1
|
Saiz N, Alonso-Gómez ÁL, Bustamante-Martínez S, de Pedro N, Delgado MJ, Isorna E. Is there direct photoentrainment in the goldfish liver? Wavelength-dependent regulation of clock genes and investigation of the opsin 7 family. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024:10.1007/s00359-024-01722-5. [PMID: 39466374 DOI: 10.1007/s00359-024-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Widespread direct photoentrainment in zebrafish peripheral tissues is linked to diverse non-visual opsins. To explore whether this broadly distributed photosensitivity is specific to zebrafish or is a general teleost feature, we investigated hepatic photosynchronization in goldfish. First, we focused on the opsin 7 family (OPN7, a key peripheral novel opsin in zebrafish), investigating its presence in the goldfish liver. Subsequently, we studied whether light can directly entrain the goldfish liver and retina clocks. Silico analysis revealed seven OPN7 paralogs from four gene families, suggesting expansion through whole-genome and tandem duplications. The paralogs of families OPN7a, OPN7b, and OPN7d were mainly localized in neural tissues, while OPN7c paralogs were more abundant in peripheral tissues-including the liver-suggesting divergent roles. Light (independently of the wavelength employed) directly induced the per2a clock gene in the retina both in vivo and in vitro, confirming expected photoentrainment. However, in the liver, photoinduction of per1a and cry1a only occurred in vivo, not in vitro. These results suggest an indirect light-entrainment mechanism of the goldfish hepatic clock, possibly mediated by other oscillators or photosensitive organs. Our findings challenge the assumption of widespread direct photosensitivity in the peripheral tissues of teleosts. Further research is needed to understand the role of tissue-specific photoentrainment and non-visual opsins in diverse teleost species.
Collapse
Affiliation(s)
- Nuria Saiz
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - Ángel L Alonso-Gómez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - Sergio Bustamante-Martínez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - Nuria de Pedro
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - María J Delgado
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - Esther Isorna
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Gerwin J, Torres-Dowdall J, Brown TF, Meyer A. Expansion and Functional Diversification of Long-Wavelength-Sensitive Opsin in Anabantoid Fishes. J Mol Evol 2024; 92:432-448. [PMID: 38861038 PMCID: PMC11291592 DOI: 10.1007/s00239-024-10181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Gene duplication is one of the most important sources of novel genotypic diversity and the subsequent evolution of phenotypic diversity. Determining the evolutionary history and functional changes of duplicated genes is crucial for a comprehensive understanding of adaptive evolution. The evolutionary history of visual opsin genes is very dynamic, with repeated duplication events followed by sub- or neofunctionalization. While duplication of the green-sensitive opsins rh2 is common in teleost fish, fewer cases of multiple duplication events of the red-sensitive opsin lws are known. In this study, we investigate the visual opsin gene repertoire of the anabantoid fishes, focusing on the five lws opsin genes found in the genus Betta. We determine the evolutionary history of the lws opsin gene by taking advantage of whole-genome sequences of nine anabantoid species, including the newly assembled genome of Betta imbellis. Our results show that at least two independent duplications of lws occurred in the Betta lineage. The analysis of amino acid sequences of the lws paralogs of Betta revealed high levels of diversification in four of the seven transmembrane regions of the lws protein. Amino acid substitutions at two key-tuning sites are predicted to lead to differentiation of absorption maxima (λmax) between the paralogs within Betta. Finally, eye transcriptomics of B. splendens at different developmental stages revealed expression shifts between paralogs for all cone opsin classes. The lws genes are expressed according to their relative position in the lws opsin cluster throughout ontogeny. We conclude that temporal collinearity of lws expression might have facilitated subfunctionalization of lws in Betta and teleost opsins in general.
Collapse
Affiliation(s)
- Jan Gerwin
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Julián Torres-Dowdall
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Thomas F Brown
- Max Planck Institute of Molecular Cellular Biology and Genetics, Dresden, Germany
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
3
|
Waalkes MR, Leathery M, Peck M, Barr A, Cunill A, Hageter J, Horstick EJ. Light wavelength modulates search behavior performance in zebrafish. Sci Rep 2024; 14:16533. [PMID: 39019915 PMCID: PMC11255219 DOI: 10.1038/s41598-024-67262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
Visual systems have evolved to discriminate between different wavelengths of light. The ability to perceive color, or specific light wavelengths, is important as color conveys crucial information about both biotic and abiotic features in the environment. Indeed, different wavelengths of light can drive distinct patterns of activity in the vertebrate brain, yet what remains incompletely understood is whether distinct wavelengths can invoke etiologically relevant behavioral changes. To address how specific wavelengths in the visible spectrum modulate behavioral performance, we use larval zebrafish and a stereotypic light-search behavior. Prior work has shown that the cessation of light triggers a transitional light-search behavior, which we use to interrogate wavelength-dependent behavioral modulation. Using 8 narrow spectrum light sources in the visible range, we demonstrate that all wavelengths induce motor parameters consistent with search behavior, yet the magnitude of search behavior is spectrum sensitive and the underlying motor parameters are modulated in distinct patterns across short, medium, and long wavelengths. However, our data also establishes that not all motor features of search are impacted by wavelength. To define how wavelength modulates search performance, we performed additional assays with alternative wavelengths, dual wavelengths, and variable intensity. Last, we also tested blind larvae to resolve which components of wavelength dependent behavioral changes potentially include signaling from non-retinal photoreception. These findings have important implications as organisms can be exposed to varying wavelengths in laboratory and natural settings and therefore impose unique behavioral outputs.
Collapse
Affiliation(s)
- Matthew R Waalkes
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Maegan Leathery
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Madeline Peck
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Allison Barr
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Alexander Cunill
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - John Hageter
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Eric J Horstick
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA.
- Department of Neuroscience Morgantown, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
4
|
Yu H, Chen H, Wang X, Zhang Y, Tan Y, Wang L, Sun J, Luo J, Song F. Sws2 Gene Positively Regulates Melanin Production in Plectropomus leopardus Skin via Direct Regulation of the Synthesis of Retinoic Acid. Int J Mol Sci 2024; 25:7513. [PMID: 39062755 PMCID: PMC11277425 DOI: 10.3390/ijms25147513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Opsins are a class of transmembrane proteins encoded by opsin genes, and they play a variety of functional roles. Short wavelength-sensitive opsin 2 (sws2), one of the five classes of visual opsin genes, mainly senses blue light. Previous research has indicated that sws2 is essential for melanocyte formation in fish; however, its specific role in skin color differentiation remains to be elucidated. Here, we identified the sws2 gene in a prized reef-dwelling fish, Plectropomus leopardus. The full-length P. leopardus sws2 gene encodes a protein consisting of 351 amino acids, and exhibits substantial homology with other fish species. The expression of the sws2 gene was widespread across P. leopardus tissues, with high expression in eye and skin tissues. Through immunohistochemistry and in situ hybridization analyses, we discovered that the sws2 gene was primarily localized in the rod and cone cells of the retina, and epidermal cells of the skin. Furthermore, dsRNA interference was used for sws2 gene knockdown in living P. leopardus to elucidate its function in skin color differentiation. Black-color-related genes, melanin contents, and tyrosinase activity in the skin significantly decreased after sws2 knockdown (p < 0.05), but red-color-related genes and carotenoid and lutein contents significantly increased (p < 0.05). Retinoic acid injection produced the opposite results. Our results suggested that the sws2 gene influences P. leopardus skin color regulation by affecting vitamin synthesis and melanin-related gene expression levels. This study establishes a foundation for elucidating the molecular mechanisms by which sws2 regulates melanocyte formation in fish skin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Feibiao Song
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan University, Haikou 570228, China; (H.Y.); (H.C.); (X.W.); (Y.Z.); (Y.T.); (L.W.); (J.S.); (J.L.)
| |
Collapse
|
5
|
Bertinetti C, Härer A, Karagic N, Meyer A, Torres-Dowdall J. Repeated Divergence in Opsin Gene Expression Mirrors Photic Habitat Changes in Rapidly Evolving Crater Lake Cichlid Fishes. Am Nat 2024; 203:604-617. [PMID: 38635367 DOI: 10.1086/729420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractSelection pressures differ along environmental gradients, and traits tightly linked to fitness (e.g., the visual system) are expected to track such variation. Along gradients, adaptation to local conditions might be due to heritable and nonheritable environmentally induced variation. Disentangling these sources of phenotypic variation requires studying closely related populations in nature and in the laboratory. The Nicaraguan lakes represent an environmental gradient in photic conditions from clear crater lakes to very turbid great lakes. From two old, turbid great lakes, Midas cichlid fish (Amphilophus cf. citrinellus) independently colonized seven isolated crater lakes of varying light conditions, resulting in a small adaptive radiation. We estimated variation in visual sensitivities along this photic gradient by measuring cone opsin gene expression among lake populations. Visual sensitivities observed in all seven derived crater lake populations shifted predictably in direction and magnitude, repeatedly mirroring changes in photic conditions. Comparing wild-caught and laboratory-reared fish revealed that 48% of this phenotypic variation is genetically determined and evolved rapidly. Decreasing intrapopulation variation as environments become spectrally narrower suggests that different selective landscapes operate along the gradient. We conclude that the power to predict phenotypic evolution along gradients depends on both the magnitude of environmental change and the selective landscape shape.
Collapse
|
6
|
Schott RK, Fujita MK, Streicher JW, Gower DJ, Thomas KN, Loew ER, Bamba Kaya AG, Bittencourt-Silva GB, Guillherme Becker C, Cisneros-Heredia D, Clulow S, Davila M, Firneno TJ, Haddad CFB, Janssenswillen S, Labisko J, Maddock ST, Mahony M, Martins RA, Michaels CJ, Mitchell NJ, Portik DM, Prates I, Roelants K, Roelke C, Tobi E, Woolfolk M, Bell RC. Diversity and Evolution of Frog Visual Opsins: Spectral Tuning and Adaptation to Distinct Light Environments. Mol Biol Evol 2024; 41:msae049. [PMID: 38573520 PMCID: PMC10994157 DOI: 10.1093/molbev/msae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Visual systems adapt to different light environments through several avenues including optical changes to the eye and neurological changes in how light signals are processed and interpreted. Spectral sensitivity can evolve via changes to visual pigments housed in the retinal photoreceptors through gene duplication and loss, differential and coexpression, and sequence evolution. Frogs provide an excellent, yet understudied, system for visual evolution research due to their diversity of ecologies (including biphasic aquatic-terrestrial life cycles) that we hypothesize imposed different selective pressures leading to adaptive evolution of the visual system, notably the opsins that encode the protein component of the visual pigments responsible for the first step in visual perception. Here, we analyze the diversity and evolution of visual opsin genes from 93 new eye transcriptomes plus published data for a combined dataset spanning 122 frog species and 34 families. We find that most species express the four visual opsins previously identified in frogs but show evidence for gene loss in two lineages. Further, we present evidence of positive selection in three opsins and shifts in selective pressures associated with differences in habitat and life history, but not activity pattern. We identify substantial novel variation in the visual opsins and, using microspectrophotometry, find highly variable spectral sensitivities, expanding known ranges for all frog visual pigments. Mutations at spectral-tuning sites only partially account for this variation, suggesting that frogs have used tuning pathways that are unique among vertebrates. These results support the hypothesis of adaptive evolution in photoreceptor physiology across the frog tree of life in response to varying environmental and ecological factors and further our growing understanding of vertebrate visual evolution.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Biology and Centre for Vision Research, York University, Toronto, Ontario, Canada
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Matthew K Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | | | | | - Kate N Thomas
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
- Natural History Museum, London, UK
| | - Ellis R Loew
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | | | | | - C Guillherme Becker
- Department of Biology and One Health Microbiome Center, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Diego Cisneros-Heredia
- Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Simon Clulow
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Mateo Davila
- Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Thomas J Firneno
- Department of Biological Sciences, University of Denver, Denver, USA
| | - Célio F B Haddad
- Department of Biodiversity and Center of Aquaculture—CAUNESP, I.B., São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Sunita Janssenswillen
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jim Labisko
- Natural History Museum, London, UK
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles
| | - Simon T Maddock
- Natural History Museum, London, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Michael Mahony
- Department of Biological Sciences, The University of Newcastle, Newcastle 2308, Australia
| | - Renato A Martins
- Programa de Pós-graduação em Conservação da Fauna, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | - Nicola J Mitchell
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Daniel M Portik
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Ivan Prates
- Department of Biology, Lund University, Lund, Sweden
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Corey Roelke
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Elie Tobi
- Gabon Biodiversity Program, Center for Conservation and Sustainability, Smithsonian National Zoo and Conservation Biology Institute, Gamba, Gabon
| | - Maya Woolfolk
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| |
Collapse
|
7
|
Stieb SM, Cortesi F, Mitchell L, Jardim de Queiroz L, Marshall NJ, Seehausen O. Short-wavelength-sensitive 1 ( SWS1) opsin gene duplications and parallel visual pigment tuning support ultraviolet communication in damselfishes (Pomacentridae). Ecol Evol 2024; 14:e11186. [PMID: 38628922 PMCID: PMC11019301 DOI: 10.1002/ece3.11186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Damselfishes (Pomacentridae) are one of the most behaviourally diverse, colourful and species-rich reef fish families. One remarkable characteristic of damselfishes is their communication in ultraviolet (UV) light. Not only are they sensitive to UV, they are also prone to have UV-reflective colours and patterns enabling social signalling. Using more than 50 species, we aimed to uncover the evolutionary history of UV colour and UV vision in damselfishes. All damselfishes had UV-transmitting lenses, expressed the UV-sensitive SWS1 opsin gene, and most displayed UV-reflective patterns and colours. We find evidence for several tuning events across the radiation, and while SWS1 gene duplications are generally very rare among teleosts, our phylogenetic reconstructions uncovered two independent duplication events: one close to the base of the most species-rich clade in the subfamily Pomacentrinae, and one in a single Chromis species. Using amino acid comparisons, we found that known spectral tuning sites were altered several times in parallel across the damselfish radiation (through sequence change and duplication followed by sequence change), causing repeated shifts in peak spectral absorbance of around 10 nm. Pomacentrinae damselfishes expressed either one or both copies of SWS1, likely to further finetune UV-signal detection and differentiation. This highly advanced and modified UV vision among damselfishes, in particular the duplication of SWS1 among Pomacentrinae, might be seen as a key evolutionary innovation that facilitated the evolution of the exuberant variety of UV-reflectance traits and the diversification of this coral reef fish lineage.
Collapse
Affiliation(s)
- Sara M. Stieb
- Center for Ecology, Evolution and BiogeochemistryEAWAG Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Institute for Ecology and EvolutionUniversity of BernBernSwitzerland
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fabio Cortesi
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
- School of the EnvironmentThe University of QueenslandBrisbaneAustralia
| | - Laurie Mitchell
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
- Marine Eco‐Evo‐Devo UnitOkinawa Institute of Science and TechnologyOnna sonOkinawaJapan
| | - Luiz Jardim de Queiroz
- Center for Ecology, Evolution and BiogeochemistryEAWAG Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Institute for Ecology and EvolutionUniversity of BernBernSwitzerland
| | - N. Justin Marshall
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ole Seehausen
- Center for Ecology, Evolution and BiogeochemistryEAWAG Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Institute for Ecology and EvolutionUniversity of BernBernSwitzerland
| |
Collapse
|
8
|
Chau KD, Hauser FE, Van Nynatten A, Daane JM, Harris MP, Chang BSW, Lovejoy NR. Multiple Ecological Axes Drive Molecular Evolution of Cone Opsins in Beloniform Fishes. J Mol Evol 2024; 92:93-103. [PMID: 38416218 DOI: 10.1007/s00239-024-10156-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/12/2024] [Indexed: 02/29/2024]
Abstract
Ecological and evolutionary transitions offer an excellent opportunity to examine the molecular basis of adaptation. Fishes of the order Beloniformes include needlefishes, flyingfishes, halfbeaks, and allies, and comprise over 200 species occupying a wide array of habitats-from the marine epipelagic zone to tropical rainforest rivers. These fishes also exhibit a diversity of diets, including piscivory, herbivory, and zooplanktivory. We investigated how diet and habitat affected the molecular evolution of cone opsins, which play a key role in bright light and colour vision and are tightly linked to ecology and life history. We analyzed a targeted-capture dataset to reconstruct the evolutionary history of beloniforms and assemble cone opsin sequences. We implemented codon-based clade models of evolution to examine how molecular evolution was affected by habitat and diet. We found high levels of positive selection in medium- and long-wavelength beloniform opsins, with piscivores showing increased positive selection in medium-wavelength opsins and zooplanktivores showing increased positive selection in long-wavelength opsins. In contrast, short-wavelength opsins showed purifying selection. While marine/freshwater habitat transitions have an effect on opsin molecular evolution, we found that diet plays a more important role. Our study suggests that evolutionary transitions along ecological axes produce complex adaptive interactions that affect patterns of selection on genes that underlie vision.
Collapse
Affiliation(s)
- Katherine D Chau
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biology, York University, Toronto, ON, Canada
| | - Frances E Hauser
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Alexander Van Nynatten
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biology, University of Victoria, Victoria, Canada
| | - Jacob M Daane
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | | | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Nathan R Lovejoy
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Song H, Xie C, Dong M, Zhang Y, Huang H, Han Y, Liu Y, Wei L, Wang X. Effects of ambient UVB light on Pacific oyster Crassostrea gigas mantle tissue based on multivariate data. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116236. [PMID: 38503101 DOI: 10.1016/j.ecoenv.2024.116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Ambient ultraviolet radiation (UVB) from solar and artificial light presents serious environmental risks to aquatic ecosystems. The Pacific oyster, Crassostrea gigas, perceives changes in the external environment primarily through its mantle tissue, which contains many nerve fibers and tentacles. Changes within the mantles can typically illustrate the injury of ambient UVB. In this study, a comprehensive analysis of phenotypic, behavioral, and physiological changes demonstrated that extreme UVB radiation (10 W/m²) directly suppressed the behavioral activities of C. gigas. Conversely, under ambient UVB radiation (5 W/m²), various physiological processes exhibited significant alterations in C. gigas, despite the behavior remaining relatively unaffected. Using mathematical model analysis, the integrated analysis of the full-length transcriptome, proteome, and metabolome showed that ambient UVB significantly affected the metabolic processes (saccharide, lipid, and protein metabolism) and cellular biology processes (autophagy, apoptosis, oxidative stress) of the C. gigas mantle. Subsequently, using Procrustes analysis and Pearson correlation analysis, the association between multi-omics data and physiological changes, as well as their biomarkers, revealed the effect of UVB on three crucial biological processes: activation of autophagy signaling (key factors: Ca2+, LC3B, BECN1, caspase-7), response to oxidative stress (reactive oxygen species, heat shock 70, cytochrome c oxidase), and recalibration of energy metabolism (saccharide, succinic acid, translation initiation factor IF-2). These findings offer a fresh perspective on the integration of multi-data from non-model animals in ambient UVB risk assessment.
Collapse
Affiliation(s)
- Hongce Song
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Chaoyi Xie
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Meiyun Dong
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Yuxuan Zhang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Haifeng Huang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China.
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China.
| |
Collapse
|
10
|
Baden T. Ancestral photoreceptor diversity as the basis of visual behaviour. Nat Ecol Evol 2024; 8:374-386. [PMID: 38253752 DOI: 10.1038/s41559-023-02291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/10/2023] [Indexed: 01/24/2024]
Abstract
Animal colour vision is based on comparing signals from different photoreceptors. It is generally assumed that processing different spectral types of photoreceptor mainly serves colour vision. Here I propose instead that photoreceptors are parallel feature channels that differentially support visual-motor programmes like motion vision behaviours, prey capture and predator evasion. Colour vision may have emerged as a secondary benefit of these circuits, which originally helped aquatic vertebrates to visually navigate and segment their underwater world. Specifically, I suggest that ancestral vertebrate vision was built around three main systems, including a high-resolution general purpose greyscale system based on ancestral red cones and rods to mediate visual body stabilization and navigation, a high-sensitivity specialized foreground system based on ancestral ultraviolet cones to mediate threat detection and prey capture, and a net-suppressive system based on ancestral green and blue cones for regulating red/rod and ultraviolet circuits. This ancestral strategy probably still underpins vision today, and different vertebrate lineages have since adapted their original photoreceptor circuits to suit their diverse visual ecologies.
Collapse
Affiliation(s)
- Tom Baden
- University of Sussex, Sussex Neuroscience, Sussex Center for Sensory Neuroscience and Computation, Brighton, UK.
| |
Collapse
|
11
|
Hemingson CR, Cowman PF, Bellwood DR. Analysing biological colour patterns from digital images: An introduction to the current toolbox. Ecol Evol 2024; 14:e11045. [PMID: 38500859 PMCID: PMC10945235 DOI: 10.1002/ece3.11045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/20/2024] Open
Abstract
Understanding the numerous roles that colouration serves in the natural world has remained a central focus in many evolutionary and ecological studies. However, to accurately characterise and then compare colours or patterns among individuals or species has been historically challenging. In recent years, there have been a myriad of new resources developed that allow researchers to characterise biological colours and patterns, specifically from digital imagery. However, each resource has its own strengths and weaknesses, answers a specific question and requires a detailed understanding of how it functions to be used properly. These nuances can make navigating this emerging field rather difficult. Herein, we evaluate several new techniques for analysing biological colouration, with a specific focus on digital images. First, we introduce fundamental background knowledge about light and perception to be considered when designing and implementing a study of colouration. We then show how numerous modifications can be made to images to ensure consistent formatting prior to analysis. After, we describe many of the new image analysis approaches and their respective functions, highlighting the type of research questions that they can address. We demonstrate how these various techniques can be brought together to examine novel research questions and test specific hypotheses. Finally, we outline potential future directions in colour pattern studies. Our goal is to provide a starting point and pathway for researchers wanting to study biological colour patterns from digital imagery.
Collapse
Affiliation(s)
- Christopher R. Hemingson
- The Research Hub for Coral Reef Ecosystem FunctionsJames Cook UniversityTownsvilleQueenslandAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Peter F. Cowman
- Biodiversity and Geosciences Program, Queensland Museum TropicsTownsvilleQueenslandAustralia
| | - David R. Bellwood
- The Research Hub for Coral Reef Ecosystem FunctionsJames Cook UniversityTownsvilleQueenslandAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
12
|
Overs E, Stump S, Severino I, Blumstein DT. A test of the species confidence hypothesis in dusky damselfish. Curr Zool 2024; 70:79-86. [PMID: 38476140 PMCID: PMC10926255 DOI: 10.1093/cz/zoac099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/08/2022] [Indexed: 03/14/2024] Open
Abstract
Visual cues are important in both interspecific and intraspecific communication. The species confidence hypothesis proposes that animals are more attracted to conspecific colors and repelled by colors, not on their bodies. Studies on terrestrial lizards and birds have tested the species confidence hypothesis and shown that conspecific colors elicit reduced antipredator behavior. To date, the species confidence hypothesis has not been tested in the marine environment, specifically on coral reefs where color communication is of vital importance. We addressed this knowledge gap by measuring flight initiation distance (the distance an individual moves away from an approaching threat) in dusky damselfish (Stegastes nigricans) in response to an approaching disc of 1 of 4 different color treatments: conspecific, blue, yellow, and black. If the species confidence hypothesis explained variation in damselfish flight initiation distance, then we expected individuals to tolerate closer approaches when approached by a conspecific color. In addition, we calculated the color difference between each stimulus and its corresponding background as a potential alternative explanation for flight responses. Damselfish tolerated the closest approach from the conspecific color stimulus; there were no significant differences between other colors and there was no support for the alternative color difference hypothesis. As with similar terrestrial studies, these results are relevant to ecotourists' choice of swimsuit and wetsuit colors because color choice may modify natural antipredator behavior.
Collapse
Affiliation(s)
- Elle Overs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA
| | - Sydney Stump
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA
| | - Isabel Severino
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA
| |
Collapse
|
13
|
Margetts BM, Stuart‐Fox D, Franklin AM. Red vision in animals is broadly associated with lighting environment but not types of visual task. Ecol Evol 2024; 14:e10899. [PMID: 38304263 PMCID: PMC10828735 DOI: 10.1002/ece3.10899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Red sensitivity is the exception rather than the norm in most animal groups. Among species with red sensitivity, there is substantial variation in the peak wavelength sensitivity (λmax) of the long wavelength sensitive (LWS) photoreceptor. It is unclear whether this variation can be explained by visual tuning to the light environment or to visual tasks such as signalling or foraging. Here, we examine long wavelength sensitivity across a broad range of taxa showing diversity in LWS photoreceptor λmax: insects, crustaceans, arachnids, amphibians, reptiles, fish, sharks and rays. We collated a list of 161 species with physiological evidence for a photoreceptor sensitive to red wavelengths (i.e. λmax ≥ 550 nm) and for each species documented abiotic and biotic factors that may be associated with peak sensitivity of the LWS photoreceptor. We found evidence supporting visual tuning to the light environment: terrestrial species had longer λmax than aquatic species, and of these, species from turbid shallow waters had longer λmax than those from clear or deep waters. Of the terrestrial species, diurnal species had longer λmax than nocturnal species, but we did not detect any differences across terrestrial habitats (closed, intermediate or open). We found no association with proxies for visual tasks such as having red morphological features or utilising flowers or coral reefs. These results support the emerging consensus that, in general, visual systems are broadly adapted to the lighting environment and diverse visual tasks. Links between visual systems and specific visual tasks are commonly reported, but these likely vary among species and do not lead to general patterns across species.
Collapse
Affiliation(s)
- Bryony M. Margetts
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Devi Stuart‐Fox
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Amanda M. Franklin
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
14
|
Van Nynatten A, Duncan AT, Lauzon R, Sheldon TA, Chen SK, Lovejoy NR, Mandrak NE, Chang BSW. Adaptive Evolution of Nearctic Deepwater Fish Vision: Implications for Assessing Functional Variation for Conservation. Mol Biol Evol 2024; 41:msae024. [PMID: 38314890 PMCID: PMC10896662 DOI: 10.1093/molbev/msae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Intraspecific functional variation is critical for adaptation to rapidly changing environments. For visual opsins, functional variation can be characterized in vitro and often reflects a species' ecological niche but is rarely considered in the context of intraspecific variation or the impact of recent environmental changes on species of cultural or commercial significance. Investigation of adaptation in postglacial lakes can provide key insight into how rapid environmental changes impact functional evolution. Here, we report evidence for molecular adaptation in vision in 2 lineages of Nearctic fishes that are deep lake specialists: ciscoes and deepwater sculpin. We found depth-related variation in the dim-light visual pigment rhodopsin that evolved convergently in these 2 lineages. In vitro characterization of spectral sensitivity of the convergent deepwater rhodopsin alleles revealed blue-shifts compared with other more widely distributed alleles. These blue-shifted rhodopsin alleles were only observed in deep clear postglacial lakes with underwater visual environments enriched in blue light. This provides evidence of remarkably rapid and convergent visual adaptation and intraspecific functional variation in rhodopsin. Intraspecific functional variation has important implications for conservation, and these fishes are of conservation concern and great cultural, commercial, and nutritional importance to Indigenous communities. We collaborated with the Saugeen Ojibway Nation to develop and test a metabarcoding approach that we show is efficient and accurate in recovering the ecological distribution of functionally relevant variation in rhodopsin. Our approach bridges experimental analyses of protein function and genetics-based tools used in large-scale surveys to better understand the ecological extent of adaptive functional variation.
Collapse
Affiliation(s)
- Alexander Van Nynatten
- Department of Biological Science, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Alexander T Duncan
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
- Fisheries Assessment Program, Chippewas of Nawash Unceded First Nation, Neyaashiinigmiing, Ontario, Canada
| | - Ryan Lauzon
- Fisheries Assessment Program, Chippewas of Nawash Unceded First Nation, Neyaashiinigmiing, Ontario, Canada
| | | | - Steven K Chen
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Nathan R Lovejoy
- Department of Biological Science, University of Toronto Scarborough, Scarborough, Ontario, Canada
- Department of Ecological and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas E Mandrak
- Department of Biological Science, University of Toronto Scarborough, Scarborough, Ontario, Canada
- Department of Ecological and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecological and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Haddock SHD, Choy CA. Life in the Midwater: The Ecology of Deep Pelagic Animals. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:383-416. [PMID: 38231738 DOI: 10.1146/annurev-marine-031623-095435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The water column of the deep ocean is dark, cold, low in food, and under crushing pressures, yet it is full of diverse life. Due to its enormous volume, this mesopelagic zone is home to some of the most abundant animals on the planet. Rather than struggling to survive, they thrive-owing to a broad set of adaptations for feeding, behavior, and physiology. Our understanding of these adaptations is constrained by the tools available for exploring the deep sea, but this tool kit is expanding along with technological advances. Each time we apply a new method to the depths, we gain surprising insights about genetics, ecology, behavior, physiology, diversity, and the dynamics of change. These discoveries show structure within the seemingly uniform habitat, limits to the seemingly inexhaustible resources, and vulnerability in the seemingly impervious environment. To understand midwater ecology, we need to reimagine the rules that govern terrestrial ecosystems. By spending more time at depth-with whatever tools are available-we can fill the knowledge gaps and better link ecology to the environment throughout the water column.
Collapse
Affiliation(s)
- Steven H D Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, California, USA;
| | - C Anela Choy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA;
| |
Collapse
|
16
|
Abstract
When vertebrates first conquered the land, they encountered a visual world that was radically distinct from that of their aquatic ancestors. Fish exploit the strong wavelength-dependent interactions of light with water by differentially feeding the signals from up to 5 spectral photoreceptor types into distinct behavioural programmes. However, above the water the same spectral rules do not apply, and this called for an update to visual circuit strategies. Early tetrapods soon evolved the double cone, a still poorly understood pair of new photoreceptors that brought the "ancestral terrestrial" complement from 5 to 7. Subsequent nonmammalian lineages differentially adapted this highly parallelised retinal input strategy for their diverse visual ecologies. By contrast, mammals shed most ancestral photoreceptors and converged on an input strategy that is exceptionally general. In eutherian mammals including in humans, parallelisation emerges gradually as the visual signal traverses the layers of the retina and into the brain.
Collapse
Affiliation(s)
- Tom Baden
- University of Sussex, Sussex Neuroscience, Sussex Center for Sensory Neuroscience and Computation, Brighton, United Kingdom
| |
Collapse
|
17
|
Ricci V, Ronco F, Boileau N, Salzburger W. Visual opsin gene expression evolution in the adaptive radiation of cichlid fishes of Lake Tanganyika. SCIENCE ADVANCES 2023; 9:eadg6568. [PMID: 37672578 PMCID: PMC10482347 DOI: 10.1126/sciadv.adg6568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Tuning the visual sensory system to the ambient light is essential for survival in many animal species. This is often achieved through duplication, functional diversification, and/or differential expression of visual opsin genes. Here, we examined 753 new retinal transcriptomes from 112 species of cichlid fishes from Lake Tanganyika to unravel adaptive changes in gene expression at the macro-evolutionary and ecosystem level of one of the largest vertebrate adaptive radiations. We found that, across the radiation, all seven cone opsins-but not the rhodopsin-rank among the most differentially expressed genes in the retina, together with other vision-, circadian rhythm-, and hemoglobin-related genes. We propose two visual palettes characteristic of very shallow- and deep-water living species, respectively, and show that visual system adaptations along two major ecological axes, macro-habitat and diet, occur primarily via gene expression variation in a subset of cone opsin genes.
Collapse
Affiliation(s)
- Virginie Ricci
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Nicolas Boileau
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Lu K, Wu J, Tang S, Wang Y, Zhang L, Chai F, Liang XF. Altered Visual Function in Short-Wave-Sensitive 1 ( sws1) Gene Knockout Japanese Medaka ( Oryzias latipes) Larvae. Cells 2023; 12:2157. [PMID: 37681889 PMCID: PMC10486665 DOI: 10.3390/cells12172157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/29/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Visual perception plays a crucial role in foraging, avoiding predators, mate selection, and communication. The regulation of color vision is largely dependent on opsin, which is the first step in the formation of the visual transduction cascade in photoreceptor cells. Short-wave-sensitive 1 (sws1) is a visual pigment that mediates short-wavelength light transduction in vertebrates. The depletion of sws1 resulted in increased M-opsin in mice. However, there is still no report on the visual function of sws1 in teleost fish. Here, we constructed the sws1 knockout medaka using CRISPR/Cas9 technology. The 6 dph (days post-hatching) medaka sws1-/- larvae exhibited significantly decreased food intake and total length at the first feeding stage, and the mRNA levels of orexigenic genes (npy and agrp) were significantly upregulated after feeding. The swimming speed was significantly reduced during the period of dark-light transition stimulation in the sws1-mutant larvae. Histological analysis showed that the thickness of the lens was reduced, whereas the thickness of the ganglion cell layer (GCL) was significantly increased in sws1-/- medaka larvae. Additionally, the deletion of sws1 decreased the mRNA levels of genes involved in phototransduction (gnb3b, grk7a, grk7b, and pde6c). We also observed increased retinal cell apoptosis and oxidative stress in sws1 knockout medaka larvae. Collectively, these results suggest that sws1 deficiency in medaka larvae may impair visual function and cause retinal cell apoptosis, which is associated with the downregulation of photoconduction expression and oxidative stress.
Collapse
Affiliation(s)
- Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Shulin Tang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Yuye Wang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Lixin Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Farui Chai
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
19
|
Lafoux B, Moscatelli J, Godoy-Diana R, Thiria B. Illuminance-tuned collective motion in fish. Commun Biol 2023; 6:585. [PMID: 37258699 DOI: 10.1038/s42003-023-04861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
We experimentally investigate the role of illumination on the collective dynamics of a large school (ca. 50 individuals) of Hemigrammus rhodostomus. The structure of the group, defined using two order parameters, is quantified while progressively altering the visual range of the fish through controlled cycles of ambient light intensity. We show that, at low light levels, the individuals within the group are unable to form a cohesive group, while at higher illuminance the degree of alignment of the school correlates with the light intensity. When increasing the illuminance, the school structure is successively characterized by a polarized state followed by a highly regular and stable rotational configuration (milling). Our study shows that vision is necessary to achieve cohesive collective motion for free swimming fish schools, while the short-range lateral line sensing is insufficient in this situation. The present experiment therefore provides new insights into the interaction mechanisms that govern the emergence and intensity of collective motion in biological systems.
Collapse
Affiliation(s)
- Baptiste Lafoux
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS UMR 7636, ESPCI Paris-PSL Research University, Sorbonne Université-Université Paris Cité, 10 rue Vauquelin, 75005, Paris, France.
| | - Jeanne Moscatelli
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS UMR 7636, ESPCI Paris-PSL Research University, Sorbonne Université-Université Paris Cité, 10 rue Vauquelin, 75005, Paris, France
| | - Ramiro Godoy-Diana
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS UMR 7636, ESPCI Paris-PSL Research University, Sorbonne Université-Université Paris Cité, 10 rue Vauquelin, 75005, Paris, France.
| | - Benjamin Thiria
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS UMR 7636, ESPCI Paris-PSL Research University, Sorbonne Université-Université Paris Cité, 10 rue Vauquelin, 75005, Paris, France.
| |
Collapse
|
20
|
Stieb SM, Cortesi F, de Queiroz LJ, Carleton KL, Seehausen O, Marshall NJ. Long-wavelength-sensitive (lws) opsin gene expression, foraging and visual communication in coral reef fishes. Mol Ecol 2023; 32:1656-1672. [PMID: 36560895 PMCID: PMC10065935 DOI: 10.1111/mec.16831] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 11/25/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Coral reef fishes are diverse in ecology and behaviour and show remarkable colour variability. Investigating the visual pigment gene (opsin) expression in these fishes makes it possible to associate their visual genotype and phenotype (spectral sensitivities) to visual tasks, such as feeding strategy or conspecific detection. By studying all major damselfish clades (Pomacentridae) and representatives from five other coral reef fish families, we show that the long-wavelength-sensitive (lws) opsin is highly expressed in algivorous and less or not expressed in zooplanktivorous species. Lws is also upregulated in species with orange/red colours (reflectance >520 nm) and expression is highest in orange/red-coloured algivores. Visual models from the perspective of a typical damselfish indicate that sensitivity to longer wavelengths does enhance the ability to detect the red to far-red component of algae and orange/red-coloured conspecifics, possibly enabling social signalling. Character state reconstructions indicate that in the early evolutionary history of damselfishes, there was no lws expression and no orange/red coloration. Omnivory was most often the dominant state. Although herbivory was sometimes dominant, zooplanktivory was never dominant. Sensitivity to long wavelength (increased lws expression) only emerged in association with algivory but never with zooplanktivory. Higher lws expression is also exploited by social signalling in orange/red, which emerged after the transition to algivory. Although the relative timing of traits may deviate by different reconstructions and alternative explanations are possible, our results are consistent with sensory bias whereby social signals evolve as a correlated response to natural selection on sensory system properties in other contexts.
Collapse
Affiliation(s)
- Sara M. Stieb
- Centre for Ecology, Evolution and Biogeochemistry (CEEB), EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, Switzerland
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Luiz Jardim de Queiroz
- Centre for Ecology, Evolution and Biogeochemistry (CEEB), EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, Switzerland
| | - Karen L. Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Ole Seehausen
- Centre for Ecology, Evolution and Biogeochemistry (CEEB), EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, Switzerland
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
21
|
Martínez Sosa F, Pilot M. Molecular Mechanisms Underlying Vertebrate Adaptive Evolution: A Systematic Review. Genes (Basel) 2023; 14:416. [PMID: 36833343 PMCID: PMC9957108 DOI: 10.3390/genes14020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Adaptive evolution is a process in which variation that confers an evolutionary advantage in a specific environmental context arises and is propagated through a population. When investigating this process, researchers have mainly focused on describing advantageous phenotypes or putative advantageous genotypes. A recent increase in molecular data accessibility and technological advances has allowed researchers to go beyond description and to make inferences about the mechanisms underlying adaptive evolution. In this systematic review, we discuss articles from 2016 to 2022 that investigated or reviewed the molecular mechanisms underlying adaptive evolution in vertebrates in response to environmental variation. Regulatory elements within the genome and regulatory proteins involved in either gene expression or cellular pathways have been shown to play key roles in adaptive evolution in response to most of the discussed environmental factors. Gene losses were suggested to be associated with an adaptive response in some contexts. Future adaptive evolution research could benefit from more investigations focused on noncoding regions of the genome, gene regulation mechanisms, and gene losses potentially yielding advantageous phenotypes. Investigating how novel advantageous genotypes are conserved could also contribute to our knowledge of adaptive evolution.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, 80-680 Gdańsk, Poland
- Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
22
|
Fogg LG, Cortesi F, Gache C, Lecchini D, Marshall NJ, de Busserolles F. Developing and adult reef fish show rapid light-induced plasticity in their visual system. Mol Ecol 2023; 32:167-181. [PMID: 36261875 PMCID: PMC10099556 DOI: 10.1111/mec.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 12/29/2022]
Abstract
The visual capabilities of fish are optimized for their ecology and light environment over evolutionary time. Similarly, fish vision can adapt to regular changes in light conditions within their lifetime, e.g., ontogenetic or seasonal variation. However, we do not fully understand how vision responds to irregular short-term changes in the light environment, e.g., algal blooms and light pollution. In this study, we investigated the effect of short-term exposure to unnatural light conditions on opsin gene expression and retinal cell densities in juvenile and adult diurnal reef fish (convict surgeonfish; Acanthurus triostegus). Results revealed phenotypic plasticity in the retina across ontogeny, particularly during development. The most substantial differences at both molecular and cellular levels were found under constant dim light, while constant bright light and simulated artificial light at night had a lesser effect. Under dim light, juveniles and adults increased absolute expression of the cone opsin genes, sws2a, rh2c and lws, within a few days and juveniles also decreased densities of cones, inner nuclear layer cells and ganglion cells. These changes potentially enhanced vision under the altered light conditions. Thus, our study suggests that plasticity mainly comes into play when conditions are extremely different to the species' natural light environment, i.e., a diurnal fish in "constant night". Finally, in a rescue experiment on adults, shifts in opsin expression were reverted within 24 h. Overall, our study showed rapid, reversible light-induced changes in the retina of A. triostegus, demonstrating phenotypic plasticity in the visual system of a reef fish throughout life.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fabio Cortesi
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Camille Gache
- PSL Research University, EPHE‐UPVD‐CNRS, UAR3278 CRIOBEPapetoaiFrench Polynesia
- Laboratoire d'Excellence “CORAIL”ParisFrance
| | - David Lecchini
- PSL Research University, EPHE‐UPVD‐CNRS, UAR3278 CRIOBEPapetoaiFrench Polynesia
- Laboratoire d'Excellence “CORAIL”ParisFrance
| | - N. Justin Marshall
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fanny de Busserolles
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
23
|
Michaiel AM, Bernard A. Neurobiology and changing ecosystems: Toward understanding the impact of anthropogenic influences on neurons and circuits. Front Neural Circuits 2022; 16:995354. [PMID: 36569799 PMCID: PMC9769128 DOI: 10.3389/fncir.2022.995354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Rapid anthropogenic environmental changes, including those due to habitat contamination, degradation, and climate change, have far-reaching effects on biological systems that may outpace animals' adaptive responses. Neurobiological systems mediate interactions between animals and their environments and evolved over millions of years to detect and respond to change. To gain an understanding of the adaptive capacity of nervous systems given an unprecedented pace of environmental change, mechanisms of physiology and behavior at the cellular and biophysical level must be examined. While behavioral changes resulting from anthropogenic activity are becoming increasingly described, identification and examination of the cellular, molecular, and circuit-level processes underlying those changes are profoundly underexplored. Hence, the field of neuroscience lacks predictive frameworks to describe which neurobiological systems may be resilient or vulnerable to rapidly changing ecosystems, or what modes of adaptation are represented in our natural world. In this review, we highlight examples of animal behavior modification and corresponding nervous system adaptation in response to rapid environmental change. The underlying cellular, molecular, and circuit-level component processes underlying these behaviors are not known and emphasize the unmet need for rigorous scientific enquiry into the neurobiology of changing ecosystems.
Collapse
|
24
|
Lupše N, Kłodawska M, Truhlářová V, Košátko P, Kašpar V, Bitja Nyom AR, Musilova Z. Developmental changes of opsin gene expression in ray-finned fishes (Actinopterygii). Proc Biol Sci 2022; 289:20221855. [DOI: 10.1098/rspb.2022.1855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fish often change their habitat and trophic preferences during development. Dramatic functional differences between embryos, larvae, juveniles and adults also concern sensory systems, including vision. Here, we focus on the photoreceptors (rod and cone cells) in the retina and their gene expression profiles during development. Using comparative transcriptomics on 63 species, belonging to 23 actinopterygian orders, we report general developmental patterns of opsin expression, mostly suggesting an increased importance of the rod opsin (
RH1
) gene and the long-wavelength-sensitive cone opsin, and a decreasing importance of the shorter wavelength-sensitive cone opsin throughout development. Furthermore, we investigate in detail ontogenetic changes in 14 selected species (from Polypteriformes, Acipenseriformes, Cypriniformes, Aulopiformes and Cichliformes), and we report examples of expanded cone opsin repertoires, cone opsin switches (mostly within
RH2
) and increasing rod : cone ratio as evidenced by the opsin and phototransduction cascade genes. Our findings provide molecular support for developmental stage-specific visual palettes of ray-finned fishes and shifts between, which most likely arose in response to ecological, behavioural and physiological factors.
Collapse
Affiliation(s)
- Nik Lupše
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Monika Kłodawska
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Veronika Truhlářová
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Prokop Košátko
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Vojtěch Kašpar
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Arnold Roger Bitja Nyom
- Department of Management of Fisheries and Aquatic Ecosystems, University of Douala, Douala P.O. Box 7236, Cameroon
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré P.O. Box 454, Cameroon
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| |
Collapse
|
25
|
Fogg LG, Cortesi F, Lecchini D, Gache C, Marshall NJ, de Busserolles F. Development of dim-light vision in the nocturnal reef fish family Holocentridae. II: Retinal morphology. J Exp Biol 2022; 225:jeb244740. [PMID: 35929495 PMCID: PMC9482369 DOI: 10.1242/jeb.244740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022]
Abstract
Ontogenetic changes in the habitats and lifestyles of animals are often reflected in their visual systems. Coral reef fishes start life in the shallow open ocean but inhabit the reef as juveniles and adults. Alongside this change in habitat, some species also change lifestyles and become nocturnal. However, it is not fully understood how the visual systems of nocturnal reef fishes develop and adapt to these significant ecological shifts over their lives. Therefore, we used a histological approach to examine visual development in the nocturnal coral reef fish family, Holocentridae. We examined 7 representative species spanning both subfamilies, Holocentrinae (squirrelfishes) and Myripristinae (soldierfishes). Pre-settlement larvae showed strong adaptation for photopic vision with high cone densities and had also started to develop a multibank retina (i.e. multiple rod layers), with up to two rod banks present. At reef settlement, holocentrids showed greater adaptation for scotopic vision, with higher rod densities and higher summation of rods onto the ganglion cell layer. By adulthood, they had well-developed scotopic vision with a highly rod-dominated multibank retina comprising 5-17 rod banks and enhanced summation of rods onto the ganglion cell layer. Although the ecological demands of the two subfamilies were similar throughout their lives, their visual systems differed after settlement, with Myripristinae showing more pronounced adaptation for scotopic vision than Holocentrinae. Thus, it is likely that both ecology and phylogeny contribute to the development of the holocentrid visual system.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David Lecchini
- PSL Research University, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris 75006, France
| | - Camille Gache
- PSL Research University, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris 75006, France
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
26
|
Fogg LG, Cortesi F, Lecchini D, Gache C, Marshall NJ, de Busserolles F. Development of dim-light vision in the nocturnal reef fish family Holocentridae. I: Retinal gene expression. J Exp Biol 2022; 225:jeb244513. [PMID: 35929500 PMCID: PMC9482368 DOI: 10.1242/jeb.244513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/24/2022] [Indexed: 11/20/2022]
Abstract
Developmental changes to the visual systems of animals are often associated with ecological shifts. Reef fishes experience a change in habitat between larval life in the shallow open ocean to juvenile and adult life on the reef. Some species also change their lifestyle over this period and become nocturnal. While these ecological transitions are well documented, little is known about the ontogeny of nocturnal reef fish vision. Here, we used transcriptomics to investigate visual development in 12 representative species from both subfamilies, Holocentrinae (squirrelfishes) and Myripristinae (soldierfishes), in the nocturnal coral reef fish family, Holocentridae. Results revealed that the visual systems of holocentrids are initially well adapted to photopic conditions with pre-settlement larvae having high levels of cone opsin gene expression and a broad cone opsin gene repertoire (8 genes). At reef settlement, holocentrids started to invest more in their scotopic visual system, and compared with adults, showed upregulation of genes involved in cell differentiation/proliferation. By adulthood, holocentrids had well developed scotopic vision with high levels of rod opsin gene expression, reduced cone opsin gene expression and repertoire (1-4 genes) and upregulated phototransduction genes. Finally, although the two subfamilies shared similar ecologies across development, their visual systems diverged after settlement, with Myripristinae investing more in scotopic vision than Holocentrinae. Hence, both ecology and phylogeny are likely to determine the development of the holocentrid visual system.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David Lecchini
- PSL Research University, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris 75006, France
| | - Camille Gache
- PSL Research University, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris 75006, France
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
27
|
Kondrashev SL. Photoreceptors, visual pigments and intraretinal variability in spectral sensitivity in two species of smelts (Pisces, Osmeridae). JOURNAL OF FISH BIOLOGY 2022; 101:584-596. [PMID: 35655413 DOI: 10.1111/jfb.15128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The main goal of this study was to clarify whether the spectral properties of retinal photoreceptors reflect the features of behaviour of closely related fish species cohabiting shallow marine and fresh waters. The spectral sensitivity of photoreceptors was compared between two smelt species, Hypomesus japonicus and Japanese smelt Hypomesus nipponensis. The spectral absorption of the visual pigments was measured using microspectrophotometry. In H. japonicus, a mostly marine species, all photoreceptors contained visual pigments based on retinal and were distributed differently in specific retinal areas. The absorbance maxima (λmax ) of rods and long-wave-sensitive members of double cones throughout the retina amounted to 507 and 573 nm, respectively, but the λmax value of the short-wave-sensitive members of double cones and single cones in the temporal hemiretina showed a significant blue shift compared to the nasal hemiretina: 485 vs. 516 nm and 375 vs. 412 nm, respectively, thus enhancing the short-wave sensitivity of the temporal hemiretina. In H. nipponensis, an euryhaline species, the estimated λmax value of both rods and cones significantly varied between the groups caught in different localities (sea, river or estuary) because of the presence of rhodopsin/porphyropsin mixtures. The long-wavelength shift in rod and cone photoreceptors was observed because of changes in the chromophore complement in closely related but ecologically different species dwelling in freshened bodies of water. Considering the data available in the literature, several putative common opsin genes have been suggested for species under study.
Collapse
Affiliation(s)
- Sergei L Kondrashev
- Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
28
|
Eilertsen M, Davies WIL, Patel D, Barnes JE, Karlsen R, Mountford JK, Stenkamp DL, Patel JS, Helvik JV. An EvoDevo Study of Salmonid Visual Opsin Dynamics and Photopigment Spectral Sensitivity. Front Neuroanat 2022; 16:945344. [PMID: 35899127 PMCID: PMC9309310 DOI: 10.3389/fnana.2022.945344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Salmonids are ideal models as many species follow a distinct developmental program from demersal eggs and a large yolk sac to hatching at an advanced developmental stage. Further, these economically important teleosts inhabit both marine- and freshwaters and experience diverse light environments during their life histories. At a genome level, salmonids have undergone a salmonid-specific fourth whole genome duplication event (Ss4R) compared to other teleosts that are already more genetically diverse compared to many non-teleost vertebrates. Thus, salmonids display phenotypically plastic visual systems that appear to be closely related to their anadromous migration patterns. This is most likely due to a complex interplay between their larger, more gene-rich genomes and broad spectrally enriched habitats; however, the molecular basis and functional consequences for such diversity is not fully understood. This study used advances in genome sequencing to identify the repertoire and genome organization of visual opsin genes (those primarily expressed in retinal photoreceptors) from six different salmonids [Atlantic salmon (Salmo salar), brown trout (Salmo trutta), Chinook salmon (Oncorhynchus tshawytcha), coho salmon (Oncorhynchus kisutch), rainbow trout (Oncorhynchus mykiss), and sockeye salmon (Oncorhynchus nerka)] compared to the northern pike (Esox lucius), a closely related non-salmonid species. Results identified multiple orthologues for all five visual opsin classes, except for presence of a single short-wavelength-sensitive-2 opsin gene. Several visual opsin genes were not retained after the Ss4R duplication event, which is consistent with the concept of salmonid rediploidization. Developmentally, transcriptomic analyzes of Atlantic salmon revealed differential expression within each opsin class, with two of the long-wavelength-sensitive opsins not being expressed before first feeding. Also, early opsin expression in the retina was located centrally, expanding dorsally and ventrally as eye development progressed, with rod opsin being the dominant visual opsin post-hatching. Modeling by spectral tuning analysis and atomistic molecular simulation, predicted the greatest variation in the spectral peak of absorbance to be within the Rh2 class, with a ∼40 nm difference in λ max values between the four medium-wavelength-sensitive photopigments. Overall, it appears that opsin duplication and expression, and their respective spectral tuning profiles, evolved to maximize specialist color vision throughout an anadromous lifecycle, with some visual opsin genes being lost to tailor marine-based vision.
Collapse
Affiliation(s)
- Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Wayne Iwan Lee Davies
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Dharmeshkumar Patel
- Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, United States
| | - Jonathan E. Barnes
- Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, United States
| | - Rita Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Jessica Kate Mountford
- School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
- Lions Eye Institute, University of Western Australia, Perth, WA, Australia
| | - Deborah L. Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
29
|
Audino JA, Adams DC, Serb JM. Variation in eye abundance among scallops reveals ontogenetic and evolutionary convergence associated with life habits. Evolution 2022; 76:1607-1618. [PMID: 35709485 DOI: 10.1111/evo.14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 01/22/2023]
Abstract
Eyes are remarkable systems to investigate the complex interaction between ecological drivers and phenotypic outcomes. Some animals, such as scallops, have many eyes for visual perception, but to date, the evolution of multiple-eye systems remains obscure. For instance, it is unclear whether eye number changes over a lifetime or varies among species. Scallops are a suitable model group to investigate these questions considering the interspecific variation of adult size and ecological diversity. We tested whether eye abundance scales with body size among individuals and species and whether it varies with life habits. We performed comparative analyses, including a phylogenetic ANCOVA and evolutionary model comparisons, based on eye count and shell height (as a proxy of body size) across 31 scallop species. Our analyses reveal that patterns of increasing relationship with body size are not concordant among taxa and suggest ontogenetic convergence caused by similar ecologies. Accordingly, selective optima in eye numbers are associated with shifts in life habits. For instance, species with increased mobility have significantly more eyes than less mobile species. The convergent evolution of greater eye abundance in more mobile scallops likely indicates a visual improvement based on increased levels of oversampling of the surrounding environment.
Collapse
Affiliation(s)
- Jorge A Audino
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011
| | - Dean C Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011
| | - Jeanne M Serb
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011
| |
Collapse
|
30
|
Schott RK, Bell RC, Loew ER, Thomas KN, Gower DJ, Streicher JW, Fujita MK. Transcriptomic evidence for visual adaptation during the aquatic to terrestrial metamorphosis in leopard frogs. BMC Biol 2022; 20:138. [PMID: 35761245 PMCID: PMC9238225 DOI: 10.1186/s12915-022-01341-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/30/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Differences in morphology, ecology, and behavior through ontogeny can result in opposing selective pressures at different life stages. Most animals, however, transition through two or more distinct phenotypic phases, which is hypothesized to allow each life stage to adapt more freely to its ecological niche. How this applies to sensory systems, and in particular how sensory systems adapt across life stages at the molecular level, is not well understood. Here, we used whole-eye transcriptomes to investigate differences in gene expression between tadpole and juvenile southern leopard frogs (Lithobates sphenocephalus), which rely on vision in aquatic and terrestrial light environments, respectively. Because visual physiology changes with light levels, we also tested the effect of light and dark exposure. RESULTS We found 42% of genes were differentially expressed in the eyes of tadpoles versus juveniles and 5% for light/dark exposure. Analyses targeting a curated subset of visual genes revealed significant differential expression of genes that control aspects of visual function and development, including spectral sensitivity and lens composition. Finally, microspectrophotometry of photoreceptors confirmed shifts in spectral sensitivity predicted by the expression results, consistent with adaptation to distinct light environments. CONCLUSIONS Overall, we identified extensive expression-level differences in the eyes of tadpoles and juveniles related to observed morphological and physiological changes through metamorphosis and corresponding adaptive shifts to improve vision in the distinct aquatic and terrestrial light environments these frogs inhabit during their life cycle. More broadly, these results suggest that decoupling of gene expression can mediate the opposing selection pressures experienced by organisms with complex life cycles that inhabit different environmental conditions throughout ontogeny.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Biology, York University, Toronto, Ontario, Canada.
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA.
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Ellis R Loew
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Kate N Thomas
- Department of Life Sciences, The Natural History Museum, London, UK
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, London, UK
| | | | - Matthew K Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
31
|
Tang SL, Liang XF, Li L, Wu J, Lu K. Genome-wide identification and expression patterns of opsin genes during larval development in Chinese perch (Siniperca chuatsi). Gene X 2022; 825:146434. [PMID: 35304240 DOI: 10.1016/j.gene.2022.146434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/01/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Vision is important for fish to forage food and fishes express opsin genes to receive visual signals. Chinese perch (Siniperca chuatsi) larvae prey on other fish species larvae at firstfeeding but donoteat any zooplankton, the expression of opsin genes in S. chuatsilarvae is unknown. In this study, we conducted a whole-genome analysis and demonstrated that S. chuatsihave5cone opsin genes (sws1, sws2Aα, sws2Aβ, rh2and lws)and 2 rod opsin genes (rh1and rh1-exorh). The syntenicanalysisshowedthe flanking genes ofall opsin genes were conserved during fish evolution, but the ancestorof S. chuatsimightlost some opsin gene copies duringtheevolution.The phylogeneticanalysisshowed sws1of S. chuatsiwas closest to those of Lates calcariferwhich had a truncated sws1gene; the sws2Aα, sws2Aβ,lws,rh2,rh1 andrh1-exorh of S. chuatsihad a closer relationship with those of Percomorpha fishes.Importantly, results of in situhybridization showed the sws1 opsingene,which is related to forage zooplankton,had extremely low levelexpression in retinaat early stages.Surprisingly, the rh2 opsin gene had a high level expression at firstfeeding stage. The sws2Aα, sws2Aβand lwshad a little expression at early stages but the lwsshowed a increasing trend with larval development, rh1 opsin gene expression appeared at15 dph. In thisstudy, we found a specialpattern of visual opsin genes expression in S. chuatsi, it might influence the larval first feeding and feeding habit.
Collapse
Affiliation(s)
- Shu-Lin Tang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China.
| | - Ling Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
32
|
Cheney KL, Hudson J, de Busserolles F, Luehrmann M, Shaughnessy A, van den Berg C, Green NF, Marshall NJ, Cortesi F. Seeing Picasso: an investigation into the visual system of the triggerfish Rhinecanthus aculeatus. J Exp Biol 2022; 225:jeb243907. [PMID: 35244167 PMCID: PMC9080752 DOI: 10.1242/jeb.243907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022]
Abstract
Vision is used by animals to find food and mates, avoid predators, defend resources and navigate through complex habitats. Behavioural experiments are essential for understanding animals' perception but are often challenging and time-consuming; therefore, using species that can be trained easily for complex tasks is advantageous. Picasso triggerfish, Rhinecanthus aculeatus, have been used in many behavioural studies investigating vision and navigation. However, little is known about the molecular and anatomical basis of their visual system. We addressed this knowledge gap here and behaviourally tested achromatic and chromatic acuity. In terms of visual opsins, R. aculeatus possessed one rod opsin gene (RH1) and at least nine cone opsins: one violet-sensitive SWS2B gene, seven duplicates of the blue-green-sensitive RH2 gene (RH2A, RH2B, RH2C1-5) and one red-sensitive LWS gene. However, only five cone opsins were expressed: SWS2B expression was consistent, while RH2A, RH2C-1 and RH2C-2 expression varied depending on whether fish were sampled from the field or aquaria. Levels of LWS expression were very low. Using fluorescence in situ hybridisation, we found SWS2B was expressed exclusively in single cones, whereas RH2A and RH2Cs were expressed in opposite double cone members. Anatomical resolution estimated from ganglion cell densities was 6.8 cycles per degree (cpd), which was significantly higher than values obtained from behavioural testing for black-and-white achromatic stimuli (3.9 cpd) and chromatic stimuli (1.7-1.8 cpd). These measures were twice as high as previously reported. This detailed information on their visual system will help inform future studies with this emerging focal species.
Collapse
Affiliation(s)
- Karen L. Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jemma Hudson
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martin Luehrmann
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Abigail Shaughnessy
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cedric van den Berg
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Naomi F. Green
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
33
|
Ozerov M, Noreikiene K, Kahar S, Huss M, Huusko A, Kõiv T, Sepp M, López M, Gårdmark A, Gross R, Vasemägi A. Whole-genome sequencing illuminates multifaceted targets of selection to humic substances in Eurasian perch. Mol Ecol 2022; 31:2367-2383. [PMID: 35202502 PMCID: PMC9314028 DOI: 10.1111/mec.16409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
Extreme environments are inhospitable to the majority of species, but some organisms are able to survive in such hostile conditions due to evolutionary adaptations. For example, modern bony fishes have colonized various aquatic environments, including perpetually dark, hypoxic, hypersaline and toxic habitats. Eurasian perch (Perca fluviatilis) is among the few fish species of northern latitudes that is able to live in very acidic humic lakes. Such lakes represent almost "nocturnal" environments; they contain high levels of dissolved organic matter, which in addition to creating a challenging visual environment, also affects a large number of other habitat parameters and biotic interactions. To reveal the genomic targets of humic-associated selection, we performed whole-genome sequencing of perch originating from 16 humic and 16 clear-water lakes in northern Europe. We identified over 800,000 single nucleotide polymorphisms, of which >10,000 were identified as potential candidates under selection (associated with >3000 genes) using multiple outlier approaches. Our findings suggest that adaptation to the humic environment may involve hundreds of regions scattered across the genome. Putative signals of adaptation were detected in genes and gene families with diverse functions, including organism development and ion transportation. The observed excess of variants under selection in regulatory regions highlights the importance of adaptive evolution via regulatory elements, rather than via protein sequence modification. Our study demonstrates the power of whole-genome analysis to illuminate the multifaceted nature of humic adaptation and provides the foundation for further investigation of causal mutations underlying phenotypic traits of ecological and evolutionary importance.
Collapse
Affiliation(s)
- Mikhail Ozerov
- Department of Aquatic ResourcesInstitute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
- Department of BiologyUniversity of TurkuTurkuFinland
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | - Kristina Noreikiene
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| | - Siim Kahar
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| | - Magnus Huss
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Ari Huusko
- Natural resources Institute Finland (Luke)PaltamoFinland
| | - Toomas Kõiv
- Chair of Hydrobiology and FisheryInstitute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Margot Sepp
- Chair of Hydrobiology and FisheryInstitute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - María‐Eugenia López
- Department of Aquatic ResourcesInstitute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
| | - Anna Gårdmark
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Riho Gross
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| | - Anti Vasemägi
- Department of Aquatic ResourcesInstitute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| |
Collapse
|
34
|
Karagic N, Härer A, Meyer A, Torres-Dowdall J. Thyroid hormone tinkering elicits integrated phenotypic changes potentially explaining rapid adaptation of color vision in cichlid fish. Evolution 2022; 76:837-845. [PMID: 35247267 DOI: 10.1111/evo.14455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 01/05/2022] [Indexed: 01/21/2023]
Abstract
Vision is critical for most vertebrates, including fish. One challenge that aquatic habitats pose is the high variability in spectral properties depending on depth and the inherent optical properties of the water. By altering opsin gene expression and chromophore usage, cichlid fish modulate visual sensitivities to maximize sensory input from the available light in their respective habitat. Thyroid hormone (TH) has been proposed to play a role in governing adaptive diversification in visual sensitivity in Nicaraguan Midas cichlids, which evolved in less than 4000 generations. As suggested by indirect measurements of TH levels (i.e., expression of deiodinases), populations adapted to short wavelength light in clear lakes have lower TH levels than ones inhabiting turbid lakes enriched in long-wavelength light. We experimentally manipulated TH levels by exposing 2-week-old Midas cichlids to exogenous TH or a TH inhibitor and measured opsin gene expression and chromophore usage (via cyp27c1 expression). Although exogenous TH induces long-wavelength sensitivity by changing opsin gene expression and chromophore usage in a concerted manner, TH-inhibited fish exhibit a visual phenotype with sensitivities shifted to shorter wavelengths. Tinkering with TH levels in eyes results in concerted phenotypic changes that can provide a rapid mechanism of adaptation to novel light environments.
Collapse
Affiliation(s)
- Nidal Karagic
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Andreas Härer
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany.,Division of Biological Sciences, Section of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, California, 92093
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | | |
Collapse
|
35
|
Ricci V, Ronco F, Musilova Z, Salzburger W. Molecular evolution and depth-related adaptations of rhodopsin in the adaptive radiation of cichlid fishes in Lake Tanganyika. Mol Ecol 2022; 31:2882-2897. [PMID: 35302684 PMCID: PMC9314932 DOI: 10.1111/mec.16429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/29/2022]
Abstract
The visual sensory system is essential for animals to perceive their environment and is thus under strong selection. In aquatic environments, light intensity and spectrum differ primarily along a depth gradient. Rhodopsin (RH1) is the only opsin responsible for dim‐light vision in vertebrates and has been shown to evolve in response to the respective light conditions, including along a water depth gradient in fishes. In this study, we examined the diversity and sequence evolution of RH1 in virtually the entire adaptive radiation of cichlid fishes in Lake Tanganyika, focusing on adaptations to the environmental light with respect to depth. We show that Tanganyikan cichlid genomes contain a single copy of RH1. The 76 variable amino acid sites detected in RH1 across the radiation were not uniformly distributed along the protein sequence, and 31 of these variable sites show signals of positive selection. Moreover, the amino acid substitutions at 15 positively selected sites appeared to be depth‐related, including three key tuning sites that directly mediate shifts in the peak spectral sensitivity, one site involved in protein stability and 11 sites that may be functionally important on the basis of their physicochemical properties. Among the strongest candidate sites for deep‐water adaptations are two known key tuning sites (positions 292 and 299) and three newly identified variable sites (37, 104 and 290). Our study, which is the first comprehensive analysis of RH1 evolution in a massive adaptive radiation of cichlid fishes, provides novel insights into the evolution of RH1 in a freshwater environment.
Collapse
Affiliation(s)
- Virginie Ricci
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
36
|
Streets A, England H, Marshall J. Colour vision in stomatopod crustaceans: more questions than answers. J Exp Biol 2022; 225:274564. [PMID: 35224643 PMCID: PMC9001920 DOI: 10.1242/jeb.243699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
Stomatopod crustaceans, or mantis shrimps, are known for their extensive range of spectral sensitivities but relatively poor spectral discrimination. Instead of the colour-opponent mechanism of other colour vision systems, the 12 narrow-band colour channels they possess may underlie a different method of colour processing. We investigated one hypothesis, in which the photoreceptors are proposed to act as individual wave-band detectors, interpreting colour as a parallel pattern of photoreceptor activation, rather than a ratiometric comparison of individual signals. This different form of colour detection has been used to explain previous behavioural tests in which low saturation blue was not discriminated from grey, potentially because of similar activation patterns. Results here, however, indicate that the stomatopod, Haptosquilla trispinosa was able to easily distinguish several colours, including blue of both high and low saturation, from greys. The animals did show a decrease in performance over time in an artificially lit environment, indicating plasticity in colour discrimination ability. This rapid plasticity, most likely the result of a change in opsin (visual pigment) expression, has now been noted in several animal lineages (both invertebrate and vertebrate) and is a factor we suggest needing care and potential re-examination in any colour-based behavioural tests. As for stomatopods, it remains unclear why they achieve poor colour discrimination using the most comprehensive set of spectral sensitivities in the animal kingdom and also what form of colour processing they may utilise.
Collapse
Affiliation(s)
- Amy Streets
- Queensland Brain Institute, University of Queensland, Australia
| | - Hayley England
- Queensland Brain Institute, University of Queensland, Australia
| | - Justin Marshall
- Queensland Brain Institute, University of Queensland, Australia
| |
Collapse
|
37
|
Schott RK, Perez L, Kwiatkowski MA, Imhoff V, Gumm JM. Evolutionary analyses of visual opsin genes in frogs and toads: Diversity, duplication, and positive selection. Ecol Evol 2022; 12:e8595. [PMID: 35154658 PMCID: PMC8820127 DOI: 10.1002/ece3.8595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 01/12/2023] Open
Abstract
Among major vertebrate groups, anurans (frogs and toads) are understudied with regard to their visual systems, and little is known about variation among species that differ in ecology. We sampled North American anurans representing diverse evolutionary and life histories that likely possess visual systems adapted to meet different ecological needs. Using standard molecular techniques, visual opsin genes, which encode the protein component of visual pigments, were obtained from anuran retinas. Additionally, we extracted the visual opsins from publicly available genome and transcriptome assemblies, further increasing the phylogenetic and ecological diversity of our dataset to 33 species in total. We found that anurans consistently express four visual opsin genes (RH1, LWS, SWS1, and SWS2, but not RH2) even though reported photoreceptor complements vary widely among species. The proteins encoded by these genes showed considerable sequence variation among species, including at sites known to shift the spectral sensitivity of visual pigments in other vertebrates and had conserved substitutions that may be related to dim-light adaptation. Using molecular evolutionary analyses of selection (dN/dS) we found significant evidence for positive selection at a subset of sites in the dim-light rod opsin gene RH1 and the long wavelength sensitive cone opsin LWS. The function of sites inferred to be under positive selection are largely unknown, but a few are likely to affect spectral sensitivity and other visual pigment functions based on proximity to previously identified sites in other vertebrates. We also found the first evidence of visual opsin duplication in an amphibian with the duplication of the LWS gene in the African bullfrog, which had distinct LWS copies on the sex chromosomes suggesting the possibility of sex-specific visual adaptation. Taken together, our results indicate that ecological factors, such as habitat and life history, as well as behavior, may be driving changes to anuran visual systems.
Collapse
Affiliation(s)
- Ryan K. Schott
- Department of BiologyYork UniversityTorontoOntarioCanada
- Department of Vertebrate ZoologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDistrict of ColumbiaUSA
| | - Leah Perez
- Department of BiologyStephen F. Austin State UniversityNacogdochesTexasUSA
| | | | - Vance Imhoff
- Southern Nevada Fish and Wildlife OfficeUS Fish and Wildlife ServiceLas VegasNevadaUSA
| | - Jennifer M. Gumm
- Department of BiologyStephen F. Austin State UniversityNacogdochesTexasUSA
- Ash Meadows Fish Conservation FacilityUS Fish and Wildlife ServiceAmargosa ValleyNevadaUSA
| |
Collapse
|
38
|
Liang Q, Afriyie G, Chen Z, Xu Z, Dong Z, Guo Y, Wang Z. Analysis of opsin gene family of Crimson snapper (Lutjanus erythropterus). Gene 2022; 807:145960. [PMID: 34509581 DOI: 10.1016/j.gene.2021.145960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022]
Abstract
Opsin is a fellow of the G protein-coupled receptors (GPCRs) superfamily. It can be divided into visual and non-visual opsin according to whether it is directly involved in visual imaging. Opsin plays an important role in visual image formation and the regulation of non-image forming functions such as circadian entrainment in the growth, development and evolution of fish. Crimson snapper belongs to Perciforme mainly found in the Indo-West Pacific and the South China Sea. It is one of the most influential economic fishes in the South China Sea. In order to study the existence and expression of opsin gene in Crimson snapper, we sequenced the genome and tissue sample transcriptome of Crimson snapper. In this study, 32 opsin genes were identified from the genome of Crimson snapper. The length of these genes ranged from 1061 bp to 86203 bp and were distributed on 15 different chromosomes. The analysis of opsin gene family of Crimson snapper showed that the sws2 had two extra copies as compared with that of Zebrafish. Domain and motif analysis revealed that all the 32 opsin genes have seven-(pass)-transmembrane domain receptors (7TM receptors) each, and the opsin family contained 10 common motifs. The expression level of opsin gene, confirmed by RT-qPCR, was analyzed by using nine tissues transcriptome databases of Crimson snapper. The results showed that almost all opsin genes were highly expressed in the retina and brain, except opn7a and opn7b which were expressed in intestine and red skin, and almost no expression in other tissues. Our results provide a comprehensive basic knowledge for the opsin gene family of Crimson snapper, which has significance for the study of the function of opsin in Lutjanidaes.
Collapse
Affiliation(s)
- Qiulu Liang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
| | - Gyamfua Afriyie
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
| | - Zizhao Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
| | - Zhenmin Xu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China.
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China.
| |
Collapse
|
39
|
Brochu MP, Aubin-Horth N. Shedding light on the circadian clock of the threespine stickleback. J Exp Biol 2021; 224:jeb242970. [PMID: 34854903 PMCID: PMC8729910 DOI: 10.1242/jeb.242970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022]
Abstract
The circadian clock is an internal timekeeping system shared by most organisms, and knowledge about its functional importance and evolution in natural environments is still needed. Here, we investigated the circadian clock of wild-caught threespine sticklebacks (Gasterosteus aculeatus) at the behavioural and molecular levels. Although their behaviour, ecology and evolution are well studied, information on their circadian rhythms are scarce. We quantified the daily locomotor activity rhythm under a light:dark cycle (LD) and under constant darkness (DD). Under LD, all fish exhibited significant daily rhythmicity, while under DD, only 18% of individuals remained rhythmic. This interindividual variation suggests that the circadian clock controls activity only in certain individuals. Moreover, under LD, some fish were almost exclusively nocturnal, while others were active around the clock. Furthermore, the most nocturnal fish were also the least active. These results suggest that light masks activity (i.e. suppresses activity without entraining the internal clock) more strongly in some individuals than others. Finally, we quantified the expression of five clock genes in the brain of sticklebacks under DD using qPCR. We did not detect circadian rhythmicity, which could indicate either that the clock molecular oscillator is highly light-dependent, or that there was an oscillation but that we were unable to detect it. Overall, our study suggests that a strong circadian control on behavioural rhythms may not necessarily be advantageous in a natural population of sticklebacks and that the daily phase of activity varies greatly between individuals because of a differential masking effect of light.
Collapse
Affiliation(s)
| | - Nadia Aubin-Horth
- Département de Biologie and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
40
|
Lupše N, Cortesi F, Freese M, Marohn L, Pohlman JD, Wysujack K, Hanel R, Musilova Z. Visual gene expression reveals a cone to rod developmental progression in deep-sea fishes. Mol Biol Evol 2021; 38:5664-5677. [PMID: 34562090 PMCID: PMC8662630 DOI: 10.1093/molbev/msab281] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vertebrates use cone cells in the retina for colour vision and rod cells to see in dim light. Many deep-sea fishes have adapted to their environment to have only rod cells in the retina, while both rod and cone genes are still preserved in their genomes. As deep-sea fish larvae start their lives in the shallow, and only later submerge to the depth, they have to cope with diverse environmental conditions during ontogeny. Using a comparative transcriptomic approach in 20 deep-sea fish species from eight teleost orders, we report on a developmental cone-to-rod switch. While adults mostly rely on rod opsin (RH1) for vision in dim light, larvae almost exclusively express middle-wavelength-sensitive ("green") cone opsins (RH2) in their retinas. The phototransduction cascade genes follow a similar ontogenetic pattern of cone- followed by rod-specific gene expression in most species, except for the pearleye and sabretooth (Aulopiformes), in which the cone cascade remains dominant throughout development. By inspecting the whole genomes of five deep-sea species (four of them sequenced within this study: Idiacanthus fasciola, Chauliodus sloani; Stomiiformes; Coccorella atlantica, and Scopelarchus michaelsarsi; Aulopiformes), we found that deep-sea fish possess one or two copies of the rod RH1 opsin gene, and up to seven copies of the cone RH2 opsin genes in their genomes, while other cone opsin classes have been mostly lost. Our findings hence provide molecular evidence for a limited opsin gene repertoire and a conserved vertebrate pattern whereby cone photoreceptors develop first and rod photoreceptors are added only at later developmental stages.
Collapse
Affiliation(s)
- Nik Lupše
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - Marko Freese
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Lasse Marohn
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Jan-Dag Pohlman
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Klaus Wysujack
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Reinhold Hanel
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| |
Collapse
|
41
|
Reimchen TE, Hunter D, Eggenberger JH. Black bear colour polymorphism through a fragmented Snell’s window. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The white colour morph of the black bear (Ursus americanus kermodei) occurring on islands on the coast of British Columbia, western Canada, captures more salmon (Oncorhynchus spp.) than does the black morph and is hypothesized to have reduced contrast against the sky from the visual perspective of the salmon. We tested this hypothesis in a natural salmon stream by recording the number and proximity of chum salmon (Oncorhynchus keta) approaches (N = 1617 fish, 91 trials) towards life-size bear models differing in body and leg coloration under a mixed forest-sky canopy. Although salmon approached the white models at a much higher rate than black models, consistent with camouflage, we found greater abrupt evasions to the black models, largely independent of their contrast against the above-surface or below-surface backgrounds. Upward-facing sub-surface video-imaging through the rippled water-air interface indicated major visual fragmentation of the model’s integrity. We suggest that increased evasiveness to black models reflects an evolutionary response due to 3+ million years of trophic interaction between salmon and bears, and that the major differences between calm vs. rippled conditions through the optical cone (Snell’s window) at the water-air interface remains a largely unexplored theme in assessing foraging preferences and adaptive coloration within and among species using the water-air interface.
Collapse
Affiliation(s)
- Thomas E Reimchen
- Department of Biology, University of Victoria, Victoria, B.C., Canada
| | - Danial Hunter
- Department of Biology, University of Victoria, Victoria, B.C., Canada
| | | |
Collapse
|
42
|
Mitchell LJ, Cheney KL, Luehrmann M, Marshall NJ, Michie K, Cortesi F. Molecular evolution of ultraviolet visual opsins and spectral tuning of photoreceptors in anemonefishes (Amphiprioninae). Genome Biol Evol 2021; 13:6347585. [PMID: 34375382 PMCID: PMC8511661 DOI: 10.1093/gbe/evab184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
Many animals including birds, reptiles, insects, and teleost fishes can see ultraviolet (UV) light (shorter than 400 nm), which has functional importance for foraging and communication. For coral reef fishes, shallow reef environments transmit a broad spectrum of light, rich in UV, driving the evolution of diverse spectral sensitivities. However, the identities and sites of the specific visual genes that underly vision in reef fishes remain elusive and are useful in determining how evolution has tuned vision to suit life on the reef. We investigated the visual systems of 11 anemonefish (Amphiprioninae) species, specifically probing for the molecular pathways that facilitate UV-sensitivity. Searching the genomes of anemonefishes, we identified a total of eight functional opsin genes from all five vertebrate visual opsin subfamilies. We found rare instances of teleost UV-sensitive SWS1 opsin gene duplications that produced two functionally coding paralogs (SWS1α and SWS1β) and a pseudogene. We also found separate green sensitive RH2A opsin gene duplicates not yet reported in the family Pomacentridae. Transcriptome analysis revealed false clown anemonefish (Amphiprion ocellaris) expressed one rod opsin (RH1) and six cone opsins (SWS1β, SWS2B, RH2B, RH2A-1, RH2A-2, LWS) in the retina. Fluorescent in situ hybridization highlighted the (co-)expression of SWS1β with SWS2B in single cones, and either RH2B, RH2A, or RH2A together with LWS in different members of double cone photoreceptors (two single cones fused together). Our study provides the first in-depth characterization of visual opsin genes found in anemonefishes and provides a useful basis for the further study of UV-vision in reef fishes.
Collapse
Affiliation(s)
- Laurie J Mitchell
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martin Luehrmann
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - N Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kyle Michie
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.,King's College, Cambridge, CB2 1ST, UK
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
43
|
Musilova Z, Salzburger W, Cortesi F. The Visual Opsin Gene Repertoires of Teleost Fishes: Evolution, Ecology, and Function. Annu Rev Cell Dev Biol 2021; 37:441-468. [PMID: 34351785 DOI: 10.1146/annurev-cellbio-120219-024915] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual opsin genes expressed in the rod and cone photoreceptor cells of the retina are core components of the visual sensory system of vertebrates. Here, we provide an overview of the dynamic evolution of visual opsin genes in the most species-rich group of vertebrates, teleost fishes. The examination of the rich genomic resources now available for this group reveals that fish genomes contain more copies of visual opsin genes than are present in the genomes of amphibians, reptiles, birds, and mammals. The expansion of opsin genes in fishes is due primarily to a combination of ancestral and lineage-specific gene duplications. Following their duplication, the visual opsin genes of fishes repeatedly diversified at the same key spectral-tuning sites, generating arrays of visual pigments sensitive from the ultraviolet to the red spectrum of the light. Species-specific opsin gene repertoires correlate strongly with underwater light habitats, ecology, and color-based sexual selection. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Zuzana Musilova
- Department of Zoology, Charles University, Prague 128 44, Czech Republic;
| | | | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Queensland, Australia;
| |
Collapse
|
44
|
Chang CH, Catchen J, Moran RL, Rivera-Colón AG, Wang YC, Fuller RC. Sequence Analysis and Ontogenetic Expression Patterns of Cone Opsin Genes in the Bluefin Killifish (Lucania goodei). J Hered 2021; 112:357-366. [PMID: 33837393 DOI: 10.1093/jhered/esab017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Sensory systems allow for the transfer of environmental stimuli into internal cues that can alter physiology and behavior. Many studies of visual systems focus on opsins to compare spectral sensitivity among individuals, populations, and species living in different lighting environments. This requires an understanding of the cone opsins, which can be numerous. The bluefin killifish is a good model for studying the interaction between environments and visual systems as they are found in both clear springs and tannin-stained swamps. We conducted a genome-wide screening and demonstrated that the bluefin killifish has 9 cone opsins: 1 SWS1 (354 nm), 2 SWS2 (SWS2B: 359 nm, SWS2A: 448 nm), 2 RH2 (RH2-2: 476 nm, RH2-1: 537 nm), and 4 LWS (LWS-1: 569 nm, LWS-2: 524 nm, LWS-3: 569 nm, LWS-R: 560 or 569 nm). These 9 cone opsins were located on 4 scaffolds. One scaffold contained the 2 SWS2 and 3 of the 4 LWS opsins in the same syntenic order as found in other cyprinodontoid fishes. We also compared opsin expression in larval and adult killifish under clear water conditions, which mimic springs. Two of the newly discovered opsins (LWS-2 and LWS-3) were expressed at low levels (<0.2%). Whether these opsins make meaningful contributions to visual perception in other contexts (i.e., swamp conditions) is unclear. In contrast, there was an ontogenetic change from using LWS-R to LWS-1 opsin. Bluefin killifish adults may be slightly more sensitive to longer wavelengths, which might be related to sexual selection and/or foraging preferences.
Collapse
Affiliation(s)
- Chia-Hao Chang
- TIGP, Biodiversity Program, Tunghai University, Taiwan Boulevard, Taichung City, Taiwan
| | - Julian Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, South Goodwin, Urbana, IL
| | - Rachel L Moran
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN
| | - Angel G Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, South Goodwin, Urbana, IL
| | - Yu-Chun Wang
- Planning and Information Division, Fisheries Research Institute, Keelung City, Taiwan
| | - Rebecca C Fuller
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, 606 East Healey Street, Champaign, IL
| |
Collapse
|
45
|
Abstract
The use of spectral information in natural light to inform behaviour is one of the oldest and most fundamental abilities of visual systems. It long-predates animals' venture onto the land, and even the appearance of image-forming eyes. Accordingly, circuits for colour vision evolved under the surface of ancient oceans for hundreds of millions of years. These aquatic beginnings fundamentally underpin, and likely constrain, the organisation of modern visual systems. In contrast to our detailed circuit level understanding from diverse terrestrial vertebrates, however, comparatively little is known about their aquatic counterparts. Here, I summarise some of what is known about neural circuits for colour vision in fish, the most species-diverse group of vertebrates. With a focus on zebrafish, I will explore how their computational strategies are linked to the statistics of natural light in the underwater world, and how their study might help us understand vision in general, including in our own eyes.
Collapse
|
46
|
Hauser FE, Ilves KL, Schott RK, Alvi E, López-Fernández H, Chang BSW. Evolution, inactivation and loss of short wavelength-sensitive opsin genes during the diversification of Neotropical cichlids. Mol Ecol 2021; 30:1688-1703. [PMID: 33569886 DOI: 10.1111/mec.15838] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/30/2022]
Abstract
Natural variation in the number, expression and function of sensory genes in an organism's genome is often tightly linked to different ecological and evolutionary forces. Opsin genes, which code for the first step in visual transduction, are ideal models for testing how ecological factors such as light environment may influence visual system adaptation. Neotropical cichlid fishes are a highly ecologically diverse group that evolved in a variety of aquatic habitats, including black (stained), white (opaque) and clear waters. We used cross-species exon capture to sequence Neotropical cichlid short wavelength-sensitive (SWS) opsins, which mediate ultraviolet (UV) to blue visual sensitivity. Neotropical cichlid SWS1 opsin (UV-sensitive) underwent a relaxation of selective constraint during the early phases of cichlid diversification in South America, leading to pseudogenization and loss. Conversely, SWS2a (blue-sensitive) experienced a burst of episodic positive selection at the base of the South American cichlid radiation. This burst coincides with SWS1 relaxation and loss, and is consistent with findings in ecomorphological studies characterizing a period of extensive ecological divergence in Neotropical cichlids. We use ancestral sequence reconstruction and protein modelling to investigate mutations along this ancestral branch that probably modified SWS2a function. Together, our results suggest that variable light environments played a prominent early role in shaping SWS opsin diversity during the Neotropical cichlid radiation. Our results also illustrate that long-term evolution under light-limited conditions in South America may have reduced visual system plasticity; specifically, early losses of UV sensitivity may have constrained the evolutionary trajectory of Neotropical cichlid vision.
Collapse
Affiliation(s)
- Frances E Hauser
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Katriina L Ilves
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Erin Alvi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hernán López-Fernández
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Torres-Dowdall J, Karagic N, Härer A, Meyer A. Diversity in visual sensitivity across Neotropical cichlid fishes via differential expression and intraretinal variation of opsin genes. Mol Ecol 2021; 30:1880-1891. [PMID: 33619757 DOI: 10.1111/mec.15855] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
The visual system of vertebrates has greatly contributed to our understanding of how different molecular mechanisms shape adaptive phenotypic diversity. Extensive work on African cichlid fishes has shown how variation in opsin gene expression mediates diversification as well as convergent evolution in colour vision. This trait has received less attention in Neotropical cichlids, the sister lineage to African cichlids, but the work done so far led to the conclusion that colour vision is much less variable in Neotropical species. However, as only few taxa have been investigated and as recent work found contradicting patterns, the diversity in meotropical cichlids might be greatly underestimated. Here, we survey patterns of opsin gene expression in 35 representative species of Neotropical cichlids, revealing much more variation than previously known. This diversity can be attributed to two main mechanisms: (i) differential expression of the blue-sensitive sws2a, the green-sensitive rh2a, and the red-sensitive lws opsin genes, and (ii) simultaneous expression of up to five opsin genes, instead of only three as commonly found, in a striking dorsoventral pattern across the retina. This intraretinal variation in opsin genes expression results in steep gradients in visual sensitivity that may represent a convergent adaptation to clear waters with broad light environments. These results highlight the role and flexibility of gene expression in generating adaptive phenotypic diversification.
Collapse
Affiliation(s)
- Julián Torres-Dowdall
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nidal Karagic
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andreas Härer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
48
|
Corbo JC. Vitamin A 1/A 2 chromophore exchange: Its role in spectral tuning and visual plasticity. Dev Biol 2021; 475:145-155. [PMID: 33684435 DOI: 10.1016/j.ydbio.2021.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 01/20/2023]
Abstract
Vertebrate rod and cone photoreceptors detect light via a specialized organelle called the outer segment. This structure is packed with light-sensitive molecules known as visual pigments that consist of a G-protein-coupled, seven-transmembrane protein known as opsin, and a chromophore prosthetic group, either 11-cis retinal ('A1') or 11-cis 3,4-didehydroretinal ('A2'). The enzyme cyp27c1 converts A1 into A2 in the retinal pigment epithelium. Replacing A1 with A2 in a visual pigment red-shifts its spectral sensitivity and broadens its bandwidth of absorption at the expense of decreased photosensitivity and increased thermal noise. The use of vitamin A2-based visual pigments is strongly associated with the occupation of aquatic habitats in which the ambient light is red-shifted. By modulating the A1/A2 ratio in the retina, an organism can dynamically tune the spectral sensitivity of the visual system to better match the predominant wavelengths of light in its environment. As many as a quarter of all vertebrate species utilize A2, at least during a part of their life cycle or under certain environmental conditions. A2 utilization therefore represents an important and widespread mechanism of sensory plasticity. This review provides an up-to-date account of the A1/A2 chromophore exchange system.
Collapse
Affiliation(s)
- Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, 63110, United States.
| |
Collapse
|
49
|
Eaton KM, Bernal MA, Backenstose NJC, Yule DL, Krabbenhoft TJ. Nanopore Amplicon Sequencing Reveals Molecular Convergence and Local Adaptation of Rhodopsin in Great Lakes Salmonids. Genome Biol Evol 2021; 13:evaa237. [PMID: 33247716 PMCID: PMC7874997 DOI: 10.1093/gbe/evaa237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 11/13/2022] Open
Abstract
Local adaptation can drive diversification of closely related species across environmental gradients and promote convergence of distantly related taxa that experience similar conditions. We examined a potential case of adaptation to novel visual environments in a species flock (Great Lakes salmonids, genus Coregonus) using a new amplicon genotyping protocol on the Oxford Nanopore Flongle and MinION. We sequenced five visual opsin genes for individuals of Coregonus artedi, Coregonus hoyi, Coregonus kiyi, and Coregonus zenithicus. Comparisons revealed species-specific differences in a key spectral tuning amino acid in rhodopsin (Tyr261Phe substitution), suggesting local adaptation of C. kiyi to the blue-shifted depths of Lake Superior. Ancestral state reconstruction demonstrates that parallel evolution and "toggling" at this amino acid residue has occurred several times across the fish tree of life, resulting in identical changes to the visual systems of distantly related taxa across replicated environmental gradients. Our results suggest that ecological differences and local adaptation to distinct visual environments are strong drivers of both evolutionary parallelism and diversification.
Collapse
Affiliation(s)
- Katherine M Eaton
- Department of Biological Sciences, University at Buffalo, New York, USA
| | - Moisés A Bernal
- Department of Biological Sciences, University at Buffalo, New York, USA
| | | | - Daniel L Yule
- U.S. Geological Survey, Great Lakes Science Center – Lake Superior Biological Station, Ashland, Wisconsin, USA
| | - Trevor J Krabbenhoft
- Department of Biological Sciences, University at Buffalo, New York, USA
- RENEW Institute, University at Buffalo, New York, USA
| |
Collapse
|
50
|
de Busserolles F, Cortesi F, Fogg L, Stieb SM, Luehrmann M, Marshall NJ. The visual ecology of Holocentridae, a nocturnal coral reef fish family with a deep-sea-like multibank retina. J Exp Biol 2021; 224:jeb233098. [PMID: 33234682 DOI: 10.1242/jeb.233098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022]
Abstract
The visual systems of teleost fishes usually match their habitats and lifestyles. Since coral reefs are bright and colourful environments, the visual systems of their diurnal inhabitants have been more extensively studied than those of nocturnal species. In order to fill this knowledge gap, we conducted a detailed investigation of the visual system of the nocturnal reef fish family Holocentridae. Results showed that the visual system of holocentrids is well adapted to their nocturnal lifestyle with a rod-dominated retina. Surprisingly, rods in all species were arranged into 6-17 well-defined banks, a feature most commonly found in deep-sea fishes, that may increase the light sensitivity of the eye and/or allow colour discrimination in dim light. Holocentrids also have the potential for dichromatic colour vision during the day with the presence of at least two spectrally different cone types: single cones expressing the blue-sensitive SWS2A gene, and double cones expressing one or two green-sensitive RH2 genes. Some differences were observed between the two subfamilies, with Holocentrinae (squirrelfish) having a slightly more developed photopic visual system than Myripristinae (soldierfish). Moreover, retinal topography of both ganglion cells and cone photoreceptors showed specific patterns for each cell type, likely highlighting different visual demands at different times of the day, such as feeding. Overall, their well-developed scotopic visual systems and the ease of catching and maintaining holocentrids in aquaria, make them ideal models to investigate teleost dim-light vision and more particularly shed light on the function of the multibank retina and its potential for dim-light colour vision.
Collapse
Affiliation(s)
- Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lily Fogg
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sara M Stieb
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Center for Ecology, Evolution and Biogeochemistry, Eawag Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6074 Kastanienbaum, Switzerland; and Institute for Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Martin Luehrmann
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - N Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|