1
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
2
|
Foessl I, Ackert-Bicknell CL, Kague E, Laskou F, Jakob F, Karasik D, Obermayer-Pietsch B, Alonso N, Bjørnerem Å, Brandi ML, Busse B, Calado Â, Cebi AH, Christou M, Curran KM, Hald JD, Semeraro MD, Douni E, Duncan EL, Duran I, Formosa MM, Gabet Y, Ghatan S, Gkitakou A, Hassler EM, Högler W, Heino TJ, Hendrickx G, Khashayar P, Kiel DP, Koromani F, Langdahl B, Lopes P, Mäkitie O, Maurizi A, Medina-Gomez C, Ntzani E, Ohlsson C, Prijatelj V, Rabionet R, Reppe S, Rivadeneira F, Roshchupkin G, Sharma N, Søe K, Styrkarsdottir U, Szulc P, Teti A, Tobias J, Valjevac A, van de Peppel J, van der Eerden B, van Rietbergen B, Zekic T, Zillikens MC. A perspective on muscle phenotyping in musculoskeletal research. Trends Endocrinol Metab 2024; 35:478-489. [PMID: 38553405 DOI: 10.1016/j.tem.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 05/12/2024]
Abstract
Musculoskeletal research should synergistically investigate bone and muscle to inform approaches for maintaining mobility and to avoid bone fractures. The relationship between sarcopenia and osteoporosis, integrated in the term 'osteosarcopenia', is underscored by the close association shown between these two conditions in many studies, whereby one entity emerges as a predictor of the other. In a recent workshop of Working Group (WG) 2 of the EU Cooperation in Science and Technology (COST) Action 'Genomics of MusculoSkeletal traits Translational Network' (GEMSTONE) consortium (CA18139), muscle characterization was highlighted as being important, but currently under-recognized in the musculoskeletal field. Here, we summarize the opinions of the Consortium and research questions around translational and clinical musculoskeletal research, discussing muscle phenotyping in human experimental research and in two animal models: zebrafish and mouse.
Collapse
Affiliation(s)
- Ines Foessl
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| | - Cheryl L Ackert-Bicknell
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Aurora, CO, USA
| | - Erika Kague
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Franz Jakob
- Bernhard-Heine-Centrum für Bewegungsforschung und Lehrstuhl für Funktionswerkstoffe der Medizin und der Zahnheilkunde, Würzburg, Germany
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Blemker SS, Brooks SV, Esser KA, Saul KR. Fiber-type traps: revisiting common misconceptions about skeletal muscle fiber types with application to motor control, biomechanics, physiology, and biology. J Appl Physiol (1985) 2024; 136:109-121. [PMID: 37994416 PMCID: PMC11212792 DOI: 10.1152/japplphysiol.00337.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
Skeletal muscle is a highly complex tissue that is studied by scientists from a wide spectrum of disciplines, including motor control, biomechanics, exercise science, physiology, cell biology, genetics, regenerative medicine, orthopedics, and engineering. Although this diversity in perspectives has led to many important discoveries, historically, there has been limited overlap in discussions across fields. This has led to misconceptions and oversimplifications about muscle biology that can create confusion and potentially slow scientific progress across fields. The purpose of this synthesis paper is to bring together research perspectives across multiple muscle fields to identify common assumptions related to muscle fiber type that are points of concern to clarify. These assumptions include 1) classification by myosin isoform and fiber oxidative capacity is equivalent, 2) fiber cross-sectional area (CSA) is a surrogate marker for myosin isoform or oxidative capacity, and 3) muscle force-generating capacity can be inferred from myosin isoform. We address these three fiber-type traps and provide some context for how these misunderstandings can and do impact experimental design, computational modeling, and interpretations of findings, from the perspective of a range of fields. We stress the dangers of generalizing findings about "muscle fiber types" among muscles or across species or sex, and we note the importance for precise use of common terminology across the muscle fields.
Collapse
Affiliation(s)
- Silvia S Blemker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Katherine R Saul
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, United States
| |
Collapse
|
4
|
Serrano N, Hyatt JPK, Houmard JA, Murgia M, Katsanos CS. Muscle fiber phenotype: a culprit of abnormal metabolism and function in skeletal muscle of humans with obesity. Am J Physiol Endocrinol Metab 2023; 325:E723-E733. [PMID: 37877797 PMCID: PMC10864022 DOI: 10.1152/ajpendo.00190.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
The proportion of the different types of fibers in a given skeletal muscle contributes to its overall metabolic and functional characteristics. Greater proportion of type I muscle fibers is associated with favorable oxidative metabolism and function of the muscle. Humans with obesity have a lower proportion of type I muscle fibers. We discuss how lower proportion of type I fibers in skeletal muscle of humans with obesity may explain metabolic and functional abnormalities reported in these individuals. These include lower muscle glucose disposal rate, mitochondrial content, protein synthesis, and quality/contractile function, as well as increased risk for heart disease, lower levels of physical activity, and propensity for weight gain/resistance to weight loss. We delineate future research directions and the need to examine hybrid muscle fiber populations, which are indicative of a transitory state of fiber phenotype within skeletal muscle. We also describe methodologies for precisely characterizing muscle fibers and gene expression at the single muscle fiber level to enhance our understanding of the regulation of muscle fiber phenotype in obesity. By contextualizing research in the field of muscle fiber type in obesity, we lay a foundation for future advancements and pave the way for translation of this knowledge to address impaired metabolism and function in obesity.
Collapse
Affiliation(s)
- Nathan Serrano
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
| | - Jon-Philippe K Hyatt
- College of Integrative Sciences and Arts, Arizona State University, Tempe, Arizona, United States
| | - Joseph A Houmard
- Department of Kinesiology, Human Performance Laboratory, East Carolina University, Greenville, North Carolina, United States
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Christos S Katsanos
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic-Arizona, Phoenix, Arizona, United States
| |
Collapse
|
5
|
Lin H, Peng H, Sun Y, Si M, Wu J, Wang Y, Thomas SS, Sun Z, Hu Z. Reprogramming of cis-regulatory networks during skeletal muscle atrophy in male mice. Nat Commun 2023; 14:6581. [PMID: 37853001 PMCID: PMC10584982 DOI: 10.1038/s41467-023-42313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
A comprehensive atlas of cis-regulatory elements and their dynamic activity is necessary to understand the transcriptional basis of cellular structure maintenance, metabolism, and responses to the environment. Here we show, using matched single-nucleus chromatin accessibility and RNA-sequencing from juvenile male C57BL6 mice, an atlas of accessible chromatin regions in both normal and denervated skeletal muscles. We identified cell-type-specific cis-regulatory networks, highlighting the dynamic regulatory circuits mediating transitions between myonuclear types. Through comparison of normal and perturbed muscle, we delineated the reprogramming of cis-regulatory networks in response to denervation, described the interplay of promoters/enhancers and target genes. We further unveil a hierarchical structure of transcription factors that delineate a regulatory network in atrophic muscle, identifying ELK4 as a key atrophy-related transcription factor that instigates muscle atrophy through TGF-β1 regulation. This study furnishes a rich genomic resource, essential for decoding the regulatory dynamics of skeletal muscle in both physiological and pathological states.
Collapse
Affiliation(s)
- Hongchun Lin
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hui Peng
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Yuxiang Sun
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Meijun Si
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangzhou, 510080, China
| | - Jiao Wu
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Sandhya S Thomas
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zheng Sun
- Endocrinology Division, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhaoyong Hu
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Hager A, Mazurak V, Noga M, Gilmour SM, Mager DR. Skeletal muscle fibre morphology in childhood-insights into myopenia in pediatric liver disease. Appl Physiol Nutr Metab 2023; 48:730-750. [PMID: 37319441 DOI: 10.1139/apnm-2023-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
TAKE-HOME MESSAGE Skeletal muscle morphology in healthy children changes with age. Liver disease may preferentially affect type II fibres in adults with end-stage liver disease (ESLD). More research is needed on the effects of ESLD on muscle morphology in children.
Collapse
Affiliation(s)
- Amber Hager
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Vera Mazurak
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Michelle Noga
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Susan M Gilmour
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Division of Pediatric Gastroenterology & Nutrition/Transplant Services, The Stollery Children's Hospital, Alberta Health Services, Edmonton, AB, Canada
| | - Diana R Mager
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Smith JAB, Murach KA, Dyar KA, Zierath JR. Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol 2023; 24:607-632. [PMID: 37225892 PMCID: PMC10527431 DOI: 10.1038/s41580-023-00606-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/26/2023]
Abstract
Viewing metabolism through the lens of exercise biology has proven an accessible and practical strategy to gain new insights into local and systemic metabolic regulation. Recent methodological developments have advanced understanding of the central role of skeletal muscle in many exercise-associated health benefits and have uncovered the molecular underpinnings driving adaptive responses to training regimens. In this Review, we provide a contemporary view of the metabolic flexibility and functional plasticity of skeletal muscle in response to exercise. First, we provide background on the macrostructure and ultrastructure of skeletal muscle fibres, highlighting the current understanding of sarcomeric networks and mitochondrial subpopulations. Next, we discuss acute exercise skeletal muscle metabolism and the signalling, transcriptional and epigenetic regulation of adaptations to exercise training. We address knowledge gaps throughout and propose future directions for the field. This Review contextualizes recent research of skeletal muscle exercise metabolism, framing further advances and translation into practice.
Collapse
Affiliation(s)
- Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kevin A Murach
- Molecular Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kenneth A Dyar
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Olthof MG, Flück M, Borbas P, Valdivieso P, Toigo M, Egli F, Joshy J, Filli L, Snedeker JG, Gerber C, Wieser K. Structural Musculotendinous Parameters That Predict Failed Tendon Healing After Rotator Cuff Repair. Orthop J Sports Med 2023; 11:23259671231196875. [PMID: 37736603 PMCID: PMC10510361 DOI: 10.1177/23259671231196875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 09/23/2023] Open
Abstract
Background Healing of the rotator cuff after repair constitutes a major clinical challenge with reported high failure rates. Identifying structural musculotendinous predictors for failed rotator cuff repair could enable improved diagnosis and management of patients with rotator cuff disease. Purpose To investigate structural predictors of the musculotendinous unit for failed tendon healing after rotator cuff repair. Study Design Cohort study; Level of evidence, 2. Methods Included were 116 shoulders of 115 consecutive patients with supraspinatus (SSP) tear documented on magnetic resonance imaging (MRI) who were treated with an arthroscopic rotator cuff repair. Preoperative assessment included standardized clinical and imaging (MRI) examinations. Intraoperatively, biopsies of the joint capsule, the SSP tendon, and muscle were harvested for histological assessment. At 3 and 12 months postoperatively, patients were re-examined clinically and with MRI. Structural and clinical predictors of healing were evaluated using logistic and linear regression models. Results Structural failure of tendon repair, which was significantly associated with poorer clinical outcome, was associated with older age (β = 1.12; 95% CI, 1.03 to 1.26; P = .03), shorter SSP tendon length (β = 0.89; 95% CI, 0.8 to 0.98; P = .02), and increased proportion of slow myosin heavy chain (MHC)-I/fast MHC-II hybrid muscle fibers (β = 1.23; 95% CI, 1.07 to 1.42; P = .004). Primary clinical outcome (12-month postoperative Constant score) was significantly less favorable for shoulders with fatty infiltration of the infraspinatus muscle (β = -4.71; 95% CI, -9.30 to -0.12; P = .044). Conversely, a high content of fast MHC-II muscle fibers (β = 0.24; 95% CI, 0.026 to 0.44; P = .028) was associated with better clinical outcome. Conclusion Both decreased tendon length and increased hybrid muscle fiber type were independent predictors for retear. Clinical outcome was compromised by tendon retearing and increased fatty infiltration of the infraspinatus muscle. A high content of fast MHC-II SSP muscle fibers was associated with a better clinical outcome. Registration NCT02123784 (ClinicalTrials.govidentifier).
Collapse
Affiliation(s)
- Maurits G.L. Olthof
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Martin Flück
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Zurich, Switzerland
| | - Paul Borbas
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Paola Valdivieso
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Zurich, Switzerland
| | - Marco Toigo
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Zurich, Switzerland
| | - Fabian Egli
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Jethin Joshy
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Lukas Filli
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jess G. Snedeker
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Christian Gerber
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Karl Wieser
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Danckaert A, Trignol A, Le Loher G, Loubens S, Staels B, Duez H, Shorte SL, Mayeuf-Louchart A. MuscleJ2: a rebuilding of MuscleJ with new features for high-content analysis of skeletal muscle immunofluorescence slides. Skelet Muscle 2023; 13:14. [PMID: 37612778 PMCID: PMC10463807 DOI: 10.1186/s13395-023-00323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023] Open
Abstract
Histological analysis of skeletal muscle is of major interest for understanding its behavior in different pathophysiological conditions, such as the response to different environments or myopathies. In this context, many software programs have been developed to perform automated high-content analysis. We created MuscleJ, a macro that runs in ImageJ/Fiji on batches of images. MuscleJ is a multianalysis tool that initially allows the analysis of muscle fibers, capillaries, and satellite cells. Since its creation, it has been used in many studies, and we have further developed the software and added new features, which are presented in this article. We converted the macro into a Java-language plugin with an improved user interface. MuscleJ2 provides quantitative analysis of fibrosis, vascularization, and cell phenotype in whole muscle sections. It also performs analysis of the peri-myonuclei, the individual capillaries, and any staining in the muscle fibers, providing accurate quantification within regional sublocalizations of the fiber. A multicartography option allows users to visualize multiple results simultaneously. The plugin is freely available to the muscle science community.
Collapse
Affiliation(s)
- Anne Danckaert
- UTechS Photonic BioImaging/C2RT, Institut Pasteur, Université Paris Cité, 75015, Paris, France.
| | - Aurélie Trignol
- French Armed Forces Biomedical Research Institute - IRBA, Brétigny-sur-Orge, France
| | - Guillaume Le Loher
- UTechS Photonic BioImaging/C2RT, Institut Pasteur, Université Paris Cité, 75015, Paris, France
- École Centrale d'Electronique (ECE), Paris, France
| | - Sébastien Loubens
- CHU Lille, INSERM, Institut Pasteur de Lille, Univ. Lille, U1011-EGID, Lille, 59000, France
- Service Neuropédiatrie, CHU Lille, 59000, Lille, France
| | - Bart Staels
- CHU Lille, INSERM, Institut Pasteur de Lille, Univ. Lille, U1011-EGID, Lille, 59000, France
| | - Hélène Duez
- CHU Lille, INSERM, Institut Pasteur de Lille, Univ. Lille, U1011-EGID, Lille, 59000, France
| | - Spencer L Shorte
- UTechS Photonic BioImaging/C2RT, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Alicia Mayeuf-Louchart
- CHU Lille, INSERM, Institut Pasteur de Lille, Univ. Lille, U1011-EGID, Lille, 59000, France.
| |
Collapse
|
10
|
Wang Y, Sun X, Yang Q, Guo C. Cucurbitacin IIb attenuates cancer cachexia induced skeletal muscle atrophy by regulating the IL-6/STAT3/FoxO signaling pathway. Phytother Res 2023; 37:3380-3393. [PMID: 37073890 DOI: 10.1002/ptr.7811] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 04/20/2023]
Abstract
The main features of cancer cachexia include skeletal muscle atrophy, which can significantly reduce the quality of life of patients. Clinical treatment of cancer cachexia is mainly based on nutritional therapy and physical exercise; medication only improves appetite but does not reverse the symptoms of skeletal muscle wasting. In this work, we systematically studied the underlying molecular mechanisms by which cucurbitacin IIb (CuIIb) ameliorates muscle wasting in cancer cachexia both in vitro and in vivo. CuIIb significantly ameliorated the chief features of cancer cachexia in vivo, alleviating weight loss, food intake, muscle wasting, adipose tissue depletion, and organ weight reductions. In vitro, CuIIb (10 and 20 μM) dose-dependently attenuated conditioned medium (CM)-induced C2C12 myotube atrophy. Collectively, our findings demonstrated that CuIIb prevented the upregulation of the E3 ubiquitin ligase muscle atrophy Fbox protein (MAFbx), myosin heavy chain (MyHC), and myogenin (MyoG) and impacted protein synthesis and degradation. In addition, CuIIb decreased the phosphorylation of Tyr705 in STAT3 by regulating the IL-6/STAT3/FoxO pathway to reduce skeletal muscle atrophy in cancer cachexia.
Collapse
Affiliation(s)
- Yaxian Wang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xipeng Sun
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Bersiner K, Park SY, Schaaf K, Yang WH, Theis C, Jacko D, Gehlert S. Resistance exercise: a mighty tool that adapts, destroys, rebuilds and modulates the molecular and structural environment of skeletal muscle. Phys Act Nutr 2023; 27:78-95. [PMID: 37583075 PMCID: PMC10440184 DOI: 10.20463/pan.2023.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE Skeletal muscle regulates health and performance by maintaining or increasing strength and muscle mass. Although the molecular mechanisms in response to resistance exercise (RE) significantly target the activation of protein synthesis, a plethora of other mechanisms and structures must be involved in orchestrating the communication, repair, and restoration of homeostasis after RE stimulation. In practice, RE can be modulated by variations in intensity, continuity and volume, which affect molecular responses and skeletal muscle adaptation. Knowledge of these aspects is important with respect to planning of training programs and assessing the impact of RE training on skeletal muscle. METHODS In this narrative review, we introduce general aspects of skeletal muscle substructures that adapt in response to RE. We further highlighted the molecular mechanisms that control human skeletal muscle anabolism, degradation, repair and memory in response to acute and repeated RE and linked these aspects to major training variables. RESULTS Although RE is a key stimulus for the activation of skeletal muscle anabolism, it also induces myofibrillar damage. Nevertheless, to increase muscle mass accompanied by a corresponding adaptation of the essential substructures of the sarcomeric environment, RE must be continuously repeated. This requires the permanent engagement of molecular mechanisms that re-establish skeletal muscle integrity after each RE-induced muscle damage. CONCLUSION Various molecular regulators coordinately control the adaptation of skeletal muscle after acute and repeated RE and expand their actions far beyond muscle growth. Variations of key resistance training variables likely affect these mechanisms without affecting muscle growth.
Collapse
Affiliation(s)
- Käthe Bersiner
- Department for Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Hildesheim, Germany
| | - So-Young Park
- Graduate School of Sports Medicine, CHA University, Pocheon, Republic of Korea
| | - Kirill Schaaf
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Woo-Hwi Yang
- Graduate School of Sports Medicine, CHA University, Pocheon, Republic of Korea
- Department of Medicine, General Graduate School, CHA University, Pocheon, Republic of Korea
| | - Christian Theis
- Center for Anaesthesiology, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Daniel Jacko
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sebastian Gehlert
- Department for Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
12
|
Increasing Muscle Mass in Elders through Diet and Exercise: A Literature Review of Recent RCTs. Foods 2023; 12:foods12061218. [PMID: 36981144 PMCID: PMC10048759 DOI: 10.3390/foods12061218] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
This study aimed to review the current evidence on the independent and combined effects of diet and exercise and their impact on skeletal muscle mass in the elderly population. Skeletal muscle makes up approximately 40% of total body weight and is essential for performing daily activities. The combination of exercise and diet is known to be a potent anabolic stimulus through stimulation of muscle protein synthesis from amino acids. Aging is strongly associated with a generalized deterioration of physiological function, including a progressive reduction in skeletal muscle mass and strength, which in turn leads to a gradual functional impairment and an increased rate of disability resulting in falls, frailty, or even death. The term sarcopenia, which is an age-related syndrome, is primarily used to describe the gradual and generalized loss of skeletal muscle mass (mainly in type II muscle fibers) and function. Multimodal training is emerging as a popular training method that combines a wide range of physical dimensions. On the other hand, nutrition and especially protein intake provide amino acids, which are essential for muscle protein synthesis. According to ESPEN, protein intake in older people should be at least 1 g/kgbw/day. Essential amino acids, such as leucine, arginine, cysteine, and glutamine, are of particular importance for the regulation of muscle protein synthesis. For instance, a leucine intake of 3 g administered alongside each main meal has been suggested to prevent muscle loss in the elderly. In addition, studies have shown that vitamin D and other micronutrients can have a protective role and may modulate muscle growth; nevertheless, further research is needed to validate these claims. Resistance-based exercise combined with a higher intake of dietary protein, amino acids, and/or vitamin D are currently recognized as the most effective interventions to promote skeletal muscle growth. However, the results are quite controversial and contradictory, which could be explained by the high heterogeneity among studies. It is therefore necessary to further assess the impact of each individual exercise and nutritional approach, particularly protein and amino acids, on human muscle turnover so that more efficient strategies can be implemented for the augmentation of muscle mass in the elderly.
Collapse
|
13
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
14
|
El-Kurd OB, Bialy P, Kirkes M. What about hybrids? Supplemental methods for skeletal muscle fibre typing. J Physiol 2023; 601:251-252. [PMID: 36448550 DOI: 10.1113/jp284038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Omar B El-Kurd
- Muscle Physiology Laboratory, Department of Kinesiology, San Francisco State University, San Francisco, CA, USA
| | - Patrick Bialy
- Muscle Physiology Laboratory, Department of Kinesiology, San Francisco State University, San Francisco, CA, USA
| | - Maty Kirkes
- Muscle Physiology Laboratory, Department of Kinesiology, San Francisco State University, San Francisco, CA, USA
| |
Collapse
|
15
|
Horwath O, Edman S, Andersson A, Larsen FJ, Apró W. THRIFTY: a novel high-throughput method for rapid fibre type identification of isolated skeletal muscle fibres. J Physiol 2022; 600:4421-4438. [PMID: 36069036 PMCID: PMC9825974 DOI: 10.1113/jp282959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023] Open
Abstract
Fibre type-specific analyses are required for broader understanding of muscle physiology, but such analyses are difficult to conduct due to the extreme time requirements of dissecting and fibre typing individual fibres. Investigations are often confined to a small number of fibres from few participants with low representativeness of the entire fibre population and the participant population. To increase the feasibility of conducting large-scale fibre type-specific studies, a valid and rapid method for high-throughput fibre typing of individually dissected fibres was developed and named THRIFTY (for high-THRoughput Immunofluorescence Fibre TYping). Employing THRIFTY, 400 fibre segments were fixed onto microscope slides with a pre-printed coordinated grid system, probed with antibodies against myosin heavy chain (MyHC)-I and MyHC-II and classified using a fluorescence microscope. The validity and speed of THRIFTY was compared to a previously validated protocol (dot blot) on a fibre-to-fibre basis. Fibre pool purity was evaluated using 'gold standard' SDS-PAGE and silver staining. A modified THRIFTY-protocol using fluorescence western blot equipment was also validated. THRIFTY displayed excellent agreement with the dot blot protocol, κ = 0.955 (95% CI: 0.928, 0.982), P < 0.001. Both the original and modified THRIFTY protocols generated type I and type II fibre pools of absolute purity. Using THRIFTY, 400 fibres were typed just under 11 h, which was approximately 3 times faster than dot blot. THRIFTY is a novel and valid method with high versatility for very rapid fibre typing of individual fibres. THRIFTY can therefore facilitate the generation of large fibre pools for more extensive mechanistic studies into skeletal muscle physiology. KEY POINTS: Skeletal muscle is composed of different fibre types, each with distinct physiological properties. To fully understand how skeletal muscle adapts to external cues such as exercise, nutrition and ageing, fibre type-specific investigations are required. Such investigations are very difficult to conduct due to the extreme time requirements related to classifying individually isolated muscle fibres. To bypass this issue, we have developed a rapid and reliable method named THRIFTY which is cheap as well as versatile and which can easily be implemented in most laboratories. THRIFTY increases the feasibility of conducting larger fibre type-specific studies and enables time-sensitive assays where measurements need to be carried out in close connection with tissue sampling. By using THRIFTY, new insights into fibre type-specific muscle physiology can be gained which may have broad implications in health and disease.
Collapse
Affiliation(s)
- Oscar Horwath
- Department of PhysiologyNutrition and BiomechanicsÅstrand LaboratorySwedish School of Sport and Health SciencesStockholmSweden
| | - Sebastian Edman
- Department of PhysiologyNutrition and BiomechanicsÅstrand LaboratorySwedish School of Sport and Health SciencesStockholmSweden
| | - Alva Andersson
- Department of PhysiologyNutrition and BiomechanicsÅstrand LaboratorySwedish School of Sport and Health SciencesStockholmSweden
| | - Filip J. Larsen
- Department of PhysiologyNutrition and BiomechanicsÅstrand LaboratorySwedish School of Sport and Health SciencesStockholmSweden
| | - William Apró
- Department of PhysiologyNutrition and BiomechanicsÅstrand LaboratorySwedish School of Sport and Health SciencesStockholmSweden,Department of Clinical ScienceIntervention and TechnologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
16
|
Katti P, Hall AS, Parry HA, Ajayi PT, Kim Y, Willingham TB, Bleck CKE, Wen H, Glancy B. Mitochondrial network configuration influences sarcomere and myosin filament structure in striated muscles. Nat Commun 2022; 13:6058. [PMID: 36229433 PMCID: PMC9561657 DOI: 10.1038/s41467-022-33678-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
Sustained muscle contraction occurs through interactions between actin and myosin filaments within sarcomeres and requires a constant supply of adenosine triphosphate (ATP) from nearby mitochondria. However, it remains unclear how different physical configurations between sarcomeres and mitochondria alter the energetic support for contractile function. Here, we show that sarcomere cross-sectional area (CSA) varies along its length in a cell type-dependent manner where the reduction in Z-disk CSA relative to the sarcomere center is closely coordinated with mitochondrial network configuration in flies, mice, and humans. Further, we find myosin filaments near the sarcomere periphery are curved relative to interior filaments with greater curvature for filaments near mitochondria compared to sarcoplasmic reticulum. Finally, we demonstrate variable myosin filament lattice spacing between filament ends and filament centers in a cell type-dependent manner. These data suggest both sarcomere structure and myofilament interactions are influenced by the location and orientation of mitochondria within muscle cells.
Collapse
Affiliation(s)
- Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Hailey A Parry
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter T Ajayi
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuho Kim
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - T Bradley Willingham
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher K E Bleck
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Han Wen
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brian Glancy
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health Bethesda, Bethesda, MD, USA.
| |
Collapse
|
17
|
Emerald BS, Al Jailani MA, Ibrahim MF, Kumar CA, Allouh MZ. Cellular and Molecular Variations in Male and Female Murine Skeletal Muscle after Long-Term Feeding with a High-Fat Diet. Int J Mol Sci 2022; 23:ijms23179547. [PMID: 36076943 PMCID: PMC9455932 DOI: 10.3390/ijms23179547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Current information regarding the effects of a high-fat diet (HFD) on skeletal muscle is contradictory. This study aimed to investigate the effects of a long-term HFD on skeletal muscle in male and female mice at the morphological, cellular, and molecular levels. Adult mice of the C57BL/6 strain were fed standard chow or an HFD for 20 weeks. The tibialis anterior muscles were dissected, weighed, and processed for cellular and molecular analyses. Immunocytochemical and morphometric techniques were applied to quantify fiber size, satellite cells (SCs), and myonuclei. Additionally, PCR array and RT-qPCR tests were performed to determine the expression levels of key muscle genes. Muscles from HFD mice showed decreases in weight, SCs, and myonuclei, consistent with the atrophic phenotype. This atrophy was associated with a decrease in the percentage of oxidative fibers within the muscle. These findings were further confirmed by molecular analyses that showed significant reductions in the expression of Pax7, Myh1, and Myh2 genes and increased Mstn gene expression. Male and female mice showed similar trends in response to HFD-induced obesity. These findings indicate that the long-term effects of obesity on skeletal muscle resemble those of age-related sarcopenia.
Collapse
|
18
|
Smith LB, Anderson CV, Withangage MHH, Koch A, Roberts TJ, Liebl AL. Relationship between gene expression networks and muscle contractile physiology differences in Anolis lizards. J Comp Physiol B 2022; 192:489-499. [PMID: 35596083 DOI: 10.1007/s00360-022-01441-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Muscles facilitate most animal behavior, from eating to fleeing. However, to generate the variation in behavior necessary for survival, different muscles must perform differently; for instance, sprinting requires multiple rapid muscle contractions, whereas biting may require fewer contractions but greater force. Here, we use a transcriptomic approach to identify genes associated with variation in muscle contractile physiology among different muscles from the same individual. We measured differential gene expression between a leg and jaw muscle of Anolis lizards known to differ in muscle contractile physiology and performance. For each individual, one muscle was used to measure muscle contractile physiology, including contractile velocity (Vmax and V40), specific tension, power ratio, and twitch time, whereas the contralateral muscle was used to extract RNA for transcriptomic sequencing. Using the transcriptomic data, we found clear clustering of muscle type. Expression of genes clustered in gene ontology (GO) terms related to muscle contraction and extracellular matrix was, on average, negatively correlated with Vmax and slower twitch times but positively correlated to power ratio and V40. Conversely, genes related to the GO terms related to aerobic respiration were downregulated in muscles with higher power ratio and V40, and over-expressed as twitch time decreased. Determining the molecular mechanisms that underlie variation in muscle contractile physiology can begin to explain how organisms are able to optimize behavior under variable conditions. Future studies pursuing the effects of differential gene expression across muscle types in different environments might inform researchers about how differences develop across species, populations, and individuals varying in ecological history.
Collapse
Affiliation(s)
- Luke B Smith
- Department of Biology, University of South Dakota, Vermillion, SD, USA.,Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | | | - Miyuraj H Hikkaduwa Withangage
- Department of Biology, University of South Dakota, Vermillion, SD, USA.,College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Andrew Koch
- Department of Biology, University of South Dakota, Vermillion, SD, USA
| | - Thomas J Roberts
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Andrea L Liebl
- Department of Biology, University of South Dakota, Vermillion, SD, USA.
| |
Collapse
|
19
|
A fast Myosin super enhancer dictates muscle fiber phenotype through competitive interactions with Myosin genes. Nat Commun 2022; 13:1039. [PMID: 35210422 PMCID: PMC8873246 DOI: 10.1038/s41467-022-28666-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
The contractile properties of adult myofibers are shaped by their Myosin heavy chain isoform content. Here, we identify by snATAC-seq a 42 kb super-enhancer at the locus regrouping the fast Myosin genes. By 4C-seq we show that active fast Myosin promoters interact with this super-enhancer by DNA looping, leading to the activation of a single promoter per nucleus. A rainbow mouse transgenic model of the locus including the super-enhancer recapitulates the endogenous spatio-temporal expression of adult fast Myosin genes. In situ deletion of the super-enhancer by CRISPR/Cas9 editing demonstrates its major role in the control of associated fast Myosin genes, and deletion of two fast Myosin genes at the locus reveals an active competition of the promoters for the shared super-enhancer. Last, by disrupting the organization of fast Myosin, we uncover positional heterogeneity within limb skeletal muscles that may underlie selective muscle susceptibility to damage in certain myopathies. The contractile properties of adult myofibers are shaped by their Myosin heavy chain isoform content. Here the authors show that a super enhancer controls the spatiotemporal expression of the genes at the fast myosin heavy chain locus by DNA looping and that this expression profile is recapitulated in a rainbow transgenic mouse model of the locus.
Collapse
|
20
|
de Wendt C, Espelage L, Eickelschulte S, Springer C, Toska L, Scheel A, Bedou AD, Benninghoff T, Cames S, Stermann T, Chadt A, Al-Hasani H. Contraction-Mediated Glucose Transport in Skeletal Muscle Is Regulated by a Framework of AMPK, TBC1D1/4, and Rac1. Diabetes 2021; 70:2796-2809. [PMID: 34561225 DOI: 10.2337/db21-0587] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022]
Abstract
The two closely related RabGTPase-activating proteins (RabGAPs) TBC1D1 and TBC1D4, both substrates for AMPK, play important roles in exercise metabolism and contraction-dependent translocation of GLUT4 in skeletal muscle. However, the specific contribution of each RabGAP in contraction signaling is mostly unknown. In this study, we investigated the cooperative AMPK-RabGAP signaling axis in the metabolic response to exercise/contraction using a novel mouse model deficient in active skeletal muscle AMPK combined with knockout of either Tbc1d1, Tbc1d4, or both RabGAPs. AMPK deficiency in muscle reduced treadmill exercise performance. Additional deletion of Tbc1d1 but not Tbc1d4 resulted in a further decrease in exercise capacity. In oxidative soleus muscle, AMPK deficiency reduced contraction-mediated glucose uptake, and deletion of each or both RabGAPs had no further effect. In contrast, in glycolytic extensor digitorum longus muscle, AMPK deficiency reduced contraction-stimulated glucose uptake, and deletion of Tbc1d1, but not Tbc1d4, led to a further decrease. Importantly, skeletal muscle deficient in AMPK and both RabGAPs still exhibited residual contraction-mediated glucose uptake, which was completely abolished by inhibition of the GTPase Rac1. Our results demonstrate a novel mechanistic link between glucose transport and the GTPase signaling framework in skeletal muscle in response to contraction.
Collapse
Affiliation(s)
- Christian de Wendt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Samaneh Eickelschulte
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Christian Springer
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Laura Toska
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Scheel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Awovi Didi Bedou
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Tim Benninghoff
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Cames
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Torben Stermann
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| |
Collapse
|
21
|
de Meeûs d'Argenteuil C, Boshuizen B, Vidal Moreno de Vega C, Leybaert L, de Maré L, Goethals K, De Spiegelaere W, Oosterlinck M, Delesalle C. Comparison of Shifts in Skeletal Muscle Plasticity Parameters in Horses in Three Different Muscles, in Answer to 8 Weeks of Harness Training. Front Vet Sci 2021; 8:718866. [PMID: 34733900 PMCID: PMC8558477 DOI: 10.3389/fvets.2021.718866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
Training-induced follow-up of multiple muscle plasticity parameters in postural stability vs. locomotion muscles provides an integrative physiological view on shifts in the muscular metabolic machinery. It can be expected that not all muscle plasticity parameters show the same expression time profile across muscles. This knowledge is important to underpin results of metabolomic studies. Twelve non-competing Standardbred mares were subjected to standardized harness training. Muscle biopsies were taken on a non-training day before and after 8 weeks. Shifts in muscle fiber type composition and muscle fiber cross-sectional area (CSA) were compared in the m. pectoralis, the m. vastus lateralis, and the m. semitendinosus. In the m. vastus lateralis, which showed most pronounced training-induced plasticity, two additional muscle plasticity parameters (capillarization and mitochondrial density) were assessed. In the m. semitendinosus, additionally the mean minimum Feret's diameter was assessed. There was a significant difference in baseline profiles. The m. semitendinosus contained less type I and more type IIX fibers compatible with the most pronounced anaerobic profile. Though no baseline fiber type-specific and overall mean CSA differences could be detected, there was a clear post-training decrease in fiber type specific CSA, most pronounced for the m. vastus lateralis, and this was accompanied by a clear increase in capillary supply. No shifts in mitochondrial density were detected. The m. semitendinosus showed a decrease in fiber type specific CSA of type IIAX fibers and a decrease of type I fiber Feret's diameter as well as mean minimum Feret's diameter. The training-induced increased capillary supply in conjunction with a significant decrease in muscle fiber CSA suggests that the muscular machinery models itself toward an optimal smaller individual muscle fiber structure to receive and process fuels that can be swiftly delivered by the circulatory system. These results are interesting in view of the recently identified important fuel candidates such as branched-chain amino acids, aromatic amino acids, and gut microbiome-related xenobiotics, which need a rapid gut-muscle gateway to reach these fibers and are less challenging for the mitochondrial system. More research is needed with that respect. Results also show important differences between muscle groups with respect to baseline and training-specific modulation.
Collapse
Affiliation(s)
- Constance de Meeûs d'Argenteuil
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| | - Berit Boshuizen
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
- Wolvega Equine Hospital, Oldeholtpade, Netherlands
| | - Carmen Vidal Moreno de Vega
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lorie de Maré
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| | - Klara Goethals
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Research Group Biometrics, Ghent University, Merelbeke, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maarten Oosterlinck
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Cathérine Delesalle
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| |
Collapse
|
22
|
Holmes M, Taylor AB. The influence of jaw-muscle fibre-type phenotypes on estimating maximum muscle and bite forces in primates. Interface Focus 2021; 11:20210009. [PMID: 34938437 PMCID: PMC8361599 DOI: 10.1098/rsfs.2021.0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Numerous anthropological studies have been aimed at estimating jaw-adductor muscle forces, which, in turn, are used to estimate bite force. While primate jaw adductors show considerable intra- and intermuscular heterogeneity in fibre types, studies generally model jaw-muscle forces by treating the jaw adductors as either homogeneously slow or homogeneously fast muscles. Here, we provide a novel extension of such studies by integrating fibre architecture, fibre types and fibre-specific tensions to estimate maximum muscle forces in the masseter and temporalis of five anthropoid primates: Sapajus apella (N = 3), Cercocebus atys (N = 4), Macaca fascicularis (N = 3), Gorilla gorilla (N = 1) and Pan troglodytes (N = 2). We calculated maximum muscle forces by proportionally adjusting muscle physiological cross-sectional areas by their fibre types and associated specific tensions. Our results show that the jaw adductors of our sample ubiquitously express MHC α-cardiac, which has low specific tension, and hybrid fibres. We find that treating the jaw adductors as either homogeneously slow or fast muscles potentially overestimates average maximum muscle forces by as much as approximately 44%. Including fibre types and their specific tensions is thus likely to improve jaw-muscle and bite force estimates in primates.
Collapse
Affiliation(s)
- Megan Holmes
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC, USA
| | | |
Collapse
|
23
|
Plotkin DL, Roberts MD, Haun CT, Schoenfeld BJ. Muscle Fiber Type Transitions with Exercise Training: Shifting Perspectives. Sports (Basel) 2021; 9:sports9090127. [PMID: 34564332 PMCID: PMC8473039 DOI: 10.3390/sports9090127] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/22/2022] Open
Abstract
Human muscle fibers are generally classified by myosin heavy chain (MHC) isoforms characterized by slow to fast contractile speeds. Type I, or slow-twitch fibers, are seen in high abundance in elite endurance athletes, such as long-distance runners and cyclists. Alternatively, fast-twitch IIa and IIx fibers are abundant in elite power athletes, such as weightlifters and sprinters. While cross-sectional comparisons have shown marked differences between athletes, longitudinal data have not clearly converged on patterns in fiber type shifts over time, particularly between slow and fast fibers. However, not all fiber type identification techniques are created equal and, thus, may limit interpretation. Hybrid fibers, which express more than one MHC type (I/IIa, IIa/IIx, I/IIa/IIx), may make up a significant proportion of fibers. The measurement of the distribution of fibers would necessitate the ability to identify hybrid fibers, which is best done through single fiber analysis. Current evidence using the most appropriate techniques suggests a clear ability of fibers to shift between hybrid and pure fibers as well as between slow and fast fiber types. The context and extent to which this occurs, along with the limitations of current evidence, are discussed herein.
Collapse
Affiliation(s)
- Daniel L. Plotkin
- Health Sciences Department, CUNY Lehman College, Bronx, NY 10468, USA; (D.L.P.); (B.J.S.)
| | | | - Cody T. Haun
- Fitomics, LLC., Pelham, AL 35124, USA
- Correspondence:
| | - Brad J. Schoenfeld
- Health Sciences Department, CUNY Lehman College, Bronx, NY 10468, USA; (D.L.P.); (B.J.S.)
| |
Collapse
|
24
|
Dial AG, Monaco CMF, Grafham GK, Patel TP, Tarnopolsky MA, Hawke TJ. Impaired Function and Altered Morphology in the Skeletal Muscles of Adult Men and Women With Type 1 Diabetes. J Clin Endocrinol Metab 2021; 106:2405-2422. [PMID: 33890059 DOI: 10.1210/clinem/dgab261] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/14/2022]
Abstract
CONTEXT Previous investigations on skeletal muscle health in type 1 diabetes (T1D) have generally focused on later stages of disease progression where comorbidities are present and are posited as a primary mechanism of muscle dysfunction. OBJECTIVE To investigate skeletal muscle function and morphology across the adult lifespan in those with and without T1D. DESIGN Participants underwent maximal contraction (MVC) testing, resting muscle biopsy, and venous blood sampling. SETTING Procedures in this study were undertaken at the McMaster University Medical Centre. PARTICIPANTS Sixty-five healthy adult (18-78 years old) men/males and women/females (T1D = 34; control = 31) matched for age/biological sex/body mass index; self-reported physical activity levels were included. MAIN OUTCOME MEASURES Our primary measure in this study was MVC, with supporting histological/immunofluorescent measures. RESULTS After 35 years of age ("older adults"), MVC declined quicker in T1D subjects compared to controls. Loss of strength in T1D was accompanied by morphological changes associated with accelerated aging. Type 1 myofiber grouping was higher in T1D, and the groups were larger and more numerous than in controls. Older T1D females exhibited more myofibers expressing multiple myosin heavy chain isoforms (hybrid fibers) than controls, another feature of accelerated aging. Conversely, T1D males exhibited a shift toward type 2 fibers, with less evidence of myofiber grouping or hybrid fibers. CONCLUSIONS These data suggest impairments to skeletal muscle function and morphology exist in T1D. The decline in strength with T1D is accelerated after 35 years of age and may be responsible for the earlier onset of frailty, which characterizes those with diabetes.
Collapse
Affiliation(s)
- Athan G Dial
- Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Cynthia M F Monaco
- Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Grace K Grafham
- Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Tirth P Patel
- Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Thomas J Hawke
- Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
25
|
Horwath O, Envall H, Röja J, Emanuelsson EB, Sanz G, Ekblom B, Apró W, Moberg M. Variability in vastus lateralis fiber type distribution, fiber size, and myonuclear content along and between the legs. J Appl Physiol (1985) 2021; 131:158-173. [PMID: 34013752 DOI: 10.1152/japplphysiol.00053.2021] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human skeletal muscle characteristics such as fiber type composition, fiber size, and myonuclear content are widely studied in clinical and sports-related contexts. Being aware of the methodological and biological variability of the characteristics is a critical aspect in study design and outcome interpretation, but comprehensive data on the variability of morphological features in human skeletal muscle are currently limited. Accordingly, in the present study, m. vastus lateralis biopsies (10 per subject) from young and healthy individuals, collected in a systematic manner, were analyzed for various characteristics using immunohistochemistry (n = 7) and SDS-PAGE (n = 25). None of the analyzed parameters, fiber type % (FT%), type I and II fiber cross-sectional area (fCSA), percentage fiber type area (fCSA%), myosin heavy chain composition (MyHC%), type IIX content, myonuclear content, or myonuclear domain, varied in a systematic manner longitudinally along the muscle or between the two legs. The average within-subject coefficient of variation for FT%, fCSA, fCSA%, and MyHC% ranged between 13% and 18% but was only 5% for fiber-specific myonuclear content, which reduced the variability for myonuclear domain size to 11%-12%. Pure type IIX fibers and type IIX MyHC were randomly distributed and present in <24% of the analyzed samples, with the average content being 0.1% and 1.1%, respectively. In conclusion, leg or longitudinal orientation does not seem to be an important aspect to consider when investigating human vastus lateralis characteristics. However, single muscle biopsies should preferably not be used when studying fiber type- and fiber size-related aspects, given the notable sample-to-sample variability.NEW & NOTEWORTHY This study provides a comprehensive analysis of the variability of key human skeletal muscle fiber characteristics in multiple sites along and between the m. vastus lateralis of healthy and active individuals. We found a notable but nonsystematic variability in fiber type and size, whereas myonuclear content was distinctively less variable, and the prevalence of type IIX fibers was random and very low. These data are important to consider when designing and interpreting studies including m. vastus lateralis biopsies.
Collapse
Affiliation(s)
- Oscar Horwath
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Helena Envall
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Julia Röja
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Gema Sanz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.,Gnomics, Murcia, Spain
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Marcus Moberg
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
26
|
The Role of GSK-3β in the Regulation of Protein Turnover, Myosin Phenotype, and Oxidative Capacity in Skeletal Muscle under Disuse Conditions. Int J Mol Sci 2021; 22:ijms22105081. [PMID: 34064895 PMCID: PMC8151958 DOI: 10.3390/ijms22105081] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscles, being one of the most abundant tissues in the body, are involved in many vital processes, such as locomotion, posture maintenance, respiration, glucose homeostasis, etc. Hence, the maintenance of skeletal muscle mass is crucial for overall health, prevention of various diseases, and contributes to an individual’s quality of life. Prolonged muscle inactivity/disuse (due to limb immobilization, mechanical ventilation, bedrest, spaceflight) represents one of the typical causes, leading to the loss of muscle mass and function. This disuse-induced muscle loss primarily results from repressed protein synthesis and increased proteolysis. Further, prolonged disuse results in slow-to-fast fiber-type transition, mitochondrial dysfunction and reduced oxidative capacity. Glycogen synthase kinase 3β (GSK-3β) is a key enzyme standing at the crossroads of various signaling pathways regulating a wide range of cellular processes. This review discusses various important roles of GSK-3β in the regulation of protein turnover, myosin phenotype, and oxidative capacity in skeletal muscles under disuse/unloading conditions and subsequent recovery. According to its vital functions, GSK-3β may represent a perspective therapeutic target in the treatment of muscle wasting induced by chronic disuse, aging, and a number of diseases.
Collapse
|
27
|
Khodabukus A. Tissue-Engineered Skeletal Muscle Models to Study Muscle Function, Plasticity, and Disease. Front Physiol 2021; 12:619710. [PMID: 33716768 PMCID: PMC7952620 DOI: 10.3389/fphys.2021.619710] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle possesses remarkable plasticity that permits functional adaptations to a wide range of signals such as motor input, exercise, and disease. Small animal models have been pivotal in elucidating the molecular mechanisms regulating skeletal muscle adaptation and plasticity. However, these small animal models fail to accurately model human muscle disease resulting in poor clinical success of therapies. Here, we review the potential of in vitro three-dimensional tissue-engineered skeletal muscle models to study muscle function, plasticity, and disease. First, we discuss the generation and function of in vitro skeletal muscle models. We then discuss the genetic, neural, and hormonal factors regulating skeletal muscle fiber-type in vivo and the ability of current in vitro models to study muscle fiber-type regulation. We also evaluate the potential of these systems to be utilized in a patient-specific manner to accurately model and gain novel insights into diseases such as Duchenne muscular dystrophy (DMD) and volumetric muscle loss. We conclude with a discussion on future developments required for tissue-engineered skeletal muscle models to become more mature, biomimetic, and widely utilized for studying muscle physiology, disease, and clinical use.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
28
|
Fiber-type phenotype of the jaw-closing muscles in Gorilla gorilla, Pan troglodytes, and Pan paniscus: A test of the Frequent Recruitment Hypothesis. J Hum Evol 2021; 151:102938. [PMID: 33493971 DOI: 10.1016/j.jhevol.2020.102938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 11/20/2022]
Abstract
Skeletal muscle fiber types are important determinants of the contractile properties of muscle fibers, such as fatigue resistance and shortening velocity. Yet little is known about how jaw-adductor fiber types correlate with feeding behavior in primates. Compared with chimpanzees and bonobos, gorillas spend a greater percentage of their daily time feeding and shift to herbaceous vegetation when fruits are scarce. We thus used the African apes to test the hypothesis that chewing with unusually high frequency is correlated with the expression in the jaw adductors of a high proportion of type 1 (slow, fatigue-resistant) fibers at the expense of other fiber types (the Frequent Recruitment Hypothesis). We used immunohistochemistry to determine the presence and distribution of the four major myosin heavy chain (MHC) isoforms in the anterior superficial masseter (ASM), superficial anterior temporalis, and deep anterior temporalis of four Gorilla gorilla, two Pan paniscus, and four Pan troglodytes. Serial sections were stained against slow (MHC-1/-α-cardiac) and fast (MHC-2/-M) fibers. Fibers were counted and scored for staining intensity, and fiber cross-sectional areas (CSAs) were measured and used to estimate percentage of CSA of each MHC isoform. Hybrid fibers accounted for nearly 100% of fiber types in the masseter and temporalis of all three species, resulting in three main hybrid phenotypes. As predicted, the gorilla ASM and deep anterior temporalis comprised a greater percentage of CSA of the slower, fatigue-resistant hybrid fiber type, significantly so for the ASM (p = 0.015). Finally, the results suggest that fiber phenotype of the chewing muscles contributes to behavioral flexibility in ways that would go undetected in paleontological studies relying solely on morphology of the bony masticatory apparatus.
Collapse
|
29
|
Heskamp L, Lebbink F, van Uden MJ, Maas MC, Claassen JAHR, Froeling M, Kemp GJ, Boss A, Heerschap A. Post-exercise intramuscular O 2 supply is tightly coupled with a higher proximal-to-distal ATP synthesis rate in human tibialis anterior. J Physiol 2021; 599:1533-1550. [PMID: 33369737 PMCID: PMC7986184 DOI: 10.1113/jp280771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/21/2020] [Indexed: 11/08/2022] Open
Abstract
Key points The post‐exercise recovery of phosphocreatine, a measure of the oxidative capacity of muscles, as assessed by 31P MR spectroscopy, shows a striking increase from distal to proximal along the human tibialis anterior muscle. To investigate why this muscle exhibits a greater oxidative capacity proximally, we tested whether the spatial variation in phosphocreatine recovery rate is related to oxygen supply, muscle fibre type or type of exercise. We revealed that oxygen supply also increases from distal to proximal along the tibialis anterior, and that it strongly correlated with phosphocreatine recovery. Carnosine level, a surrogate measure for muscle fibre type was not different between proximal and distal, and type of exercise did not affect the gradient in phosphocreatine recovery rate. Taken together, the findings of this study suggest that the post‐exercise spatial gradients in oxygen supply and phosphocreatine recovery are driven by a higher intrinsic mitochondrial oxidative capacity proximally.
Abstract Phosphorus magnetic resonance spectroscopy (31P MRS) of human tibialis anterior (TA) revealed a strong proximo‐distal gradient in the post‐exercise phosphocreatine (PCr) recovery rate constant (kPCr), a measure of muscle oxidative capacity. The aim of this study was to investigate whether this kPCr gradient is related to O2 supply, resting phosphorylation potential, muscle fibre type, or type of exercise. Fifteen male volunteers performed continuous isometric ankle dorsiflexion at 30% maximum force until exhaustion. At multiple locations along the TA, we measured the oxidative PCr resynthesis rate (VPCr = kPCr × PCr depletion) by 31P MRS, the oxyhaemoglobin recovery rate constant (kO2Hb) by near infrared spectroscopy, and muscle perfusion with MR intravoxel incoherent motion imaging. The kO2Hb, kPCr, VPCr and muscle perfusion depended on measurement location (P < 0.001, P < 0.001, P = 0.032 and P = 0.003, respectively), all being greater proximally. The kO2Hb and muscle perfusion correlated with kPCr (r = 0.956 and r = 0.852, respectively) and VPCr (r = 0.932 and r = 0.985, respectively), the latter reflecting metabolic O2 consumption. Resting phosphorylation potential (PCr/inorganic phosphate) was also higher proximally (P < 0.001). The surrogate for fibre type, carnosine content measured by 1H MRS, did not differ between distal and proximal TA (P = 0.884). Performing intermittent exercise to avoid exercise ischaemia, still led to larger kPCr proximally than distally (P = 0.013). In conclusion, the spatial kPCr gradient is strongly associated with the spatial variation in O2 supply. It cannot be explained by exercise‐induced ischaemia nor by fibre type. Our findings suggest it is driven by a higher proximal intrinsic mitochondrial oxidative capacity, apparently to support contractile performance of the TA. The post‐exercise recovery of phosphocreatine, a measure of the oxidative capacity of muscles, as assessed by 31P MR spectroscopy, shows a striking increase from distal to proximal along the human tibialis anterior muscle. To investigate why this muscle exhibits a greater oxidative capacity proximally, we tested whether the spatial variation in phosphocreatine recovery rate is related to oxygen supply, muscle fibre type or type of exercise. We revealed that oxygen supply also increases from distal to proximal along the tibialis anterior, and that it strongly correlated with phosphocreatine recovery. Carnosine level, a surrogate measure for muscle fibre type was not different between proximal and distal, and type of exercise did not affect the gradient in phosphocreatine recovery rate. Taken together, the findings of this study suggest that the post‐exercise spatial gradients in oxygen supply and phosphocreatine recovery are driven by a higher intrinsic mitochondrial oxidative capacity proximally.
Collapse
Affiliation(s)
- Linda Heskamp
- Department of Medical Imaging/Radiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Franciska Lebbink
- Department of Medical Imaging/Radiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Mark J van Uden
- Department of Medical Imaging/Radiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Marnix C Maas
- Department of Medical Imaging/Radiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Jurgen A H R Claassen
- Department of Geriatrics, Radboud university medical center, Nijmegen, The Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Graham J Kemp
- Department of Musculoskeletal and Ageing Science, University of Liverpool, Liverpool, UK
| | - Andreas Boss
- Department of Medical Imaging/Radiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Medical Imaging/Radiology, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Teng YC, Wang JY, Chi YH, Tsai TF. Exercise and the Cisd2 Prolongevity Gene: Two Promising Strategies to Delay the Aging of Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21239059. [PMID: 33260577 PMCID: PMC7731423 DOI: 10.3390/ijms21239059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022] Open
Abstract
Aging is an evolutionally conserved process that limits life activity. Cellular aging is the result of accumulated genetic damage, epigenetic damage and molecular exhaustion, as well as altered inter-cellular communication; these lead to impaired organ function and increased vulnerability to death. Skeletal muscle constitutes ~40% of the human body’s mass. In addition to maintaining skeletal structure and allowing locomotion, which enables essential daily activities to be completed, skeletal muscle also plays major roles in thermogenesis, metabolism and the functioning of the endocrine system. Unlike many other organs that have a defined size once adulthood is reached, skeletal muscle is able to alter its structural and functional properties in response to changes in environmental conditions. Muscle mass usually remains stable during early life; however, it begins to decline at a rate of ~1% year in men and ~0.5% in women after the age of 50 years. On the other hand, different exercise training regimens are able to restore muscle homeostasis at the molecular, cellular and organismal levels, thereby improving systemic health. Here we give an overview of the molecular factors that contribute to lifespan and healthspan, and discuss the effects of the longevity gene Cisd2 and middle-to-old age exercise on muscle metabolism and changes in the muscle transcriptome in mice during very old age.
Collapse
Affiliation(s)
- Yuan-Chi Teng
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Jing-Ya Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan;
| | - Ya-Hui Chi
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan;
- Correspondence: (Y.-H.C.); (T.-F.T.); Tel.: +886-37-206166 (ext. 35718) (Y.-H.C.); +886-2-28267293 (T.-F.T.); Fax: +886-2-28280872 (T.-F.T.)
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 11221, Taiwan;
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan;
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
- Aging and Health Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Correspondence: (Y.-H.C.); (T.-F.T.); Tel.: +886-37-206166 (ext. 35718) (Y.-H.C.); +886-2-28267293 (T.-F.T.); Fax: +886-2-28280872 (T.-F.T.)
| |
Collapse
|
31
|
Tobias IS, Galpin AJ. Moving human muscle physiology research forward: an evaluation of fiber type-specific protein research methodologies. Am J Physiol Cell Physiol 2020; 319:C858-C876. [DOI: 10.1152/ajpcell.00107.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human skeletal muscle is a heterogeneous tissue composed of multiple fiber types that express unique contractile and metabolic properties. While analysis of mixed fiber samples predominates and holds value, increasing attention has been directed toward studying proteins segregated by fiber type, a methodological distinction termed “fiber type-specific.” Fiber type-specific protein studies have the advantage of uncovering key molecular effects that are often missed in mixed fiber homogenate studies but also require greater time and resource-intensive methods, particularly when applied to human muscle. This review summarizes and compares current methods used for fiber type-specific protein analysis, highlighting their advantages and disadvantages for human muscle studies, in addition to recent advances in these techniques. These methods can be grouped into three categories based on the initial processing of the tissue: 1) muscle-specific fiber homogenates, 2) cross sections of fiber bundles, and 3) isolated single fibers, with various subtechniques for performing fiber type identification and protein quantification. The relative implementation for each unique methodological approach is analyzed from 83 fiber type-specific studies of proteins in live human muscle found in the literature to date. These studies have investigated several proteins involved in a wide range of cellular functions that are important to muscle tissue. The second half of this review summarizes key findings from this ensemble of fiber type-specific human protein studies. We highlight examples of where this analytical approach has helped to improve understanding of important physiological topics such as insulin sensitivity, muscle hypertrophy, muscle fatigue, and adaptation to different exercise programs.
Collapse
Affiliation(s)
- Irene S. Tobias
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Andrew J. Galpin
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| |
Collapse
|
32
|
Dos Santos M, Backer S, Saintpierre B, Izac B, Andrieu M, Letourneur F, Relaix F, Sotiropoulos A, Maire P. Single-nucleus RNA-seq and FISH identify coordinated transcriptional activity in mammalian myofibers. Nat Commun 2020; 11:5102. [PMID: 33037211 PMCID: PMC7547110 DOI: 10.1038/s41467-020-18789-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle fibers are large syncytia but it is currently unknown whether gene expression is coordinately regulated in their numerous nuclei. Here we show by snRNA-seq and snATAC-seq that slow, fast, myotendinous and neuromuscular junction myonuclei each have different transcriptional programs, associated with distinct chromatin states and combinations of transcription factors. In adult mice, identified myofiber types predominantly express either a slow or one of the three fast isoforms of Myosin heavy chain (MYH) proteins, while a small number of hybrid fibers can express more than one MYH. By snRNA-seq and FISH, we show that the majority of myonuclei within a myofiber are synchronized, coordinately expressing only one fast Myh isoform with a preferential panel of muscle-specific genes. Importantly, this coordination of expression occurs early during post-natal development and depends on innervation. These findings highlight a previously undefined mechanism of coordination of gene expression in a syncytium.
Collapse
Affiliation(s)
| | - Stéphanie Backer
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | | | - Brigitte Izac
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | - Muriel Andrieu
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | - Franck Letourneur
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | - Frederic Relaix
- Université Paris-Est Creteil, INSERM U955 IMRB., 94000, Creteil, France
| | | | - Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France.
| |
Collapse
|
33
|
Schmitt A, Herzog P, Röchner F, Brändle A, Fragasso A, Munz B. Skeletal muscle effects of two different 10-week exercise regimens, voluntary wheel running, and forced treadmill running, in mice: A pilot study. Physiol Rep 2020; 8:e14609. [PMID: 33118684 PMCID: PMC7594150 DOI: 10.14814/phy2.14609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 11/28/2022] Open
Abstract
Physical activity and exercise induce a complex pattern of adaptation reactions in a broad variety of tissues and organs, particularly the cardiovascular and the musculoskeletal systems. The underlying mechanisms, however, specifically the molecular changes that occur in response to training, are still incompletely understood. Animal models help to systematically elucidate the mechanisms of exercise adaptation. With regard to endurance-based running exercise in mice, two basic regimens have been established: forced treadmill running (FTR), usually consisting of several sessions per week, and voluntary wheel running (VWR). However, the effects of these two programs on skeletal muscle molecular adaptation patterns have never been directly compared. To address this issue, in a pilot study, we analyzed the effects of two ten-week training regimens in juvenile, male, C57BL/6 mice: moderate-intensity forced treadmill running three-times-a-week, employing a protocol that has been widely used in similar studies before, and voluntary wheel running. Our data suggest that there are similarities, but also characteristic differences in the molecular responses of different skeletal muscle species to the two training regimens. In particular, we found that VWR induces a significant fiber type shift toward more type IIX fibers in the slow, oxidative soleus muscle (p = .0053), but not in the other three muscles analyzed. In addition, while training-induced expression patterns of the two metabolic markers Ppargc1a, encoding Pgc-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) and Nr4a3 (nuclear receptor subfamily 4 group A member 3) were roughly similar, downregulation of the Mstn (myostatin) gene and the "atrogene" Fbox32 could only be observed in response to VWR in specific muscles, such as in the gastrocnemius (p = .0015 for Mstn) and in the tibialis anterior (p = .0053 for Fbox32) muscles, suggesting that molecular adaptation reactions to the two training regimens show distinct characteristics.
Collapse
Affiliation(s)
- Angelika Schmitt
- Department of Sports MedicineMedical ClinicUniversity Hospital TübingenTübingenGermany
| | - Pascal Herzog
- Department of Sports MedicineMedical ClinicUniversity Hospital TübingenTübingenGermany
| | - Franziska Röchner
- Department of Sports MedicineMedical ClinicUniversity Hospital TübingenTübingenGermany
| | - Anne‐Lena Brändle
- Department of Sports MedicineMedical ClinicUniversity Hospital TübingenTübingenGermany
| | - Annunziata Fragasso
- Department of Sports MedicineMedical ClinicUniversity Hospital TübingenTübingenGermany
| | - Barbara Munz
- Department of Sports MedicineMedical ClinicUniversity Hospital TübingenTübingenGermany
- Interfaculty Research Institute for Sport and Physical ActivityEberhard Karls University of TübingenTübingenGermany
| |
Collapse
|
34
|
Sancho-Muñoz A, Guitart M, Rodríguez DA, Gea J, Martínez-Llorens J, Barreiro E. Deficient muscle regeneration potential in sarcopenic COPD patients: Role of satellite cells. J Cell Physiol 2020; 236:3083-3098. [PMID: 32989805 DOI: 10.1002/jcp.30073] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
Sarcopenia is a major comorbidity in chronic obstructive pulmonary (COPD). Whether deficient muscle repair mechanisms and regeneration exist in the vastus lateralis (VL) of sarcopenic COPD remains debatable. In the VL of control subjects and severe COPD patients with/without sarcopenia, satellite cells (SCs) were identified (immunofluorescence, specific antibodies, anti-Pax-7, and anti-Myf-5): activated (Pax-7+/Myf-5+), quiescent/regenerative potential (Pax-7+/Myf-5-), and total SCs, nuclear activation (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling [TUNEL]), and muscle fiber type (morphometry and slow- and fast-twitch, and hybrid fibers), muscle damage (hematoxylin-eosin staining), muscle regeneration markers (Pax-7, Myf-5, myogenin, and MyoD), and myostatin levels were identified. Compared to controls, in VL of sarcopenic COPD patients, myostatin content, activated SCs, hybrid fiber proportions, TUNEL-positive cells, internal nuclei, and muscle damage significantly increased, while quadriceps muscle strength, numbers of Pax-7+/Myf-5- and slow- and fast-twitch, and hybrid myofiber areas decreased. In the VL of sarcopenic and nonsarcopenic patients, TUNEL-positive cells were greater, whereas muscle regeneration marker expression was lower than in controls. In VL of severe COPD patients regardless of the sarcopenia level, the muscle regeneration process is triggered as identified by SC activation and increased internal nuclei. Nonetheless, a lower regenerative potential along with significant alterations in muscle phenotype and damage, and increased myostatin were prominently seen in sarcopenic COPD.
Collapse
Affiliation(s)
- Antonio Sancho-Muñoz
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | - Maria Guitart
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Diego A Rodríguez
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Joaquim Gea
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juana Martínez-Llorens
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Esther Barreiro
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
35
|
Bonilla HJ, Messi ML, Sadieva KA, Hamilton CA, Buchman AS, Delbono O. Semiautomatic morphometric analysis of skeletal muscle obtained by needle biopsy in older adults. GeroScience 2020; 42:1431-1443. [PMID: 32946050 DOI: 10.1007/s11357-020-00266-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 01/06/2023] Open
Abstract
Analysis of skeletal muscle mass and composition is essential for studying the biology of age-related sarcopenia, loss of muscle mass, and function. Muscle immunohistochemistry (IHC) allows for simultaneous visualization of morphological characteristics and determination of fiber type composition. The information gleaned from myosin heavy chain (MHC) isoform, and morphological measurements offer a more complete assessment of muscle health and properties than classical techniques such as SDS-PAGE and ATPase immunostaining; however, IHC quantification is a time-consuming and tedious method. We developed a semiautomatic method to account for issues frequently encountered in aging tissue. We analyzed needle-biopsied vastus lateralis (VL) of the quadriceps from a cohort of 14 volunteers aged 74.9 ± 2.2 years. We found a high correlation between manual quantification and semiautomatic analyses for the total number of fibers detected (r2 = 0.989) and total fiber cross-sectional area (r2 = 0.836). The analysis of the VL fiber subtype composition and the cross-sectional area also did not show statistically significant differences. The semiautomatic approach was completed in 10-15% of the time required for manual quantification. The results from these analyses highlight some of the specific issues which commonly occur in aged muscle. Our methods which address these issues underscore the importance of developing efficient, accurate, and reliable methods for quantitatively analyzing the skeletal muscle and the standardization of collection protocols to maximize the likelihood of preserving tissue quality in older adults. Utilizing IHC as a means of exploring the progression of disease, aging, and injury in the skeletal muscle allows for the practical study of muscle tissue down to the fiber level. By adding editing modules to our semiautomatic approach, we accurately quantified the aging muscle and addressed common technical issues.
Collapse
Affiliation(s)
- Henry J Bonilla
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maria L Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Khalima A Sadieva
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Craig A Hamilton
- Department of Internal Medicine, Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Department of Internal Medicine, The Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Department of Internal Medicine, The Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Department of Internal Medicine, The Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|