1
|
Takii R, Fujimoto M, Pandey A, Jaiswal K, Shearwin-Whyatt L, Grutzner F, Nakai A. HSF1 is required for cellular adaptation to daily temperature fluctuations. Sci Rep 2024; 14:21361. [PMID: 39266731 PMCID: PMC11393418 DOI: 10.1038/s41598-024-72415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
The heat shock response (HSR) is a universal mechanism of cellular adaptation to elevated temperatures and is regulated by heat shock transcription factor 1 (HSF1) or HSF3 in vertebrate endotherms, such as humans, mice, and chickens. We here showed that HSF1 and HSF3 from egg-laying mammals (monotremes), with a low homeothermic capacity, equally possess a potential to maximally induce the HSR, whereas either HSF1 or HSF3 from birds have this potential. Therefore, we focused on cellular adaptation to daily temperature fluctuations and found that HSF1 was required for the proliferation and survival of human cells under daily temperature fluctuations. The ectopic expression of vertebrate HSF1 proteins, but not HSF3 proteins, restored the resistance in HSF1-null cells, regardless of the induction of heat shock proteins. This function was associated with the up-regulation of specific HSF1-target genes. These results indicate the distinct role of HSF1 in adaptation to thermally fluctuating environments and suggest association of homeothermic capacity with functional diversification of vertebrate HSF genes.
Collapse
Affiliation(s)
- Ryosuke Takii
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan
| | - Mitsuaki Fujimoto
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan
| | - Akanksha Pandey
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan
| | - Kritika Jaiswal
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan
| | - Linda Shearwin-Whyatt
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Frank Grutzner
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan.
| |
Collapse
|
2
|
Brown S, Rivard GR, Gibson G, Currie S. Warming, stochastic diel thermal fluctuations affect physiological performance and gill plasticity in an amphibious mangrove fish. J Exp Biol 2024; 227:jeb246726. [PMID: 38904077 DOI: 10.1242/jeb.246726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Natural temperature variation in many marine ecosystems is stochastic and unpredictable, and climate change models indicate that this thermal irregularity is likely to increase. Temperature acclimation may be more challenging when conditions are highly variable and stochastic, and there is a need for empirical physiological data in these thermal environments. Using the hermaphroditic, amphibious mangrove rivulus (Kryptolebias marmoratus), we hypothesized that compared with regular, warming diel thermal fluctuations, stochastic warm fluctuations would negatively affect physiological performance. To test this, we acclimated fish to: (1) non-stochastic and (2) stochastic thermal fluctuations with a similar thermal load (27-35°C), and (3) a stable/consistent control temperature at the low end of the cycle (27°C). We determined that fecundity was reduced in both cycles, with reproduction ceasing in stochastic thermal environments. Fish acclimated to non-stochastic thermal cycles had growth rates lower than those of control fish. Exposure to warm, fluctuating cycles did not affect emersion temperature, and only regular diel cycles modestly increased critical thermal tolerance. We predicted that warm diel cycling temperatures would increase gill surface area. Notably, fish acclimated to either thermal cycle had a reduced gill surface area and increased intralamellar cell mass when compared with control fish. This decreased gill surface area with warming contrasts with what is observed for exclusively aquatic fish and suggests a preparatory gill response for emersion in these amphibious fish. Collectively, our data reveal the importance of considering stochastic thermal variability when studying the effects of temperature on fishes.
Collapse
Affiliation(s)
- Sarah Brown
- Department of Biology, Acadia University, Nova Scotia, B4P 2R6, Canada
| | - Gabrielle R Rivard
- Department of Biology, Acadia University, Nova Scotia, B4P 2R6, Canada
- Department of Biological Sciences, University of New Brunswick Saint John, New Brunswick, E2L 4L5, Canada
| | - Glenys Gibson
- Department of Biology, Acadia University, Nova Scotia, B4P 2R6, Canada
| | - Suzanne Currie
- Department of Biology, Acadia University, Nova Scotia, B4P 2R6, Canada
| |
Collapse
|
3
|
Lonthair JK, Wegner NC, Cheng BS, Fangue NA, O'Donnell MJ, Regish AM, Swenson JD, Argueta E, McCormick SD, Letcher BH, Komoroske LM. Smaller body size under warming is not due to gill-oxygen limitation in a cold-water salmonid. J Exp Biol 2024; 227:jeb246477. [PMID: 38380449 PMCID: PMC11093110 DOI: 10.1242/jeb.246477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
Declining body size in fishes and other aquatic ectotherms associated with anthropogenic climate warming has significant implications for future fisheries yields, stock assessments and aquatic ecosystem stability. One proposed mechanism seeking to explain such body-size reductions, known as the gill oxygen limitation (GOL) hypothesis, has recently been used to model future impacts of climate warming on fisheries but has not been robustly empirically tested. We used brook trout (Salvelinus fontinalis), a fast-growing, cold-water salmonid species of broad economic, conservation and ecological value, to examine the GOL hypothesis in a long-term experiment quantifying effects of temperature on growth, resting metabolic rate (RMR), maximum metabolic rate (MMR) and gill surface area (GSA). Despite significantly reduced growth and body size at an elevated temperature, allometric slopes of GSA were not significantly different than 1.0 and were above those for RMR and MMR at both temperature treatments (15°C and 20°C), contrary to GOL expectations. We also found that the effect of temperature on RMR was time-dependent, contradicting the prediction that heightened temperatures increase metabolic rates and reinforcing the importance of longer-term exposures (e.g. >6 months) to fully understand the influence of acclimation on temperature-metabolic rate relationships. Our results indicate that although oxygen limitation may be important in some aspects of temperature-body size relationships and constraints on metabolic supply may contribute to reduced growth in some cases, it is unlikely that GOL is a universal mechanism explaining temperature-body size relationships in aquatic ectotherms. We suggest future research focus on alternative mechanisms underlying temperature-body size relationships, and that projections of climate change impacts on fisheries yields using models based on GOL assumptions be interpreted with caution.
Collapse
Affiliation(s)
- Joshua K. Lonthair
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003-9285, USA
- National Research Council under contract to Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037-1508, USA
| | - Nicholas C. Wegner
- Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla 92037-1508, CA, USA
| | - Brian S. Cheng
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003-9285, USA
| | - Nann A. Fangue
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | - Matthew J. O'Donnell
- US Geological Survey, Eastern Ecological Science Center at the S. O. Conte Research Laboratory, Turners Falls, MA 01376-1000, USA
| | - Amy M. Regish
- US Geological Survey, Eastern Ecological Science Center at the S. O. Conte Research Laboratory, Turners Falls, MA 01376-1000, USA
| | - John D. Swenson
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003-9285, USA
| | - Estefany Argueta
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003-9285, USA
| | - Stephen D. McCormick
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003-9285, USA
- US Geological Survey, Eastern Ecological Science Center at the S. O. Conte Research Laboratory, Turners Falls, MA 01376-1000, USA
| | - Benjamin H. Letcher
- US Geological Survey, Eastern Ecological Science Center at the S. O. Conte Research Laboratory, Turners Falls, MA 01376-1000, USA
| | - Lisa M. Komoroske
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003-9285, USA
| |
Collapse
|
4
|
Andrew S, Swart S, McKenna S, Morissette J, Gillis CA, Linnansaari T, Currie S, Morash AJ. The impacts of diel thermal variability on growth, development and performance of wild Atlantic salmon ( Salmo salar) from two thermally distinct rivers. CONSERVATION PHYSIOLOGY 2024; 12:coae007. [PMID: 38487731 PMCID: PMC10939361 DOI: 10.1093/conphys/coae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 03/17/2024]
Abstract
Temperature in many natural aquatic environments follows a diel cycle, but to date, we know little on how diel thermal cycles affect fish biology. The current study investigates the growth, development and physiological performance of wild Atlantic salmon collected from the Miramichi and Restigouche rivers (NB, Canada). Fish were collected as parr and acclimated to either 16-21 or 19-24°C diel thermal cycles throughout the parr and smolt life stages. Both Miramichi and Restigouche Atlantic salmon parr grew at similar rates during 16-21 or 19-24°C acclimations. However, as smolts, the growth rates of the Miramichi (-8% body mass day-1) and Restigouche (-38% body mass day-1) fish were significantly slower at 19-24°C, and were in fact negative, indicating loss of mass in this group. Acclimation to 19-24°C also increased Atlantic salmon CTmax. Our findings suggest that both life stage and river origin impact Atlantic salmon growth and performance in the thermal range used herein. These findings provide evidence for local adaptation of Atlantic salmon, increased vulnerability to warming temperatures, and highlight the differential impacts of these ecologically relevant diel thermal cycles on the juvenile life stages in this species.
Collapse
Affiliation(s)
- Sean Andrew
- Department of Biology, Mount Allison University, 62 York St., Sackville, NB E4L 1G7, Canada
| | - Sula Swart
- Department of Biology, Mount Allison University, 62 York St., Sackville, NB E4L 1G7, Canada
| | - Stephanie McKenna
- Department of Biology, Mount Allison University, 62 York St., Sackville, NB E4L 1G7, Canada
| | - Jenna Morissette
- Department of Biology, Mount Allison University, 62 York St., Sackville, NB E4L 1G7, Canada
| | - Carole-Anne Gillis
- Gespe’gewa’gi Institute of Natural Understanding, 1 Marshall Way, Listuguj, QC, G0C 2R0, Canada
| | - Tommi Linnansaari
- Department of Biology, Faculty of Forestry and Environmental Sciences, and Canadian Rivers Institute, University of New Brunswick, 28 Dineen Drive, Fredericton, NB, E3B 5A3, Canada
| | - Suzanne Currie
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
| | - Andrea J Morash
- Department of Biology, Mount Allison University, 62 York St., Sackville, NB E4L 1G7, Canada
| |
Collapse
|
5
|
Jane SF, Detmer TM, Larrick SL, Rose KC, Randall EA, Jirka KJ, McIntyre PB. Concurrent warming and browning eliminate cold-water fish habitat in many temperate lakes. Proc Natl Acad Sci U S A 2024; 121:e2306906120. [PMID: 38165940 PMCID: PMC10786301 DOI: 10.1073/pnas.2306906120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/02/2023] [Indexed: 01/04/2024] Open
Abstract
Cold-water species in temperate lakes face two simultaneous climate-driven ecosystem changes: warming and browning of their waters. Browning refers to reduced transparency arising from increased dissolved organic carbon (DOC), which absorbs solar energy near the surface. It is unclear whether the net effect is mitigation or amplification of climate warming impacts on suitable oxythermal habitat (<20 °C, >5 mgO/L) for cold-loving species because browning expands the vertical distribution of both cool water and oxygen depletion. We analyzed long-term trends and high-frequency sensor data from browning lakes in New York's Adirondack region to assess the contemporary status of summertime habitat for lacustrine brook trout. Across two decades, surface temperatures increased twice as fast and bottom dissolved oxygen declined >180% faster than average trends for temperate lakes. We identify four lake categories based on oxythermal habitat metrics: constrained, squeezed, overheated, and buffered. In most of our study lakes, trout face either seasonal loss (7 of 15) or dramatic restriction (12 to 21% of the water column; 5 of 15) of suitable habitat. These sobering statistics reflect rapid upward expansion of oxygen depletion in lakes with moderate or high DOC relative to compression of heat penetration. Only in very clear lakes has browning potentially mitigated climate warming. Applying our findings to extensive survey data suggests that decades of browning have reduced oxythermal refugia in most Adirondack lakes. We conclude that joint warming and browning may preclude self-sustaining cold-water fisheries in many temperate lakes; hence, oxythermal categorization is essential to guide triage strategies and management interventions.
Collapse
Affiliation(s)
- Stephen F. Jane
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY14853
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY14853
| | - Thomas M. Detmer
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY14853
| | - Siena L. Larrick
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY14853
| | - Kevin C. Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Eileen A. Randall
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY14853
| | - Kurt J. Jirka
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY14853
| | - Peter B. McIntyre
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY14853
| |
Collapse
|
6
|
Lee JW, Balasubramanian B. Impacts of Temperature on the Growth, Feed Utilization, Stress, and Hemato-Immune Responses of Cherry Salmon ( Oncorhynchus masou). Animals (Basel) 2023; 13:3870. [PMID: 38136907 PMCID: PMC10740505 DOI: 10.3390/ani13243870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Cherry salmon (Oncorhynchus masou) hold commercial value in aquaculture, and there is a need for controlled laboratory studies to isolate the specific effects of temperature on their growth, feeding, and well-being. We examined the effects of different temperatures (10 °C, 14 °C, 18 °C, and 22 °C) on juvenile cherry salmon (average mass 29.1 g) in triplicate tanks per treatment over eight weeks. The key parameters assessed included growth rate, feed efficiency, stress response, and hemato-immune responses. Our objectives were to determine the most and less favorable temperatures among the four designated temperatures and to assess the adverse effects associated with these less favorable temperatures. The results showed that body weight, growth rates, feed intake, and feed efficiency were significantly higher at 10 °C and 14 °C compared to 18 °C and 22 °C. Reduced appetite and feeding response were observed at 22 °C. Red blood cell parameters were significantly lower at 22 °C. At 10 °C, the results showed significantly increased plasma cortisol levels, gill Na+/K+-ATPase activity, body silvering, and decreased condition factors, suggesting potential smoltification. The potential smoltification decreased with increasing temperatures and disappeared at 22 °C. Furthermore, the plasma lysozyme concentrations significantly increased at 18 °C and 22 °C. In conclusion, our study identifies 10 °C and 14 °C as the temperatures most conducive to growth and feed performance in juvenile cherry salmon under these experimental conditions. However, temperatures of 22 °C or higher should be avoided to prevent compromised feeding, reduced health, disturbed immune responses, impaired growth, and feed performance.
Collapse
Affiliation(s)
- Jang-Won Lee
- Department of Integrative Biological Sciences and Industry, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | | |
Collapse
|
7
|
Alfonso S, Houdelet C, Bessa E, Geffroy B, Sadoul B. Water temperature explains part of the variation in basal plasma cortisol level within and between fish species. JOURNAL OF FISH BIOLOGY 2023; 103:828-838. [PMID: 36756681 DOI: 10.1111/jfb.15342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Within the thermal tolerance range of fish, metabolism is known to escalate with warming. Rapid thermic changes also trigger a series of physiological responses, including activation of the stress axis, producing cortisol. Fish have adapted to their environment by producing a low level of plasmatic cortisol when unstressed (basal), so that thriving in their natural temperature should not impact their basal cortisol levels. Yet, surprisingly, little is known on how temperature affects cortisol within and between fish species. Here, we conducted a phylogenetic meta-analysis to (1) test whether temperature can explain the differences in basal cortisol between species and (2) evaluate the role of temperature on differences in cortisol levels between individuals of a same species. To do this, we retrieved basal plasma cortisol data from 126 studies, investigating 33 marine and freshwater fish species, and correlated it to water temperature. Intra-species variability in basal plasma cortisol levels was further investigated in two species: the European sea bass Dicentrarchus labrax and the Nile tilapia Oreochromis niloticus. Factors such as life stage, sex and weight were also considered in the analyses. Overall, our phylogenetic analysis revealed a clear positive correlation between basal cortisol level and the temperature at which the fish live. The role of temperature has also been confirmed within D. labrax, while it failed to be significant in O. niloticus. In this paper, the influence of habitat, life stage, sex and weight on basal plasma cortisol levels is also discussed. Since some abiotic parameters were not included in the analysis, our study is a call to encourage scientists to systematically report other key factors such as dissolved oxygen or salinity to fully depict the temperature-cortisol relationship in fishes.
Collapse
Affiliation(s)
| | - Camille Houdelet
- MARBEC, Universite Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Eduardo Bessa
- Graduate Program in Ecology, Life and Earth Sciences, University of Brasília, Brasília, Brazil
| | - Benjamin Geffroy
- MARBEC, Universite Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Bastien Sadoul
- DECOD, Ecosystem Dynamics and Sustainability, Institut Agro, Ifremer, INRAE, Rennes, France
| |
Collapse
|
8
|
Lim MYT, Bernier NJ. Intergenerational plasticity to cycling high temperature and hypoxia affects offspring stress responsiveness and tolerance in zebrafish. J Exp Biol 2023; 226:jeb245583. [PMID: 37497728 PMCID: PMC10482009 DOI: 10.1242/jeb.245583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
Predicted climate change-induced increases in heat waves and hypoxic events will have profound effects on fishes, yet the capacity of parents to alter offspring phenotype via non-genetic inheritance and buffer against these combined stressors is not clear. This study tested how prolonged adult zebrafish exposure to combined diel cycles of thermal stress and hypoxia affect offspring early survival and development, parental investment of cortisol and heat shock proteins (HSPs), larval offspring stress responses, and both parental and offspring heat and hypoxia tolerance. Parental exposure to the combined stressor did not affect fecundity, but increased mortality, produced smaller embryos and delayed hatching. The combined treatment also reduced maternal deposition of cortisol and increased embryo hsf1, hsp70a, HSP70, hsp90aa and HSP90 levels. In larvae, basal cortisol levels did not differ between treatments, but acute exposure to combined heat stress and hypoxia increased cortisol levels in control larvae with no effect on larvae from exposed parents. In contrast, whereas larval basal hsf1, hsp70a and hsp90aa levels differed between parental treatments, the combined acute stressor elicited similar transcriptional responses across treatments. Moreover, the combined acute stressor only induced a marked increase in HSP47 levels in the larvae derived from exposed parents. Finally, combined hypoxia and elevated temperatures increased both thermal and hypoxia tolerance in adults and conferred an increase in offspring thermal but not hypoxia tolerance. These results demonstrate that intergenerational acclimation to combined thermal stress and hypoxia elicit complex carryover effects on stress responsiveness and offspring tolerance with potential consequences for resilience.
Collapse
Affiliation(s)
- Michael Y.-T. Lim
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Nicholas J. Bernier
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
9
|
Li QQ, Zhang J, Wang HY, Niu SF, Wu RX, Tang BG, Wang QH, Liang ZB, Liang YS. Transcriptomic Response of the Liver Tissue in Trachinotus ovatus to Acute Heat Stress. Animals (Basel) 2023; 13:2053. [PMID: 37443851 DOI: 10.3390/ani13132053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Trachinotus ovatus is a major economically important cultured marine fish in the South China Sea. However, extreme weather and increased culture density result in uncontrollable problems, such as increases in water temperature and a decline in dissolved oxygen (DO), hindering the high-quality development of aquaculture. In this study, liver transcriptional profiles of T. ovatus were investigated under acute high-temperature stress (31 °C and 34 °C) and normal water temperature (27 °C) using RNA sequencing (RNA-Seq) technology. Differential expression analysis and STEM analysis showed that 1347 differentially expressed genes (DEGs) and four significant profiles (profiles 0, 3, 4, and 7) were screened, respectively. Of these DEGs, some genes involved in heat shock protein (HSPs), hypoxic adaptation, and glycolysis were up-regulated, while some genes involved in the ubiquitin-proteasome system (UPS) and fatty acid metabolism were down-regulated. Our results suggest that protein dynamic balance and function, hypoxia adaptation, and energy metabolism transformation are crucial in response to acute high-temperature stress. Our findings contribute to understanding the molecular response mechanism of T. ovatus under acute heat stress, which may provide some reference for studying the molecular mechanisms of other fish in response to heat stress.
Collapse
Affiliation(s)
- Qian-Qian Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jing Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Hong-Yang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Bao-Gui Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Shan Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
10
|
Niedrist GH. Substantial warming of Central European mountain rivers under climate change. REGIONAL ENVIRONMENTAL CHANGE 2023; 23:43. [PMID: 36814931 PMCID: PMC9938829 DOI: 10.1007/s10113-023-02037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED Water bodies around the world are currently warming with unprecedented rates since observations started, but warming occurs highly variable among ecoregions. So far, mountain rivers were expected to experience attenuated warming due to cold water input from snow or ice. However, air temperatures in mountain areas are increasing faster than the global average, and therefore warming effects are expected for cold riverine ecosystems. In decomposing multi-decadal water temperature data of two Central European mountain rivers with different discharge and water source regime, this work identified so far unreported (a) long-term warming trends (with river-size dependent rates between +0.24 and +0.44 °C decade-1); but also (b) seasonal shifts with both rivers warming not only during summer, but also in winter months (i.e., up to +0.52 °C decade-1 in November); (c) significantly increasing minimum and maximum temperatures (e.g., temperatures in a larger river no longer reach freezing point since 1996 and maximum temperatures increased at rates between +0.4 and +0.7 °C decade-1); and (d) an expanding of warm-water periods during recent decades in these ecosystems. Our results show a substantial warming effect of mountain rivers with significant month-specific warming rates not only during summer but also in winter, suggesting that mountain river phenology continues to change with ongoing atmospheric warming. Furthermore, this work demonstrates that apart from a general warming, also seasonal shifts, changes in extreme temperatures, and expanding warm periods will play a role for ecological components of mountain rivers and should be considered in climate change assessments and mitigation management. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10113-023-02037-y.
Collapse
Affiliation(s)
- Georg H. Niedrist
- River and Conservation Research, Department of Ecology, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| |
Collapse
|
11
|
Thermal acclimation in brook trout myotomal muscle varies with fiber type and age. Comp Biochem Physiol A Mol Integr Physiol 2023; 276:111354. [PMID: 36464087 DOI: 10.1016/j.cbpa.2022.111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022]
Abstract
As climate change alters the thermal environment of the planet, interest has grown in how animals may mitigate the impact of a changing environment on physiological function. Thermal acclimation to a warm environment may, for instance, blunt the impact of a warming environment on metabolism by allowing a fish to shift to slower isoforms of functionally significant proteins such as myosin heavy chain. The thermal acclimation of brook trout (Salvelinus fontinalis) was examined by comparing swimming performance, myotomal muscle contraction kinetics and muscle histology in groups of fish acclimated to 4, 10 and 20 °C. Brook trout show a significant acclimation response in their maximum aerobic swimming performance (Ucrit), with acclimation to warm water leading to lower Ucrit values. Maximum muscle shortening velocity (Vmax) decreased significantly with warm acclimation for both red or slow-twitch and white or fast-twitch muscle. Immunohistochemical analysis of myotomal muscle suggests changes in myosin expression underly the thermal acclimation of swimming performance and contraction kinetics. Physiological and histological data suggest a robust acclimation response to a warming environment, one that would reduce the added metabolic costs incurred by an ectotherm when environmental temperature rises for sustained periods of time.
Collapse
|
12
|
Stewart EMC, Frasca VR, Wilson CC, Raby GD. Short-term acclimation dynamics in a coldwater fish. J Therm Biol 2023; 112:103482. [PMID: 36796924 DOI: 10.1016/j.jtherbio.2023.103482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Critical thermal maximum (CTmax) is widely used for measuring thermal tolerance but the strong effect of acclimation on CTmax is a likely source of variation within and among studies/species that makes comparisons more difficult. There have been surprisingly few studies focused on quantifying how quickly acclimation occurs or that combine temperature and duration effects. We studied the effects of absolute temperature difference and duration of acclimation on CTmax of brook trout (Salvelinus fontinalis), a well-studied species in the thermal biology literature, under laboratory conditions to determine how each of the two factors and their combined effects influence critical thermal maximum. Using an ecologically-relevant range of temperatures and testing CTmax multiple times between one and 30 days, we found that both temperature and duration of acclimation had strong effects on CTmax. As predicted, fish that were exposed to warmer temperatures longer had increased CTmax, but full acclimation (i.e., a plateau in CTmax) did not occur by day 30. Therefore, our study provides useful context for thermal biologists by demonstrating that the CTmax of fish can continue to acclimate to a new temperature for at least 30 days. We recommend that this be considered in future studies measuring thermal tolerance that intend to have their organisms fully acclimated to a given temperature. Our results also support using detailed thermal acclimation information to reduce uncertainty caused by local or seasonal acclimation effects and to improve the use of CTmax data for fundamental research and conservation planning.
Collapse
Affiliation(s)
- Erin M C Stewart
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, K9J 5G7, Canada.
| | - Vince R Frasca
- Ontario Ministry of Natural Resources and Forestry, Aquatic Research and Monitoring Section, Codrington Fisheries Research Facility, Codrington, ON, K0K 1R0, Canada
| | - Chris C Wilson
- Ontario Ministry of Natural Resources and Forestry, Aquatic Research and Monitoring Section, Trent University, Peterborough, ON, K9J 7B8, Canada
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, ON, K9J 1Z8, Canada
| |
Collapse
|
13
|
Yang S, Li D, Feng L, Zhang C, Xi D, Liu H, Yan C, Xu Z, Zhang Y, Li Y, Yan T, He Z, Wu J, Gong Q, Du J, Huang X, Du X. Transcriptome analysis reveals the high temperature induced damage is a significant factor affecting the osmotic function of gill tissue in Siberian sturgeon (Acipenser baerii). BMC Genomics 2023; 24:2. [PMID: 36597034 PMCID: PMC9809011 DOI: 10.1186/s12864-022-08969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Maintaining osmotic equilibrium plays an important role in the survival of cold-water fishes. Heat stress has been proven to reduce the activity of Na+/K+-ATPase in the gill tissue, leading to destruction of the osmotic equilibrium. However, the mechanism of megatemperature affecting gill osmoregulation has not been fully elucidated. RESULTS In this study, Siberian sturgeon (Acipenser baerii) was used to analyze histopathological change, plasma ion level, and transcriptome of gill tissue subjected to 20℃, 24℃and 28℃. The results showed that ROS level and damage were increased in gill tissue with the increasing of heat stress temperature. Plasma Cl- level at 28℃ was distinctly lower than that at 20℃ and 24℃, while no significant difference was found in Na+ and K+ ion levels among different groups. Transcriptome analysis displayed that osmoregulation-, DNA-repair- and apoptosis-related terms or pathways were enriched in GO and KEGG analysis. Moreover, 194 osmoregulation-related genes were identified. Amongst, the expression of genes limiting ion outflow, occluding (OCLN), and ion absorption, solute carrier family 4, member 2 (AE2) solute carrier family 9, member 3 (NHE3) chloride channel 2 (CLC-2) were increased, while Na+/K+-ATPase alpha (NKA-a) expression was decreased after heat stress. CONCLUSIONS This study reveals for the first time that the effect of heat stress on damage and osmotic regulation in gill tissue of cold-water fishes. Heat stress increases the permeability of fish's gill tissue, and induces the gill tissue to keep ion balance through active ion absorption and passive ion outflow. Our study will contribute to research of global-warming-caused effects on cold-water fishes.
Collapse
Affiliation(s)
- Shiyong Yang
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Datian Li
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Langkun Feng
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Chaoyang Zhang
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Dandan Xi
- grid.80510.3c0000 0001 0185 3134College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Hongli Liu
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Chaozhan Yan
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Zihan Xu
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yujie Zhang
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yunkun Li
- grid.80510.3c0000 0001 0185 3134College of Life Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Taiming Yan
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Zhi He
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Jiayun Wu
- grid.80510.3c0000 0001 0185 3134College of Life Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Quan Gong
- grid.465230.60000 0004 1777 7721Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan China
| | - Jun Du
- grid.465230.60000 0004 1777 7721Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan China
| | - Xiaoli Huang
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xiaogang Du
- grid.80510.3c0000 0001 0185 3134College of Life Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| |
Collapse
|
14
|
Vasdravanidis C, Alvanou MV, Lattos A, Papadopoulos DK, Chatzigeorgiou I, Ravani M, Liantas G, Georgoulis I, Feidantsis K, Ntinas GK, Giantsis IA. Aquaponics as a Promising Strategy to Mitigate Impacts of Climate Change on Rainbow Trout Culture. Animals (Basel) 2022; 12:ani12192523. [PMID: 36230264 PMCID: PMC9559468 DOI: 10.3390/ani12192523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Climate change and overexploitation of natural resources drive the need for innovative food production within a sustainability corridor. Aquaponics, combining the technology of recirculation aquaculture systems (RAS) and hydroponics in a closed-loop network, could contribute to addressing these problems. Aquaponic systems have lower freshwater demands than agriculture, greater land use efficiency, and decreased environmental impact combined with higher fish productivity. Rainbow trout is one of the major freshwater fish cultured worldwide, which, however, has not yet been commercially developed in aquaponics. Nevertheless, research conducted so far indicates that the trout species represents a good candidate for aquaponics. Abstract The impact of climate change on both terrestrial and aquatic ecosystems tends to become more progressively pronounced and devastating over the years. The sector of aquaculture is severely affected by natural abiotic factors, on account of climate change, that lead to various undesirable phenomena, including aquatic species mortalities and decreased productivity owing to oxidative and thermal stress of the reared organisms. Novel innovative technologies, such as aquaponics that are based on the co-cultivation of freshwater fish with plants in a sustainable manner under the context of controlled abiotic factors, represent a promising tool for mitigating the effect of climate change on reared fish. The rainbow trout (Oncorhynchus mykiss) constitutes one of the major freshwater-reared fish species, contributing to the national economies of numerous countries, and more specifically, to regional development, supporting mountainous areas of low productivity. However, it is highly vulnerable to climate change effects, mainly due to the concrete raceways, in which it is reared, that are constructed on the flow-through of rivers and are, therefore, dependent on water’s physical properties. The current review study evaluates the suitability, progress, and challenges of developing innovative and sustainable aquaponic systems to rear rainbow trout in combination with the cultivation of plants. Although not commercially developed to a great extent yet, research has shown that the rainbow trout is a valuable experimental model for aquaponics that may be also commercially exploited in the future. In particular, abiotic factors required in rainbow trout farming along, with the high protein proportion required in the ratios due to the strict carnivorous feeding behavior, result in high nitrate production that can be utilized by plants as a source of nitrogen in an aquaponic system. Intensive farming of rainbow trout in aquaponic systems can be controlled using digital monitoring of the system parameters, mitigating the obstacles originating from extreme temperature fluctuations.
Collapse
Affiliation(s)
- Christos Vasdravanidis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Maria V. Alvanou
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Athanasios Lattos
- Oecon Group, Business & Development Consultants, Frixou 9, 54627 Thessaloniki, Greece
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios K. Papadopoulos
- Oecon Group, Business & Development Consultants, Frixou 9, 54627 Thessaloniki, Greece
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioanna Chatzigeorgiou
- Oecon Group, Business & Development Consultants, Frixou 9, 54627 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Maria Ravani
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Georgios Liantas
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Ioannis Georgoulis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios K. Ntinas
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
- Correspondence:
| |
Collapse
|
15
|
Lahnsteiner F. Seasonal differences in thermal stress susceptibility of diploid and triploid brook trout, Salvelinus fontinalis (Teleostei, Pisces). JOURNAL OF FISH BIOLOGY 2022; 101:276-288. [PMID: 35633147 DOI: 10.1111/jfb.15118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Many physiological processes of teleost fish show periodicity due to intrinsic rhythms. It may be hypothesized that also susceptibility to thermal stress differs seasonally. To shed more light on this problem the following experiment was conducted. Diploid and triploid Salvelinus fontinalis were kept at an acclimation temperature of 9°C and at a natural photoperiod typical for the Northern Hemisphere during their entire live. During eight different periods of the year, different subgroups were exposed to a 32 day lasting thermal stress of 20°C. Rate of fish maintaining equilibrium, daily growth rate, condition factor, viscerosomatic index and hepato-somatic index were measured. Complementary mRNA expression of genes characterizing growth (GHR1, GHR2), proteolysis (Protreg, Protα5), stress (Hsp47, Hsp90) and respiratory energy metabolism (ATPJ52) was determined. Seasonal differences in thermal stress susceptibility of 2n and 3n S. fontinalis were detected. It was highest from September to December and moderate from January to March. During the remaining period of the year, susceptibility to thermal stress was minimal. Increased thermal stress susceptibility was related to decreased rates of fish maintaining equilibrium, decreased growth rates, reduction of viscera and liver mass and changes in mRNA expression of genes characterizing proteolysis, growth, respiratory energy metabolism and stress. The differences in seasonal stress susceptibility were minor between 2n and 3n S. fontinalis. The data are valuable for ecology and fish culture to identify periods when animals are most susceptible to thermal stress.
Collapse
Affiliation(s)
- Franz Lahnsteiner
- Federal Agency for Water Management, Institute for Water Ecology, Fisheries and Lake Research, Mondsee, Austria
- Fishfarm Kreuzstein, Unterach, Austria
| |
Collapse
|
16
|
Penney CM, Tabh JK, Wilson CC, Burness G. Within- and transgenerational plasticity of a temperate salmonid in response to thermal acclimation and acute temperature stress. Physiol Biochem Zool 2022; 95:484-499. [DOI: 10.1086/721478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
National-Scale Assessment of Climate Change Impacts on Two Native Freshwater Fish Using a Habitat Suitability Model. WATER 2022. [DOI: 10.3390/w14111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change, which has the potential to alter water flow and temperature in aquatic environments, can influence the freshwater fish habitat. This study used an ecological habitat suitability model (EHSM), which integrates hydraulic (water depth and velocity) and physiologic (water temperature) suitability, to investigate the impact of climate change on two native freshwater fish species (Zacco platypus and Nipponocypris koreanus) in South Korea. The model predicted that in 2080 (2076–2085), the decrease in average ecological habitat suitability (EHS) will be higher for N. koreanus (19.2%) than for Z. platypus (9.87%) under the representative concentration pathway (RCP) 8.5 scenario. Under the same condition, EHS for Z. platypus and N. koreanus at 36.5% and 44.4% of 115 sites, respectively, were expected to degrade significantly (p < 0.05). However, the habitat degradation for Z. platypus and N. koreanus was much lower (7.8% and 10.4%, respectively) under the RCP 4.5 scenario, suggesting a preventive measure for carbon dioxide emission. Partial correlation analysis indicated that the number of hot days (i.e., days on which the temperature exceeds the heat stress threshold) is the variable most significantly (p < 0.05) related to EHS changes for both species. This study suggests that the EHSM incorporating the effect of water temperature on the growth and heat stress of fish can be a promising model for the assessment of climate change impacts on habitat suitability for freshwater fish.
Collapse
|
18
|
Alba G, Carrillo S, Sánchez‐Vázquez FJ, López‐Olmeda JF. Combined blue light and daily thermocycles enhance zebrafish growth and development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART A: ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:501-515. [PMID: 35189038 PMCID: PMC9303188 DOI: 10.1002/jez.2584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Gonzalo Alba
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum” University of Murcia Murcia Spain
| | - Sherezade Carrillo
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum” University of Murcia Murcia Spain
| | - Francisco Javier Sánchez‐Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum” University of Murcia Murcia Spain
| | - José Fernando López‐Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum” University of Murcia Murcia Spain
| |
Collapse
|
19
|
Hematological adaptations in diploid and triploid Salvelinus fontinalis and diploid Oncorhynchus mykiss (Salmonidae, Teleostei) in response to long-term exposure to elevated temperature. J Therm Biol 2022; 106:103256. [DOI: 10.1016/j.jtherbio.2022.103256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023]
|
20
|
Porter E, Clow K, Sandrelli R, Gamperl A. Acute and chronic cold exposure differentially affect cardiac control, but not cardiorespiratory function, in resting Atlantic salmon (S almo salar). Curr Res Physiol 2022; 5:158-170. [PMID: 35359619 PMCID: PMC8960890 DOI: 10.1016/j.crphys.2022.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
No studies have examined the effects of cold temperatures (∼0-1 °C) on in vivo cardiac function and control, and metabolism, in salmonids. Thus, we examined: 1) how acclimation to 8 °C vs. acclimation (>3 weeks) or acute exposure (8-1 °C at 1 °C h-1) to 1 °C influenced cardiorespiratory parameters in resting Atlantic salmon; and 2) if/how the control of cardiac function was affected. Oxygen consumption ( M ˙ O 2 ) and cardiac function [i.e., heart rate (f H) and cardiac output (Q ˙ ) ] were 50% lower in the acutely cooled and 1oC-acclimated salmon as compared to 8 °C fish, whereas stroke volume (VS) was unchanged. Intrinsic f H was not affected by whether the fish were acutely exposed or acclimated to 1 °C (values ∼51, 24 and 21 beats min-1 in 8 and 1 °C-acclimated fish, and 8-1 °C fish, respectively), and in all groups f H was primarily under adrenergic control/tone (cholinergic tone 13-18%; adrenergic tone 37-70%). However, β-adrenergic blockade resulted in a 50% increase in VS in the 1oC-acclimated group, and this was surprising as circulating catecholamine levels were ∼1-3 nM in all groups. Overall, the data suggest that this species has a limited capacity to acclimate to temperatures approaching 0 °C. However, we cannot exclude the possibility that cardiac and metabolic responses are evoked when salmon are cooled to ∼ 0-1 °C, and that this prevented further declines in these parameters (i.e., they 'reset' quickly). Our data also provide further evidence that VS is temperature insensitive, and strongly suggest that changes in adrenoreceptor mediated control of venous pressure/capacitance occur when salmon are acclimated to 1 °C.
Collapse
Affiliation(s)
- E.S. Porter
- Dept. of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - K.A. Clow
- Dept. of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - R.M. Sandrelli
- Dept. of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| | - A.K. Gamperl
- Dept. of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
21
|
Guo LW, McCormick SD, Schultz ET, Jordaan A. Direct and size-mediated effects of temperature and ration-dependent growth rates on energy reserves in juvenile anadromous alewives (Alosa pseudoharengus). JOURNAL OF FISH BIOLOGY 2021; 99:1236-1246. [PMID: 34101179 DOI: 10.1111/jfb.14824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Growth rate and energy reserves are important determinants of fitness and are governed by endogenous and exogenous factors. Thus, examining the influence of individual and multiple stressors on growth and energy reserves can help estimate population health under current and future conditions. In young anadromous fishes, freshwater habitat quality determines physiological state and fitness of juveniles emigrating to marine habitats. In this study, the authors tested how temperature and food availability affect survival, growth and energy reserves in juvenile anadromous alewives (Alosa pseudoharengus), a forage fish distributed along the eastern North American continent. Field-collected juvenile anadromous A. pseudoharengus were exposed for 21 days to one of two temperatures (21°C and 25°C) and one of two levels of food rations (1% or 2% tank biomass daily) and compared for differences in final size, fat mass-at-length, lean mass-at-length and energy density. Increased temperature and reduced ration both led to lower growth rates, and the effect of reduced ration was greater at higher temperature. Fat mass-at-length decreased with dry mass, and energy density increased with total length, suggesting size-based endogenous influences on energy reserves. Lower ration also directly decreased fat mass-at-length, lean mass-at-length and energy density. Given the fitness implications of size and energy reserves, temperature and food availability should be considered important indicators of nursery habitat quality and incorporated in A. pseudoharengus life-history models to improve forecasting of population health under climate change.
Collapse
Affiliation(s)
- Lian W Guo
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Stephen D McCormick
- US Geological Survey, Eastern Ecological Science Centre, Conte Research Laboratory, Turners Falls, Massachusetts, USA
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Eric T Schultz
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Adrian Jordaan
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
22
|
Mackey TE, Hasler CT, Durhack T, Jeffrey JD, Macnaughton CJ, Ta K, Enders EC, Jeffries KM. Molecular and physiological responses predict acclimation limits in juvenile brook trout (Salvelinus fontinalis). J Exp Biol 2021; 224:271813. [PMID: 34382658 DOI: 10.1242/jeb.241885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/13/2021] [Indexed: 11/20/2022]
Abstract
Understanding the resilience of ectotherms to high temperatures is essential because of the influence of climate change on aquatic ecosystems. The ability of species to acclimate to high temperatures may determine whether populations can persist in their native ranges. We examined physiological and molecular responses of juvenile brook trout (Salvelinus fontinalis) to six acclimation temperatures (5, 10, 15, 20, 23 and 25°C) that span the thermal distribution of the species to predict acclimation limits. Brook trout exhibited an upregulation of stress-related mRNA transcripts (heat shock protein 90-beta, heat shock cognate 71 kDa protein, glutathione peroxidase 1) and downregulation of transcription factors and osmoregulation-related transcripts (nuclear protein 1, Na+/K+/2Cl- co-transporter-1-a) at temperatures ≥20°C. We then examined the effects of acclimation temperature on metabolic rate (MR) and physiological parameters in fish exposed to an acute exhaustive exercise and air exposure stress. Fish acclimated to temperatures ≥20°C exhibited elevated plasma cortisol and glucose, and muscle lactate after exposure to the acute stress. Fish exhibited longer MR recovery times at 15 and 20°C compared with the 5 and 10°C groups; however, cortisol levels remained elevated at temperatures ≥20°C after 24 h. Oxygen consumption in fish acclimated to 23°C recovered quickest after exposure to acute stress. Standard MR was highest and factorial aerobic scope was lowest for fish held at temperatures ≥20°C. Our findings demonstrate how molecular and physiological responses predict acclimation limits in a freshwater fish as the brook trout in the present study had a limited ability to acclimate to temperatures beyond 20°C.
Collapse
Affiliation(s)
- Theresa E Mackey
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada, R3B 2E9
| | - Caleb T Hasler
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada, R3B 2E9
| | - Travis Durhack
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2.,Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, Canada, R3T 2N6
| | - Jennifer D Jeffrey
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | | | - Kimberly Ta
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | - Eva C Enders
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, Canada, R3T 2N6
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| |
Collapse
|
23
|
Jutfelt F, Norin T, Åsheim ER, Rowsey LE, Andreassen AH, Morgan R, Clark TD, Speers‐Roesch B. ‘Aerobic scope protection’ reduces ectotherm growth under warming. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13811] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fredrik Jutfelt
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources Technical University of Denmark Kgs. Lyngby Denmark
| | - Eirik R. Åsheim
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Organismal and Evolutionary Biology Research Programme Institute of Biotechnology University of Helsinki Helsinki Finland
| | - Lauren E. Rowsey
- Department of Biological Sciences University of New Brunswick Saint John NB Canada
| | - Anna H. Andreassen
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Rachael Morgan
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Timothy D. Clark
- School of Life and Environmental Sciences Deakin University Geelong Vic. Australia
| | - Ben Speers‐Roesch
- Department of Biological Sciences University of New Brunswick Saint John NB Canada
| |
Collapse
|
24
|
Islam MJ, Kunzmann A, Slater MJ. Extreme winter cold-induced osmoregulatory, metabolic, and physiological responses in European seabass (Dicentrarchus labrax) acclimatized at different salinities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145202. [PMID: 33736134 DOI: 10.1016/j.scitotenv.2021.145202] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Despite climate-change challenges, for most aquaculture species, physiological responses to different salinities during ambient extreme cold events remain unknown. Here, European seabass acclimatized at 3, 6, 12, and 30 PSU were subjected to 20 days of an ambient extreme winter cold event (8 °C), and monitored for growth and physiological performance. Growth performance decreased significantly (p < 0.05) in fish exposed at 3 and 30 PSU compared to 6 and 12 PSU. During cold stress exposure, serum Na+, Cl-, and K+ concentrations were significantly (p < 0.05) increased in fish exposed at 30 PSU. Serum cortisol, glucose, and blood urea nitrogen (BUN) were increased significantly (p < 0.05) in fish exposed at 3 and 30 PSU. In contrast, opposite trends were observed for serum protein, lactate, and triglycerides content during cold exposure. Transaminase activities [glutamic-pyruvate transaminase (GPT), glutamic oxaloacetic transaminase (GOT), lactic acid dehydrogenase (LDH), gamma-glutamyl-transaminase (γGGT)] were significantly higher in fish exposed at 3 and 30 PSU on days 10 and 20. The abundance of heat shock protein 70 (HSP70), tumor necrosis factor-α (TNF-α), cystic fibrosis transmembrane conductance (CFTR) were significantly (p < 0.05) increased in fish exposed at 3 and 30 PSU during cold shock exposure. In contrast, insulin-like growth factor 1 (Igf1) expression was significantly lower in fish exposed at 3 and 30 PSU. Whereas, on day 20, Na+/K+ ATPase α1 and Na+/K+/Cl- cotransporter-1 (NKCC1) were significantly upregulated in fish exposed at 30 PSU, followed by 12, 6, and 3 PSU. Results demonstrated that ambient extreme winter cold events induce metabolic and physiological stress responses and provide a conceivable mechanism by which growth and physiological fitness are limited at cold thermal events. However, during ambient extreme cold (8 °C) exposure, European seabass exhibited better physiological fitness at 12 and 6 PSU water, providing possible insight into future aquaculture management options.
Collapse
Affiliation(s)
- Md Jakiul Islam
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany; Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany; Faculty of Biology and Chemistry (FB 02), University of Bremen, 28359 Bremen, Germany.
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany
| | - Matthew James Slater
- Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| |
Collapse
|
25
|
Alfonso S, Gesto M, Sadoul B. Temperature increase and its effects on fish stress physiology in the context of global warming. JOURNAL OF FISH BIOLOGY 2021; 98:1496-1508. [PMID: 33111333 DOI: 10.1111/jfb.14599] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 05/07/2023]
Abstract
The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress physiology. By 2100, global ocean temperature is expected to rise by 1-4°C, with potential consequences for stress physiology. Global warming is affecting animal populations worldwide through chronic temperature increases and an increase in the frequency of extreme heatwave events. As ectotherms, fishes are expected to be particularly vulnerable to global warming. Although little information is available about the effects of global warming on stress physiology in nature, multiple studies describe the consequences of temperature increases on stress physiology in controlled laboratory conditions, providing insight into what can be expected in the wild. Chronic temperature increase constitutes a physiological load that can alter the ability of fishes to cope with additional stressors, which might compromise their fitness. In addition, rapid temperature increases are known to induce acute stress responses in fishes and might be of ecological relevance in particular situations. This review summarizes knowledge about effects of temperature increases on the stress physiology of fishes and discusses these in the context of global warming.
Collapse
Affiliation(s)
- Sébastien Alfonso
- COISPA Tecnologia & Ricerca, Stazione Sperimentale per lo Studio delle Risorse del Mare, Bari, Italy
| | - Manuel Gesto
- Section for Aquaculture, DTU Aqua, Technical University of Denmark, Hirtshals, Denmark
| | - Bastien Sadoul
- MARBEC, Ifremer, IRD, UM2, CNRS, Sète, France
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes Cedex, France
| |
Collapse
|
26
|
Nguyen BV, O’Donnell B, Villamagna AM. The environmental context of inducible HSP70 expression in Eastern Brook Trout. CONSERVATION PHYSIOLOGY 2021; 9:coab022. [PMID: 33996100 PMCID: PMC8111384 DOI: 10.1093/conphys/coab022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/22/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Much research has focused on the population-level effects of climate change on Eastern Brook Trout (Salvelinus fontinalis). While some studies have considered here sub-lethal stress caused by warming waters, the role of multiple, interacting stressors remains largely unexplored. We used inducible heat shock protein 70 (HSP70) as a molecular biomarker to assess in situ response of Eastern Brook Trout in headwater streams to multiple potential stressors, including temperature. Over 7 sampling events during 2018 and 2019, we sampled 141 fish and found that HSP70 expression and 3-day mean water temperature exhibited a quadratic relationship (R 2-adj = 0.68). Further analyses showed that HSP70 expression was explained by temperature, relative water level and their interaction (R 2-adj = 0.75), while fish size and capture location were not factors. We observed a significant increase in HSP70 expression during periods of low relative water level with warm temperatures (~18°C) and also during high relative water level with cold temperatures (~8°C). Our results suggest that temperatures at the edges of the preferred range coupled with relative water level might act together to trigger the cellular stress response in Eastern Brook Trout and that there is greater variation in response at colder temperatures. These findings reinforce the need to consider complex, interactive stressors in influencing the health and persistence of Eastern Brook Trout populations into the future.
Collapse
Affiliation(s)
- Bao V Nguyen
- Molecular and Cellular Biology, University of Massachusetts - Amherst, MA, USA
| | | | - Amy M Villamagna
- Environmental Science & Policy, Plymouth State University, NH, USA
| |
Collapse
|
27
|
de Alba G, López-Olmeda JF, Sánchez-Vázquez FJ. Rearing temperature conditions (constant vs. thermocycle) affect daily rhythms of thermal tolerance and sensing in zebrafish. J Therm Biol 2021; 97:102880. [PMID: 33863444 DOI: 10.1016/j.jtherbio.2021.102880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/22/2021] [Accepted: 02/13/2021] [Indexed: 11/25/2022]
Abstract
In the wild, the environment does not remain constant, but periodically oscillates so that temperature rises in the daytime and drops at night, which generates a daily thermocycle. The effects of thermocycles on thermal tolerance have been previously described in fish. However, the impact of thermocycles on daytime-dependent thermal responses and daily rhythms of temperature tolerance and sensing expression mechanisms remain poorly understood. This study investigates the effects of two rearing conditions: constant (26 °C, C) versus a daily thermocycle (28 °C in the daytime; 24 °C at night, T) on the thermal tolerance response in zebrafish. Thermal tolerance (mortality) was assessed in 4dpf (days post fertilization) zebrafish larvae after acute heat shock (39 °C for 1 h) at two time points: middle of the light phase (ML) or middle of the dark phase (MD). Thermal stress responses were evaluated in adult zebrafish after a 37 °C challenge for 1 h at ML or MD to examine the expression of the heat-shock protein (HSP) (hsp70, hsp90ab1, grp94, hsp90aa1, hspb1, hsp47, cirbp) and transient receptor potential (TRP) channels (trpv4, trpm4a, trpm2, trpa1b) in the brain. Finally, the daily rhythms of gene expression of HSPs and TRPs were measured every 4 h for 24 h. The results revealed the larval mortality rates and the expression induction of most HSPs in adult zebrafish brain reached the highest values in fish reared under constant temperature and subjected to thermal shock at MD. The expression of most HSPs and TRPs was mainly synchronized to the light/dark (LD) cycle, regardless of the temperature regime. Most HSPs involved in hyperthermic challenges displayed diurnal rhythms with their acrophases in phase with warm-sensing thermoTRPs acrophases. The cold-sensing trpa1b peaked in the second half of the light period and slightly shifted toward the dark phase anticipating the acrophase of cirpb, which is involved in hypothermic challenges. These findings indicated that: a) thermal shocks are best tolerated in the daytime; b) the implementation of daily thermocycles during larval development reduces mortality and stress-cellular expression of HSPs to an acute thermal stress at MD; c) daily rhythms need to be considered when discussing physiological responses of thermal sensing and thermotolerance in zebrafish.
Collapse
Affiliation(s)
- Gonzalo de Alba
- Department of Physiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | | | | |
Collapse
|
28
|
Hittle KA, Kwon ES, Coughlin DJ. Climate change and anadromous fish: How does thermal acclimation affect the mechanics of the myotomal muscle of the Atlantic salmon, Salmo salar? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:311-318. [PMID: 33465296 DOI: 10.1002/jez.2443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/13/2020] [Accepted: 12/22/2020] [Indexed: 11/07/2022]
Abstract
In response to accelerated temperature shifts due to climate change, the survival of many species will require forms of thermal acclimation to their changing environment. We were interested in how climate change will impact a commercially and recreationally important species of fish, Atlantic salmon (Salmo salar). As climate change alters the thermal environment of their natal streams, we asked how their muscle function will be altered by extended exposure to both warm and cold temperatures. We performed a thermal acclimation study of S. salar muscle mechanics of both fast-twitch, or white, and slow-twitch, or red, myotomal muscle bundles to investigate how temperature acclimated Atlantic salmon would respond across a range of different temperatures. Isometric contraction properties, maximum shortening velocity, and oscillatory power output were measured and compared amongst three groups of salmon-warm acclimated (20°C), cold-acclimated (2°C), and those at their rearing temperature (12°C). The Atlantic salmon showed limited thermal acclimation in their contraction kinetics, and some of the shifts in contractile properties that were observed would not be predicted to mitigate the impact of a warming environment. For instance, the maximum shortening velocity at a common test temperature was higher in the warm acclimated group and lower in the cold-acclimated group. In addition, critical swimming speed did not vary with temperature of acclimation when tested at a common temperature (12°C). Our results suggest that Atlantic salmon populations will continue to struggle in response to a warming environment.
Collapse
Affiliation(s)
- Kathleen A Hittle
- Department of Biology, Widener University, Chester, Pennsylvania, USA
| | - Elizabeth S Kwon
- Department of Biology, Widener University, Chester, Pennsylvania, USA
| | - David J Coughlin
- Department of Biology, Widener University, Chester, Pennsylvania, USA
| |
Collapse
|
29
|
Caldwell TJ, Chandra S, Feher K, Simmons JB, Hogan Z. Ecosystem response to earlier ice break-up date: Climate-driven changes to water temperature, lake-habitat-specific production, and trout habitat and resource use. GLOBAL CHANGE BIOLOGY 2020; 26:5475-5491. [PMID: 32602183 DOI: 10.1111/gcb.15258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/19/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Climate warming has yielded earlier ice break-up dates in recent decades for lakes leading to water temperature increases, altered habitat, and both increases and decreases to ecosystem productivity. Within lakes, the effect of climate warming on secondary production in littoral and pelagic habitats remains unclear. The intersection of changing habitat productivity and warming water temperatures on salmonids is important for understanding how climate warming will impact mountain ecosystems. We develop and test a conceptual model that expresses how earlier ice break-up dates influence within lake habitat production, water temperatures and the habitat utilized by, resources obtained and behavior of salmonids in a mountain lake. We measured zoobenthic and zooplankton production from the littoral and pelagic habitats, thermal conditions, and the habitat use, resource use, and fitness of Brook Trout (Salvelinus fontinalis). We show that earlier ice break-up conditions created a "resource-rich" littoral-benthic habitat with increases in zoobenthic production compared to the pelagic habitat which decreased in zooplankton production. Despite the increases in littoral-benthic food resources, trout did not utilize littoral habitat or zoobenthic resources due to longer durations of warm water temperatures in the littoral zone. In addition, 87% of their resources were supported by the pelagic habitat during periods with earlier ice break-up when pelagic resources were least abundant. The decreased reliance on littoral-benthic resources during earlier ice break-up caused reduced fitness (mean reduction of 12 g) to trout. Our data show that changes to ice break-up drive multi-directional results for resource production within lake habitats and increase the duration of warmer water temperatures in food-rich littoral habitats. The increased duration of warmer littoral water temperatures reduces the use of energetically efficient habitats culminating in decreased trout fitness.
Collapse
Affiliation(s)
- Timothy J Caldwell
- Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
- Department of Biology, College of Science, University of Nevada, Reno, NV, USA
| | - Sudeep Chandra
- Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
- Department of Biology, College of Science, University of Nevada, Reno, NV, USA
- Global Water Center, University of Nevada, Reno, NV, USA
| | - Karly Feher
- Department of Biology, College of Science, University of Nevada, Reno, NV, USA
| | - James B Simmons
- Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
- Department of Biology, College of Science, University of Nevada, Reno, NV, USA
| | - Zeb Hogan
- Department of Biology, College of Science, University of Nevada, Reno, NV, USA
- Global Water Center, University of Nevada, Reno, NV, USA
| |
Collapse
|
30
|
Morrison SM, Mackey TE, Durhack T, Jeffrey JD, Wiens LM, Mochnacz NJ, Hasler CT, Enders EC, Treberg JR, Jeffries KM. Sub-lethal temperature thresholds indicate acclimation and physiological limits in brook trout Salvelinus fontinalis. JOURNAL OF FISH BIOLOGY 2020; 97:583-587. [PMID: 32447755 DOI: 10.1111/jfb.14411] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
The upper thermal tolerance of brook trout Salvelinus fontinalis was estimated using critical thermal maxima (CTmax ) experiments on fish acclimated to temperatures that span the species' thermal range (5-25°C). The CTmax increased with acclimation temperature but plateaued in fish acclimated to 20, 23 and 25°C. Plasma lactate was highest, and the hepato-somatic index (IH ) was lowest at 23 and 25°C, which suggests additional metabolic costs at those acclimation temperatures. The results suggest that there is a sub-lethal threshold between 20 and 23°C, beyond which the fish experience reduced physiological performance.
Collapse
Affiliation(s)
- Scott M Morrison
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Theresa E Mackey
- Biology Department, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Travis Durhack
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Jennifer D Jeffrey
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lilian M Wiens
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Neil J Mochnacz
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Caleb T Hasler
- Biology Department, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Eva C Enders
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Jason R Treberg
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
31
|
Thermal acclimation of rainbow trout myotomal muscle, can trout acclimate to a warming environment? Comp Biochem Physiol A Mol Integr Physiol 2020; 245:110702. [PMID: 32278083 DOI: 10.1016/j.cbpa.2020.110702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 11/23/2022]
Abstract
Climate change is a looming threat to the planet. Cold-water aquatic species will face significant physiological challenges due to elevated summer temperatures. Salmonids, such as rainbow trout (Oncorhynchus mykiss) maintain fidelity to native streams, limiting their ability to mitigate the impact of climate change through migration. We examined how rainbow trout swimming performance and muscle function were shaped by the thermal environment. We hypothesized that trout would show slower muscle contractile properties and slower swimming performance with long-term exposure to warmer water. For fish held at either 10 °C or 20 °C, maximum steady swimming speed (Ucrit) was determined, and contractile properties of both fast-twitch (white) and slow-twitch (red) myotomal muscle were examined. In addition, immunohistochemistry and quantitative PCR were used to assess changes in myosin content of the myotomal muscle in response to holding temperature. Rainbow trout exposed to warm water for six weeks displayed relatively limited thermal acclimation response. When tested at a common temperature (10 °C), 20 °C acclimated fish had modestly slower muscle performance compared to 10 °C acclimated fish. Significant differences in swimming performance and muscle contractile properties were primarily at colder test temperatures (e.g. 2 °C for muscle mechanics). Shifts in myosin heavy chain protein composition and myosin heavy chain gene expression in the swimming muscle were observed in white but not red muscle. Our results suggest that rainbow trout will have a limited ability to mitigate elevated environmental temperature through thermal acclimation of their myotomal or swimming muscle.
Collapse
|
32
|
Vargas-Chacoff L, Arjona FJ, Ruiz-Jarabo I, García-Lopez A, Flik G, Mancera JM. Water temperature affects osmoregulatory responses in gilthead sea bream (Sparus aurata L.). J Therm Biol 2020; 88:102526. [PMID: 32126001 DOI: 10.1016/j.jtherbio.2020.102526] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 11/26/2022]
Abstract
Sea bream (Sparus aurata Linneaus) was acclimated to three salinity concentrations, viz. 5 (LSW), 38 (SW) and 55psμ (HSW) and three water temperatures regimes (12, 19 and 26 °C) for five weeks. Osmoregulatory capacity parameters (plasma osmolality, sodium, chloride, cortisol, and branchial and renal Na+,K+-ATPase activities) were also assessed. Salinity and temperature affected all of the parameters tested. Our results indicate that environmental temperature modulates capacity in sea bream, independent of environmental salinity, and set points of plasma osmolality and ion concentrations depend on both ambient salinity and temperature. Acclimation to extreme salinity resulted in stress, indicated by elevated basal plasma cortisol levels. Response to salinity was affected by ambient temperature. A comparison between branchial and renal Na+,K+-ATPase activities appears instrumental in explaining salinity and temperature responses. Sea bream regulate branchial enzyme copy numbers (Vmax) in hyperosmotic media (SW and HSW) to deal with ambient temperature effects on activity; combinations of high temperatures and salinity may exceed the adaptive capacity of sea bream. Salinity compromises the branchial enzyme capacity (compared to basal activity at a set salinity) when temperature is elevated and the scope for temperature adaptation becomes smaller at increasing salinity. Renal Na+,K+-ATPase capacity appears fixed and activity appears to be determined by temperature.
Collapse
Affiliation(s)
- Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile.
| | - Francisco J Arjona
- Departamento de Biología, Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain; Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - Ignacio Ruiz-Jarabo
- Departamento de Biología, Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - Angel García-Lopez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, 11510, Puerto Real, Cádiz, Spain
| | - Gert Flik
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - Juan M Mancera
- Departamento de Biología, Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
33
|
Upadhyay RK. Markers for Global Climate Change and Its Impact on Social, Biological and Ecological Systems: A Review. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/ajcc.2020.93012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
White SL, Kline BC, Hitt NP, Wagner T. Individual behaviour and resource use of thermally stressed brook trout Salvelinus fontinalis portend the conservation potential of thermal refugia. JOURNAL OF FISH BIOLOGY 2019; 95:1061-1071. [PMID: 31309548 DOI: 10.1111/jfb.14099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Individual aggression and thermal refuge use were monitored in brook trout Salvelinus fontinalis in a controlled laboratory to determine how fish size and personality influence time spent in forage and thermal habitat patches during periods of thermal stress. On average, larger and more exploratory fish initiated more aggressive interactions and across all fish there was decreased aggression at warmer temperatures. Individual personality did not explain changes in aggression or habitat use with increased temperature; however, larger individuals initiated comparatively fewer aggressive interactions at warmer temperatures. Occupancy of forage patches generally declined as ambient stream temperatures approached critical maximum and fish increased thermal refuge use, with a steeper decline in forage patch occupancy observed in larger fish. These findings suggest that larger individuals may be more vulnerable to stream temperature rise. Importantly, even at thermally stressful temperatures, all fish periodically left the thermal refuge to forage. This indicates that the success of refugia at increasing population survival during periods of stream temperature rise may depend on the location of thermal refugia relative to forage locations within the larger habitat mosaic. These results provide insights into the potential for thermal refugia to improve population survival and can be used to inform predictions of population vulnerability to climate change.
Collapse
Affiliation(s)
- Shannon L White
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Benjamen C Kline
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Nathaniel P Hitt
- U.S. Geological Survey, Leetown Science Center, Kearneysville, West Virginia, USA
| | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
35
|
Houde ALS, Akbarzadeh A, Günther OP, Li S, Patterson DA, Farrell AP, Hinch SG, Miller KM. Salmonid gene expression biomarkers indicative of physiological responses to changes in salinity and temperature, but not dissolved oxygen. J Exp Biol 2019; 222:jeb198036. [PMID: 31209112 PMCID: PMC6633282 DOI: 10.1242/jeb.198036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/06/2019] [Indexed: 12/27/2022]
Abstract
An organism's ability to respond effectively to environmental change is critical to its survival. Yet, life stage and overall condition can dictate tolerance thresholds to heightened environmental stressors, such that stress may not be equally felt across individuals and at all times. Also, the transcriptional responses induced by environmental changes can reflect both generalized responses as well as others that are highly specific to the type of change being experienced. Thus, if transcriptional biomarkers specific to a stressor, even under multi-stressor conditions, can be identified, the biomarkers could then be applied in natural environments to determine when and where an individual experiences such a stressor. Here, we experimentally challenged juvenile Chinook salmon (Oncorhynchus tshawytscha) to validate candidate gill gene expression biomarkers. A sophisticated experimental design manipulated salinity (freshwater, brackish water and seawater), temperature (10, 14 and 18°C) and dissolved oxygen (normoxia and hypoxia) in all 18 possible combinations for 6 days using separate trials for three smolt statuses (pre-smolt, smolt and de-smolt). In addition, changes in juvenile behaviour, plasma variables, gill Na+/K+-ATPase activity, body size, body morphology and skin pigmentation supplemented the gene expression responses. We identified biomarkers specific to salinity and temperature that transcended the multiple stressors, smolt status and mortality (live, dead and moribund). Similar biomarkers for dissolved oxygen were not identified. This work demonstrates the unique power of gene expression biomarkers to identify a specific stressor even under multi-stressor conditions, and we discuss our next steps for hypoxia biomarkers using an RNA-seq study.
Collapse
Affiliation(s)
- Aimee Lee S Houde
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada, V9T 6N7
| | - Arash Akbarzadeh
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada, V9T 6N7
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, PO Box 3995, Bandar Abbas, Iran
| | - Oliver P Günther
- Günther Analytics, 402-5775 Hampton Place, Vancouver, BC, Canada, V6T 2G6
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada, V9T 6N7
| | - David A Patterson
- School of Resource and Environmental Management, Fisheries and Oceans Canada, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Anthony P Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Scott G Hinch
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada, V9T 6N7
| |
Collapse
|
36
|
Pisano OM, Kuparinen A, Hutchings JA. Cyclical and stochastic thermal variability affects survival and growth in brook trout. J Therm Biol 2019; 84:221-227. [PMID: 31466757 DOI: 10.1016/j.jtherbio.2019.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/25/2022]
Abstract
Directional changes in temperature have well-documented effects on ectotherms, yet few studies have explored how increased thermal variability (a concomitant of climate change) might affect individual fitness. Using a common-garden experimental protocol, we investigated how bidirectional temperature change can affect survival and growth of brook trout (Salvelinus fontinalis) and whether the survival and growth responses differ between two populations, using four thermal-variability treatments (mean: 10 °C; range: 7-13 °C): (i) constancy; (ii) cyclical fluctuations every two days; (iii) low stochasticity (random changes every 2 days); (iv) high stochasticity (random changes daily). Recently hatched individuals were monitored under thermal variability (6 weeks) and a subsequent one-month period of thermal constancy. We found that variability can positively influence survival, relative to thermal constancy, but negatively affect growth. The observations reported here can be interpreted within the context of Jensen's Inequality (performance at average conditions is unequal to average performance across a range of conditions). Projections of future population viability in the context of climate change would be strengthened by increased experimental attention to the fitness consequences of stochastic and non-stochastic thermal variability.
Collapse
Affiliation(s)
- Olivia M Pisano
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H4R2, Canada.
| | - Anna Kuparinen
- Dept Biological and Environmental Science, University of Jyväskylä, PO Box 35, FI-40014, Jyväskylä, Finland.
| | - Jeffrey A Hutchings
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H4R2, Canada; Institute of Marine Research, Flødevigen Marine Research Station, N-4817, His, Norway.
| |
Collapse
|
37
|
Vargas-Chacoff L, Regish AM, Weinstock A, McCormick SD. Effects of elevated temperature on osmoregulation and stress responses in Atlantic salmon Salmo salar smolts in fresh water and seawater. JOURNAL OF FISH BIOLOGY 2018; 93:550-559. [PMID: 29956316 DOI: 10.1111/jfb.13683] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Smolting in Atlantic salmon Salmo salar is a critical life-history stage that is preparatory for downstream migration and entry to seawater that is regulated by abiotic variables including photoperiod and temperature. The present study was undertaken to determine the interaction of temperature and salinity on salinity tolerance, gill osmoregulatory proteins and cellular and endocrine stress in S. salar smolts. Fish were exposed to rapid changes in temperature (from 14 to 17, 20 and 24°C) in fresh water (FW) and seawater (SW), with and without prior acclimation and sampled after 2 and 8 days. Fish exposed simultaneously to SW and 24°C experienced 100% mortality, whereas no mortality occurred in any of the other groups. The highest temperature also resulted in poor ion regulation in SW with or without prior SW acclimation, whereas no substantial effect was observed in FW. Gill Na+ -K+ -ATPase (NKA) activity increased in SW fish compared to FW fish and decreased with high temperature in both FW and SW. Gill Nkaα1a abundance was high in FW and Nkaα1b and Na+ -K+ -2Cl- cotransporter high in SW, but all three were lower at the highest temperature. Gill Hsp70 levels were elevated in FW and SW at the highest temperature and increased with increasing temperature 2 days following direct transfer to SW. Plasma cortisol levels were elevated in SW at the highest temperature. Our results indicate that there is an important interaction of salinity and elevated temperature on osmoregulatory performance and the cellular stress response in S. salar, with an apparent threshold for osmoregulatory failure in SW above 20°C.
Collapse
Affiliation(s)
- Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
- U.S. Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, Massachusetts
- Centro Fondap-IDEAL, Universidad Austral de Chile, Valdivia, Chile
| | - Amy M Regish
- U.S. Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, Massachusetts
| | - Andrew Weinstock
- U.S. Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, Massachusetts
| | - Stephen D McCormick
- U.S. Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, Massachusetts
- Department of Biology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
38
|
Cook CJ, Wilson CC, Burness G. Impacts of environmental matching on the routine metabolic rate and mass of native and mixed-ancestry brook trout ( Salvelinus fontinalis) fry. CONSERVATION PHYSIOLOGY 2018; 6:coy023. [PMID: 30364295 PMCID: PMC6194207 DOI: 10.1093/conphys/coy023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 04/02/2018] [Accepted: 04/23/2018] [Indexed: 05/12/2023]
Abstract
The environment an organism experiences during early development can impact its physiology and survival later in life. The objective of this study was to determine if temperatures experienced at embryonic life stages of brook trout (Salvelinus fontinalis) affected mass and routine metabolic rate (RMR) of a subsequent life stage (free-swimming fry). As part of this, we assessed the contributions and importance of hierarchical levels of biological organization [ancestral type (native vs. hatchery-introgressed), population, and family] to variability in mass and RMR of fry. As embryos and alevin, individuals were reared at either natural environmental (5°C) or elevated (9°C) temperatures and then acclimated to either matched or mismatched temperature treatments once yolk sacs were resorbed. Mass differences among fry were strongly influenced by population of origin as well as initial rearing and final acclimation temperatures. Variation in mass-adjusted RMR of fry was also strongly accounted for by source population, acclimation temperature, and individual mass. A significant interaction between population RMR and final acclimation temperature indicated that not all brook trout populations responded the same way to temperature changes. In contrast to expectations, the highest ancestry category (native vs. introgressed) did not significantly influence mass or mass-adjusted RMR.
Collapse
Affiliation(s)
- Catharine J Cook
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada K9L 0G2
| | - Chris C Wilson
- Aquatic Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Trent University, Peterborough, ON, Canada K9L 0G2
| | - Gary Burness
- Department of Biology, Trent University, Peterborough, ON, Canada K9L 0G2
| |
Collapse
|