of Ottawa, 20 Marie Curie, K1N6N5, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, 20 Marie Curie, K1N6N5, ON, Canada.
| |
Collapse
|
29
|
Roques S, Deborde C, Richard N, Marchand Y, Larroquet L, Prigent S, Skiba-Cassy S, Moing A, Fauconneau B. Proton-NMR Metabolomics of Rainbow Trout Fed a Plant-Based Diet Supplemented with Graded Levels of a Protein-Rich Yeast Fraction Reveal Several Metabolic Processes Involved in Growth. J Nutr 2020; 150:2268-2277. [PMID: 32805000 DOI: 10.1093/jn/nxaa206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Plant raw materials are commonly used in aquafeeds, as marine resources are unsustainable. However, full plant-based diets lead to poorer fish growth performance. OBJECTIVE We aimed to understand the metabolic effects of a yeast fraction as a protein supplement in a plant-based diet and to integrate such effects with phenotypic traits as a new approach to assess the interest of this raw material. METHODS Juvenile (49 g) rainbow trout (Oncorhynchus mykiss) were fed graded levels of a yeast protein-rich fraction (5% YST05, 10% YST10, 15% YST15) in a plant-based diet (PB) for 84 d. Final body weight, feed conversion ratio, and hepatosomatic and viscerosomatic indexes were measured. Plasma, liver, and muscle 1H-NMR fingerprints were analyzed with principal component analyses, and their metabolite patterns were clustered according to the yeast level to identify concomitant metabolic effects. A regression modeling approach was used to predict tissue metabolite changes from plasma fingerprints. RESULTS In tissues, the patterns of metabolite changes followed either linear trends with the gradual inclusion of a yeast fraction (2 patterns out of 6 in muscle, 1 in liver) or quadratic trends (4 patterns in muscle, 5 in liver). Muscle aspartate and glucose (395 and 138% maximum increase in relative content compared with PB, respectively) revealing modification in energy metabolism, as well as modification of liver betaine (163% maximum increase) and muscle histidine (57% maximum decrease) related functions, indicates that the yeast fraction could improve growth in several ways. The highest correlation between measured and predicted metabolite intensities in a tissue based on plasma fingerprints was observed for betaine in liver (r = 0.80). CONCLUSIONS These findings herald a new approach to assess the plurality of metabolic effects induced by diets and establish the optimal level of raw materials. They open the way for using plasma as a noninvasive matrix in trout nutrition studies.
Collapse
Affiliation(s)
- Simon Roques
- INRAE, Univ Pau & Pays Adour, E2S UPPA, UMR Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, France.,Phileo by Lesaffre, Marcq-en-Baroeul, France.,PMB-Metabolome, INRAE, 2018, Bordeaux Metabolome Facility (doi: 10.15454/1.5572412770331912E12), MetaboHUB, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d'Ornon, France
| | - Catherine Deborde
- PMB-Metabolome, INRAE, 2018, Bordeaux Metabolome Facility (doi: 10.15454/1.5572412770331912E12), MetaboHUB, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d'Ornon, France.,INRAE, Univ Bordeaux, UMR Fruit Biology and Pathology, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d'Ornon, France
| | | | | | - Laurence Larroquet
- INRAE, Univ Pau & Pays Adour, E2S UPPA, UMR Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, France
| | - Sylvain Prigent
- INRAE, Univ Bordeaux, UMR Fruit Biology and Pathology, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d'Ornon, France
| | - Sandrine Skiba-Cassy
- INRAE, Univ Pau & Pays Adour, E2S UPPA, UMR Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, France
| | - Annick Moing
- PMB-Metabolome, INRAE, 2018, Bordeaux Metabolome Facility (doi: 10.15454/1.5572412770331912E12), MetaboHUB, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d'Ornon, France.,INRAE, Univ Bordeaux, UMR Fruit Biology and Pathology, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d'Ornon, France
| | - Benoit Fauconneau
- INRAE, Univ Pau & Pays Adour, E2S UPPA, UMR Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, France
| |
Collapse
|
30
|
Oxidation of energy substrates in tissues of largemouth bass (Micropterus salmoides). Amino Acids 2020; 52:1017-1032. [PMID: 32656621 DOI: 10.1007/s00726-020-02871-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
Abstract
This study tested the hypothesis that amino acids are oxidized at higher rates than glucose and palmitate for ATP production in tissues of largemouth bass (LMB, a carnivorous fish). Slices (10 to 50 mg) of liver, proximal intestine, kidney, and skeletal muscle isolated from LMB were incubated at 26 °C for 2 h in oxygenated Krebs-Henseleit bicarbonate buffer (pH 7.4, with 5 mM D-glucose) containing either D-[U-14C]glucose, 2 mM L-alanine plus L-[U-14C]alanine, 2 mM L-aspartate plus L-[U-14C]aspartate, 2 mM L-glutamate plus L-[U-14C]glutamate, 2 mM L-glutamine plus L-[U-14C]glutamine, 2 mM L-leucine plus L-[U-14C]leucine, or 2 mM palmitate plus [U-14C]palmitate. In parallel experiments, tissues were incubated with a [U-14C]-labeled tracer and a mixture of unlabeled substrates [alanine, aspartate, glutamate, glutamine, leucine, and palmitate (2 mM each) plus 5 mM glucose]. 14CO2 was collected to calculate the rates of substrate oxidation. In separate experiments, O2 consumption by each tissue was measured in the presence of individual or a mixture of substrates. The activities of key metabolic enzymes were also measured. Results indicated that the liver and skeletal muscle had a limited ability to oxidize glucose and palmitate to CO2 for ATP production in the presence of individual or a mixture of substrates due to low activities of carnitine palmitoyltransferase-I, hexokinase and pyruvate dehydrogenase. In the presence of individual substrates, each amino acid was actively oxidized by all the tissues. In the presence of a mixture of substrates, glutamine and glutamate were the major metabolic fuels in the proximal intestine and kidney, as glutamine for the liver and aspartate for skeletal muscle. All the tissues had high activities of glutaminase, glutamate dehydrogenase, and transaminases. At the same extracellular concentration of amino acids (2 mM) in a mixture of energy substrates, glutamine was the major metabolic fuel for the liver of the LMB, glutamine and glutamate for the proximal intestine and kidneys, and aspartate for the skeletal muscle. Glutamine plus glutamate plus aspartate generated 60-70% of ATP in LMB tissues.
Collapse
|
31
|
Tresguerres M, Clifford AM, Harter TS, Roa JN, Thies AB, Yee DP, Brauner CJ. Evolutionary links between intra- and extracellular acid-base regulation in fish and other aquatic animals. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:449-465. [PMID: 32458594 DOI: 10.1002/jez.2367] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/10/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
The acid-base relevant molecules carbon dioxide (CO2 ), protons (H+ ), and bicarbonate (HCO3 - ) are substrates and end products of some of the most essential physiological functions including aerobic and anaerobic respiration, ATP hydrolysis, photosynthesis, and calcification. The structure and function of many enzymes and other macromolecules are highly sensitive to changes in pH, and thus maintaining acid-base homeostasis in the face of metabolic and environmental disturbances is essential for proper cellular function. On the other hand, CO2 , H+ , and HCO3 - have regulatory effects on various proteins and processes, both directly through allosteric modulation and indirectly through signal transduction pathways. Life in aquatic environments presents organisms with distinct acid-base challenges that are not found in terrestrial environments. These include a relatively high CO2 relative to O2 solubility that prevents internal CO2 /HCO3 - accumulation to buffer pH, a lower O2 content that may favor anaerobic metabolism, and variable environmental CO2 , pH and O2 levels that require dynamic adjustments in acid-base homeostatic mechanisms. Additionally, some aquatic animals purposely create acidic or alkaline microenvironments that drive specialized physiological functions. For example, acidifying mechanisms can enhance O2 delivery by red blood cells, lead to ammonia trapping for excretion or buoyancy purposes, or lead to CO2 accumulation to promote photosynthesis by endosymbiotic algae. On the other hand, alkalinizing mechanisms can serve to promote calcium carbonate skeletal formation. This nonexhaustive review summarizes some of the distinct acid-base homeostatic mechanisms that have evolved in aquatic organisms to meet the particular challenges of this environment.
Collapse
Affiliation(s)
- Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Alexander M Clifford
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Till S Harter
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Jinae N Roa
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Angus B Thies
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Daniel P Yee
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
32
|
Raposo de Magalhães C, Schrama D, Farinha AP, Revets D, Kuehn A, Planchon S, Rodrigues PM, Cerqueira M. Protein changes as robust signatures of fish chronic stress: a proteomics approach to fish welfare research. BMC Genomics 2020; 21:309. [PMID: 32306896 PMCID: PMC7168993 DOI: 10.1186/s12864-020-6728-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/13/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Aquaculture is a fast-growing industry and therefore welfare and environmental impact have become of utmost importance. Preventing stress associated to common aquaculture practices and optimizing the fish stress response by quantification of the stress level, are important steps towards the improvement of welfare standards. Stress is characterized by a cascade of physiological responses that, in-turn, induce further changes at the whole-animal level. These can either increase fitness or impair welfare. Nevertheless, monitorization of this dynamic process has, up until now, relied on indicators that are only a snapshot of the stress level experienced. Promising technological tools, such as proteomics, allow an unbiased approach for the discovery of potential biomarkers for stress monitoring. Within this scope, using Gilthead seabream (Sparus aurata) as a model, three chronic stress conditions, namely overcrowding, handling and hypoxia, were employed to evaluate the potential of the fish protein-based adaptations as reliable signatures of chronic stress, in contrast with the commonly used hormonal and metabolic indicators. RESULTS A broad spectrum of biological variation regarding cortisol and glucose levels was observed, the values of which rose higher in net-handled fish. In this sense, a potential pattern of stressor-specificity was clear, as the level of response varied markedly between a persistent (crowding) and a repetitive stressor (handling). Gel-based proteomics analysis of the plasma proteome also revealed that net-handled fish had the highest number of differential proteins, compared to the other trials. Mass spectrometric analysis, followed by gene ontology enrichment and protein-protein interaction analyses, characterized those as humoral components of the innate immune system and key elements of the response to stimulus. CONCLUSIONS Overall, this study represents the first screening of more reliable signatures of physiological adaptation to chronic stress in fish, allowing the future development of novel biomarker models to monitor fish welfare.
Collapse
Affiliation(s)
- Cláudia Raposo de Magalhães
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal
| | - Denise Schrama
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal
| | - Ana Paula Farinha
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal
| | - Dominique Revets
- Luxembourg Institute of Health, Department of Infection and Immunity, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Annette Kuehn
- Luxembourg Institute of Health, Department of Infection and Immunity, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Sébastien Planchon
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation (ERIN) Department, 5, avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Pedro Miguel Rodrigues
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal
| | - Marco Cerqueira
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal.
| |
Collapse
|
33
|
Kraskura K, Nelson JA. Hypoxia tolerance is unrelated to swimming metabolism of wild, juvenile striped bass ( Morone saxatilis). J Exp Biol 2020; 223:jeb217125. [PMID: 32098876 DOI: 10.1242/jeb.217125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/10/2020] [Indexed: 11/20/2022]
Abstract
Juvenile striped bass residing in Chesapeake Bay are likely to encounter hypoxia that could affect their metabolism and performance. The ecological success of this economically valuable species may depend on their ability to tolerate hypoxia and perform fitness-dependent activities in hypoxic waters. We tested whether there is a link between hypoxia tolerance (HT) and oxygen consumption rate (ṀO2 ) of juvenile striped bass measured while swimming in normoxic and hypoxic water, and to identify the interindividual variation and repeatability of these measurements. HT (loss of equilibrium) of fish (N=18) was measured twice collectively, 11 weeks apart, between which ṀO2 was measured individually for each fish while swimming in low flow (10.2 cm s-1) and high flow (∼67% of critical swimming speed, Ucrit) under normoxia and hypoxia. Both HT and ṀO2 varied substantially among individuals. HT increased across 11 weeks while the rank order of individual HT was significantly repeatable. Similarly, ṀO2 increased in fish swimming at high flow in a repeatable fashion, but only within a given level of oxygenation. ṀO2 was significantly lower when fish were swimming against high flow under hypoxia. There were no clear relationships between HT and ṀO2 while fish were swimming under any conditions. Only the magnitude of increase in HT over 11 weeks and an individual's ṀO2 under low flow were correlated. The results suggest that responses to the interacting stressors of hypoxia and exercise vary among individuals, and that HT and change in HT are not simple functions of aerobic metabolic rate.
Collapse
Affiliation(s)
- Krista Kraskura
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jay A Nelson
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| |
Collapse
|
34
|
Weidner J, Jensen CH, Giske J, Eliassen S, Jørgensen C. Hormones as adaptive control systems in juvenile fish. Biol Open 2020; 9:bio046144. [PMID: 31996351 PMCID: PMC7044463 DOI: 10.1242/bio.046144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Growth is an important theme in biology. Physiologists often relate growth rates to hormonal control of essential processes. Ecologists often study growth as a function of gradients or combinations of environmental factors. Fewer studies have investigated the combined effects of environmental and hormonal control on growth. Here, we present an evolutionary optimization model of fish growth that combines internal regulation of growth by hormone levels with the external influence of food availability and predation risk. The model finds a dynamic hormone profile that optimizes fish growth and survival up to 30 cm, and we use the probability of reaching this milestone as a proxy for fitness. The complex web of interrelated hormones and other signalling molecules is simplified to three functions represented by growth hormone, thyroid hormone and orexin. By studying a range from poor to rich environments, we find that the level of food availability in the environment results in different evolutionarily optimal strategies of hormone levels. With more food available, higher levels of hormones are optimal, resulting in higher food intake, standard metabolism and growth. By using this fitness-based approach we also find a consequence of evolutionary optimization of survival on optimal hormone use. Where foraging is risky, the thyroid hormone can be used strategically to increase metabolic potential and the chance of escaping from predators. By comparing model results to empirical observations, many mechanisms can be recognized, for instance a change in pace-of-life due to resource availability, and reduced emphasis on reserves in more stable environments.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jacqueline Weidner
- University of Bergen, Department of Biological Sciences, Postboks 7803, N-5020 Bergen, Norway
| | | | - Jarl Giske
- University of Bergen, Department of Biological Sciences, Postboks 7803, N-5020 Bergen, Norway
| | - Sigrunn Eliassen
- University of Bergen, Department of Biological Sciences, Postboks 7803, N-5020 Bergen, Norway
| | - Christian Jørgensen
- University of Bergen, Department of Biological Sciences, Postboks 7803, N-5020 Bergen, Norway
| |
Collapse
|
35
|
Nudds RL, Ozolina K, Fenkes M, Wearing OH, Shiels HA. Extreme temperature combined with hypoxia, affects swimming performance in brown trout ( Salmo trutta). CONSERVATION PHYSIOLOGY 2020; 8:coz108. [PMID: 31988750 PMCID: PMC6977409 DOI: 10.1093/conphys/coz108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 05/11/2023]
Abstract
Climate change is predicted to impact freshwater aquatic environments through changes to water temperature (T water), river flow and eutrophication. Riverine habitats contain many economically and ecologically important fishes. One such group is the migratory salmonids, which are sensitive to warm T water and low O2 (hypoxia). While several studies have investigated the independent effects of T water and hypoxia on fish physiology, the combined effects of these stressors is less well known. Furthermore, no study has investigated the effects of T water and O2 saturation levels within the range currently experienced by a salmonid species. Thus, the aim of this study was to investigate the simultaneous effects of T water and O2 saturation level on the energetics and kinematics of steady-state swimming in brown trout, Salmo trutta. No effect of O2 saturation level (70 and 100% air saturation) on tail-beat kinematics was detected. Conversely, T water (10, 14, 18 and 22°C) did affect tail-beat kinematics, but a trade-off between frequency (f tail) and amplitude (A, maximum tail excursion) maintained the Strouhal number (St = f tail• A/U, where U is swimming speed) within the theoretically most mechanically efficient range. Swimming oxygen consumption rate ([Formula: see text]) and cost of transport increased with both U and T water. The only effect of O2 saturation level was observed at the highest T water (22°C) and fastest swimming speed (two speeds were used-0.6 and 0.8 m s-1). As the extremes of this study are consistent with current summer conditions in parts of UK waterways, our findings may indicate that S. trutta will be negatively impacted by the increased T water and reduced O2 levels likely presented by anthropogenic climate change.
Collapse
Affiliation(s)
- Robert L Nudds
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Corresponding author: Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Karlina Ozolina
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Miriam Fenkes
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Oliver H Wearing
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
36
|
Nadermann N, Volkoff H. Effects of short-term exercise on food intake and the expression of appetite-regulating factors in goldfish. Peptides 2020; 123:170182. [PMID: 31678371 DOI: 10.1016/j.peptides.2019.170182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022]
Abstract
In mammals, growing evidence indicates that exercise affects food intake, metabolism and the expression and blood levels of appetite regulators. In this study, we examined the effects of short-term (30 min, at low and high water flow) exercise on food intake, glucose levels and the expressions of appetite regulators in goldfish hypothalamus (irisin, orexin, CART, leptin), intestine (CCK, PYY, proglucagon/GLP-1), muscle (irisin) and liver (leptin), of brain-derived neurotrophic factor (BDNF) in brain, interleukin-6 (IL6) in muscle and hypothalamus, and major metabolic enzymes, the glycolytic enzyme glucokinase (GCK) and its regulatory protein (GCKR) in liver, the lipolytic enzyme lipoprotein lipase in intestine and muscle, and trypsin in intestine. Fish submitted to high flow exercise had a lower post-exercise food intake compared to control fish but no differences were seen in glucose levels between groups. Exercise induced an increase in hypothalamic expression levels of CART, IL6 and BDNF, but not orexin, irisin, CRF, leptin and NPY. High flow exercise induced an increase in intestine CCK, PYY and GLP-1, and muscle irisin and IL-6 expression levels. Exercise had no effects on expression levels of hepatic leptin or any of the metabolic enzymes examined. Our results suggest that, in goldfish, short-term exercise might decrease feeding in part by affecting the expressions of myokines and peripheral, but not central appetite regulators or metabolic enzyme/hormones.
Collapse
Affiliation(s)
- Noelle Nadermann
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada; Hochschule Mannheim University, Mannheim, 68163, Germany
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
37
|
Forbes JLI, Kostyniuk DJ, Mennigen JA, Weber JM. Glucagon regulation of carbohydrate metabolism in rainbow trout: in vivo glucose fluxes and gene expression. ACTA ACUST UNITED AC 2019; 222:jeb.211730. [PMID: 31767730 DOI: 10.1242/jeb.211730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/20/2019] [Indexed: 01/25/2023]
Abstract
Glucagon increases fish glycaemia, but how it affects glucose fluxes in vivo has never been characterized. The goal of this study was to test the hypothesis that glucagon stimulates hepatic glucose production (rate of appearance, R a) and inhibits disposal (rate of disposal, R d) in rainbow trout. Changes in the mRNA abundance of key proteins involved in glycolysis, gluconeogenesis and glycogen breakdown were also monitored. The results show that glucagon increases glycaemia (+38%) by causing a temporary mismatch between R a and R d before the two fluxes converge below baseline (-17%). A novel aspect of the regulation of trout gluconeogenesis is also demonstrated: the completely different effects of glucagon on the expression of three Pepck isoforms (stimulation of pck1, inhibition of pck2a and no response of pck2b). Glycogen phosphorylase was modulated differently among tissues, and muscle upregulated pygb and downregulated pygm Glucagon failed to activate the cAMP-dependent protein kinase or FoxO1 signalling cascades. We conclude that trout hyperglycaemia results from the combination of two responses: (i) an increase in R a glucose induced by the stimulation of gluconeogenesis through transcriptional activation of pck1 (and possibly glycogen phosphorylase), and (ii) a decrease in R d glucose via inhibition of glycogen synthase and glycolysis. The observed decrease in glucose fluxes after 4 h of glucagon administration may be caused by a counter-regulatory response of insulin, potentially linked to the decrease in pygm transcript abundance. Overall, however, these integrated effects of glucagon only lead to modest changes in glucose fluxes that partly explain why trout seem to be unable to control glycaemia very tightly.
Collapse
Affiliation(s)
| | | | - Jan A Mennigen
- Biology Department, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Jean-Michel Weber
- Biology Department, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
38
|
Axton ER, Beaver LM, St. Mary L, Truong L, Logan CR, Spagnoli S, Prater MC, Keller RM, Garcia-Jaramillo M, Ehrlicher SE, Stierwalt HD, Newsom SA, Robinson MM, Tanguay RL, Stevens JF, Hord NG. Treatment with Nitrate, but Not Nitrite, Lowers the Oxygen Cost of Exercise and Decreases Glycolytic Intermediates While Increasing Fatty Acid Metabolites in Exercised Zebrafish. J Nutr 2019; 149:2120-2132. [PMID: 31495890 PMCID: PMC6887948 DOI: 10.1093/jn/nxz202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/22/2019] [Accepted: 07/25/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Dietary nitrate improves exercise performance by reducing the oxygen cost of exercise, although the mechanisms responsible are not fully understood. OBJECTIVES We tested the hypothesis that nitrate and nitrite treatment would lower the oxygen cost of exercise by improving mitochondrial function and stimulating changes in the availability of metabolic fuels for energy production. METHODS We treated 9-mo-old zebrafish with nitrate (sodium nitrate, 606.9 mg/L), nitrite (sodium nitrite, 19.5 mg/L), or control (no treatment) water for 21 d. We measured oxygen consumption during a 2-h, strenuous exercise test; assessed the respiration of skeletal muscle mitochondria; and performed untargeted metabolomics on treated fish, with and without exercise. RESULTS Nitrate and nitrite treatment increased blood nitrate and nitrite levels. Nitrate treatment significantly lowered the oxygen cost of exercise, as compared with pretreatment values. In contrast, nitrite treatment significantly increased oxygen consumption with exercise. Nitrate and nitrite treatments did not change mitochondrial function measured ex vivo, but significantly increased the abundances of ATP, ADP, lactate, glycolytic intermediates (e.g., fructose 1,6-bisphosphate), tricarboxylic acid (TCA) cycle intermediates (e.g., succinate), and ketone bodies (e.g., β-hydroxybutyrate) by 1.8- to 3.8-fold, relative to controls. Exercise significantly depleted glycolytic and TCA intermediates in nitrate- and nitrite-treated fish, as compared with their rested counterparts, while exercise did not change, or increased, these metabolites in control fish. There was a significant net depletion of fatty acids, acyl carnitines, and ketone bodies in exercised, nitrite-treated fish (2- to 4-fold), while exercise increased net fatty acids and acyl carnitines in nitrate-treated fish (1.5- to 12-fold), relative to their treated and rested counterparts. CONCLUSIONS Nitrate and nitrite treatment increased the availability of metabolic fuels (ATP, glycolytic and TCA intermediates, lactate, and ketone bodies) in rested zebrafish. Nitrate treatment may improve exercise performance, in part, by stimulating the preferential use of fuels that require less oxygen for energy production.
Collapse
Affiliation(s)
- Elizabeth R Axton
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- Sinnhuber Aquatic Research Laboratory and the Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Laura M Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Lindsey St. Mary
- Sinnhuber Aquatic Research Laboratory and the Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory and the Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Christiana R Logan
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Sean Spagnoli
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Mary C Prater
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Rosa M Keller
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Manuel Garcia-Jaramillo
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Sarah E Ehrlicher
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Harrison D Stierwalt
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Sean A Newsom
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Matthew M Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Robert L Tanguay
- Sinnhuber Aquatic Research Laboratory and the Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Jan F Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Norman G Hord
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
39
|
Metabolic response of longitudinal muscles to acute hypoxia in sea cucumber Apostichopus japonicus (Selenka): A metabolome integrated analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:235-244. [DOI: 10.1016/j.cbd.2018.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/23/2018] [Accepted: 12/23/2018] [Indexed: 01/16/2023]
|
40
|
Forbes JLI, Kostyniuk DJ, Mennigen JA, Weber JM. Unexpected effect of insulin on glucose disposal explains glucose intolerance of rainbow trout. Am J Physiol Regul Integr Comp Physiol 2019; 316:R387-R394. [PMID: 30698988 DOI: 10.1152/ajpregu.00344.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The physiological reasons why salmonids show glucose intolerance are unclear. In mammals, rapid clearance of a glucose load is mainly achieved through insulin-mediated inhibition of hepatic glucose production ( Ra) and stimulation of glucose disposal ( Rd), but the effects of insulin on Ra and Rd glucose have never been measured in fish. The goal of this study was to characterize the impact of insulin on the glucose kinetics of rainbow trout in vivo. Glucose fluxes were measured by continuous infusion of [6-3H]glucose before and during 4 h of insulin administration. The phosphorylated form of the key signaling proteins Akt and S6 in the insulin cascade were also examined, confirming activation of this pathway in muscle but not liver. Results show that insulin inhibits trout Rd glucose from 8.6 ± 0.6 to 5.4 ± 0.5 µmol kg-1 min-1: the opposite effect than classically seen in mammals. Such a different response may be explained by the contrasting effects of insulin on gluco/hexokinases of trout versus mammals. Insulin also reduced trout Ra from 8.5 ± 0.7 to 4.8 ± 0.6 µmol·kg-1·min-1, whereas it can almost completely suppresses Ra in mammals. The partial inhibition of Ra glucose may be because insulin only affects gluconeogenesis but not glycogen breakdown in trout. The small mismatch between the responses to insulin for Rd (-37%) and Ra glucose (-43%) gives trout a very limited capacity to decrease glycemia. We conclude that the glucose intolerance of rainbow trout can be explained by the inhibiting effect of insulin on glucose disposal.
Collapse
Affiliation(s)
| | | | - Jan A Mennigen
- Department of Biology, University of Ottawa , Ottawa, Ontario , Canada
| | - Jean-Michel Weber
- Department of Biology, University of Ottawa , Ottawa, Ontario , Canada
| |
Collapse
|
41
|
Domestication and Temperature Modulate Gene Expression Signatures and Growth in the Australasian Snapper Chrysophrys auratus. G3-GENES GENOMES GENETICS 2019; 9:105-116. [PMID: 30591433 PMCID: PMC6325909 DOI: 10.1534/g3.118.200647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identifying genes and pathways involved in domestication is critical to understand how species change in response to human-induced selection pressures, such as increased temperatures. Given the profound influence of temperature on fish metabolism and organismal performance, a comparison of how temperature affects wild and domestic strains of snapper is an important question to address. We experimentally manipulated temperature conditions for F1-hatchery and wild Australasian snapper (Chrysophrys auratus) for 18 days to mimic seasonal extremes and measured differences in growth, white muscle RNA transcription and hematological parameters. Over 2.2 Gb paired-end reads were assembled de novo for a total set of 33,017 transcripts (N50 = 2,804). We found pronounced growth and gene expression differences between wild and domesticated individuals related to global developmental and immune pathways. Temperature-modulated growth responses were linked to major pathways affecting metabolism, cell regulation and signaling. This study is the first step toward gaining an understanding of the changes occurring in the early stages of domestication, and the mechanisms underlying thermal adaptation and associated growth in poikilothermic vertebrates. Our study further provides the first transcriptome resources for studying biological questions in this non-model fish species.
Collapse
|
42
|
Feidantsis K, Pörtner HO, Vlachonikola E, Antonopoulou E, Michaelidis B. Seasonal Changes in Metabolism and Cellular Stress Phenomena in the Gilthead Sea Bream (Sparus aurata). Physiol Biochem Zool 2018; 91:878-895. [PMID: 29553887 DOI: 10.1086/697170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Seasonal temperature changes may take organisms to the upper and lower limit of their thermal range, with respective variations in their biochemical and metabolic profile. To elucidate these traits, we investigated metabolic and antioxidant patterns in tissues of sea bream Sparus aurata during seasonal acclimatization for 1 yr in the field. Metabolic patterns were assessed by determining lactate dehydrogenase, citrate synthase, and β-hydroxyacyl CoA dehydrogenase activities, their kinetic properties and plasma levels of glucose, lactate, and triglycerides and tissue succinate levels. Oxidative stress was assessed by determining antioxidant enzymes superoxide dismutase, catalase, and glutathione reductase activities and levels of thiobarbituric acid reactive substances. Xanthine oxidase (XO) activity was determined as another source of reactive oxygen species (ROS) production. Furthermore, we studied the antiapoptotic protein indicator Bcl-2 and the apoptotic protein indicators Bax, Bad, ubiquitin, and caspase as well as indexes of autophagy (LC3B II/LC3B I and SQSTM1/p62) in the liver and the heart to identify possible relationships between oxidative stress and cell death. The results indicate clear seasonal metabolic patterns involving oxidative stress during summer as well as winter. During cold acclimatization, lipid oxidation is induced, while during increased temperatures, warm-induced metabolic activation and carbohydrate oxidation are observed. Thus, oxidative stress seems to be more prominent during warming because of the increased aerobic metabolism. The seasonal profile of apoptosis and XO as another source of ROS matches the results obtained in the laboratory and are interpreted within the framework of oxygen- and capacity-limited thermal tolerance.
Collapse
|
43
|
Dai YJ, Liu WB, Li XF, Zhou M, Xu C, Qian Y, Jiang GZ. Molecular cloning of adipose triglyceride lipase (ATGL) gene from blunt snout bream and its expression after LPS-induced TNF-α factor. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1143-1157. [PMID: 29705966 DOI: 10.1007/s10695-018-0502-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
The aims of the present study were to clone the full-length cDNA of adipose triglyceridelipase (ATGL) and to analyze its expression after lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α). The cDNA obtained covered 1801 bp with an open reading frame of 1500 bp encoding 499 amino acids. Sequence alignment and phylogenetic analysis show the best identity with Cyprinus carpio (86%). The ATGL protein shared a highly conserved 169-amino acid patatin domain, containing a glycine-rich motif, an active serine hydrolase motif, and an aspartic active site. The highest ATGL expression was observed in the liver followed by muscle, whereas relatively low values were detected in the brain and adipose. TNF-α is regarded as an important factor in regulating fat metabolism. Here, LPS was used to induce TNF-α in vivo to verify whether TNF-α can affect ATGL expression. TNF-α expression in liver and muscle is increased and remains unchanged in adipose tissue and brain. The variation of ATGL activity is consistent with that of TNF-α gene expression. Next, we explored the mechanism by which LPS-induced TNF-α mediates the mRNA expression of ATGL in the liver and muscle. For liver, the mRNA levels of c-Jun N-terminal kinase (JNK), nuclear factor kappa B (NF-κB), Sirtuin 1 (SIRT1), and AMP-activated protein kinase (AMPK) were increased by LPS-induced TNF-α. Differencing from the situation in the liver, there was a near-significant decrease trend in the expression of SIRT1 in muscle. Those results indicated that the ATGL gene of blunt snout bream shared a high similarity with the other vertebrates. The expression level of ATGL in tissues with high-fat content was intended to be high. LPS can induce ATGL expression perhaps related to TNF-α.
Collapse
Affiliation(s)
- Yong-Jun Dai
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Man Zhou
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Chao Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Yu Qian
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
44
|
Short CE, Driedzic WR. Species-specific low plasma glucose in fish is associated with relatively high tissue glucose content and is inversely correlated with cardiac glycogen content. J Comp Physiol B 2018; 188:809-819. [PMID: 30008136 DOI: 10.1007/s00360-018-1172-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/20/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022]
Abstract
The relationship between plasma glucose concentration and intracellular glucose (liver, heart, brain, gill, gonad, intestine, kidney, spleen, white muscle) was determined in fish species with a range in plasma glucose (Atlantic cod, 5.06 mM; cunner, 3.8 mM; rainbow trout, 3.7 mM; lumpfish, 0.9 mM; short-horned sculpin, 0.6 mM; and winter flounder, 0.6 mM). The ratio of intracellular glucose/plasma glucose was always higher than one in liver for all species consistent with a diffusion gradient from the tissue to the plasma. In all other tissues in Atlantic cod, cunner, and rainbow trout the diffusion gradient was from the plasma to the intracellular space. In short-horned sculpin, the mean ratio in heart and white muscle exceeded one and in winter flounder the ratio was significantly greater than one at 5.97 and 2.92 for heart and muscle, respectively. The presence of an active glucose 6-phosphatase in white muscle could account for elevated amounts of free glucose. The white muscle of all species displayed phosphoenolpyruvate carboxykinase and in winter flounder the activity was as high in white muscle as in liver suggesting that gluconeogenesis may be associated with a relatively high-muscle glucose content. The glycogen content was highest in liver followed by heart with lower amounts in all other tissues. There was an inverse correlation between heart glycogen content and plasma glucose concentration when all species were included. It is contended that in species with low plasma glucose, heart glycogen is accumulated at a slow rate under normoxia, to be called upon under hypoxic conditions when the gradient for inward diffusion is unfavourable for high rates of glucose metabolism.
Collapse
Affiliation(s)
- Connie E Short
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - William R Driedzic
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
45
|
How Does Season Affect Passage Performance and Fatigue of Potamodromous Cyprinids? An Experimental Approach in a Vertical Slot Fishway. WATER 2018. [DOI: 10.3390/w10040395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
46
|
Yap KN, Serota MW, Williams TD. The Physiology of Exercise in Free-Living Vertebrates: What Can We Learn from Current Model Systems? Integr Comp Biol 2018; 57:195-206. [PMID: 28662569 DOI: 10.1093/icb/icx016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
SYNOPSIS Many behaviors crucial for survival and reproductive success in free-living animals, including migration, foraging, and escaping from predators, involve elevated levels of physical activity. However, although there has been considerable interest in the physiological and biomechanical mechanisms that underpin individual variation in exercise performance, to date, much work on the physiology of exercise has been conducted in laboratory settings that are often quite removed from the animal's ecology. Here we review current, laboratory-based model systems for exercise (wind or swim tunnels for migration studies in birds and fishes, manipulation of exercise associated with non-migratory activity in birds, locomotion in lizards, and wheel running in rodents) to identify common physiological markers of individual variation in exercise capacity and/or costs of increased activity. Secondly, we consider how physiological responses to exercise might be influenced by (1) the nature of the activity (i.e., voluntary or involuntary, intensity, and duration), and (2) resource acquisition and food availability, in the context of routine activities in free-living animals. Finally, we consider evidence that the physiological effects of experimentally-elevated activity directly affect components of fitness such as reproduction and survival. We suggest that developing more ecologically realistic laboratory systems, incorporating resource-acquisition, functional studies across multiple physiological systems, and a life-history framework, with reproduction and survival end-points, will help reveal the mechanisms underlying the consequences of exercise, and will complement studies in free-living animals taking advantage of new developments in wildlife-tracking.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British V5A 1S6, Canada, Columbia
| | - Mitchell W Serota
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British V5A 1S6, Canada, Columbia
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British V5A 1S6, Canada, Columbia
| |
Collapse
|
47
|
Turenne ED, Weber JM. Lean, mean, lipolytic machines: lipid mobilization in rainbow trout during graded swimming. ACTA ACUST UNITED AC 2018; 221:jeb.171553. [PMID: 29212842 DOI: 10.1242/jeb.171553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022]
Abstract
The mobilization of mammalian lipid reserves is strongly stimulated during exercise to reach a maximum at moderate intensities, but the effects of swimming speed on fish lipolysis have never been quantified. Continuous infusion of 2-[3H]glycerol was used to measure the rate of appearance of glycerol or lipolytic rate (Ra glycerol) in rainbow trout kept at rest, or during graded exercise in a swim tunnel up to critical swimming speed (Ucrit). Results show that Ra glycerol is 1.67±0.18 µmol kg-1 min-1 in control animals, and remains at a steady level of 1.24±0.10 µmol kg-1 min-1 in exercising fish at all swimming intensities. Baseline lipolytic rate provides more than enough fatty acids from lipid reserves to accommodate all the oxidative fuel requirements for swimming at up to 2 body lengths per second (BL s-1), and more than 50% of the energy needed at Ucrit (3.4±0.1 BL s-1). Such 'excess lipolysis' also means that trout sustain high rates of fatty acid reesterification. Maintaining steady lipolysis at rest and throughout graded swimming is strikingly different from mammals that stimulate Ra glycerol by twofold to fivefold to support exercise. Instead, trout act like 'lipolytic machines' that do not modulate Ra glycerol even when their metabolic rate triples - a strategy that eliminates the need to increase lipolytic rate during exercise. This study also supports the notion that maintaining a high rate of reesterification (or triacylglycerol/fatty acid cycling) may be a mechanism widely used by ectotherms to achieve rapid membrane remodelling in variable environments.
Collapse
Affiliation(s)
- Eric D Turenne
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
| | - Jean-Michel Weber
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
| |
Collapse
|
48
|
Kraskura K, Nelson JA. Hypoxia and Sprint Swimming Performance of Juvenile Striped Bass, Morone saxatilis. Physiol Biochem Zool 2017; 91:682-690. [PMID: 29120695 DOI: 10.1086/694933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Annual hypoxia in the Chesapeake Bay has expanded to the point where Darwinian fitness of juvenile striped bass (Morone saxatilis) may depend on their ability to perform in low-oxygen environments. The locomotion they use in predator/prey dynamics relies primarily on white (type II) muscle that is powered by anaerobic metabolic pathways and has generally been thought to be immune to aquatic hypoxia. We tested the sprint performance of 15 juvenile striped bass twice under acute hypoxia (20% air saturation [AS]) 5 wk apart and once under normoxia (>85% AS) in between. Average sprint performance was lower under the first hypoxia exposure than in normoxia and increased in the second hypoxia test relative to the first. The rank order of individual sprint performance was significantly repeatable when comparing the two hypoxia tests but not when compared with sprint performance measured under normoxic conditions. The maximum sprint performance of each individual was also significantly repeatable within a given day. Thus, sprint performance of striped bass is reduced under hypoxia, is phenotypically plastic, and improves with repetitive hypoxia exposures but is unrelated to relative sprint performance under normoxia. Since energy to fuel a sprint comes from existing ATP and creatine phosphate stores, the decline in sprint performance probably reflects reduced function of a part of the reflex chain leading from detection of aversive stimuli to activation of the muscle used to power the escape response.
Collapse
|