1
|
Le Mat Y, Casali C, Le Mat F, Féasson L, Foschia C, Géry M, Rossi J, Millet GY. Impact of a Self-Autonomous Evaluation Station and Personalized Training Algorithm on Quality of Life and Physical Capacities in Sedentary Adults: Randomized Controlled Trial. JMIR Form Res 2024; 8:e45461. [PMID: 39365990 PMCID: PMC11489803 DOI: 10.2196/45461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/05/2024] [Accepted: 06/03/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Physical inactivity is a major risk factor for noncommunicable diseases and a leading cause of premature death. The World Health Organization (WHO) recommends at least 150 minutes of moderate intensity physical activity (PA) weekly, regardless of age, gender, or personal habits. However, in both sports performance and clinical settings, personalized training (PT) regimens have shown superior efficacy over general guidelines. OBJECTIVE We hypothesized that an automatic PT program, informed by initial physical evaluations, would increase overall quality of life, quality of sleep, and physical capabilities and reduce fatigue and depression compared with adherence to WHO recommendations. METHODS This 5-month, randomized, single-blinded controlled trial involved 112 sedentary or minimally active participants, divided randomly into PT and free training (FT) groups. Physical capabilities and subjective measures such as quality of life, sleep, depression, and fatigue were evaluated for both groups. After 1 month, both groups were asked to perform 150 minutes of PA per week for 4 months; the PT group could either follow a "virtual coach" on a mobile app to follow some personalized PA or do what they would like, while the FT group was to follow the general PA recommendations of the WHO. RESULTS We did not find any group×time interaction for PA duration or intensity, physical qualities, and subjective measures. However, considering both groups together, there was a significant pretest and posttest time effect for duration of PA (18.2 vs 24.5 min/d of PA; P<.001), intensity (2.36 vs 3.11; P<.001), and workload (46.8 vs 80.5; P<.001). Almost all physical qualities were increased pretest and posttest (ie, estimated VO2max 26.8 vs 29 mL min-1 kg-1; P<.001; flexibility 25.9 vs 26.9 cm; P=.049; lower limb isometric forces 328 vs 347 N m; P=.002; reaction time 0.680 vs 0.633 s; P<.001; power output on cyclo-ergometer 7.63 vs 7.82 W; P<.003; and balance for the left and right leg 215 vs 163 mm2; P<.003 and 186 vs 162 mm2; P=.048, respectively). Finally, still considering the PT and FT groups together, there were significant pretest to posttest improvements in the mental component of quality of life using the 12-item Short Form Health Survey (41.9 vs 46.0; P<.006), well-being using the Warwick-Edinburgh Mental Well-Being Scale (48.3 vs 51.7; P<.002), depression using the Center for Epidemiologic Studies Depression Scale (15.5 vs 11.5; P=.02), and fatigue using the Functional Assessment of Chronic Illness Therapy-Fatigue (37.1 vs 39.5; P=.048). CONCLUSIONS The individualized training was not more effective than the general recommendations. A slight increase in PA (from 18 to 24 min/d) in sedentary or poorly active people is enough for a significant increase in physical capabilities and a significant improvement in quality of life, well-being, depression, and fatigue. TRIAL REGISTRATION ClinicalTrials.gov NCT04998266; https://clinicaltrials.gov/study/NCT04998266.
Collapse
Affiliation(s)
- Yann Le Mat
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023, Saint Etienne, France
| | - Corentin Casali
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023, Saint Etienne, France
| | - Franck Le Mat
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023, Saint Etienne, France
| | - Léonard Féasson
- Centre Hospitalier Universitaire (CHU) Saint-Etienne, Service de Physiologie Clinique et de l'Exercice, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint Etienne, France
- Centre Hospitalier Universitaire (CHU) Saint Etienne, Centre Référent Maladies Neuromusculaires Rares - European Reference Networks (ERN EuroNmD), Saint Etienne, France
| | - Clément Foschia
- Centre Hospitalier Universitaire (CHU) Saint-Etienne, Service de Physiologie Clinique et de l'Exercice, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint Etienne, France
| | - Mathias Géry
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique (CNRS), Institut d'Optique Graduate School, Laboratoire Hubert Curien, Unité Mixte de Recherche (UMR) 5516, F-42023, Saint Etienne, France
| | - Jérémy Rossi
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023, Saint Etienne, France
| | - Guillaume Y Millet
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023, Saint Etienne, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
2
|
Renwick JRM, Preobrazenski N, Wu Z, Khansari A, LeBouedec MA, Nuttall JMG, Bancroft KR, Simpson-Stairs N, Swinton PA, Gurd BJ. Standard Deviation of Individual Response for VO 2max Following Exercise Interventions: A Systematic Review and Meta-analysis. Sports Med 2024:10.1007/s40279-024-02089-y. [PMID: 39160296 DOI: 10.1007/s40279-024-02089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Although numerous attempts to demonstrate inter-individual differences in trainability across various outcomes have been unsuccessful, the investigation of maximal oxygen consumption (VO2max) trainability warrants further study. OBJECTIVE Our objective was to conduct the first systematic review and meta-analysis to evaluate inter-individual differences in VO2max trainability across aerobic exercise training protocols utilizing non-exercising comparator groups. METHODS We conducted a literature search across three databases: EMBASE, PubMed and SCOPUS. The search strategy incorporated two main concepts: aerobic exercise training and VO2max. Studies were included if they used human participants, employed standardized and supervised exercise training, reported absolute or relative VO2max, included a non-exercise comparator group, reported VO2max change scores for non-exercise and exercise groups and provided the standard deviation (SD) of change for all groups. We calculated the SD of individual response (SDIR) to estimate the presence of inter-individual differences in trainability across all studies. RESULTS The literature search generated 32,968 studies, 24 of which were included in the final analysis. Our findings indicated that (1) the majority of variation in observed change scores following an intervention is due to measurement error, (2) calculating SDIR within a single study would not yield sufficient accuracy of SDIR due to generally small sample sizes and (3) meta-analysis of SD IR 2 across studies does not provide strong evidence for a positive value. CONCLUSION Overall, our meta-analysis demonstrated that there is not strong evidence supporting the existence of VO2max trainability across single interventions. As such, it appears unlikely that clinically relevant predictors of VO2max response will be discovered. Registration can be found online ( https://doi.org/10.17605/OSF.IO/X9VU3 ).
Collapse
Affiliation(s)
- John R M Renwick
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Nicholas Preobrazenski
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Zeyu Wu
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Ava Khansari
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Matisse A LeBouedec
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Jared M G Nuttall
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Kyra R Bancroft
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Nia Simpson-Stairs
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Paul A Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, AB10 7QE, UK
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
3
|
Zhou Y, Feng W, Zhang N, Guo J, Xu S, Wang S, Chen X. Effects of different exercise interventions on cardiopulmonary function in male tobacco-dependent college students. J Sports Sci 2024; 42:1323-1330. [PMID: 39133775 DOI: 10.1080/02640414.2024.2390303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/21/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024]
Abstract
This study investigated the effects of different exercise interventions on cardiopulmonary function in male tobacco-dependent college students. Forty-five male tobacco-dependent college students were recruited as the tobacco-dependent (TB) group, and 45 non-tobacco-dependent college students were recruited as the control group. The TB group was randomly assigned to three subgroups: non-exercise (NE), high-intensity interval training (HIIT), and moderate-intensity continuous training (MICT). The HIIT and MICT groups underwent a 10-week exercise training, while the NE group received no intervention. Cardiac parameters, including maximal oxygen uptake (VO2max), heart rate max (HRmax), and heart rate reserve (HRR), and pulmonary indicators, including forced vital capacity (FVC), forced expiratory volume in one second (FEV1), vital capacity (VC), maximum ventilation volume (MVV), and peak expiratory flow (PEF) were investigated. The results showed that the TB group had significantly lower cardiopulmonary function than the control group. The degree of tobacco dependence was negatively correlated with VO2max, FVC, FEV1, FEV1/FVC, and MVV. Furthermore, both HIIT and MICT training improved cardiopulmonary function. HIIT training exhibited superior efficacy compared to MICT in improving HRmax, HRR, FVC, FEV1, FEV1/FVC, and PEF. In conclusion, tobacco dependence adversely affects cardiopulmonary function in male college students. Both HIIT and MICT effectively improved cardiopulmonary function, with HIIT showing superior efficacy.
Collapse
Affiliation(s)
- Yuehui Zhou
- School of Sport Science, Qufu Normal University, Jining, China
| | - Wenxia Feng
- Department of Physical Education, Linyi Beijing Road Primary School, Linyi, China
| | - Na Zhang
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Jianlan Guo
- College of Chinese Studies and Foreign Languages, Yantai Nanshan University, Yantai, China
| | - Shaoze Xu
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Shiqiang Wang
- School of Sport Science, Hunan University of Technology, Zhuzhou, China
- Hunan Research Centre in Physical Fitness, Health, and Performance Excellence, Hunan University of Technology, Zhuzhou, China
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
- Zhejiang Province Philosophy and Social Science Key Research Base, Wenzhou Medical University Institute of Medical Humanities, Wenzhou, China
| |
Collapse
|
4
|
Stöggl TL, Strepp T, Wiesinger HP, Haller N. A training goal-oriented categorization model of high-intensity interval training. Front Physiol 2024; 15:1414307. [PMID: 38957216 PMCID: PMC11218030 DOI: 10.3389/fphys.2024.1414307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
There are various categorization models of high-intensity interval training (HIIT) in the literature that need to be more consistent in definition, terminology, and concept completeness. In this review, we present a training goal-oriented categorization model of HIIT, aiming to find the best possible consensus among the various defined types of HIIT. This categorization concludes with six different types of HIIT derived from the literature, based on the interaction of interval duration, interval intensity and interval:recovery ratio. We discuss the science behind the defined types of HIIT and shed light on the possible effects of the various types of HIIT on aerobic, anaerobic, and neuromuscular systems and possible transfer effects into competition performance. We highlight various research gaps, discrepancies in findings and not yet proved know-how based on a lack of randomized controlled training studies, especially in well-trained to elite athlete cohorts. Our HIIT "toolbox" approach is designed to guide goal-oriented training. It is intended to lay the groundwork for future systematic reviews and serves as foundation for meta-analyses.
Collapse
Affiliation(s)
- Thomas L. Stöggl
- Department of Sport and Exercise Science, Paris Lodron University Salzburg, Salzburg, Austria
- Red Bull Athlete Performance Center, Thalgau, Austria
| | - Tilmann Strepp
- Department of Sport and Exercise Science, Paris Lodron University Salzburg, Salzburg, Austria
| | - Hans-Peter Wiesinger
- Department of Sport and Exercise Science, Paris Lodron University Salzburg, Salzburg, Austria
- Institute of Nursing Science and Practice, Paracelsus Medical University, Salzburg, Austria
- Institute of General Practice, Family Medicine and Preventive Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Nils Haller
- Department of Sport and Exercise Science, Paris Lodron University Salzburg, Salzburg, Austria
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
5
|
Scarà A, Palamà Z, Robles AG, Dei LL, Borrelli A, Zanin F, Pignalosa L, Romano S, Sciarra L. Non-Pharmacological Treatment of Heart Failure-From Physical Activity to Electrical Therapies: A Literature Review. J Cardiovasc Dev Dis 2024; 11:122. [PMID: 38667740 PMCID: PMC11050051 DOI: 10.3390/jcdd11040122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Heart failure (HF) represents a significant global health challenge that is still responsible for increasing morbidity and mortality despite advancements in pharmacological treatments. This review investigates the effectiveness of non-pharmacological interventions in the management of HF, examining lifestyle measures, physical activity, and the role of some electrical therapies such as catheter ablation, cardiac resynchronization therapy (CRT), and cardiac contractility modulation (CCM). Structured exercise training is a cornerstone in this field, demonstrating terrific improvements in functional status, quality of life, and mortality risk reduction, particularly in patients with HF with reduced ejection fraction (HFrEF). Catheter ablation for atrial fibrillation, premature ventricular beats, and ventricular tachycardia aids in improving left ventricular function by reducing arrhythmic burden. CRT remains a key intervention for selected HF patients, helping achieve left ventricular reverse remodeling and improving symptoms. Additionally, the emerging therapy of CCM provides a novel opportunity for patients who do not meet CRT criteria or are non-responders. Integrating non-pharmacological interventions such as digital health alongside specific medications is key for optimizing outcomes in HF management. It is imperative to tailor approaches to individual patients in this diverse patient population to maximize benefits. Further research is warranted to improve treatment strategies and enhance patient outcomes in HF management.
Collapse
Affiliation(s)
- Antonio Scarà
- San Carlo di Nancy Hospital—GVM, 00165 Roma, Italy; (A.B.); (F.Z.); (L.P.)
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (Z.P.); (A.G.R.); (L.-L.D.); (S.R.); (L.S.)
| | - Zefferino Palamà
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (Z.P.); (A.G.R.); (L.-L.D.); (S.R.); (L.S.)
- Electrophysiology Unit “Casa di Cura Villa Verde”, 74121 Taranto, Italy
| | - Antonio Gianluca Robles
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (Z.P.); (A.G.R.); (L.-L.D.); (S.R.); (L.S.)
- Electrophysiology Unit “Casa di Cura Villa Verde”, 74121 Taranto, Italy
- Department of Cardiology, “L. Bonomo” Hospital, 76123 Andria, Italy
| | - Lorenzo-Lupo Dei
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (Z.P.); (A.G.R.); (L.-L.D.); (S.R.); (L.S.)
| | - Alessio Borrelli
- San Carlo di Nancy Hospital—GVM, 00165 Roma, Italy; (A.B.); (F.Z.); (L.P.)
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (Z.P.); (A.G.R.); (L.-L.D.); (S.R.); (L.S.)
| | - Federico Zanin
- San Carlo di Nancy Hospital—GVM, 00165 Roma, Italy; (A.B.); (F.Z.); (L.P.)
| | - Leonardo Pignalosa
- San Carlo di Nancy Hospital—GVM, 00165 Roma, Italy; (A.B.); (F.Z.); (L.P.)
| | - Silvio Romano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (Z.P.); (A.G.R.); (L.-L.D.); (S.R.); (L.S.)
| | - Luigi Sciarra
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (Z.P.); (A.G.R.); (L.-L.D.); (S.R.); (L.S.)
| |
Collapse
|
6
|
Zouhal H, Abderrahman AB, Jayavel A, Hackney AC, Laher I, Saeidi A, Rhibi F, Granacher U. Effects of Passive or Active Recovery Regimes Applied During Long-Term Interval Training on Physical Fitness in Healthy Trained and Untrained Individuals: A Systematic Review. SPORTS MEDICINE - OPEN 2024; 10:21. [PMID: 38443585 PMCID: PMC10914654 DOI: 10.1186/s40798-024-00673-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/02/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Intermittent exercise programs characterized through intensive exercise bouts alternated with passive or active recovery (i.e., interval training), have been proven to enhance measures of cardiorespiratory fitness. However, it is unresolved which recovery type (active or passive) applied during interval training results in larger performance improvements. OBJECTIVES This systematic review aimed to summarize recent evidence on the effects of passive or active recovery following long-term interval exercise training on measures of physical fitness and physiological adaptations in healthy trained and untrained individuals. The study protocol was registered in the Open Science Framework (OSF) platform ( https://doi.org/10.17605/OSF.IO/9BUEY ). METHODS We searched nine databases including the grey literature (Academic Search Elite, CINAHL, ERIC, Open Access Theses and Dissertations, Open Dissertations, PsycINFO, PubMed/MEDLINE, Scopus, and SPORTDiscus) from inception until February 2023. Key terms as high-intensity interval training, recovery mode, passive or active recover were used. A systematic review rather than a meta-analysis was performed, as a large number of outcome parameters would have produced substantial heterogeneity. RESULTS After screening titles, abstracts, and full texts, 24 studies were eligible for inclusion in our final analysis. Thirteen studies examined the effects of interval training interspersed with passive recovery regimes on physical fitness and physiological responses in trained (6 studies) and untrained (7 studies) individuals. Eleven out of 13 studies reported significant improvements in physical fitness (e.g., maximal aerobic velocity (MAV), Yo-Yo running test, jump performance) and physiological parameters (e.g., maximal oxygen uptake [VO2max], lactate threshold, blood pressure) in trained (effect sizes from single studies: 0.13 < Cohen's d < 3.27, small to very large) and untrained individuals (effect sizes: 0.17 < d < 4.19, small to very large) despite the type of interval training or exercise dosage (frequency, intensity, time, type). Two studies were identified that examined the effects of passive recovery applied during interval training in young female basketball (15.1 ± 1.1 years) and male soccer players (14.2 ± 0.5 years). Both studies showed positive effects of passive recovery on VO2max, countermovement jump performance, and the Yo-Yo running test. Eleven studies examined the effects of interval training interspersed with active recovery methods on physical fitness and physiological parameters in trained (6 studies) and untrained individuals (5 studies). Despite the type of interval training or exercise dosage, nine out of eleven studies reported significant increases in measures of physical fitness (e.g., MAV) and physiological parameters (e.g., VO2max, blood pressures) in trained (effect sizes from single studies: 0.13 < d < 1.29, small to very large) and untrained individuals (effect sizes: 0.19 < d < 3.29, small to very large). There was no study available that examined the effects of active recovery on physical fitness and physiological responses in youth. CONCLUSIONS The results of this systematic review show that interval training interspersed with active or passive recovery regimes have the potential to improve measures of physical fitness and physiology outcomes in trained and untrained adults and trained youth. That is, the applied recovery type seems not to affect the outcomes. Nonetheless, more research is needed on the effects of recovery type on measures of physical fitness and physiological adaptations in youth.
Collapse
Affiliation(s)
- Hassane Zouhal
- M2S (Laboratoire Mouvement, Sport, Santé) - EA 1274, Univ Rennes, 35000, Rennes, France.
- Institut International des Sciences du Sport (2I2S), 35850, Irodouër, France.
| | - Abderraouf Ben Abderrahman
- Higher Institute of Sport and Physical Education of Ksar-Said, University of Manouba, Manouba, Tunisia
- Tunisian Research Laboratory "Sports Performance Optimization", National Center of Medicine and Science in Sports (CNMSS) LR09SEP01, Tunis, Tunisia
| | - Ayyappan Jayavel
- SRM College of Physiotherapy, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, TN, 603203, India
| | - Anthony C Hackney
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, 66177-15175, Kurdistan, Iran
| | - Fatma Rhibi
- M2S (Laboratoire Mouvement, Sport, Santé) - EA 1274, Univ Rennes, 35000, Rennes, France
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Morton-Jones ME, Gladden LB, Kavazis AN, Sandage MJ. A Tutorial on Skeletal Muscle Metabolism and the Role of Blood Lactate: Implications for Speech Production. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:369-383. [PMID: 38157288 DOI: 10.1044/2023_jslhr-23-00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE The purpose of this tutorial is threefold: (a) present relevant exercise science literature on skeletal muscle metabolism and synthesize the limited available research on metabolism of the adult human speech musculature in an effort to elucidate the role of metabolism in speech production; (b) introduce a well-studied metabolic serum biomarker in exercise science, lactate, and the potential usefulness of investigating this metabolite, through a well-established exercise science methodology, to better understand metabolism of the musculature involved in voice production; and (c) discuss exercise physiology considerations for future voice science research that seeks to investigate blood lactate and metabolism in voice physiology in an ecologically valid manner. METHOD This tutorial begins with relevant exercise science literature on the basic cellular processes of muscle contraction that require energy and the metabolic mechanisms that regenerate the energy required for task execution. The tutorial next synthesizes the available research investigating metabolism of the adult human speech musculature. This is followed by the authors proposing a hypothesis of speech metabolism based on the voice science literature and the application of well-studied exercise science principles of muscle physiology. The tutorial concludes with a discussion and the potential usefulness of lactate in investigations to better understand the metabolism of the musculature involved in vocal demand tasks. CONCLUSION The role of metabolism during speech (respiratory, laryngeal, and articulatory) is an understudied yet critical aspect of speech physiology that warrants further study to better understand the metabolic systems that are used to meet vocal demands.
Collapse
Affiliation(s)
| | | | | | - Mary J Sandage
- Department of Speech, Language, and Hearing Sciences, Auburn University, AL
| |
Collapse
|
8
|
Cao M, Yang B, Tang Y, Wang C, Yin L. Effects of low-volume functional and running high-intensity interval training on physical fitness in young adults with overweight/obesity. Front Physiol 2024; 15:1325403. [PMID: 38357496 PMCID: PMC10864534 DOI: 10.3389/fphys.2024.1325403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Objectives: This study examined and compared the effects of functional and running high-intensity interval training (HIIT) on body composition, cardiorespiratory fitness, and muscular fitness of young adults with overweight or obesity. Methods: Forty-five participants (22.1 ± 2.1 years, BMI = 25.2 ± 1.0 kg/m2) were assigned to functional HIIT (HIIT-F; n = 15), running HIIT (HIIT-R; n = 15), or non-training control group (CON; n = 15). Participants in HIIT-F and HIIT-R performed functional exercise based-HIIT (four sets of all-out whole-body exercises including jumping jacks, squats, twist jumps and mountain climbers, et al.) and running HIIT (four sets of running on a treadmill) for 12 weeks, respectively. Body composition, muscular fitness, and cardiorespiratory fitness were assessed pre and post intervention. Results: Both HIIT-F and HIIT-R significantly improved the body composition and cardiorespiratory fitness, with HIIT-F induced greater improvements in lean mass (+1.623 vs. -1.034 kg, p < 0.001), back strength (+6.007 vs. +3.333 kg, p < 0.01), and push-ups (+5.692 vs. 1.923 reps, p < 0.001) than that in HIIT-R. HIIT-R reduced more visceral fat area (VFA) (-11.416 vs. -4.338 cm2, p = 0.052) and induced similar improvement in cardiorespiratory fitness (VO2max, +2.192 vs. +2.885 mL/kg/min, p = 0.792) with HIIT-F. Conclusion: Twelve weeks of HIIT-R or HIIT-F improved physical fitness among young adults with overweight or obesity. Despite the similar impact on cardiorespiratory fitness, HIIT-F generates a better positive effect on muscular fitness relative to HIIT-R, which could be partly explained by the greater increase in lean mass after HIIT-F intervention.
Collapse
Affiliation(s)
- Meng Cao
- Sports College, Shenzhen University, Shenzhen, China
| | - Baiquan Yang
- Sports College, Shenzhen University, Shenzhen, China
| | - Yucheng Tang
- Sports College, Shenzhen University, Shenzhen, China
| | - Chun Wang
- School of Humanities and Social Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Lijun Yin
- Sports College, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Waghmare S, Whitaker-Hilbig AA, Chertoff M, Billinger SA. Blood Pressure Variability and Autonomic Response to an Acute Bout of High Intensity Interval Exercise in Healthy Young Adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.29.24301957. [PMID: 38352373 PMCID: PMC10863011 DOI: 10.1101/2024.01.29.24301957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Autonomic nervous system (ANS) activity causes acute variations in the blood pressure. Blood pressure responds to high intensity interval exercise (HIIE) repeatedly during alternating intensities, however, ANS response to the changing intensities of HIIE is unknown. We characterized the response of beat-to-beat blood pressure variability (BTB BPV) to an acute bout of HIIE using coefficient of variation (CoV) and spectral low frequency [LF], and high frequency [HF] domains. Our hypotheses were mean arterial pressure BTB BPV, would increase during 1) high intensity and 2) active recovery of HIIE compared to baseline (BL). BTB BPV would reduce during 1) cool down 2) post HIIE 3) 30 minutes post HIIE compared to BL in young adults. HIIE included bouts of 1-minute high-intensity separated by 1-minute recovery (□70% and 10% estimated Wattmax) for total of 10 minutes on a recumbent stepper. A secondary analysis was performed using twenty-one datasets of young individuals (age 25±1.5, 48% female). During high intensity, LF and HF increased compared to BL (p < 0.05) indicating increased sympathetic activity and breathing. During active recovery, LF and HF remained elevated above BL and were greater than during high intensity (p ≤ 0.02). Sympathetic activity reduced back to BL immediately post HIIE but returned to being higher than BL at 30 minutes after HIIE (p=0.001). BTB BPV CoV also increased during HIIE compared to BL (p<0.05). Results suggest that young healthy individuals have increased BTB BPV during HIIE suggesting cardiovascular system responds to ANS fluctuations during changing exercise intensity. New and Noteworthy This novel study analyzed beat -to-beat blood pressure variability during high intensity interval exercise (HIIE) in young healthy adults. We found that blood pressure variability was highest during active recovery compared to resting or high intensity exercise. Moreover, variability increased during HIIE but returned to resting post-exercise. These findings provide valuable insights into the blood pressure and ANS responses to HIIE, contributing to our understanding of their impact on overall cardiovascular health in young adults.
Collapse
|
10
|
Bostad W, Williams JS, Van Berkel EK, Richards DL, MacDonald MJ, Gibala MJ. Biological sex does not influence the peak cardiac output response to twelve weeks of sprint interval training. Sci Rep 2023; 13:22995. [PMID: 38151488 PMCID: PMC10752867 DOI: 10.1038/s41598-023-50016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023] Open
Abstract
Sprint interval training (SIT) increases peak oxygen uptake (V̇O2peak) but the mechanistic basis is unclear. We have reported that 12 wk of SIT increased V̇O2peak and peak cardiac output (Q̇peak) and the changes in these variables were correlated. An exploratory analysis suggested that Q̇peak increased in males but not females. The present study incorporated best practices to examine the potential influence of biological sex on the Q̇peak response to SIT. Male and female participants (n = 10 each; 21 ± 4 y) performed 33 ± 2 sessions of SIT over 12 wk. Each 10-min session involved 3 × 20-s 'all-out' sprints on an ergometer. V̇O2peak increased after SIT (3.16 ± 1.0 vs. 2.89 ± 1.0 L/min, η2p = 0.53, p < 0.001) with no sex × time interaction (p = 0.61). Q̇peak was unchanged after training (15.2 ± 3.3 vs. 15.1 ± 3.0 L/min, p = 0.85), in contrast to our previous study. The peak estimated arteriovenous oxygen difference increased after training (204 ± 30 vs. 187 ± 36 ml/L, p = 0.006). There was no effect of training or sex on measures of endothelial function. We conclude that 12 wk of SIT increases V̇O2peak but the mechanistic basis remains unclear. The capacity of inert gas rebreathing to assess changes in Q̇peak may be limited and invasive studies that use more direct measures are needed.
Collapse
Affiliation(s)
- William Bostad
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Jennifer S Williams
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Emily K Van Berkel
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Douglas L Richards
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Maureen J MacDonald
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
11
|
Astorino TA, Teske A, Sturdy R, Thomas H, Stavrinou PS, Bogdanis GC. Shorter Versus Longer Durations of Rowing-Based Interval Exercise Attenuate the Physiological and Perceptual Response. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:1117-1125. [PMID: 36121694 DOI: 10.1080/02701367.2022.2120176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Purpose: This study compared physiological and perceptual variables between short and long durations of rowing-based high intensity interval exercise (HIIE). Methods: Fourteen active adults (age = 26.4 ± 7.2 yr) performed incremental rowing exercise to fatigue to measure maximal oxygen uptake (VO2max) and peak power output (PPO). The subsequent 20 min sessions required HIIE (eight 60 s efforts at 85%PPO with 90 s of active recovery at 20%PPO or 24 20 s efforts at 85%PPO with 30 s of active recovery at 20%PPO) or moderate intensity continuous exercise (MICE) at 40%PPO. During exercise, VO2, heart rate (HR), blood lactate concentration (BLa), rating of perceived exertion (RPE), and affective valence were measured. Results: Data show significantly (p < 0.001) higher peak VO2 (84 ± 7 vs. 76 ± 5%VO2peak, d = 0.99), peak HR (94 ± 4%HRpeak vs. 90 ± 4%HRpeak, d = 1.12), BLa (7.0 ± 2.5 mM vs. 4.1 ± 1.0 mM, d = 1.22), end-exercise RPE (12.8 ± 2.0 vs. 11.0 ± 1.7, d = 1.29), and lower affective valence (2.1 ± 1.6 vs. 2.9 ± 1.2, d = 0.61) with long versus short HIIE. Time spent above 85%HRpeak was significantly higher (p < 0.001) in short versus long HIIE (606 ± 259 vs. 448 ± 26 s, d = 0.91). Conclusion: Longer rowing-based intervals elicit greater cardiometabolic and perceptual strain versus shorter efforts, making the latter preferable to optimize perceptual responses to HIIE.
Collapse
|
12
|
Abdeen HA, Helmy ZM, Elnaggar MI, Aldhahi MI, Taha MM, Marques-Sule E, Amin DI, Ibrahim BS, Abdel Aziz A, Castiglione V, Atef H. Different Continuous Training Intensities Improve Echocardiographic Parameters, Quality of Life, and Functional Capacity in Heart Failure Patients with Reduced Ejection Fraction. Int J Gen Med 2023; 16:3933-3945. [PMID: 37670928 PMCID: PMC10475351 DOI: 10.2147/ijgm.s420933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Background Multiple comorbidities and physiological changes play a role in a range of heart failure conditions and influence the most effective approach to exercise-based rehabilitation. This research aimed to examine and compare the outcomes of continuous training at three different intensities, focusing on left ventricular (LV) remodeling, functional capacity, and quality of life among patients with heart failure with reduced ejection fraction (HFrEF). Methods In this randomized control trial, a total of 60 male patients (average age: 54.33 ±2.35 years) with HFrEF were randomly allocated into three groups: 1) High-intensity continuous training group (HICT), 2) Moderate-intensity continuous training group (MICT), and 3) Low-intensity continuous training group (LICT). All the training was performed on a bicycle ergometer 3 times/week for 12 weeks. Echocardiographic parameters (left ventricular ejection fraction, left ventricular end-diastolic dimension, left ventricular end-systolic dimension, N-terminal pro-B-type natriuretic peptide (NT-proBNP), quality of life (Minnesota Living with Heart Failure Questionnaire), and functional capacity (6-minute walking test) were assessed before and the end of the study. Results The HICT group demonstrated the greatest improvements in all measured variables when compared to the other two groups (P < 0.05). These findings were consistent across all measured outcomes. Conclusion It was determined that HICT appears to yield the most favorable outcomes in enhancing echocardiographic measures, NT-proBNP levels, quality of life, and functional capacity among HFrEF patients.
Collapse
Affiliation(s)
- Heba A Abdeen
- Department of Physical Therapy for Cardiovascular/Respiratory Disorder and Geriatrics, Faculty of Physical Therapy, Cairo University, Giza, 11432, Egypt
| | - Zeinab M Helmy
- Department of Physical Therapy for Cardiovascular/Respiratory Disorder and Geriatrics, Faculty of Physical Therapy, Cairo University, Giza, 11432, Egypt
| | - Moustafa I Elnaggar
- Faculty of Physical Therapy, Heliopolis University for Sustainable Development, Giza, Egypt
| | - Monira I Aldhahi
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Mona Mohamed Taha
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Elena Marques-Sule
- Physiotherapy in Motion, Multispeciality Research Group (PTinMOTION), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Doaa I Amin
- Basic Science Department, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| | | | | | - Vincenzo Castiglione
- Fondazione Toscana Gabriele Monasterio; “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Hady Atef
- Department of Physical Therapy for Cardiovascular/Respiratory Disorder and Geriatrics, Faculty of Physical Therapy, Cairo University, Giza, 11432, Egypt
- School of Allied Health Professions (SAHP), Keele University, Staffordshire, UK
| |
Collapse
|
13
|
Liu Y, Zhou A, Li F, Yue T, Xia Y, Yao Y, Zhou X, Zhang Y, Wang Y. Aerobic capacity and [Formula: see text] kinetics adaptive responses to short-term high-intensity interval training and detraining in untrained females. Eur J Appl Physiol 2023; 123:1685-1699. [PMID: 36995431 DOI: 10.1007/s00421-023-05182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE This study investigated the physical fitness and oxygen uptake kinetics (τ[Formula: see text]) along with the O2 delivery and utilization (heart rate kinetics, τHR; deoxyhemoglobin/[Formula: see text] ratio, ∆[HHb]/[Formula: see text]) adaptations of untrained female participants responding to 4 weeks of high-intensity interval training (HIIT) and 2 weeks of detraining. METHODS Participants were randomly assigned to HIIT (n = 11, 4 × 4 protocol) or nonexercising control (n = 9) groups. Exercising group engaged 4 weeks of treadmill HIIT followed by 2 weeks of detraining while maintaining daily activity level. Ramp-incremental (RI) tests and step-transitions to moderate-intensity exercise were performed. Aerobic capacity and performance (maximal oxygen uptake, [Formula: see text]; gas-exchange threshold, GET; power output, PO), body composition (skeletal muscle mass, SMM; body fat percentage, BF%), muscle oxygenation status (∆[HHb]), [Formula: see text], and HR kinetics were assessed. RESULTS HIIT elicited improvements in aerobic capacity ([Formula: see text], + 0.17 ± 0.04 L/min; GET, + 0.18 ± 0.05 L/min, P < 0.01; PO-[Formula: see text], ± 23.36 ± 8.37 W; PO-GET, + 17.18 ± 3.07 W, P < 0.05), body composition (SMM, + 0.92 ± 0.17 kg; BF%, - 3.08% ± 0.58%, P < 0.001), and speed up the τ[Formula: see text] (- 8.04 ± 1.57 s, P < 0.001) significantly, extending to better ∆[HHb]/[Formula: see text] ratio (1.18 ± 0.08 to 1.05 ± 0.14). After a period of detraining, the adaptation in body composition and aerobic capacity, as well as the accelerated τ[Formula: see text] were maintained in the HIIT group, but the PO-[Formula: see text] and PO-GET declined below the post-training level (P < 0.05), whereas no changes were reported in controls (P > 0.05). Four weeks of HIIT induced widespread physiological adaptations in females, and the majority of improvements were preserved after 2 weeks of detraining except for power output corresponding to [Formula: see text] and GET.
Collapse
Affiliation(s)
- Yujie Liu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Aiyi Zhou
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Fengya Li
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Tian Yue
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yuncan Xia
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yibing Yao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Xiaoxiao Zhou
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yihong Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yan Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
14
|
Gasser B, Niederseer D, Frey WO, Catuogno S, Flück M. ACE-I/D Allele Modulates Improvements of Cardiorespiratory Function and Muscle Performance with Interval-Type Exercise. Genes (Basel) 2023; 14:1100. [PMID: 37239460 PMCID: PMC10218657 DOI: 10.3390/genes14051100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Background: The prominent insertion/deletion polymorphism in the gene for the major modulator of tissue perfusion, angiotensin-converting enzyme (ACE-I/D) is associated with variability in adjustments in cardiac and skeletal muscle performance with standard forms of endurance and strength type training. Here, we tested whether the ACE-I/D genotype would be associated with variability in the effects of interval-type training on peak and aerobic performance of peripheral muscle and cardio-vasculature and post-exercise recovery. Methods: Nine healthy subjects (39.0 ± 14.7 years of age; 64.6 ± 16.1 kg, 173.6 ± 9.9) completed eight weeks of interval training on a soft robotic device based on repeated sets of a pedaling exercise at a matched intensity relative to their peak aerobic power output. Prior to and post-training, peak anaerobic and aerobic power output was assessed, mechanical work and metabolic stress (oxygen saturation and hemoglobin concentrations of Musculus vastus lateralis (VAS) and Musculus gastrocnemius (GAS), blood lactate and factors setting cardiac output such as heart rate, systolic and diastolic blood pressure were monitored during ramp-incremental exercise and interval exercise with the calculation of areas under the curve (AUC), which were put in relation to the produced muscle work. Genotyping was performed based on I- and D-allele-specific polymerase chain reactions on genomic DNA from mucosal swaps. The significance of interaction effects between training and ACE I-allele on absolute and work-related values was assessed with repeated measures ANOVA. Results: Subjects delivered 87% more muscle work/power, 106% more cardiac output, and muscles experienced ~72% more of a deficit in oxygen saturation and a ~35% higher passage of total hemoglobin during single interval exercise after the eight weeks of training. Interval training affected aspects of skeletal muscle metabolism and performance, whose variability was associated with the ACE I-allele. This concerned the economically favorable alterations in the work-related AUC for the deficit of SmO2 in the VAS and GAS muscles during the ramp exercise for the I-allele carriers and opposing deteriorations in non-carriers. Conversely, oxygen saturation in the VAS and GAS at rest and during interval exercise was selectively improved after training for the non-carriers of the I-allele when the AUC of tHb per work during interval exercise deteriorated in the carriers. Training also improved aerobic peak power output by 4% in the carriers but not the non-carriers (p = 0.772) of the ACE I-allele while reducing negative peak power (-27.0%) to a lesser extent in the ACE I-allele carriers than the non-carriers. Variability in cardiac parameters (i.e., the AUC of heart rate and glucose during ramp exercise, was similar to the time to recovery of maximal tHb in both muscles after cessation of ramp exercise, only associated with the ACE I-allele but not training per se. Diastolic blood pressure and cardiac output during recovery from exhaustive ramp exercise demonstrated a trend for training-associated differences in association with the ACE I-allele. Discussion: The exercise-type dependent manifestation of antidromic adjustments in leg muscle perfusion and associated local aerobic metabolism between carriers and non-carriers of the ACE I-allele with the interval-training highlight that non-carriers of the I-allele do not present an essential handicap to improve perfusion-related aerobic muscle metabolism but that the manifestation of responsiveness depends on the produced work. Conclusions: The deployed interval-type of exercise produced ACE I-allele-related differences in the alterations of negative anaerobic performance and perfusion-related aerobic muscle metabolism, which manifestation is exercise specific. The training-invariant ACE I-allele-associated differences in heart rate and blood glucose concentration emphasize that the repeated impact of the interval stimulus, despite a near doubling of the initial metabolic load, was insufficient to overturn ACE-related genetic influences on cardiovascular function.
Collapse
Affiliation(s)
- Benedikt Gasser
- Departement für Bewegung und Sport, Universität Basel, CH-4052 Basel, Switzerland
| | - David Niederseer
- Department of Cardiology, University Hospital Zurich, University of Zurich, CH-8008 Zurich, Switzerland;
| | - Walter O. Frey
- Swiss Olympic Medical Center, Balgrist University Hospital, CH-8008 Zurich, Switzerland; (W.O.F.); (S.C.)
| | - Silvio Catuogno
- Swiss Olympic Medical Center, Balgrist University Hospital, CH-8008 Zurich, Switzerland; (W.O.F.); (S.C.)
| | - Martin Flück
- Laboratory for Muscle Plasticity, University of Zurich, Balgrist Campus, CH-8008 Zurich, Switzerland
- Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
15
|
Lässing J, Maudrich T, Kenville R, Uyar Z, Bischoff C, Fikenzer S, Busse M, Falz R. Intensity-dependent cardiopulmonary response during and after strength training. Sci Rep 2023; 13:6632. [PMID: 37095279 PMCID: PMC10126007 DOI: 10.1038/s41598-023-33873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
Whereas cardiopulmonary responses are well understood in endurance training, they are rarely described in strength training. This cross-over study examined acute cardiopulmonary responses in strength training. Fourteen healthy male strength training-experienced participants (age 24.5 ± 2.9 years; BMI 24.1 ± 2.0 kg/m2) were randomly assigned into three strength training sessions (three sets of ten repetitions) with different intensities (50%, 62,5%, and 75% of the 3-Repetition Maximum) of squats in a smith machine. Cardiopulmonary (impedance cardiography, ergo-spirometry) responses were continuously monitored. During exercise period, heart rate (HR 143 ± 16 vs. 132 ± 15 vs. 129 ± 18 bpm, respectively; p < 0.01; η2p 0.54) and cardiac output (CO: 16.7 ± 3.7 vs. 14.3 ± 2.5 vs. 13.6 ± 2.4 l/min, respectively; p < 0.01; η2p 0.56) were higher at 75% of 3-RM compared to those at the other intensities. We noted similar stroke volume (SV: p = 0.08; η2p 0.18) and end-diastolic volume (EDV: p = 0.49). Ventilation (VE) was higher at 75% compared to 62.5% and 50% (44.0 ± 8.0 vs. 39.6 ± 10.4 vs. 37.6 ± 7.7 l/min, respectively; p < 0.01; η2p 0.56). Respiration rate (RR; p = .16; η2p 0.13), tidal volume (VT: p = 0.41; η2p 0.07) and oxygen uptake (VO2: p = 0.11; η2p 0.16) did not differ between intensities. High systolic and diastolic blood pressure were evident (62.5% 3-RM 197 ± 22.4/108.8 ± 13.4 mmHG). During the post-exercise period (60 s), SV, CO, VE, VO2, and VCO2 were higher (p < 0.01) than during the exercise period, and the pulmonary parameters differed markedly between intensities (VE p < 0.01; RR p < 0.01; VT p = 0.02; VO2 p < 0.01; VCO2 p < 0.01). Despite the differences in strength training intensity, the cardiopulmonary response reveals significant differences predominantly during the post-exercise period. Intensity-induced breath holding induces high blood pressure peaks and cardiopulmonary recovery effects after exercise.
Collapse
Affiliation(s)
- Johannes Lässing
- Department of Exercise Science and Sports Medicine, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 2, 06120, Halle (Saale), Germany
| | - Tom Maudrich
- Department of Movement Neuroscience, Faculty of Sports Science, Leipzig University, 04109, Leipzig, Germany
| | - Rouven Kenville
- Department of Movement Neuroscience, Faculty of Sports Science, Leipzig University, 04109, Leipzig, Germany
| | - Zarah Uyar
- Institute of Sport Medicine and Prevention, University of Leipzig, Rosa-Luxemburg-Straße 20-30, 04103, Leipzig, Germany
| | - Christian Bischoff
- Institute of Sport Medicine and Prevention, University of Leipzig, Rosa-Luxemburg-Straße 20-30, 04103, Leipzig, Germany
| | - Sven Fikenzer
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Martin Busse
- Institute of Sport Medicine and Prevention, University of Leipzig, Rosa-Luxemburg-Straße 20-30, 04103, Leipzig, Germany
| | - Roberto Falz
- Institute of Sport Medicine and Prevention, University of Leipzig, Rosa-Luxemburg-Straße 20-30, 04103, Leipzig, Germany.
| |
Collapse
|
16
|
D'Alleva M, Vaccari F, Graniero F, Giovanelli N, Floreani M, Fiori F, Marinoni M, Parpinel M, Lazzer S. Effects of 12-week combined training versus high intensity interval training on cardiorespiratory fitness, body composition and fat metabolism in obese male adults. J Exerc Sci Fit 2023; 21:193-201. [PMID: 36820014 PMCID: PMC9937988 DOI: 10.1016/j.jesf.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Background /Objectives: A weekly combination of a high volume of moderate-intensity continuous training (MICT) with a low volume of high-intensity interval training (HIIT) provides important improvements in body composition and physical capacities in individuals with obesity. However, previous studies did not determine the weekly proportions of HIIT and MICT a priori. This study aimed to investigate changes in body composition, physical capacities and the fat oxidation rate in obese male adults by comparing a combination of MICT and HIIT, called combined training (COMB), with HIIT for a 12-week period. Methods Thirty-four obese male adults (mean age: 39.4 ± 7.0 y; mean body mass index [BMI] 34.0 ± 4.2 kg m-2) participated in this study (n = 18 for COMB, n = 16 HIIT), attending ∼ 36 training sessions. The COMB group performed 3 repetitions of 2 min at 95% of peak oxygen uptake (V'O2 peak) (e.g., HIIT ≤20%), followed by 30 min at 60% of VO2 peak (e.g., MICT ≥80%). The HIIT group performed 5-7 repetitions of 2 min at 95% of VO2 peak. At baseline (PRE) and at the end of the training period (POST), body composition, VO2 peak, and the fat oxidation rate were measured. The two training programs were equivalent in caloric expenditure. Results At POST, body mass (BM) and fat mass (FM) decreased by a mean of 3.09 ± 3.21 kg and 3.90 ± 2.40 kg, respectively (P < 0.05), in both groups and V'O2 peak increased in both groups by a mean of 0.47 ± 0.34 L min-1 (P < 0.05). The maximal fat oxidation rate increased similarly in both groups from 0.32 ± 0.05 to 0.36 ± 0.06 g min-1 (P < 0.05). Conclusion COMB training represents a viable alternative to HIIT to improve anthropometric characteristics, physical capacities and fat oxidation in obese male adults.
Collapse
Affiliation(s)
- Mattia D'Alleva
- Department of Medicine, University of Udine, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
| | - Filippo Vaccari
- Department of Medicine, University of Udine, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
| | - Francesco Graniero
- Physical Exercise Prescription Center, Azienda Sanitaria Universitaria Friuli Centrale, Gemona del Friuli, Italy
| | - Nicola Giovanelli
- Department of Medicine, University of Udine, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
| | - Mirco Floreani
- Department of Medicine, University of Udine, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
| | - Federica Fiori
- Department of Medicine, University of Udine, Udine, Italy
| | | | - Maria Parpinel
- Department of Medicine, University of Udine, Udine, Italy
| | - Stefano Lazzer
- Department of Medicine, University of Udine, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
| |
Collapse
|
17
|
Moneghetti K, Carrick-Ranson G, Howden EJ. Establishing the Optimum use of High-Intensity Interval Training in Heart Failure: Current Status and Future Directions. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
18
|
Liu Y, Xia Y, Yue T, Li F, Zhou A, Zhou X, Yao Y, Zhang Y, Wang Y. Adaptations to 4 weeks of high-intensity interval training in healthy adults with different training backgrounds. Eur J Appl Physiol 2023; 123:1283-1297. [PMID: 36795131 DOI: 10.1007/s00421-023-05152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
PURPOSE This study investigated the physical fitness and oxygen uptake kinetics ([Formula: see text]) along with the exercise-onset O2 delivery (heart rate kinetics, τHR; changes in normalized deoxyhemoglobin/[Formula: see text] ratio, Δ[HHb]/[Formula: see text]) adaptations of individuals with different physical activity (PA) backgrounds responding to 4 weeks of high-intensity interval training (HIIT), and the possible effects of skeletal muscle mass (SMM) on training-induced adaptations. METHODS Twenty subjects (10 high-PA level, HIIT-H; 10 moderate-PA level, HIIT-M) engaged in 4 weeks of treadmill HIIT. Ramp-incremental (RI) test and step-transitions to moderate-intensity exercise were performed. Cardiorespiratory fitness, body composition, muscle oxygenation status, VO2 and HR kinetics were assessed at baseline and post-training. RESULTS HIIT improved fitness status for HIIT-H ([Formula: see text], + 0.26 ± 0.07 L/min; SMM, + 0.66 ± 0.70 kg; body fat, - 1.52 ± 1.93 kg; [Formula: see text], - 7.11 ± 1.05 s, p < 0.05) and HIIT-M ([Formula: see text], 0.24 ± 0.07 L/min, SMM, + 0.58 ± 0.61 kg; body fat, - 1.64 ± 1.37 kg; [Formula: see text], - 5.48 ± 1.05 s, p < 0.05) except for visceral fat area (p = 0.293) without between-group differences (p > 0.05). Oxygenated and deoxygenated hemoglobin amplitude during the RI test increased for both groups (p < 0.05) except for total hemoglobin (p = 0.179). The Δ[HHb]/[Formula: see text] overshoot was attenuated for both groups (p < 0.05) but only eliminated in HIIT-H (1.05 ± 0.14 to 0.92 ± 0.11), and no change was observed in τHR (p = 0.144). Linear mixed-effect models presented positive effects of SMM on absolute [Formula: see text] (p < 0.001) and ΔHHb (p = 0.034). CONCLUSION Four weeks of HIIT promoted positive adaptations in physical fitness and [Formula: see text] kinetics, with the peripheral adaptations attributing to the observed improvements. The training effects are similar between groups suggesting that HIIT is effective for reaching higher physical fitness levels.
Collapse
Affiliation(s)
- Yujie Liu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yuncan Xia
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Tian Yue
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Fengya Li
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Aiyi Zhou
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Xiaoxiao Zhou
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yibing Yao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yihong Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yan Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
19
|
Chen Z, Jia J, Gui D, Liu F, Li J, Tu J. Functional and postoperative outcomes after high-intensity interval training in lung cancer patients: A systematic review and meta-analysis. Front Oncol 2023; 12:1029738. [PMID: 36741720 PMCID: PMC9895778 DOI: 10.3389/fonc.2022.1029738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/31/2022] [Indexed: 01/22/2023] Open
Abstract
Objective The study evaluated the effects of high-intensity interval training (HIIT) on postoperative complications and lung function in patients with lung cancer compared to usual care. Methods We searched electronic databases in April 2022, including PubMed, Embase, the Cochrane Library, Web of Science, and the China National Knowledge Infrastructure (CNKI). Two authors independently applied the Cochrane Risk of Bias tool to assess the quality of RCTs. The postoperative complications, length of hospitalization, and cardiopulmonary functions from the studies were pooled for statistical analysis. Results A total of 12 randomized controlled trials were eligible for inclusion and were conducted in the meta-analysis. HIIT significantly increased VO2peak (MD = 2.65; 95% CI = 1.70 to 3.60; I2 = 40%; P <0.001) and FEV1 (MD = 0.12; 95% CI = 0.04 to 0.20; I2 = 51%; P = 0.003) compared with usual care. A subgroup analysis of studies that applied HIIT perioperatively showed significant improvement of HIIT on FEV1 (MD = 0.14; 95% CI = 0.08 to 0.20; I2 = 36%; P <0.0001). HIIT significantly reduced the incidence of postoperative atelectasis in lung cancer patients compared with usual care (RD = -0.16; 95% CI = -0.24 to -0.08; I2 = 24%; P <0.0001). There was no statistically significant effect of HIIT on postoperative arrhythmias (RD = -0.05; 95% CI = -0.13 to 0.03; I2 = 40%; P = 0.22), length of hospitalization (MD = -1.64; 95% CI = -3.29 to 0.01; P = 0.05), and the six-minute walk test (MD = 19.77; 95% CI = -15.25 to 54.80; P = 0.27) compared to usual care. Conclusion HIIT may enhance VO2peak and FEV1 in lung cancer patients and reduce the incidence of postoperative atelectasis. However, HIIT may not reduce the incidence of postoperative arrhythmia, shorten the length of hospitalization, or improve the exercise performance of patients with lung cancer. Systematic review registration PROSPERO, CRD42022335441.
Collapse
Affiliation(s)
- Zihao Chen
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Junqiang Jia
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Dongmei Gui
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Feng Liu
- Department of Gastroenterology, Jining No. 1 People’s Hospital, Jining, China
| | - Jun Li
- Training Department, Nanjing Sport Institute, Nanjing, China
| | - Jiayuan Tu
- School of Nursing and School of Public Health, Yangzhou University, Yangzhou, China,*Correspondence: Jiayuan Tu,
| |
Collapse
|
20
|
Astorino TA, Causer E, Hazell TJ, Arhen BB, Gurd BJ. Change in Central Cardiovascular Function in Response to Intense Interval Training: A Systematic Review and Meta-analysis. Med Sci Sports Exerc 2022; 54:1991-2004. [PMID: 35881924 DOI: 10.1249/mss.0000000000002993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION High-intensity interval training and sprint interval training significantly increase maximal oxygen uptake (V̇O 2max ), which enhances endurance performance and health status. Whether this response is due to increases in central cardiovascular function (cardiac output (CO) and blood volume) or peripheral factors is unknown. PURPOSE This study aimed to conduct a systematic review and meta-analysis to assess the effects of high-intensity interval training and sprint interval training (referred to as intense interval training) on changes in central cardiovascular function. METHODS We performed a systematic search of eight databases for studies denoting increases in V̇O 2max in which CO, stroke volume (SV), blood volume, plasma volume, end-diastolic/systolic volume, or hematocrit were measured. RESULTS Forty-five studies were included in this analysis, comprising 946 men and women of various health status (age and V̇O 2max , 20-76 yr and 13-61 mL·kg -1 ·min -1 ) who performed 6-96 sessions of interval training. Results showed an increase in V̇O 2max with intense interval training that was classified as a large effect ( d = 0.83). SV ( d = 0.69), and CO ( d = 0.49) had moderate effect sizes in response to intense interval training. Of 27 studies in which CO was measured, 77% exhibited significant increases in resting CO or that obtained during exercise. Similarly, 93% of studies revealed significant increases in SV in response to intense interval training. Effect sizes for these outcomes were larger for clinical versus healthy populations. Plasma volume, blood volume, and hematocrit had small effect sizes after training ( d = 0.06-0.14). CONCLUSIONS Increases in V̇O 2max demonstrated with intense interval training are attendant with increases in central O 2 delivery with little contribution from changes in hematocrit, blood volume, or plasma volume.
Collapse
Affiliation(s)
- Todd A Astorino
- Department of Kinesiology, California State University-San Marcos. San Marcos, CA
| | - Ejaz Causer
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, CANADA
| | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, CANADA
| | - Benjamin B Arhen
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, CANADA
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, CANADA
| |
Collapse
|
21
|
Cao M, Tang Y, Zou Y. Integrating High-Intensity Interval Training into a School Setting Improve Body Composition, Cardiorespiratory Fitness and Physical Activity in Children with Obesity: A Randomized Controlled Trial. J Clin Med 2022; 11:jcm11185436. [PMID: 36143083 PMCID: PMC9506281 DOI: 10.3390/jcm11185436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to examine the effects of school-based high-intensity interval training (HIIT) on cardiorespiratory fitness and visceral adipose tissue (VAT) in children with obesity. A total of 40 students (11.0 ± 0.6 years; 20 boys) were randomized into an intervention group (IG) and control group (CG). The IG group performed a 12-week HIIT intervention with three sessions per week. Each session included 18 min of training (three sets of eight bouts of 15 s run at 100% maximal aerobic speed (MAS) separated by eight bouts of 15 s recovery run at 50% MAS) in PE class; the CG group were instructed to continue their normal behaviors. All subjects had indices of body mass index (BMI), fat mass (FM), body fat percentage (%BF), fat free mass (FFM), VAT, and maximal oxygen uptake (VO2max) measured at baseline and post-intervention. The cooperation of students was high, and all 40 students were included in the final analysis. A significant group−time interaction was determined in body composition (p < 0.05), with a significant decrease in BM (−3.4 ± 1.4 kg, p = 0.001; η2 = 0.63), BMI (−1.7 ± 0.5, p = 0.001; η2 = 0.58), %BF (−3.3 ± 1.4, p = 0.001; η2 = 0.54), and FM (−3.2 ± 1.4 kg, p = 0.001; η2 = 0.69), and VAT (−22.4 ± 9.8 cm2; p = 0.001; η2 = 0.61) in the IG. Furthermore, VO2max exhibited a significant increase in the IG (4.5 ± 1.6 mL/kg/min, p = 0.001; η2 = 0.84) and CG groups (1.7 ± 1.1 mL/kg/min, p = 0.001; η2 = 0.44). Integrating regular school-based HIIT sessions is a suitable method to improve body composition, cardiorespiratory fitness, and physical activity in students with obesity. Trial Registration: ChiCTR2100048737.
Collapse
Affiliation(s)
- Meng Cao
- Department of Physical Education, College of Sport, Shenzhen University, Shenzhen 518061, China
- Correspondence:
| | - Yucheng Tang
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou 310027, China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
22
|
Marinho AH, Lopes-Silva JP, Cristina-Souza G, Sousa FADB, Ataide-Silva T, Lima-Silva AE, Araujo GGD, Silva-Cavalcante MD. Effects of caffeine ingestion on cardiopulmonary responses during a maximal graded exercise test: a systematic review with meta-analysis and meta-regression. Crit Rev Food Sci Nutr 2022; 64:127-139. [PMID: 35894639 DOI: 10.1080/10408398.2022.2104807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
While the effects of caffeine ingestion on endurance performance are well known, its effects on cardiopulmonary responses during a maximal graded exercise test have been less explored. This study systematically reviewed and meta-analyzed studies investigating the effects of caffeine ingestion on cardiopulmonary responses during a maximal graded exercise test. A search was performed in four databases, and study quality was assessed using the PEDro scale. Data reported by the selected studies were pooled using random-effects meta-analysis, with selected moderator effects assessed via meta-regression. Twenty-one studies with good and excellent methodological quality were included in this review. Compared to placebo, caffeine increased peak minute ventilation (SMD = 0.33; p = 0.01) and time to exhaustion (SMD = 0.41; p = 0.01). However, meta-regression showed no moderating effects of dosage and timing of caffeine ingestion, stage length, or total length of GXT (all p > 0.05). Caffeine ingestion did not affect peak oxygen uptake (SMD = 0.13; p = 0.42), peak heart rate (SMD = 0.27; p = 0.07), peak blood lactate concentration (SMD = 0.60; p = 0.09), peak tidal volume (SMD = 0.10; p = 0.69), peak breathing frequency (SMD =0.20; p = 0.23), or peak power output (SMD = 0.22; p = 0.28). The results of this systematic review with meta-analysis suggest that caffeine increases time to exhaustion and peak minute ventilation among the cardiopulmonary variables assessed during GXT.
Collapse
Affiliation(s)
- Alisson Henrique Marinho
- Laboratory of Applied Sports Science, Institute of Physical Education and Sports, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Human Performance Research Group, Federal University of Technology Parana, Curitiba, Parana, Brazil
- Department of Physical Education, Federal University of Parana, Curitiba, Parana, Brazil
- Nutrition and Exercise Research Group, State University of Minas Gerais (UEMG), Passos, Minas Gerais, Brazil
| | - João Paulo Lopes-Silva
- Applied Research Group to Performance and Health, CESMAC University Center, Maceió, Alagoas, Brazil
| | - Gislaine Cristina-Souza
- Human Performance Research Group, Federal University of Technology Parana, Curitiba, Parana, Brazil
- Nutrition and Exercise Research Group, State University of Minas Gerais (UEMG), Passos, Minas Gerais, Brazil
| | - Filipe Antônio de Barros Sousa
- Laboratory of Applied Sports Science, Institute of Physical Education and Sports, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Post-graduate Program in Nutrition, Faculty of Nutrition, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Thays Ataide-Silva
- Laboratory of Applied Sports Science, Institute of Physical Education and Sports, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Post-graduate Program in Nutrition, Faculty of Nutrition, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Gustavo Gomes de Araujo
- Laboratory of Applied Sports Science, Institute of Physical Education and Sports, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Post-graduate Program in Nutrition, Faculty of Nutrition, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Marcos David Silva-Cavalcante
- Laboratory of Applied Sports Science, Institute of Physical Education and Sports, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Post-graduate Program in Nutrition, Faculty of Nutrition, Federal University of Alagoas, Maceió, Alagoas, Brazil
| |
Collapse
|
23
|
Mandić M, Hansson B, Lovrić A, Sundblad P, Vollaard NBJ, Lundberg TR, Gustafsson T, Rullman E. Improvements in Maximal Oxygen Uptake After Sprint-Interval Training Coincide with Increases in Central Hemodynamic Factors. Med Sci Sports Exerc 2022; 54:944-952. [PMID: 35136000 DOI: 10.1249/mss.0000000000002872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Sprint-interval training has been shown to improve maximal oxygen uptake, in part through peripheral muscle adaptations that increase oxygen utilization. In contrast, the adaptations of central hemodynamic factors in this context remain unexplored. PURPOSE The aim of the current study was to explore the effects of sprint-interval training on maximal oxygen uptake and central hemodynamic factors. METHODS Healthy men and women (n = 29; mean age, 27 ± 5 yr; height, 175 ± 8 cm; body mass, 72.5 ± 12.0 kg) performed 6 wk of sprint-interval training consisting of three weekly sessions of 10-min low-intensity cycling interspersed with 3 × 30-s all-out sprints. Maximal oxygen uptake, total blood volume, and maximal cardiac output were measured before and after the intervention. RESULTS Maximal oxygen uptake increased by 10.3% (P < 0.001). Simultaneously, plasma volume, blood volume, total hemoglobin mass, and cardiac output increased by 8.1% (276 ± 234 mL; P < 0.001), 6.8% (382 ± 325 mL; P < 0.001), 5.7% (42 ± 41 g; P < 0.001), and 8.5% (1.0 ± 0.9 L·min-1; P < 0.001), respectively. Increased total hemoglobin mass along with measures of body surface area had a significant impact on the improvements in maximal oxygen uptake. CONCLUSIONS Six weeks of sprint-interval training results in significant increases in hemoglobin mass, blood volume, and cardiac output. Because these changes were associated with marked improvements in maximal oxygen uptake, we conclude that central hemodynamic adaptations contribute to the improvement in maximal oxygen uptake during sprint-interval training.
Collapse
Affiliation(s)
- Mirko Mandić
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Björn Hansson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Alen Lovrić
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Patrik Sundblad
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Niels B J Vollaard
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UNITED KINGDOM
| | - Tommy R Lundberg
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| | - Eric Rullman
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, SWEDEN
| |
Collapse
|
24
|
NUUTTILA OLLIPEKKA, NUMMELA ARI, KYRÖLÄINEN HEIKKI, LAUKKANEN JARI, HÄKKINEN KEIJO. Physiological, Perceptual, and Performance Responses to the 2-Week Block of High- versus Low-Intensity Endurance Training. Med Sci Sports Exerc 2022; 54:851-860. [PMID: 35072660 PMCID: PMC9012527 DOI: 10.1249/mss.0000000000002861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE This study examined the physiological, perceptual, and performance responses to a 2-wk block of increased training load and compared whether responses differ between high-intensity interval (HIIT) and low-intensity training (LIT). METHODS Thirty recreationally trained males and females performed a 2-wk block of 10 HIIT sessions (INT, n = 15) or 70% increased volume of LIT (VOL, n = 15). Running time in the 3000 m and basal serum and urine hormone concentrations were measured before (T1) and after the block (T2), and after a recovery week (T3). In addition, weekly averages of nocturnal heart rate variability (HRV) and perceived recovery were compared with the baseline. RESULTS Both groups improved their running time in the 3000 m from T1 to T2 (INT = -1.8% ± 1.6%, P = 0.003; VOL = -1.4% ± 1.7%, P = 0.017) and from T1 to T3 (INT = -2.5% ± 1.6%, P < 0.001; VOL = -2.2% ± 1.9%, P = 0.001). Resting norepinephrine concentration increased in INT from T1 to T2 (P = 0.01) and remained elevated at T3 (P = 0.018). The change in HRV from the baseline was different between the groups during the first week (INT = -1.0% ± 2.0% vs VOL = 1.8% ± 3.2%, P = 0.008). Muscle soreness increased only in INT (P < 0.001), and the change was different compared with VOL across the block and recovery weeks (P < 0.05). CONCLUSIONS HIIT and LIT blocks increased endurance performance in a short period. Although both protocols seemed to be tolerable for recreational athletes, a HIIT block may induce some negative responses such as increased muscle soreness and decreased parasympathetic activity.
Collapse
Affiliation(s)
- OLLI-PEKKA NUUTTILA
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| | - ARI NUMMELA
- KIHU – Research Institute for Olympic Sports, Jyväskylä, FINLAND
| | - HEIKKI KYRÖLÄINEN
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| | - JARI LAUKKANEN
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, FINLAND
- Department of Internal Medicine, Central Finland Health Care District, Jyväskylä, FINLAND
| | - KEIJO HÄKKINEN
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| |
Collapse
|
25
|
Tangchaisuriya P, Chuensiri N, Tanaka H, Suksom D. Physiological Adaptations to High-Intensity Interval Training Combined with Blood Flow Restriction in Masters Road Cyclists. Med Sci Sports Exerc 2022; 54:830-840. [PMID: 34967801 DOI: 10.1249/mss.0000000000002857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE High-intensity interval training (HIIT) and blood flow restriction (BFR) training have been used to enhance athletic performance and cardiovascular health. Combining these training modalities might be an effective training modality for masters athletes who seek to enhance athletic performance and to reduce cardiovascular risks. METHODS Fifty masters road cyclists age 35-49 yr were randomly assigned to the continuous exercise training (n = 16), continuous plus HIIT (n = 17), and continuous plus BFR training combined with HIIT (BFRIT; n = 17) for 12 wk. Both HIIT and BFRIT were performed on a cycle ergometer twice a week. RESULTS Maximal oxygen consumption (V̇O2max) increased in the HIIT and BFRIT groups (P < 0.05). This was accompanied by significant improvements in maximal cardiac output and stroke volume (P < 0.05). Forty-kilometer time trial performance improved in all three groups (P < 0.05). Peak power output increased in both HIIT and BFRIT groups (P < 0.05). Flow-mediated dilation in both brachial and popliteal arteries increased in all three groups (all P < 0.05). There were no significant changes in carotid intima-media thickness and arterial stiffness in any of the groups. Total lean mass, muscle cross-sectional area and thickness in rectus femoris and vastus lateralis, and peak torque of isokinetic knee extension increased only in the BFRIT group (all P < 0.05). Tissue saturation index decreased only in the BFRIT group (P < 0.05). Changes in 40-km time trial performance were associated with corresponding changes in V̇O2max (r = -0.312, P = 0.029) and peak isokinetic extensor torque (r = -0.432, P = 0.002). CONCLUSIONS Including HIIT particularly with BFR in the routine continuous training may be more effective in enhancing performance and physiological functions in masters road cyclists.
Collapse
Affiliation(s)
| | | | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX
| | | |
Collapse
|
26
|
Michel A, Gremeaux V, Muff G, Pache B, Geinoz S, Larcinese A, Benaim C, Kayser B, Demartines N, Hübner M, Martin D, Besson C. Short term high-intensity interval training in patients scheduled for major abdominal surgery increases aerobic fitness. BMC Sports Sci Med Rehabil 2022; 14:61. [PMID: 35392968 PMCID: PMC8991597 DOI: 10.1186/s13102-022-00454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022]
Abstract
Background Prehabilitation may improve postoperative clinical outcomes among patients undergoing major abdominal surgery. This study evaluated the potential effects of a high-intensity interval training (HIIT) program performed before major abdominal surgery on patients’ cardiorespiratory fitness and functional ability (secondary outcomes of pilot trial NCT02953119). Methods Patients were included before surgery to engage in a low-volume HIIT program with 3 sessions per week for 3 weeks. Cardiopulmonary exercise and 6-min walk (6MWT) testing were performed pre- and post-prehabilitation. Results Fourteen patients completed an average of 8.6 ± 2.2 (mean ± SD) sessions during a period of 27.9 ± 6.1 days. After the program, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{\mathrm{V}}$$\end{document}V˙O2 peak (+ 2.4 ml min−1 kg−1, 95% CI 0.8–3.9, p = 0.006), maximal aerobic power (+ 16.8 W, 95% CI 8.2–25.3, p = 0.001), \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{\mathrm{V}}$$\end{document}V˙O2 at anaerobic threshold (+ 1.2 ml min−1 kg−1, 95%CI 0.4–2.1, p = 0.009) and power at anaerobic threshold (+ 12.4 W, 95%CI 4.8–20, p = 0.004) were improved. These changes were not accompanied by improved functional capacity (6MWT: + 2.6 m, 95% CI (− 19.6) to 24.8, p = 0.800). Conclusion A short low-volume HIIT program increases cardiorespiratory fitness but not walking capacity in patients scheduled for major abdominal surgery. These results need to be confirmed by larger studies. Supplementary Information The online version contains supplementary material available at 10.1186/s13102-022-00454-w.
Collapse
Affiliation(s)
- Anna Michel
- Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Vincent Gremeaux
- Department of Sports Medicine, Swiss Olympic Medical Center, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland.,Institute of Sport Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Guillaume Muff
- Department of Physical Medicine and Rehabilitation, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Basile Pache
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Sandrine Geinoz
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Ana Larcinese
- Department of Physiotherapy, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Charles Benaim
- Department of Physical Medicine and Rehabilitation, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Martin Hübner
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - David Martin
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland.
| | - Cyril Besson
- Department of Sports Medicine, Swiss Olympic Medical Center, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland.,Institute of Sport Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
27
|
Sheykhlouvand M, Arazi H, Astorino TA, Suzuki K. Effects of a New Form of Resistance-Type High-Intensity Interval Training on Cardiac Structure, Hemodynamics, and Physiological and Performance Adaptations in Well-Trained Kayak Sprint Athletes. Front Physiol 2022; 13:850768. [PMID: 35360225 PMCID: PMC8960736 DOI: 10.3389/fphys.2022.850768] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
This study examined the effects of a resistance-type high-intensity interval training (RHIIT) matched with the lowest velocity that elicited V.O2peak (100% vV.O2peak) in well-trained kayak sprint athletes. Responses in cardiac structure and function, cardiorespiratory fitness, anaerobic power, exercise performance, muscular strength, and hormonal adaptations were examined. Male kayakers (n = 24, age: 27 ± 4 years) were randomly assigned to one of three 8-wk conditions (N = 8): (RHIIT) resistance training using one-armed cable row at 100% vV.O2peak; paddling-based HIIT (PHIIT) six sets of paddling at 100% vV.O2peak; or controls (CON) who performed six sessions including 1-h on-water paddling/sessions at 70–80% maximum HR per week. Significant increases (p < 0.05) in V.O2peak, vV.O2peak, maximal cardiac output, resting stroke volume, left ventricular end-systolic dimension, 500-m paddling performance were seen pre- to post-training in all groups. Change in V.O2peak in response to PHIIT was significantly greater (p = 0.03) compared to CON. Also, 500-m paddling performance changes in response to PHIIT and RHIIT were greater (p = 0.02, 0.05, respectively) than that of CON. Compared with pre-training, PHIIT and RHIIT resulted in significant increases in peak and average power output, maximal stroke volume, end-diastolic volume, ejection fraction, total testosterone, testosterone/cortisol ratio, and 1,000-m paddling performance. Also, the change in 1,000-m paddling performance in response to PHIIT was significantly greater (p = 0.02) compared to that of CON. Moreover, maximum strength was significantly enhanced in response to RHIIT pre- to post-training (p < 0.05). Overall, RHIIT and PHIIT similarly improve cardiac structure and hemodynamics, physiological adaptations, and performance of well-trained kayak sprint athletes. Also, RHIIT enhances cardiorespiratory fitness and muscular strength simultaneously.
Collapse
Affiliation(s)
- Mohsen Sheykhlouvand
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | - Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
- *Correspondence: Hamid Arazi,
| | - Todd A. Astorino
- Department of Kinesiology, California State University, San Marcos, CA, United States
| | | |
Collapse
|
28
|
Ahmadi A, Rajabi H, Baker J. High-intensity interval training improves fat oxidation during submaximal exercise in active young men. COMPARATIVE EXERCISE PHYSIOLOGY 2022. [DOI: 10.3920/cep210028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study aimed to examine the effects of four-weeks high-intensity interval training (HIIT) on fat oxidation responses during submaximal exercise in active young men. For this purpose, 20 active young men (who participated in the exercise three times per week) were divided into two groups, including a training group (age: 19.3±0.48 years, V̇O2peak 2.9±0.35 l/min, n=10) and a control group (age: 19.7±0.67 years, V̇O2peak 2.7±0.26 l/min, n=10). The training group performed high-intensity interval training for three sessions per week. Specifically, each session included 8-11 intensive cycling efforts comprising of 60 s duration. A 75 s low pedalling rate (30 W) was used as an active recovery between the intervals. Furthermore, a V̇O2peak test was performed prior to, at the end of two weeks and after the training period. Also, a 60 min constant cycling protocol was performed at ~60% V̇O2peak, in addition to the V̇O2peak test, before and after the training protocol. To assess plasma free fatty acids and glucose, blood samples were taken during a 60-min aerobic exercise prior to and following the training period. An increase (17.8%) in V̇O2peak was observed for the HIIT group after the training period compared to the control group (P<0.05). The HIIT group performed the 60 min sub-maximal exercise test at a lower percentage of V̇O2peak, and decreases in the respiratory exchange ratio were greater in the HIIT group than in the control group (P<0.05). Compared to the pre-test values and control group results, the HIIT group used less carbohydrate and more lipid oxidation during submaximal exercise (P<0.05). The present study’s results indicate that short-term low volume HIIT can increase aerobic capacity and fat oxidation during submaximal exercise.
Collapse
Affiliation(s)
- A. Ahmadi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Mirdamad Street, 1544733111 Tehran, Iran
| | - H. Rajabi
- Department of Exercise physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Mirdamad Street, 1544733111 Tehran, Iran
| | - J.S. Baker
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China P.R
| |
Collapse
|
29
|
Modification in Psychophysiological Stress Parameters of Soldiers after an Integral Operative Training Prior to a Real Mission. SUSTAINABILITY 2022. [DOI: 10.3390/su14052792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
(1) Background. Military personel could be defined as “Tactical Athletes”. However, experimental evidence about the effects of new HIIT trainings in comparison with traditional training schedules is lacking. The aim of this study was to experimentally analyze the modifications on psycho-physiological and performance response of soldiers after completing experimental integral operative training. (2) Methods. A total of 43 male subjects of a special unit force of the Spanish armed forces were randomly selected and assigned into the experimental and control groups assessed after training and after deploying in a real operation area. The experimental group underwent an integral operative pre-mission 6-week training (IOT), and the control group, the 6-week traditional training. (3) Results. HIIT-based integral operative training significantly improved combat performance (melee combat score) and the psychophysiological stress response, as measured by heart rate variability indexes. (4) Conclusion. This study provides experimental evidence supporting a new integral operative effective for improved autonomic regulation, reduced perceived stress, melee and close-quarter combat techniques, in addition to aerobic and anaerobic performance and lower body strength in comparison with the traditional training.
Collapse
|
30
|
Kaiser A, Reneman L, Solleveld MM, Coolen BF, Scherder EJA, Knutsson L, Bjørnerud A, van Osch MJP, Wijnen JP, Lucassen PJ, Schrantee A. A Randomized Controlled Trial on the Effects of a 12-Week High- vs. Low-Intensity Exercise Intervention on Hippocampal Structure and Function in Healthy, Young Adults. Front Psychiatry 2022; 12:780095. [PMID: 35126199 PMCID: PMC8814653 DOI: 10.3389/fpsyt.2021.780095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Physical exercise affects hippocampal structure and function, but the underlying neural mechanisms and the effects of exercise intensity remain incompletely understood. Therefore, we undertook a comprehensive, multi-modal 3T and 7T MRI randomized controlled trial (Netherlands Trial Register - NL5847) in which we randomized 52 young, non-athletic volunteers to a 12-week low- or high-intensity exercise program. Using state-of-the-art methods, we investigated changes in hippocampal volume, as well as changes in vasculature, neuro-metabolites, and peripheral growth factors as potential underpinnings. Cardiorespiratory fitness improved over time (p < 0.001), but no interaction with exercise intensity was found (p = 0.48). Accordingly, we did not observe significant interactions between exercise condition and time on MRI measures (all p > 0.06). However, we found a significant decrease in right hippocampal volume (p < 0.01), an increase in left hippocampal glutathione (p < 0.01), and a decrease of left hippocampal cerebral blood volume (p = 0.01) over time, regardless of exercise condition. Additional exploratory analyses showed that changes in brain-derived neurotrophic factor (p = 0.01), insulin-like growth-factor (p = 0.03), and dorsal anterior cingulate cortex N-acetyl-aspartate levels (p = 0.01) were positively associated with cardiorespiratory fitness changes. Furthermore, a trend toward a positive association of fitness and gray-matter cerebral blood flow (p = 0.06) was found. Our results do not provide evidence for differential effects between high-intensity (aerobic) and low-intensity (toning) exercise on hippocampal structure and function in young adults. However, we show small but significant effects of exercise on hippocampal volume, neurometabolism and vasculature across exercise conditions. Moreover, our exploratory results suggest that exercise might not specifically only benefit hippocampal structure and function, but rather has a more widespread effect. These findings suggest that, in agreement with previous MRI studies demonstrating moderate to strong effects in elderly and diseased populations, but none to only mild effects in young healthy cohorts, the benefits of exercise on the studied brain measures may be age-dependent and restorative rather than stimulatory. Our study highlights the importance of a multi-modal, whole-brain approach to assess macroscopic and microscopic changes underlying exercise-induced brain changes, to better understand the role of exercise as a potential non-pharmacological intervention.
Collapse
Affiliation(s)
- Antonia Kaiser
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Michelle M. Solleveld
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Erik J. A. Scherder
- Department of Clinical Neuropsychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Linda Knutsson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Atle Bjørnerud
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | | | - Jannie P. Wijnen
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
31
|
de Oliveira-Nunes SG, Castro A, Sardeli AV, Cavaglieri CR, Chacon-Mikahil MPT. HIIT vs. SIT: What Is the Better to Improve V˙O 2max? A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13120. [PMID: 34948733 PMCID: PMC8700995 DOI: 10.3390/ijerph182413120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/24/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023]
Abstract
Lack of time is seen as a barrier to maintaining a physically active lifestyle. In this sense, interval training has been suggested as a time-efficient strategy for improving health, mainly due to its potential to increase cardiorespiratory fitness. Currently, the most discussed interval training protocols in the literature are the high-intensity interval training (HIIT) and the sprint interval training (SIT). Objective: We investigated, through a systematic review and meta-analysis, which interval training protocol, HIIT or SIT, promotes greater gain in cardiorespiratory fitness (V˙O2max/peak). The studies were selected from the PubMed (MEDLINE), Scopus and Web of Science databases. From these searches, a screening was carried out, selecting studies that compared the effects of HIIT and SIT protocols on V˙O2max/peak. A total of 19 studies were included in the final analysis. Due to the homogeneity between studies (I2 = 0%), fixed-effects analyses were performed. There was no significant difference in the V˙O2max/peak gains between HIIT and SIT for the standardized mean difference (SMD = 0.150; 95% CI = -0.038 to 0.338; p = 0.119), including studies that presented both measurements in mL·kg-1·min-1 and l·min-1; and raw mean differences (RMD = 0.921 mL·kg-1·min-1; 95% CI = -0.185 to 2.028; p = 0.103) were calculated only with data presented in mL·kg-1·min-1. We conclude that the literature generates very consistent data to confirm that HIIT and SIT protocols promote similar gains in cardiorespiratory fitness. Thus, for this purpose, the choice of the protocol can be made for convenience.
Collapse
Affiliation(s)
- Silas Gabriel de Oliveira-Nunes
- Exercise Physiology Laboratory, University of Campinas (UNICAMP), Av. Érico Verissimo, 701-Cidade Universitária “Zeferino Vaz” Barão Geraldo, Campinas 13083-851, SP, Brazil; (C.R.C.); (M.P.T.C.-M.)
| | - Alex Castro
- Exercise Physiology Laboratory, University of Campinas (UNICAMP), Av. Érico Verissimo, 701-Cidade Universitária “Zeferino Vaz” Barão Geraldo, Campinas 13083-851, SP, Brazil; (C.R.C.); (M.P.T.C.-M.)
- Nuclear Magnetic Resonance Laboratory, Federal University of São Carlos (UFSCar), Rod. Washington Luiz, s/n, São Carlos 13565-905, SP, Brazil
| | - Amanda Veiga Sardeli
- Exercise Physiology Laboratory, University of Campinas (UNICAMP), Av. Érico Verissimo, 701-Cidade Universitária “Zeferino Vaz” Barão Geraldo, Campinas 13083-851, SP, Brazil; (C.R.C.); (M.P.T.C.-M.)
| | - Claudia Regina Cavaglieri
- Exercise Physiology Laboratory, University of Campinas (UNICAMP), Av. Érico Verissimo, 701-Cidade Universitária “Zeferino Vaz” Barão Geraldo, Campinas 13083-851, SP, Brazil; (C.R.C.); (M.P.T.C.-M.)
| | - Mara Patricia Traina Chacon-Mikahil
- Exercise Physiology Laboratory, University of Campinas (UNICAMP), Av. Érico Verissimo, 701-Cidade Universitária “Zeferino Vaz” Barão Geraldo, Campinas 13083-851, SP, Brazil; (C.R.C.); (M.P.T.C.-M.)
| |
Collapse
|
32
|
Skelly LE, Bailleul C, Gillen JB. Physiological Responses to Low-Volume Interval Training in Women. SPORTS MEDICINE - OPEN 2021; 7:99. [PMID: 34940959 PMCID: PMC8702506 DOI: 10.1186/s40798-021-00390-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Interval training is a form of exercise that involves intermittent bouts of relatively intense effort interspersed with periods of rest or lower-intensity exercise for recovery. Low-volume high-intensity interval training (HIIT) and sprint interval training (SIT) induce physiological and health-related adaptations comparable to traditional moderate-intensity continuous training (MICT) in healthy adults and those with chronic disease despite a lower time commitment. However, most studies within the field have been conducted in men, with a relatively limited number of studies conducted in women cohorts across the lifespan. This review summarizes our understanding of physiological responses to low-volume interval training in women, including those with overweight/obesity or type 2 diabetes, with a focus on cardiorespiratory fitness, glycemic control, and skeletal muscle mitochondrial content. We also describe emerging evidence demonstrating similarities and differences in the adaptive response between women and men. Collectively, HIIT and SIT have consistently been demonstrated to improve cardiorespiratory fitness in women, and most sex-based comparisons demonstrate similar improvements in men and women. However, research examining insulin sensitivity and skeletal muscle mitochondrial responses to HIIT and SIT in women is limited and conflicting, with some evidence of blunted improvements in women relative to men. There is a need for additional research that examines physiological adaptations to low-volume interval training in women across the lifespan, including studies that directly compare responses to MICT, evaluate potential mechanisms, and/or assess the influence of sex on the adaptive response. Future work in this area will strengthen the evidence-base for physical activity recommendations in women.
Collapse
|
33
|
Effects of a Low-Carbohydrate High-Fat Diet Combined with High-Intensity Interval Training on Body Composition and Maximal Oxygen Uptake: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010740. [PMID: 34682481 PMCID: PMC8535842 DOI: 10.3390/ijerph182010740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022]
Abstract
The low-carbohydrate high-fat (LCHF) diet has recently been subject to attention on account of its reported influences on body composition and physical performance. However, the combined effect of LCHF with high-intensity interval training (HIIT) is unclear. A systematic review and meta-analysis were conducted to explore the effect of the LCHF diet combined with HIIT on human body composition (i.e., body weight (BM), body mass index (BMI), fat mass (FM), body fat percentage (BFP), fat-free mass (FFM)) and maximal oxygen uptake (VO2max). Online libraries (PubMed, Web of Science, EMBASE, Cochrane Library, EBSCO, CNKI, Wan Fang) were used to search initial studies until July 2021, from which 10 out of 2440 studies were included. WMD served as the effect size with a confidence interval value of 95%. The results of meta-analysis showed a significant reduction in BM (WMD = −5.299; 95% CI: −7.223, −3.376, p = 0.000), BMI (WMD = −1.150; 95% CI: −2.225, −0.075, p = 0.036), BFP (WMD = −2.787; 95% CI: −4.738, −0.835, p = 0.005) and a significant increase in VO2max (WMD = 3.311; 95% CI: 1.705, 4.918, p = 0.000), while FM (WMD = −2.221; 95% CI: −4.582, 0.139, p = 0.065) and FFM (WMD = 0.487; 95% CI: −3.512, 4.469, p = 0.814) remained unchanged. In conclusion, the LCHF diet combined with HIIT can reduce weight and fat effectively. This combination is sufficient to prevent muscle mass loss during LCHF, and further enhance VO2max. Further research might be required to clarify the effect of other types of exercise on body composition and physical performance during LCHF.
Collapse
|
34
|
Astorino TA, Emma D. Differences in Physiological and Perceptual Responses to High Intensity Interval Exercise Between Arm and Leg Cycling. Front Physiol 2021; 12:700294. [PMID: 34483956 PMCID: PMC8416450 DOI: 10.3389/fphys.2021.700294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
This study compared changes in oxygen uptake (VO2), heart rate (HR), blood lactate concentration (BLa), affective valence, and rating of perceived exertion (RPE) between sessions of high intensity interval exercise (HIIE) performed on the arm (ACE) and leg cycle ergometer (LCE). Twenty three active and non-obese men and women (age and BMI=24.7±5.8year and 24.8±3.4kg/m2) initially underwent graded exercise testing to determine VO2max and peak power output (PPO) on both ergometers. Subsequently on two separate days, they performed 10 1min intervals of ACE or LCE at 75 %PPO separated by 1min of active recovery at 10 %PPO. Gas exchange data, HR, and perceptual responses were obtained continuously and blood samples were acquired pre- and post-exercise to assess the change in BLa. VO2max and PPO on the LCE were significantly higher (p<0.001) than ACE (37.2±6.3 vs. 26.3±6.6ml/kg/min and 259.0±48.0 vs. 120.0±48.1W). Mean VO2 (1.7±0.3 vs. 1.1±0.3L/min, d=2.3) and HR (149±14 vs. 131±17 b/min, d=2.1) were higher (p<0.001) in response to LCE vs. ACE as was BLa (7.6±2.6 vs. 5.3±2.5mM, d=2.3), yet there was no difference (p=0.12) in peak VO2 or HR. Leg cycling elicited higher relative HR compared to ACE (81±5 vs. 75±7 %HRmax, p=0.01), although, there was no difference in relative VO2 (63±6 vs. 60±8 %VO2max, p=0.09) between modes. Affective valence was lower during LCE vs. ACE (p=0.003), although no differences in enjoyment (p=0.68) or RPE (p=0.59) were demonstrated. Overall, HIIE performed on the cycle ergometer elicits higher relative heart rate and blood lactate concentration and a more aversive affective valence, making these modes not interchangeable in terms of the acute physiological and perceptual response to interval based exercise.
Collapse
Affiliation(s)
- Todd A Astorino
- Department of Kinesiology, California State University-San Marcos, San Marcos, CA, United States
| | - Danielle Emma
- Department of Kinesiology, California State University-San Marcos, San Marcos, CA, United States
| |
Collapse
|
35
|
The Effect of Polarized Training on the Athletic Performance of Male and Female Cross-Country Skiers during the General Preparation Period. Healthcare (Basel) 2021; 9:healthcare9070851. [PMID: 34356229 PMCID: PMC8305392 DOI: 10.3390/healthcare9070851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022] Open
Abstract
This study aimed to analyze the effect of 12 weeks of polarized training on body composition, cardiorespiratory function, and upper-body power of male and female cross-country skiers during the general preparation period. A total of 16 national cross-country skiers (8 male and 8 female; 8 national cross-country skiers and 8 national biathlon athletes) participated. Polarization training was conducted for 12 weeks from May to July in 2019 during the general preparation period for cross-country skiers. The low-weight, high-repetition method was used for strength training. The effect of the polarized training on body composition, maximum oxygen intake (VO2max), respiratory exchange rate, all-out time, and ski ergometer exercise time was assessed. There was no change in weight, BMI, and muscle mass in male and female cross-country skiers following the 12 weeks of polarized training (p > 0.05). Male body fat percentage (pre 18.1%, post 12.7%) and female body fat percentage (pre 29.1%, post 21.4%) showed a significant decrease (p < 0.05). After training, VO2max increased by 7.72% in male athletes (pre 71.05 mL/kg/min, post 77.0 mL/kg/min) and 6.32% in female athletes (pre 60.26 mL/kg/min, post 64.33 mL/kg/min). Treadmill exercise time increased by 5.39% for male athletes (pre 1038 s, post 1064 s) and 2.23% for female athletes (pre 855 s, post 874 s). However, there was no significant difference between male and female athletes (p > 0.05). The 50% recovery time from the maximum heart rate to the target heart rate decreased by 64.52% in males (pre 168.8 s, post 102.6 s) and 6.48% in females (pre 135 s, post 129.6 s). Significant differences were found only in male athletes (p < 0.05). The double-pole 500 m exercise duration for the ski ergometer significantly decreased after the training for both sexes (p < 0.05). In this study, the 12 weeks of polarized training improved the body composition and athletic performance of all cross-country skiers. Interestingly, in this study, we confirmed that polarized training had a better effect on cardiorespiratory function in male cross-country skiers than in female cross-country skiers. Conversely, we found that the outcomes of the ski ergometer exercise factors were more effective in female athletes than in male athletes. Therefore, we insist that when applying a polarized training program to athletes, it should be planned in detail by sex, exercise amount, intensity, and type of training.
Collapse
|
36
|
Atakan MM, Li Y, Koşar ŞN, Turnagöl HH, Yan X. Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7201. [PMID: 34281138 PMCID: PMC8294064 DOI: 10.3390/ijerph18137201] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022]
Abstract
Engaging in regular exercise results in a range of physiological adaptations offering benefits for exercise capacity and health, independent of age, gender or the presence of chronic diseases. Accumulating evidence shows that lack of time is a major impediment to exercise, causing physical inactivity worldwide. This issue has resulted in momentum for interval training models known to elicit higher enjoyment and induce adaptations similar to or greater than moderate-intensity continuous training, despite a lower total exercise volume. Although there is no universal definition, high-intensity interval exercise is characterized by repeated short bursts of intense activity, performed with a "near maximal" or "all-out" effort corresponding to ≥90% of maximal oxygen uptake or >75% of maximal power, with periods of rest or low-intensity exercise. Research has indicated that high-intensity interval training induces numerous physiological adaptations that improve exercise capacity (maximal oxygen uptake, aerobic endurance, anaerobic capacity etc.) and metabolic health in both clinical and healthy (athletes, active and inactive individuals without any apparent disease or disorder) populations. In this paper, a brief history of high-intensity interval training is presented, based on the novel findings of some selected studies on exercise capacity and health, starting from the early 1920s to date. Further, an overview of the mechanisms underlying the physiological adaptations in response to high-intensity interval training is provided.
Collapse
Affiliation(s)
- Muhammed Mustafa Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (H.H.T.)
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100192, China
| | - Şükran Nazan Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (H.H.T.)
| | - Hüseyin Hüsrev Turnagöl
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (H.H.T.)
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne 8001, Australia;
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne 3021, Australia
| |
Collapse
|
37
|
Atakan MM, Güzel Y, Bulut S, Koşar ŞN, McConell GK, Turnagöl HH. Six high-intensity interval training sessions over 5 days increases maximal oxygen uptake, endurance capacity, and sub-maximal exercise fat oxidation as much as 6 high-intensity interval training sessions over 2 weeks. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:478-487. [PMID: 32565243 PMCID: PMC8343121 DOI: 10.1016/j.jshs.2020.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/23/2020] [Accepted: 05/16/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND High-intensity interval training (HIIT) induces similar or even superior adaptations compared to continuous endurance training. Indeed, just 6 HIIT sessions over 2 weeks significantly improves maximal oxygen uptake (VO2max), submaximal exercise fat oxidation, and endurance performance. Whether even faster adaptations can be achieved with HIIT is not known. Thus, we aimed to determine whether 2 sessions of HIIT per day, separated by 3 h, every other day for 5 days (double HIIT (HIIT-D), n = 15) could increase VO2max, submaximal exercise fat oxidation, and endurance capacity as effectively as 6 sessions of HIIT over 2 weeks (single HIIT (HIIT-S), n = 13). METHODS Each training session consisted of 10 × 60 s of cycling at 100% of VO2max interspersed with 75 s of low-intensity cycling at 60 watt (W). Pre- and post-training assessments included VO2max, time to exhaustion at ∼80% of VO2max, and 60-min cycling trials at ∼67% of VO2max. RESULTS Similar increases (p < 0.05) in VO2max (HIIT-D: 7.7% vs. HIIT-S: 6.0%, p > 0.05) and endurance capacity (HIIT-D: 80.1% vs. HIIT-S: 79.2%, p > 0.05) were observed. Submaximal exercise carbohydrate oxidation was reduced in the 2 groups after exercise training (HIIT-D: 9.2%, p = 0.014 vs. HIIT-S: 18.8%, p = 0.012) while submaximal exercise fat oxidation was significantly increased in HIIT-D (15.5%, p = 0.048) but not in HIIT-S (9.3%, p = 0.290). CONCLUSION Six HIIT sessions over 5 days was as effective in increasing VO2max and endurance capacity and was more effective in improving submaximal exercise fat oxidation than 6 HIIT sessions over 2 weeks.
Collapse
Affiliation(s)
- Muhammed M Atakan
- Division of Nutrition and Metabolism in Exercise, Faculty of Sport Sciences, Hacettepe University, Ankara 06690, Turkey; Institute for Health and Sport, Victoria University, Melbourne, VIA 3011, Australia
| | - Yasemin Güzel
- Division of Nutrition and Metabolism in Exercise, Faculty of Sport Sciences, Hacettepe University, Ankara 06690, Turkey
| | - Süleyman Bulut
- Division of Nutrition and Metabolism in Exercise, Faculty of Sport Sciences, Hacettepe University, Ankara 06690, Turkey
| | - Şükran N Koşar
- Division of Nutrition and Metabolism in Exercise, Faculty of Sport Sciences, Hacettepe University, Ankara 06690, Turkey
| | - Glenn K McConell
- Institute for Health and Sport, Victoria University, Melbourne, VIA 3011, Australia.
| | - Hüseyin H Turnagöl
- Division of Nutrition and Metabolism in Exercise, Faculty of Sport Sciences, Hacettepe University, Ankara 06690, Turkey.
| |
Collapse
|
38
|
Gildea N, McDermott A, Rocha J, O’Shea D, Green S, Egaña M. Time course of changes in V̇o2peak and O2 extraction during ramp cycle exercise following HIIT versus moderate-intensity continuous training in type 2 diabetes. Am J Physiol Regul Integr Comp Physiol 2021; 320:R683-R696. [DOI: 10.1152/ajpregu.00318.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the present study, we assessed the time course of adaptations in peak oxygen uptake (V̇o2peak) and muscle fractional oxygen (O2) extraction (using near-infrared spectroscopy) following 12 wk of low-volume high-intensity interval training (HIIT) versus moderate-intensity continuous endurance training (MICT) in adults with uncomplicated type 2 diabetes (T2D). Participants with T2D were randomly assigned to MICT ( n = 12, 50 min of moderate-intensity cycling) or HIIT ( n = 9, 10 × 1 min at ∼90% maximal heart rate) or to a nonexercising control group ( n = 9). Exercising groups trained three times per week and measurements were taken every 3 wk. The rate of muscle deoxygenation (i.e., deoxygenated hemoglobin and myoglobin concentration, Δ[HHb + Mb]) profiles of the vastus lateralis muscle were normalized to 100% of the response, plotted against % power output (PO), and fitted with a double linear regression model. V̇o2peak increased ( P < 0.05) by week 3 of MICT (+17%) and HIIT (+8%), with no further significant changes thereafter. Total increases in V̇o2peak posttraining ( P < 0.05) were 27% and 14%, respectively. The %Δ[HHb + Mb] versus %PO slope of the first linear segment ( slope1) was reduced ( P < 0.05) beyond 3 wk of HIIT and MICT, with no further significant changes thereafter. No changes in V̇o2peak or slope1 were observed in the control group. Low-volume HIIT and MICT induced improvements in V̇o2peak following a similar time course, and these improvements were likely, at least in part, due to an improved microvascular O2 delivery.
Collapse
Affiliation(s)
- Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Adam McDermott
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Joel Rocha
- Division of Sport and Exercise Sciences, Abertay University, Dundee, United Kingdom
| | - Donal O’Shea
- Department of Endocrinology, St. Columcille’s Hospital, Dublin, Ireland
- Department of Endocrinology and Diabetes Mellitus, St. Vincent’s University Hospital, Dublin, Ireland
| | - Simon Green
- Schools of Health Sciences and Medicine, Western Sydney University, Sydney, Australia
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
39
|
Rosenblat MA, Lin E, da Costa BR, Thomas SG. Programming Interval Training to Optimize Time-Trial Performance: A Systematic Review and Meta-Analysis. Sports Med 2021; 51:1687-1714. [PMID: 33826121 DOI: 10.1007/s40279-021-01457-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Interval training has become an essential component of endurance training programs because it can facilitate a substantial improvement in endurance sport performance. Two forms of interval training that are commonly used to improve endurance sport performance are high-intensity interval training (HIIT) and sprint interval training (SIT). Despite extensive research, there is no consensus concerning the optimal method to manipulate the interval training programming variables to maximize endurance performance for differing individuals. OBJECTIVE The objective of this manuscript was to perform a systematic review and meta-analysis of interval training studies to determine the influence that individual characteristics and training variables have on time-trial (TT) performance. DATA SOURCES SPORTDiscus and Medline with Full Text were explored to conduct a systematic literature search. STUDY SELECTION The following criteria were used to select studies appropriate for the review: 1. the studies were prospective in nature; 2. included individuals between the ages of 18 and 65 years; 3. included an interval training (HIIT or SIT) program at least 2 weeks in duration; 4. included a TT test that required participants to complete a set distance; 5. and programmed HIIT by power or velocity. RESULTS Twenty-nine studies met the inclusion criteria for the quantitative analysis with a total of 67 separate groups. The participants included males (n = 400) and females (n = 91) with a mean group age of 25 (range 19-45) years and mean [Formula: see text] of 52 (range 32-70) mL·kg-1·min-1. The training status of the participants comprised of inactive (n = 75), active (n = 146) and trained (n = 258) individuals. Training status played a significant role in improvements in TT performance with trained individuals only seeing improvements of approximately 2% whereas individuals of lower training status demonstrated improvements as high as 6%. The change in TT performance with HIIT depended on the duration but not the intensity of the interval work-bout. There was a dose-response relationship with the number of HIIT sessions, training weeks and total work with changes in TT performance. However, the dose-response was not present with SIT. CONCLUSION Optimization of interval training programs to produce TT performance improvements should be done according to training status. Our analysis suggests that increasing interval training dose beyond minimal requirements may not augment the training response. In addition, optimal dosing differs between high intensity and sprint interval programs.
Collapse
Affiliation(s)
- Michael A Rosenblat
- Department of Exercise Science, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada. .,Department of Biomedical Physiology and Kinesiology, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada.
| | - Edward Lin
- Department of Exercise Science, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada.,Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Bruno R da Costa
- Institute of Health Policy, Management, and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.,Applied Health Research Center (AHRC), Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada.,Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Scott G Thomas
- Department of Exercise Science, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Gildea N, McDermott A, Rocha J, O'Shea D, Green S, Egaña M. Time-course of V̇o 2 kinetics responses during moderate-intensity exercise subsequent to HIIT versus moderate-intensity continuous training in type 2 diabetes. J Appl Physiol (1985) 2021; 130:1646-1659. [PMID: 33792400 DOI: 10.1152/japplphysiol.00952.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We assessed the time-course of changes in oxygen uptake (V̇o2) and muscle deoxygenation (i.e., deoxygenated hemoglobin and myoglobin, [HHb + Mb]) kinetics during transitions to moderate-intensity cycling following 12 wk of low-volume high-intensity interval training (HIIT) vs. moderate-intensity continuous training (MICT) in adults with type 2 diabetes (T2D). Participants were randomly assigned to MICT (n = 10, 50 min of moderate-intensity cycling), HIIT (n = 9, 10 × 1 min at ∼90% maximal heart rate), or nonexercising control (n = 9) groups. Exercising groups trained three times per week, and measurements were taken every 3 wk. [HHb + Mb] kinetics were measured by near-infrared spectroscopy at the vastus lateralis muscle. The local matching of O2 delivery to O2 utilization was assessed by the Δ[HHb + Mb]/ΔV̇o2 ratio. The pretraining time constant of the primary phase of V̇o2 (τV̇o2p) decreased (P < 0.05) at wk 3 of training in both MICT (from 44 ± 12 to 32 ± 5 s) and HIIT (from 42 ± 8 to 32 ± 4 s) with no further changes thereafter, whereas no changes were reported in controls. The pretraining overall dynamic response of muscle deoxygenation (τ'[HHb + Mb]) was faster than τV̇o2p in all groups, resulting in Δ[HHb + Mb]/V̇o2p showing a transient "overshoot" relative to the subsequent steady-state level. After 3 wk, the Δ[HHb + Mb]/V̇o2p overshoot was eliminated only in the training groups, so that τ'[HHb + Mb] was not different to τV̇o2p in MICT and HIIT. The enhanced V̇o2 kinetics response consequent to both MICT and HIIT in T2D was likely attributed to a training-induced improvement in matching of O2 delivery to utilization.NEW & NOTEWORTHY High-intensity interval training and moderate-intensity continuous training elicited faster pulmonary oxygen uptake (V̇o2) kinetics during moderate-intensity cycling within 3 wk of training with no further changes thereafter in individuals with type 2 diabetes. These adaptations were accompanied by unaltered near-infrared spectroscopy-derived muscle deoxygenation (i.e. deoxygenated hemoglobin and myoglobin concentration, [HHb+Mb]) kinetics and transiently reduced Δ[HHb+Mb]-to-ΔV̇o2 ratio, suggesting an enhanced blood flow distribution within the active muscles subsequent to both training interventions.
Collapse
Affiliation(s)
- Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Adam McDermott
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Joel Rocha
- Division of Sport and Exercise Sciences, Abertay University, Dundee, United Kingdom
| | - Donal O'Shea
- Department of Endocrinology, St. Columcille's Hospital, Dublin, Ireland.,Department of Endocrinology and Diabetes Mellitus, St. Vincent's University Hospital, Dublin, Ireland
| | - Simon Green
- Schools of Health Sciences and Medicine, Western Sydney University, Sydney, Australia
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
41
|
Parmar A, Jones TW, Hayes PR. The dose-response relationship between interval-training and VO 2max in well-trained endurance runners: A systematic review. J Sports Sci 2021; 39:1410-1427. [PMID: 33605843 DOI: 10.1080/02640414.2021.1876313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Success in endurance running is primarily determined by maximal aerobic power (VO2max), fractional utilization, and running economy (RE). Within the literature, two training modalities have been identified to improve VO2max; continuous training (CT) and interval-training (IT). The efficacy of IT to improve VO2max in well-trained runners remains equivocal, as does whether a dose-response relationship exists between the IT training load performed and changes in VO2max. A keyword search was performed in five electronic databases. Seven studies met the inclusion criteria for this systematic review. The training impulse (TRIMP) was calculated to analyse relationships between training load and changes in VO2max, by calculating the time accumulated in certain intensity domains throughout a training intervention. Non-significant (P>0.05) improvements in VO2max were reported in six studies, with only one study reporting a significant (P<0.05) improvement following the IT interventions. A relationship between the training session impulse of the interval-training performed (IT STRIMP) and VO2max improvements were observed. The efficacy of IT to improve VO2max in well-trained runners remains equivocal, nevertheless, the novel method of training-load analysis demonstrates a relationship between the IT STRIMP and VO2max improvements. This provides practical application for the periodization of IT within the training regime of well-trained distance runners.
Collapse
Affiliation(s)
- Arran Parmar
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Thomas W Jones
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | | |
Collapse
|
42
|
De Revere JL, Clausen RD, Astorino TA. Changes in VO2max and cardiac output in response to short-term high-intensity interval training in Caucasian and Hispanic young women: A pilot study. PLoS One 2021; 16:e0244850. [PMID: 33481836 PMCID: PMC7822506 DOI: 10.1371/journal.pone.0244850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Data obtained in primarily Caucasian (C) and African American adults show that ethnicity does not mediate responsiveness to exercise training. It is unknown if Hispanics (H), who face elevated health risks and are less active than C, exhibit a similar response to exercise training. This study compared cardiorespiratory and hemodynamic responses to high intensity interval training (HIIT) between C and H women. Twelve C and ten H women ages 19–35 yr who were non-obese and inactive completed nine sessions of HIIT over a 3 wk period. Maximal oxygen uptake (VO2max) was assessed twice at baseline during which thoracic impedance was used to evaluate heart rate (HR), stroke volume (SV) and cardiac output (CO). Habitual physical activity was assessed using accelerometry. Results showed a significant main effect of training for VO2max in C and H (F = 13.97, p = 0.001) and no group by training interaction (p = 0.65). There was a main effect of training for CO and SV in C and H (F = 7.57, p = 0.01; F = 7.16, p = 0.02), yet post hoc analyses revealed significant increases were only exhibited in C. There was a tendency for a group by training interaction for a-VO2diff (F = 1.32, p = 0.054), and a large effect size was seen in H (d = 1.02). Overall, data show no effect of ethnicity on changes in VO2max with low-volume HIIT, yet C and H may achieve this outcome differently. Longer studies in similar populations are needed to verify this result.
Collapse
Affiliation(s)
- Jamie L. De Revere
- Department of Kinesiology, California State University—San Marcos, San Marcos, California, United States of America
| | - Rasmus D. Clausen
- Department of Kinesiology, California State University—San Marcos, San Marcos, California, United States of America
| | - Todd A. Astorino
- Department of Kinesiology, California State University—San Marcos, San Marcos, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Effects of surgical face masks on cardiopulmonary parameters during steady state exercise. Sci Rep 2020; 10:22363. [PMID: 33349641 PMCID: PMC7752911 DOI: 10.1038/s41598-020-78643-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/26/2020] [Indexed: 01/18/2023] Open
Abstract
Wearing face masks reduce the maximum physical performance. Sports and occupational activities are often associated with submaximal constant intensities. This prospective crossover study examined the effects of medical face masks during constant-load exercise. Fourteen healthy men (age 25.7 ± 3.5 years; height 183.8 ± 8.4 cm; weight 83.6 ± 8.4 kg) performed a lactate minimum test and a body plethysmography with and without masks. They were randomly assigned to two constant load tests at maximal lactate steady state with and without masks. The cardiopulmonary and metabolic responses were monitored using impedance cardiography and ergo-spirometry. The airway resistance was two-fold higher with the surgical mask (SM) than without the mask (SM 0.58 ± 0.16 kPa l−1 vs. control [Co] 0.32 ± 0.08 kPa l−1; p < 0.01). The constant load tests with masks compared with those without masks resulted in a significantly different ventilation (77.1 ± 9.3 l min−1 vs. 82.4 ± 10.7 l min−1; p < 0.01), oxygen uptake (33.1 ± 5 ml min−1 kg−1 vs. 34.5 ± 6 ml min−1 kg−1; p = 0.04), and heart rate (160.1 ± 11.2 bpm vs. 154.5 ± 11.4 bpm; p < 0.01). The mean cardiac output tended to be higher with a mask (28.6 ± 3.9 l min−1 vs. 25.9 ± 4.0 l min−1; p = 0.06). Similar blood pressure (177.2 ± 17.6 mmHg vs. 172.3 ± 15.8 mmHg; p = 0.33), delta lactate (4.7 ± 1.5 mmol l−1 vs. 4.3 ± 1.5 mmol l−1; p = 0.15), and rating of perceived exertion (6.9 ± 1.1 vs. 6.6 ± 1.1; p = 0.16) were observed with and without masks. Surgical face masks increase airway resistance and heart rate during steady state exercise in healthy volunteers. The perceived exertion and endurance performance were unchanged. These results may improve the assessment of wearing face masks during work and physical training.
Collapse
|
44
|
Herrod PJJ, Blackwell JEM, Boereboom CL, Atherton PJ, Williams JP, Lund JN, Phillips BE. The time course of physiological adaptations to high-intensity interval training in older adults. Aging Med (Milton) 2020; 3:245-251. [PMID: 33392430 PMCID: PMC7771560 DOI: 10.1002/agm2.12127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE High-intensity interval training (HIIT) has been shown to be more effective than moderate continuous aerobic exercise for improving cardiorespiratory fitness (CRF) in a limited time frame. However, the length of time required for HIIT to elicit clinically significant improvements in the CRF of older adults is currently unknown. The aim of this study was to compare changes in the CRF of older adults completing identical HIIT protocols of varying durations. METHODS Forty healthy, community-dwelling older adults completed a cardiopulmonary exercise test (CPET) before and after 2, 4, or 6 weeks of fully supervised HIIT on a cycle ergometer, or a no-intervention control period. RESULTS Anaerobic threshold (AT) was increased only after 4 (+1.9 [SD 1.1] mL/kg/min) and 6 weeks (+1.9 [SD 1.8] mL/kg/min) of HIIT (both P < 0.001), with 6-week HIIT required to elicit improvements in VO2 peak (+3.0 [SD 6] mL/kg/min; P = 0.04). Exercise tolerance increased after 2 (+15 [SD 15] W), 4 (+17 [SD 11] W), and 6 weeks (+16 [SD 11] W) of HIIT (all P < 0.001), with no difference in increase between the groups. There were no changes in any parameter in the control group. CONCLUSION Improvements in exercise tolerance from HIIT precede changes in CRF. Just 4 weeks of a well-tolerated, reduced-exertion HIIT protocol are required to produce significant changes in AT, with a further 2 weeks of training also eliciting improvements in VO2 peak.
Collapse
Affiliation(s)
- Philip J. J. Herrod
- Medical Research Council‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchNIHR Nottingham Biomedical Research CentreRoyal Derby Hospital CentreUniversity of NottinghamDerbyUK
- Department of Anaesthetics and SurgeryRoyal Derby HospitalDerbyUK
| | - James E. M. Blackwell
- Medical Research Council‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchNIHR Nottingham Biomedical Research CentreRoyal Derby Hospital CentreUniversity of NottinghamDerbyUK
- Department of Anaesthetics and SurgeryRoyal Derby HospitalDerbyUK
| | - Catherine L. Boereboom
- Medical Research Council‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchNIHR Nottingham Biomedical Research CentreRoyal Derby Hospital CentreUniversity of NottinghamDerbyUK
- Department of Anaesthetics and SurgeryRoyal Derby HospitalDerbyUK
| | - Philip J. Atherton
- Medical Research Council‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchNIHR Nottingham Biomedical Research CentreRoyal Derby Hospital CentreUniversity of NottinghamDerbyUK
| | - John P. Williams
- Medical Research Council‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchNIHR Nottingham Biomedical Research CentreRoyal Derby Hospital CentreUniversity of NottinghamDerbyUK
- Department of Anaesthetics and SurgeryRoyal Derby HospitalDerbyUK
| | - Jonathan N. Lund
- Medical Research Council‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchNIHR Nottingham Biomedical Research CentreRoyal Derby Hospital CentreUniversity of NottinghamDerbyUK
- Department of Anaesthetics and SurgeryRoyal Derby HospitalDerbyUK
| | - Bethan E. Phillips
- Medical Research Council‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchNIHR Nottingham Biomedical Research CentreRoyal Derby Hospital CentreUniversity of NottinghamDerbyUK
| |
Collapse
|
45
|
Bonafiglia JT, Brennan AM, Ross R, Gurd BJ. An appraisal of the SD IR as an estimate of true individual differences in training responsiveness in parallel-arm exercise randomized controlled trials. Physiol Rep 2020; 7:e14163. [PMID: 31325240 PMCID: PMC6642277 DOI: 10.14814/phy2.14163] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/27/2022] Open
Abstract
Calculating the standard deviation of individual responses (SDIR) is recommended for estimating the magnitude of individual differences in training responsiveness in parallel‐arm exercise randomized controlled trials (RCTs). The purpose of this review article is to discuss potential limitations of parallel‐arm exercise RCTs that may confound/complicate the interpretation of the SDIR. To provide context for this discussion, we define the sources of variation that contribute to variability in the observed responses to exercise training and review the assumptions that underlie the interpretation of SDIR as a reflection of true individual differences in training responsiveness. This review also contains two novel analyses: (1) we demonstrate differences in variability in changes in diet and physical activity habits across an intervention period in both exercise and control groups, and (2) we examined participant dropout data from six RCTs and found that significantly (P < 0.001) more participants in control groups (12.8%) dropped out due to dissatisfaction with group assignment compared to exercise groups (3.4%). These novel analyses raise the possibility that the magnitude of within‐subject variability may not be equal between exercise and control groups. Overall, this review highlights that potential limitations of parallel‐arm exercise RCTs can violate the underlying assumptions of the SDIR and suggests that these limitations should be considered when interpreting the SDIR as an estimate of true individual differences in training responsiveness.
Collapse
Affiliation(s)
- Jacob T Bonafiglia
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario
| | - Andrea M Brennan
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario
| | - Robert Ross
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario
| |
Collapse
|
46
|
Characterizing the Heart Rate Response to the 4 × 4 Interval Exercise Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17145103. [PMID: 32679757 PMCID: PMC7399937 DOI: 10.3390/ijerph17145103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022]
Abstract
High intensity interval training is frequently implemented using the 4 × 4 protocol where four 4-min bouts are performed at heart rate (HR) between 85 and 95% HR max. This study identified the HR and power output response to the 4 × 4 protocol in 39 active men and women (age and VO2 max = 26.0 ± 6.1 years and 37.0 ± 5.4 mL/kg/min). Initially, participants completed incremental cycling to assess VO2 max, HR max, and peak power output (PPO). They subsequently completed the 4 × 4 protocol, during which HR and power output were monitored. Data showed that 12.9 ± 0.4 min of 16 min were spent between 85 and 95% HR max, with time spent significantly lower in interval 1 (2.7 ± 0.6 min) versus intervals 2–4 (3.4 ± 0.4 min, 3.4 ± 0.3 min, and 3.5 ± 0.3 min, d = 2.4–2.7). Power output was highest in interval 1 (75% PPO) and significantly declined in intervals 2–4 (63 to 54% PPO, d = 0.7–1.0). To enhance time spent between 85 and 95% HR max for persons with higher fitness, we recommend immediate allocation of supramaximal intensities in interval one.
Collapse
|
47
|
Fikenzer S, Uhe T, Lavall D, Rudolph U, Falz R, Busse M, Hepp P, Laufs U. Effects of surgical and FFP2/N95 face masks on cardiopulmonary exercise capacity. Clin Res Cardiol 2020; 109:1522-1530. [PMID: 32632523 PMCID: PMC7338098 DOI: 10.1007/s00392-020-01704-y] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/30/2020] [Indexed: 11/28/2022]
Abstract
Background Due to the SARS-CoV2 pandemic, medical face masks are widely recommended for a large number of individuals and long durations. The effect of wearing a surgical and a FFP2/N95 face mask on cardiopulmonary exercise capacity has not been systematically reported. Methods This prospective cross-over study quantitated the effects of wearing no mask (nm), a surgical mask (sm) and a FFP2/N95 mask (ffpm) in 12 healthy males (age 38.1 ± 6.2 years, BMI 24.5 ± 2.0 kg/m2). The 36 tests were performed in randomized order. The cardiopulmonary and metabolic responses were monitored by ergo-spirometry and impedance cardiography. Ten domains of comfort/discomfort of wearing a mask were assessed by questionnaire. Results The pulmonary function parameters were significantly lower with mask (forced expiratory volume: 5.6 ± 1.0 vs 5.3 ± 0.8 vs 6.1 ± 1.0 l/s with sm, ffpm and nm, respectively; p = 0.001; peak expiratory flow: 8.7 ± 1.4 vs 7.5 ± 1.1 vs 9.7 ± 1.6 l/s; p < 0.001). The maximum power was 269 ± 45, 263 ± 42 and 277 ± 46 W with sm, ffpm and nm, respectively; p = 0.002; the ventilation was significantly reduced with both face masks (131 ± 28 vs 114 ± 23 vs 99 ± 19 l/m; p < 0.001). Peak blood lactate response was reduced with mask. Cardiac output was similar with and without mask. Participants reported consistent and marked discomfort wearing the masks, especially ffpm. Conclusion Ventilation, cardiopulmonary exercise capacity and comfort are reduced by surgical masks and highly impaired by FFP2/N95 face masks in healthy individuals. These data are important for recommendations on wearing face masks at work or during physical exercise.
Collapse
Affiliation(s)
- Sven Fikenzer
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
| | - T Uhe
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - D Lavall
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - U Rudolph
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - R Falz
- Institut für Sportmedizin und Prävention, Universität Leipzig, Marschner Str. 29, 04109, Leipzig, Germany
| | - M Busse
- Institut für Sportmedizin und Prävention, Universität Leipzig, Marschner Str. 29, 04109, Leipzig, Germany
| | - P Hepp
- Klinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - U Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| |
Collapse
|
48
|
Hemodynamic Adaptations Induced by Short-Term Run Interval Training in College Students. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134636. [PMID: 32605106 PMCID: PMC7369875 DOI: 10.3390/ijerph17134636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 11/17/2022]
Abstract
Perceived lack of time is one of the most often cited barriers to exercise participation. High intensity interval training has become a popular training modality that incorporates intervals of maximal and low-intensity exercise with a time commitment usually shorter than 30 min. The purpose of this study was to examine the effects of short-term run interval training (RIT) on body composition (BC) and cardiorespiratory responses in undergraduate college students. Nineteen males (21.5 ± 1.6 years) were randomly assigned to a non-exercise control (CON, n = 10) or RIT (n = 9). Baseline measurements of systolic and diastolic blood pressure, resting heart rate (HRrest), double product (DP) and BC were obtained from both groups. VO2max and running speed associated with VO2peak (sVO2peak) were then measured. RIT consisted of three running treadmill sessions per week over 4 weeks (intervals at 100% sVO2peak, recovery periods at 40% sVO2peak). There were no differences in post-training BC or VO2max between groups (p > 0.05). HRrest (p = 0.006) and DP (p ≤ 0.001) were lower in the RIT group compared to CON at completion of the study. RIT lowered HRrest and DP in the absence of appreciable BC and VO2max changes. Thereby, RIT could be an alternative model of training to diminish health-related risk factors in undergraduate college students.
Collapse
|
49
|
The Effect of Low-Volume High-Intensity Interval Training on Body Composition and Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis. Sports Med 2020; 49:1687-1721. [PMID: 31401727 DOI: 10.1007/s40279-019-01167-w] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Evidence for the efficacy of low-volume high-intensity interval training (HIIT) for the modulation of body composition is unclear. OBJECTIVES We examined the effect of low-volume HIIT versus a non-exercising control and moderate-intensity continuous training (MICT) on body composition and cardiorespiratory fitness in normal weight, overweight and obese adults. We evaluated the impact of low-volume HIIT (HIIT interventions where the total amount of exercise performed during training was ≤ 500 metabolic equivalent minutes per week [MET-min/week]) compared to a non-exercising control and MICT. METHODS A database search was conducted in PubMed (MEDLINE), EMBASE, CINAHL, Web of Science, SPORTDiscus and Scopus from the earliest record to June 2019 for studies (randomised controlled trials and non-randomised controlled trials) with exercise training interventions with a minimum 4-week duration. Meta-analyses were conducted for between-group (low-volume HIIT vs. non-exercising control and low-volume HIIT vs. MICT) comparisons for change in total body fat mass (kg), body fat percentage (%), lean body mass (kg) and cardiorespiratory fitness. RESULTS From 11,485 relevant records, 47 studies were included. No difference was found between low-volume HIIT and a non-exercising control on total body fat mass (kg) (effect size [ES]: - 0.129, 95% confidence interval [CI] - 0.468 to 0.210; p = 0.455), body fat (%) (ES: - 0.063, 95% CI - 0.383 to 0.257; p = 0.700) and lean body mass (kg) (ES: 0.050, 95% CI - 0.250 to 0.351; p = 0.744), or between low-volume HIIT and MICT on total body fat mass (kg) (ES: - 0.021, 95% CI - 0.272 to 0.231; p = 0.872), body fat (%) (ES: 0.005, 95% CI - 0.294 to 0.304; p = 0.974) and lean body mass (kg) (ES: 0.030, 95% CI - 0.167 to 0.266; p = 0.768). However, low-volume HIIT significantly improved cardiorespiratory fitness compared with a non-exercising control (p < 0.001) and MICT (p = 0.017). CONCLUSION These data suggest that low-volume HIIT is inefficient for the modulation of total body fat mass or total body fat percentage in comparison with a non-exercise control and MICT. A novel finding of our meta-analysis was that there appears to be no significant effect of low-volume HIIT on lean body mass when compared with a non-exercising control, and while most studies tended to favour improvement in lean body mass with low-volume HIIT versus MICT, this was not significant. However, despite its lower training volume, low-volume HIIT induces greater improvements in cardiorespiratory fitness than a non-exercising control and MICT in normal weight, overweight and obese adults. Low-volume HIIT, therefore, appears to be a time-efficient treatment for increasing fitness, but not for the improvement of body composition.
Collapse
|
50
|
Gibala MJ. Physiological basis of interval training for performance enhancement. Exp Physiol 2020; 106:2324-2327. [PMID: 32362039 DOI: 10.1113/ep088190] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 01/28/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review considers the physiological basis of interval training for performance enhancement, with an emphasis on the capacity for aerobic energy provision. What advances does it highlight? It highlights advances regarding the effect of interval training on primary physiological determinants of aerobic energy provision, which are associated with performance. ABSTRACT Interval training refers to an intermittent style of exercise, in which bouts of more intense effort are interspersed with recovery periods within a given training session. Physiological responses to interval training depend on numerous factors, including the specific nature of the intervention and the initial training state of the individual. Interval training improves performance in part by enhancing the capacity for aerobic energy provision, even in those who are already trained. Two primary mechanisms in this regard are an increased whole-body maximal oxygen uptake and an enhanced capacity for oxidative metabolism in skeletal muscle owing to an increase in mitochondria. In comparison to moderate-intensity continuous exercise, interval training can elicit superior responses when total work is matched, and similar responses despite a reduced training volume and time commitment.
Collapse
Affiliation(s)
- Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|