1
|
MAEO SUMIAKI, BALSHAW THOMASG, MÄRZ BENJAMIN, ZHOU ZHAOXIA, HAUG BILL, MARTIN NEILRW, MAFFULLI NICOLA, FOLLAND JONATHANP. Long-Term Resistance Trained Human Muscles Have More Fibers, More Myofibrils, and Tighter Myofilament Packing Than Untrained. Med Sci Sports Exerc 2024; 56:1906-1915. [PMID: 38875487 PMCID: PMC11419278 DOI: 10.1249/mss.0000000000003495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Increases in skeletal muscle size occur in response to prolonged exposure to resistance training that is typically ascribed to increased muscle fiber size. Whether muscle fiber number also changes remains controversial, and a paucity of data exists about myofibrillar structure. This cross-sectional study compared muscle fiber and myofibril characteristics in long-term resistance-trained (LRT) versus untrained (UNT) individuals. METHODS The maximal anatomical cross-sectional area (ACSAmax) of the biceps brachii muscle was measured by magnetic resonance imaging in 16 LRT (5.9 ± 3.5 yr' experience) and 13 UNT males. A muscle biopsy was taken from the biceps brachii to measure muscle fiber area, myofibril area, and myosin spacing. Muscle fiber number, and myofibril number in total and per fiber were estimated by dividing ACSAmax by muscle fiber area or myofibril area, and muscle fiber area by myofibril area, respectively. RESULTS Compared with UNT, LRT individuals had greater ACSAmax (+70%, P < 0.001), fiber area (+29%, P = 0.028), fiber number (+34%, P = 0.013), and myofibril number per fiber (+49%, P = 0.034) and in total (+105%, P < 0.001). LRT individuals also had smaller myosin spacing (-7%, P = 0.004; i.e., greater packing density) and a tendency toward smaller myofibril area (-16%, P = 0.074). ACSAmax was positively correlated with fiber area ( r = 0.526), fiber number ( r = 0.445), and myofibril number (in total r = 0.873 and per fiber r = 0.566), and negatively correlated with myofibril area ( r = -0.456) and myosin spacing ( r = -0.382) (all P < 0.05). CONCLUSIONS The larger muscles of LRT individuals exhibited more fibers in cross-section and larger muscle fibers, which contained substantially more total myofibrils and more packed myofilaments than UNT participants, suggesting plasticity of muscle ultrastructure.
Collapse
Affiliation(s)
- SUMIAKI MAEO
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, JAPAN
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - THOMAS G. BALSHAW
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
- Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Loughborough University, Loughborough, UNITED KINGDOM
| | - BENJAMIN MÄRZ
- Loughborough Materials Characterization Centre, Department of Materials, Loughborough University, Loughborough, UNITED KINGDOM
- Shared Instrumentation Facility, Louisiana State University, Baton Rouge, LA
| | - ZHAOXIA ZHOU
- Loughborough Materials Characterization Centre, Department of Materials, Loughborough University, Loughborough, UNITED KINGDOM
| | - BILL HAUG
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - NEIL R. W. MARTIN
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - NICOLA MAFFULLI
- Department of Trauma and Orthopaedic Surgery, School Medicine, Surgery and Dentistry, University of Salerno, Salerno, ITALY
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke on Trent, UNITED KINGDOM
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UNITED KINGDOM
| | - JONATHAN P. FOLLAND
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
- Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Loughborough University, Loughborough, UNITED KINGDOM
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, UNITED KINGDOM
| |
Collapse
|
2
|
Schellino R, Boido M, Vrijbloed JW, Fariello RG, Vercelli A. Synergistically Acting on Myostatin and Agrin Pathways Increases Neuromuscular Junction Stability and Endurance in Old Mice. Aging Dis 2024; 15:893-910. [PMID: 37548943 PMCID: PMC10917542 DOI: 10.14336/ad.2023.0713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023] Open
Abstract
Sarcopenia is the primary cause of impaired motor performance in the elderly. The current prevailing approach to counteract such condition is increasing the muscle mass through inhibition of the myostatin system: however, this strategy only moderately improves muscular strength, not being able to sustain the innervation of the hypertrophic muscle per se, leading to a progressive worsening of motor performances. Thus, we proposed the administration of ActR-Fc-nLG3, a protein that combines the soluble activin receptor, a strong myostatin inhibitor, with the C-terminal agrin nLG3 domain. This compound has the potential of reinforcing neuro-muscular stability to the hypertrophic muscle. We previously demonstrated an enhancement of motor endurance and ACh receptor aggregation in young mice after ActR-Fc-nLG3 administration. Now we extended these observations by demonstrating that also in aged (2 years-old) mice, long-term administration of ActR-Fc-nLG3 increases in a sustained way both motor endurance and muscle strength, compared with ActR-Fc, a myostatin inhibitor, alone. Histological data demonstrate that the administration of this biological improves neuromuscular stability and fiber innervation maintenance, preventing muscle fiber atrophy and inducing only moderate hypertrophy. Moreover, at the postsynaptic site we observe an increased folding in the soleplate, a likely anatomical substrate for improved neurotransmission efficiency in the NMJ, that may lead to enhanced motor endurance. We suggest that ActR-Fc-nLG3 may become a valid option for treating sarcopenia and possibly other disorders of striatal muscles.
Collapse
Affiliation(s)
- Roberta Schellino
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10126, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy
| | - Marina Boido
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10126, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy
| | | | | | - Alessandro Vercelli
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10126, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy
| |
Collapse
|
3
|
Jorgenson KW, Hibbert JE, Sayed RKA, Lange AN, Godwin JS, Mesquita PHC, Ruple BA, McIntosh MC, Kavazis AN, Roberts MD, Hornberger TA. A novel imaging method (FIM-ID) reveals that myofibrillogenesis plays a major role in the mechanically induced growth of skeletal muscle. eLife 2024; 12:RP92674. [PMID: 38466320 PMCID: PMC10928493 DOI: 10.7554/elife.92674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
An increase in mechanical loading, such as that which occurs during resistance exercise, induces radial growth of muscle fibers (i.e. an increase in cross-sectional area). Muscle fibers are largely composed of myofibrils, but whether radial growth is mediated by an increase in the size of the myofibrils (i.e. myofibril hypertrophy) and/or the number of myofibrils (i.e. myofibrillogenesis) is not known. Electron microscopy (EM) can provide images with the level of resolution that is needed to address this question, but the acquisition and subsequent analysis of EM images is a time- and cost-intensive process. To overcome this, we developed a novel method for visualizing myofibrils with a standard fluorescence microscope (fluorescence imaging of myofibrils with image deconvolution [FIM-ID]). Images from FIM-ID have a high degree of resolution and contrast, and these properties enabled us to develop pipelines for automated measurements of myofibril size and number. After extensively validating the automated measurements, we used both mouse and human models of increased mechanical loading to discover that the radial growth of muscle fibers is largely mediated by myofibrillogenesis. Collectively, the outcomes of this study offer insight into a fundamentally important topic in the field of muscle growth and provide future investigators with a time- and cost-effective means to study it.
Collapse
Affiliation(s)
- Kent W Jorgenson
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
| | - Jamie E Hibbert
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
| | - Ramy KA Sayed
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag UniversitySohagEgypt
| | - Anthony N Lange
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
| | | | | | | | | | | | | | - Troy A Hornberger
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
4
|
Jorgenson KW, Hibbert JE, Sayed RKA, Lange AN, Godwin JS, Mesquita PHC, Ruple BA, McIntosh MC, Kavazis AN, Roberts MD, Hornberger TA. A Novel Imaging Method (FIM-ID) Reveals that Myofibrillogenesis Plays a Major Role in the Mechanically Induced Growth of Skeletal Muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557204. [PMID: 37745462 PMCID: PMC10515927 DOI: 10.1101/2023.09.13.557204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
An increase in mechanical loading, such as that which occurs during resistance exercise, induces radial growth of muscle fibers (i.e., an increase in cross-sectional area). Muscle fibers are largely composed of myofibrils, but whether radial growth is mediated by an increase in the size of the myofibrils (i.e., myofibril hypertrophy) and/or the number of myofibrils (i.e., myofibrillogenesis) is not known. Electron microscopy (EM) can provide images with the level of resolution that is needed to address this question, but the acquisition and subsequent analysis of EM images is a time- and cost-intensive process. To overcome this, we developed a novel method for visualizing myofibrils with a standard fluorescence microscope (FIM-ID). Images from FIM-ID have a high degree of resolution and contrast, and these properties enabled us to develop pipelines for automated measurements of myofibril size and number. After extensively validating the automated measurements, we used both mouse and human models of increased mechanical loading to discover that the radial growth of muscle fibers is largely mediated by myofibrillogenesis. Collectively, the outcomes of this study offer insight into a fundamentally important topic in the field of muscle growth and provide future investigators with a time- and cost-effective means to study it.
Collapse
|
5
|
Fennel ZJ, Ducharme JB, Berkemeier QN, Specht JW, McKenna ZJ, Simpson SE, Nava RC, Escobar KA, Hafen PS, Deyhle MR, Amorim FT, Mermier CM. Effect of heat stress on heat shock protein expression and hypertrophy-related signaling in the skeletal muscle of trained individuals. Am J Physiol Regul Integr Comp Physiol 2023; 325:R735-R749. [PMID: 37842742 DOI: 10.1152/ajpregu.00031.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Muscle mass is balanced between hypertrophy and atrophy by cellular processes, including activation of the protein kinase B-mechanistic target of rapamycin (Akt-mTOR) signaling cascade. Stressors apart from exercise and nutrition, such as heat stress, can stimulate the heat shock protein A (HSPA) and C (HSPC) families alongside hypertrophic signaling factors and muscle growth. The effects of heat stress on HSP expression and Akt-mTOR activation in human skeletal muscle and their magnitude of activation compared with known hypertrophic stimuli are unclear. Here, we show a single session of whole body heat stress following resistance exercise increases the expression of HSPA and activation of the Akt-mTOR cascade in skeletal muscle compared with resistance exercise in a healthy, resistance-trained population. Heat stress alone may also exert similar effects, though the responses are notably variable and require further investigation. In addition, acute heat stress in C2C12 muscle cells enhanced myotube growth and myogenic fusion, albeit to a lesser degree than growth factor-mediated hypertrophy. Though the mechanisms by which heat stress stimulates hypertrophy-related signaling and the potential mechanistic role of HSPs remain unclear, these findings provide additional evidence implicating heat stress as a novel growth stimulus when combined with resistance exercise in human skeletal muscle and alone in isolated murine muscle cells. We believe these findings will help drive further applied and mechanistic investigation into how heat stress influences muscular hypertrophy and atrophy.NEW & NOTEWORTHY We show that acute resistance exercise followed by whole body heat stress increases the expression of HSPA and increases activation of the Akt-mTOR cascade in a physically active and resistance-trained population.
Collapse
Affiliation(s)
- Zachary J Fennel
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Jeremy B Ducharme
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Quint N Berkemeier
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Jonathan W Specht
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Zachary J McKenna
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Institute for Exercise and Environmental Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Shandy E Simpson
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Roberto C Nava
- Fulcrum Therapeutics, Cambridge, Massachusetts, United States
| | - Kurt A Escobar
- Department of Kinesiology, California State University Long Beach, Long Beach, California, United States
| | - Paul S Hafen
- Division of Science, Indiana University Purdue University Columbus, Columbus, Indiana, United States
- Department of Anatomy, Cell Biology, and Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine Indianapolis, Indianapolis, Indiana, United States
| | - Michael R Deyhle
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States
| | - Fabiano T Amorim
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Christine M Mermier
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
6
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
7
|
Lundquist A, Lázár E, Han NS, Emanuelsson EB, Reitzner SM, Chapman MA, Shirokova V, Alkass K, Druid H, Petri S, Sundberg CJ, Bergmann O. FiNuTyper: Design and validation of an automated deep learning-based platform for simultaneous fiber and nucleus type analysis in human skeletal muscle. Acta Physiol (Oxf) 2023; 239:e13982. [PMID: 37097015 DOI: 10.1111/apha.13982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
AIM While manual quantification is still considered the gold standard for skeletal muscle histological analysis, it is time-consuming and prone to investigator bias. To address this challenge, we assembled an automated image analysis pipeline, FiNuTyper (Fiber and Nucleus Typer). METHODS We integrated recently developed deep learning-based image segmentation methods, optimized for unbiased evaluation of fresh and postmortem human skeletal muscle, and utilized SERCA1 and SERCA2 as type-specific myonucleus and myofiber markers after validating them against the traditional use of MyHC isoforms. RESULTS Parameters including cross-sectional area, myonuclei per fiber, myonuclear domain, central myonuclei per fiber, and grouped myofiber ratio were determined in a fiber-type-specific manner, revealing that a large degree of sex- and muscle-related heterogeneity could be detected using the pipeline. Our platform was also tested on pathological muscle tissue (ALS and IBM) and adapted for the detection of other resident cell types (leucocytes, satellite cells, capillary endothelium). CONCLUSION In summary, we present an automated image analysis tool for the simultaneous quantification of myofiber and myonuclear types, to characterize the composition and structure of healthy and diseased human skeletal muscle.
Collapse
Affiliation(s)
- August Lundquist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Enikő Lázár
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nan S Han
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Stefan M Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department for Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Mark A Chapman
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Integrated Engineering, University of San Diego, San Diego, USA
| | - Vera Shirokova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kanar Alkass
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Druid
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Petri
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Carl J Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Learning, Informatics, Management, and Ethics, Karolinska Institutet, Stockholm, Sweden
| | - Olaf Bergmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Pharmacology and Toxicology, University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
8
|
Skoupá K, Bátik A, Št'astný K, Sládek Z. Structural Changes in the Skeletal Muscle of Pigs after Long-Term Administration of Testosterone, Nandrolone and a Combination of the Two. Animals (Basel) 2023; 13:2141. [PMID: 37443939 DOI: 10.3390/ani13132141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Anabolic steroid hormones (AASs) are used in most countries of the world to accelerate the growth of animals, increase the volume of their muscles and thereby increase meat production. However, there is a strict ban on the use of AASs in the fattening of all animals in all countries of the European Union, and there must therefore be effective methods of detection and control of these substances. Methods based on chromatography and mass spectrometry may no longer be completely effective when faced with new synthetic steroids of unknown chemical structures and low concentrations. Therefore, there is an effort to develop new methods of AAS detection, based primarily on the monitoring of biological changes at the level of gene expression or changes in metabolism or structure at the cellular level. More detailed knowledge of the mechanisms of action of AASs on tissues is essential for these methods, and histological changes are one of them. In this study, we report histological changes in muscle structure after AAS application, specifically in the size of muscle fibers, the amount of endomysium and the number of nuclei and satellite cells in muscle fibers. A pig model was also intentionally used for the study, as no such study has been carried out on this species, and at the same time, pork is one of the most consumed meats across Europe. The results of histology and fluorescent antibody labeling showed that AASs increased the diameter and surface area of muscle fibers and also significantly increased the number of satellite cells on the fiber surface. The evident correlations between the number of satellite cells, all nuclei and the diameters of muscle fibers between some experimental groups provide evidence that the selected histological parameters could be additional detection mechanisms for screening a large number of samples and indicate the possibility of the presence of AASs in pork meat in the future.
Collapse
Affiliation(s)
- Kristýna Skoupá
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Andrej Bátik
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Kamil Št'astný
- Veterinary Research Institute in Brno, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Zbyšek Sládek
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| |
Collapse
|
9
|
Jacobs N, Mos D, Bloemers FW, van der Laarse WJ, Jaspers RT, van der Zwaard S. Low myoglobin concentration in skeletal muscle of elite cyclists is associated with low mRNA expression levels. Eur J Appl Physiol 2023:10.1007/s00421-023-05161-z. [PMID: 36877252 DOI: 10.1007/s00421-023-05161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Myoglobin is essential for oxygen transport to the muscle fibers. However, measurements of myoglobin (Mb) protein concentrations within individual human muscle fibers are scarce. Recent observations have revealed surprisingly low Mb concentrations in elite cyclists, however it remains unclear whether this relates to Mb translation, transcription and/or myonuclear content. The aim was to compare Mb concentration, Mb messenger RNA (mRNA) expression levels and myonuclear content within muscle fibers of these elite cyclists with those of physically-active controls. Muscle biopsies were obtained from m. vastus lateralis in 29 cyclists and 20 physically-active subjects. Mb concentration was determined by peroxidase staining for both type I and type II fibers, Mb mRNA expression level was determined by quantitative PCR and myonuclear domain size (MDS) was obtained by immunofluorescence staining. Average Mb concentrations (mean ± SD: 0.38 ± 0.04 mM vs. 0.48 ± 0.19 mM; P = 0.014) and Mb mRNA expression levels (0.067 ± 0.019 vs. 0.088 ± 0.027; P = 0.002) were lower in cyclists compared to controls. In contrast, MDS and total RNA per mg muscle were not different between groups. Interestingly, in cyclists compared to controls, Mb concentration was only lower for type I fibers (P < 0.001), but not for type II fibers (P > 0.05). In conclusion, the lower Mb concentration in muscle fibers of elite cyclists is partly explained by lower Mb mRNA expression levels per myonucleus and not by a lower myonuclear content. It remains to be determined whether cyclists may benefit from strategies that upregulate Mb mRNA expression levels, particularly in type I fibers, to enhance their oxygen supply.
Collapse
Affiliation(s)
- Nina Jacobs
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniek Mos
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank W Bloemers
- Department for Trauma Surgery, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Richard T Jaspers
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Stephan van der Zwaard
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Smith MA, Sexton CL, Smith KA, Osburn SC, Godwin JS, Beausejour JP, Ruple BA, Goodlett MD, Edison JL, Fruge AD, Robinson AT, Gladden LB, Young KC, Roberts MD. Molecular predictors of resistance training outcomes in young untrained female adults. J Appl Physiol (1985) 2023; 134:491-507. [PMID: 36633866 PMCID: PMC10190845 DOI: 10.1152/japplphysiol.00605.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
We sought to determine if the myofibrillar protein synthetic (MyoPS) response to a naïve resistance exercise (RE) bout, or chronic changes in satellite cell number and muscle ribosome content, were associated with hypertrophic outcomes in females or differed in those who classified as higher (HR) or lower (LR) responders to resistance training (RT). Thirty-four untrained college-aged females (23.4 ± 3.4 kg/m2) completed a 10-wk RT protocol (twice weekly). Body composition and leg imaging assessments, a right leg vastus lateralis biopsy, and strength testing occurred before and following the intervention. A composite score, which included changes in whole body lean/soft tissue mass (LSTM), vastus lateralis (VL) muscle cross-sectional area (mCSA), midthigh mCSA, and deadlift strength, was used to delineate upper and lower HR (n = 8) and LR (n = 8) quartiles. In all participants, training significantly (P < 0.05) increased LSTM, VL mCSA, midthigh mCSA, deadlift strength, mean muscle fiber cross-sectional area, satellite cell abundance, and myonuclear number. Increases in LSTM (P < 0.001), VL mCSA (P < 0.001), midthigh mCSA (P < 0.001), and deadlift strength (P = 0.001) were greater in HR vs. LR. The first-bout 24-hour MyoPS response was similar between HR and LR (P = 0.367). While no significant responder × time interaction existed for muscle total RNA concentrations (i.e., ribosome content) (P = 0.888), satellite cell abundance increased in HR (P = 0.026) but not LR (P = 0.628). Pretraining LSTM (P = 0.010), VL mCSA (P = 0.028), and midthigh mCSA (P < 0.001) were also greater in HR vs. LR. Female participants with an enhanced satellite cell response to RT, and more muscle mass before RT, exhibited favorable resistance training adaptations.NEW & NOTEWORTHY This study continues to delineate muscle biology differences between lower and higher responders to resistance training and is unique in that a female population was interrogated. As has been reported in prior studies, increases in satellite cell numbers are related to positive responses to resistance training. Satellite cell responsivity, rather than changes in muscle ribosome content per milligrams of tissue, may be a more important factor in delineating resistance-training responses in women.
Collapse
Affiliation(s)
- Morgan A Smith
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Casey L Sexton
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Kristen A Smith
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, Alabama
| | | | | | | | | | - Michael D Goodlett
- Athletics Department, Auburn University, Auburn, Alabama
- Edward Via College of Osteopathic Medicine, Auburn, Alabama
| | - Joseph L Edison
- Athletics Department, Auburn University, Auburn, Alabama
- Edward Via College of Osteopathic Medicine, Auburn, Alabama
| | - Andrew D Fruge
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, Alabama
- College of Nursing, Auburn University, Auburn, Alabama
| | | | | | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, Alabama
- Edward Via College of Osteopathic Medicine, Auburn, Alabama
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama
- Edward Via College of Osteopathic Medicine, Auburn, Alabama
| |
Collapse
|
11
|
Bagley JR, Denes LT, McCarthy JJ, Wang ET, Murach KA. The myonuclear domain in adult skeletal muscle fibres: past, present and future. J Physiol 2023; 601:723-741. [PMID: 36629254 PMCID: PMC9931674 DOI: 10.1113/jp283658] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Most cells in the body are mononuclear whereas skeletal muscle fibres are uniquely multinuclear. The nuclei of muscle fibres (myonuclei) are usually situated peripherally which complicates the equitable distribution of gene products. Myonuclear abundance can also change under conditions such as hypertrophy and atrophy. Specialised zones in muscle fibres have different functions and thus distinct synthetic demands from myonuclei. The complex structure and regulatory requirements of multinuclear muscle cells understandably led to the hypothesis that myonuclei govern defined 'domains' to maintain homeostasis and facilitate adaptation. The purpose of this review is to provide historical context for the myonuclear domain and evaluate its veracity with respect to mRNA and protein distribution resulting from myonuclear transcription. We synthesise insights from past and current in vitro and in vivo genetically modified models for studying the myonuclear domain under dynamic conditions. We also cover the most contemporary knowledge on mRNA and protein transport in muscle cells. Insights from emerging technologies such as single myonuclear RNA-sequencing further inform our discussion of the myonuclear domain. We broadly conclude: (1) the myonuclear domain can be flexible during muscle fibre growth and atrophy, (2) the mechanisms and role of myonuclear loss and motility deserve further consideration, (3) mRNA in muscle is actively transported via microtubules and locally restricted, but proteins may travel far from a myonucleus of origin and (4) myonuclear transcriptional specialisation extends beyond the classic neuromuscular and myotendinous populations. A deeper understanding of the myonuclear domain in muscle may promote effective therapies for ageing and disease.
Collapse
Affiliation(s)
- James R. Bagley
- Muscle Physiology Laboratory, Department of Kinesiology, San Francisco State University, San Francisco, California
| | | | - John J. McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physiology, College of Medicine, University of Kentucky
| | - Eric T. Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, University of Florida, Gainesville, Florida
- Myology Institute, University of Florida
- Genetics Institute, University of Florida
| | - Kevin A. Murach
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas
- Cell and Molecular Biology Graduate Program, University of Arkansas
| |
Collapse
|
12
|
Moesgaard L, Jessen S, Mackey AL, Hostrup M. Myonuclear addition is associated with sex-specific fiber hypertrophy and occurs in relation to fiber perimeter not cross-sectional area. J Appl Physiol (1985) 2022; 133:732-741. [PMID: 35952346 DOI: 10.1152/japplphysiol.00235.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is unclear whether resistance training-induced myofiber hypertrophy is affected by sex, and whether myonuclear addition occurs in relation to the myonuclear domain and can contribute to explaining a potential sex-specific hypertrophic response. This study investigated the effect of 8 weeks of resistance training on myofiber hypertrophy and myonuclear addition in 12 males (28±7 years; mean±SD) and 12 females (27±7 years). Muscle biopsies were collected from m. vastus lateralis before and after the training intervention and analyzed by immunohistochemistry for fiber type and size, satellite cells, and myonuclei. Hypertrophy of type I fibers was greater in males than females (P<0.05), whereas hypertrophy of type II fibers was similar between sexes (P=0.158‒0.419). Expansion of the satellite cell pool (P=0.132‒0.667) and myonuclear addition (P=0.064‒0.228) did not differ significantly between sexes, irrespective of myofiber type. However, when individual responses to resistance training were assessed, myonuclear addition was strongly correlated with fiber hypertrophy (r=0.68‒0.85, P<0.001). While myofiber hypertrophy was accompanied by an increase in myonuclear domain (P<0.05), fiber perimeter per myonucleus remained constant throughout the study (P=0.096‒0.666). These findings indicate that myonuclear addition occurs in relation to the fiber perimeter per myonucleus, not the myonuclear domain, and has a substantial role in muscle hypertrophy, but does not fully explain greater hypertrophy of type I fibers in males than females.
Collapse
Affiliation(s)
- Lukas Moesgaard
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Søren Jessen
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hostrup
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
O'Bryan SM, Connor KR, Drummer DJ, Lavin KM, Bamman MM. Considerations for Sex-Cognizant Research in Exercise Biology and Medicine. Front Sports Act Living 2022; 4:903992. [PMID: 35721874 PMCID: PMC9204149 DOI: 10.3389/fspor.2022.903992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
As the fields of kinesiology, exercise science, and human movement developed, the majority of the research focused on male physiology and extrapolated findings to females. In the medical sphere, basing practice on data developed in only males resulted in the removal of drugs from the market in the late 1990s due to severe side effects (some life-threatening) in females that were not observed in males. In response to substantial evidence demonstrating exercise-induced health benefits, exercise is often promoted as a key modality in disease prevention, management, and rehabilitation. However, much like the early days of drug development, a historical literature knowledge base of predominantly male studies may leave the exercise field vulnerable to overlooking potentially key biological differences in males and females that may be important to consider in prescribing exercise (e.g., how exercise responses may differ between sexes and whether there are optimal approaches to consider for females that differ from conventional approaches that are based on male physiology). Thus, this review will discuss anatomical, physiological, and skeletal muscle molecular differences that may contribute to sex differences in exercise responses, as well as clinical considerations based on this knowledge in athletic and general populations over the continuum of age. Finally, this review summarizes the current gaps in knowledge, highlights the areas ripe for future research, and considerations for sex-cognizant research in exercise fields.
Collapse
Affiliation(s)
- Samia M. O'Bryan
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kathleen R. Connor
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Devin J. Drummer
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kaleen M. Lavin
- The Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
| | - Marcas M. Bamman
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- The Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
- *Correspondence: Marcas M. Bamman
| |
Collapse
|
14
|
Lack of muscle stem cell proliferation and myocellular hypertrophy in sIBM patients following blood-flow restricted resistance training. Neuromuscul Disord 2022; 32:493-502. [DOI: 10.1016/j.nmd.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
|
15
|
Muscle hypertrophy is correlated with load progression delta, climb volume, and total load volume in rodents undergoing different ladder-based resistance training protocols. Tissue Cell 2022; 75:101725. [DOI: 10.1016/j.tice.2021.101725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022]
|
16
|
Lourenço Í, Krause Neto W, Amorim LDSP, Ortiz VMM, Geraldo VL, Ferreira GHDS, de Lima JT, Massoni AAR, Oliveira BM, Anaruma CA, Ciena AP, Gama EF, Caperuto ÉC. Previous short-term use of testosterone propionate enhances muscle hypertrophy in Wistar rats submitted to ladder-based resistance training. Tissue Cell 2022; 75:101741. [DOI: 10.1016/j.tice.2022.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
|
17
|
Hillege MMG, Shi A, Galli RA, Wu G, Bertolino P, Hoogaars WMH, Jaspers RT. Lack of Tgfbr1 and Acvr1b synergistically stimulates myofibre hypertrophy and accelerates muscle regeneration. eLife 2022; 11:77610. [PMID: 35323108 PMCID: PMC9005187 DOI: 10.7554/elife.77610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/05/2022] [Indexed: 12/02/2022] Open
Abstract
In skeletal muscle, transforming growth factor-β (TGF-β) family growth factors, TGF-β1 and myostatin, are involved in atrophy and muscle wasting disorders. Simultaneous interference with their signalling pathways may improve muscle function; however, little is known about their individual and combined receptor signalling. Here, we show that inhibition of TGF-β signalling by simultaneous muscle-specific knockout of TGF-β type I receptors Tgfbr1 and Acvr1b in mice, induces substantial hypertrophy, while such effect does not occur by single receptor knockout. Hypertrophy is induced by increased phosphorylation of Akt and p70S6K and reduced E3 ligases expression, while myonuclear number remains unaltered. Combined knockout of both TGF-β type I receptors increases the number of satellite cells, macrophages and improves regeneration post cardiotoxin-induced injury by stimulating myogenic differentiation. Extra cellular matrix gene expression is exclusively elevated in muscle with combined receptor knockout. Tgfbr1 and Acvr1b are synergistically involved in regulation of myofibre size, regeneration, and collagen deposition.
Collapse
Affiliation(s)
- Michèle M G Hillege
- Department of Human Movement, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Andi Shi
- Department of Human Movement, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ricardo A Galli
- Department of Human Movement, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Philippe Bertolino
- Centre de Recherche en Cancérologie de Lyon, Université de Lyon, UMR INSERM U1052, CNRS 5286, Lyon, France
| | - Willem M H Hoogaars
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Richard T Jaspers
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Rodgers BD, Ward CW. Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocr Rev 2022; 43:329-365. [PMID: 34520530 PMCID: PMC8905337 DOI: 10.1210/endrev/bnab030] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Muscle wasting disease indications are among the most debilitating and often deadly noncommunicable disease states. As a comorbidity, muscle wasting is associated with different neuromuscular diseases and myopathies, cancer, heart failure, chronic pulmonary and renal diseases, peripheral neuropathies, inflammatory disorders, and, of course, musculoskeletal injuries. Current treatment strategies are relatively ineffective and can at best only limit the rate of muscle degeneration. This includes nutritional supplementation and appetite stimulants as well as immunosuppressants capable of exacerbating muscle loss. Arguably, the most promising treatments in development attempt to disrupt myostatin and activin receptor signaling because these circulating factors are potent inhibitors of muscle growth and regulators of muscle progenitor cell differentiation. Indeed, several studies demonstrated the clinical potential of "inhibiting the inhibitors," increasing muscle cell protein synthesis, decreasing degradation, enhancing mitochondrial biogenesis, and preserving muscle function. Such changes can prevent muscle wasting in various disease animal models yet many drugs targeting this pathway failed during clinical trials, some from serious treatment-related adverse events and off-target interactions. More often, however, failures resulted from the inability to improve muscle function despite preserving muscle mass. Drugs still in development include antibodies and gene therapeutics, all with different targets and thus, safety, efficacy, and proposed use profiles. Each is unique in design and, if successful, could revolutionize the treatment of both acute and chronic muscle wasting. They could also be used in combination with other developing therapeutics for related muscle pathologies or even metabolic diseases.
Collapse
Affiliation(s)
| | - Christopher W Ward
- Department of Orthopedics and Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
20
|
Angleri V, Damas F, Phillips SM, Selistre-de-Araujo HS, Cornachione AS, Stotzer US, Santanielo N, Soligon SD, Costa LAR, Lixandrão ME, Conceição MS, Cassaro Vechin F, Ugrinowitsch C, Libardi CA. Resistance training variable manipulations is less relevant than intrinsic biology in affecting muscle fiber hypertrophy. Scand J Med Sci Sports 2022; 32:821-832. [PMID: 35092084 DOI: 10.1111/sms.14134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/21/2021] [Accepted: 01/22/2022] [Indexed: 11/30/2022]
Abstract
We aimed to investigate whether muscle fiber cross-sectional area (fCSA) and associated molecular processes could be differently affected at the group and individual level by manipulating resistance training (RT) variables. Twenty resistance-trained subjects had each leg randomly allocated to either a standard RT (RT-CON: without specific variables manipulations) or a variable RT (RT-VAR: manipulation of load, volume, muscle action, and rest interval at each RT session). Muscle fCSA, satellite cell (SC) pool, myonuclei content, and gene expression were assessed before and after training (chronic effect). Gene expression was assessed 24h after the last training session (acute effect). RT-CON and RT-VAR increased fCSA and myonuclei domain in type I and II fibers after training (P < 0.05). SC and myonuclei content did not change for both conditions (P > 0.05). Pax-7, MyoD, MMP-2 and COL3A1 (chronic) and MGF, Pax-7, and MMP-9 (acute) increased similar for RT-CON and RT-VAR (P < 0.05). The increase in acute MyoG expression was significantly higher for the RT-VAR than RT-CON (P < 0.05). Significant correlation between RT-CON and RT-VAR for the fCSA changes (r = 0.89). fCSA changes were also correlated to satellite cells (r = 0.42) and myonuclei (r = 0.50) changes. Heatmap analyses showed coupled changes in fCSA, SC, and myonuclei responses at the individual level, regardless of the RT protocol. The high between and low within-subject variability regardless of RT protocol suggests that the intrinsic biological factors seem to be more important to explain the magnitude of fCSA gains in resistance-trained subjects.
Collapse
Affiliation(s)
- Vitor Angleri
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Felipe Damas
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Heloisa Sobreiro Selistre-de-Araujo
- LBBM - Laboratory of Biochemistry and Molecular Biology, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Anabelle Silva Cornachione
- Muscle Physiology and Biophysics Laboratory, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Uliana Sbeguen Stotzer
- LBBM - Laboratory of Biochemistry and Molecular Biology, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Natalia Santanielo
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Samuel Domingos Soligon
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | | | | | | | | | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Cleiton Augusto Libardi
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
21
|
Ruple BA, Godwin JS, Mesquita PHC, Osburn SC, Sexton CL, Smith MA, Ogletree JC, Goodlett MD, Edison JL, Ferrando AA, Fruge AD, Kavazis AN, Young KC, Roberts MD. Myofibril and Mitochondrial Area Changes in Type I and II Fibers Following 10 Weeks of Resistance Training in Previously Untrained Men. Front Physiol 2021; 12:728683. [PMID: 34630147 PMCID: PMC8497692 DOI: 10.3389/fphys.2021.728683] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Resistance training increases muscle fiber hypertrophy, but the morphological adaptations that occur within muscle fibers remain largely unresolved. Fifteen males with minimal training experience (24±4years, 23.9±3.1kg/m2 body mass index) performed 10weeks of conventional, full-body resistance training (2× weekly). Body composition, the radiological density of the vastus lateralis muscle using peripheral quantitative computed tomography (pQCT), and vastus lateralis muscle biopsies were obtained 1week prior to and 72h following the last training bout. Quantification of myofibril and mitochondrial areas in type I (positive for MyHC I) and II (positive for MyHC IIa/IIx) fibers was performed using immunohistochemistry (IHC) techniques. Relative myosin heavy chain and actin protein abundances per wet muscle weight as well as citrate synthase (CS) activity assays were also obtained on tissue lysates. Training increased whole-body lean mass, mid-thigh muscle cross-sectional area, mean and type II fiber cross-sectional areas (fCSA), and maximal strength values for leg press, bench press, and deadlift (p<0.05). The intracellular area occupied by myofibrils in type I or II fibers was not altered with training, suggesting a proportional expansion of myofibrils with fCSA increases. However, our histological analysis was unable to differentiate whether increases in myofibril number or girth occurred. Relative myosin heavy chain and actin protein abundances also did not change with training. IHC indicated training increased mitochondrial areas in both fiber types (p=0.018), albeit CS activity levels remained unaltered with training suggesting a discordance between these assays. Interestingly, although pQCT-derived muscle density increased with training (p=0.036), suggestive of myofibril packing, a positive association existed between training-induced changes in this metric and changes in mean fiber myofibril area (r=0.600, p=0.018). To summarize, our data imply that shorter-term resistance training promotes a proportional expansion of the area occupied by myofibrils and a disproportional expansion of the area occupied by mitochondria in type I and II fibers. Additionally, IHC and biochemical techniques should be viewed independently from one another given the lack of agreement between the variables assessed herein. Finally, the pQCT may be a viable tool to non-invasively track morphological changes (specifically myofibril density) in muscle tissue.
Collapse
Affiliation(s)
- Bradley A Ruple
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Joshua S Godwin
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Shelby C Osburn
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Casey L Sexton
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Morgan A Smith
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Michael D Goodlett
- Athletics Department, Auburn University, Auburn, AL, United States.,Department of Geriatrics, Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| | - Joseph L Edison
- Athletics Department, Auburn University, Auburn, AL, United States.,Department of Geriatrics, Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| | - Arny A Ferrando
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AK, United States
| | - Andrew D Fruge
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, United States
| | | | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Department of Geriatrics, Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Department of Geriatrics, Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| |
Collapse
|
22
|
Abou Sawan S, Hodson N, Babits P, Malowany JM, Kumbhare D, Moore DR. Satellite cell and myonuclear accretion is related to training-induced skeletal muscle fiber hypertrophy in young males and females. J Appl Physiol (1985) 2021; 131:871-880. [PMID: 34264129 DOI: 10.1152/japplphysiol.00424.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Satellite cells (SC) play an integral role in the recovery from skeletal muscle damage and supporting muscle hypertrophy. Acute resistance exercise typically elevates type I and type II SC content 24-96 h post exercise in healthy young males, although comparable research in females is lacking. We aimed to elucidate whether sex-based differences exist in fiber type-specific SC content after resistance exercise in the untrained (UT) and trained (T) states. Ten young males (23.0 ± 4.0 yr) and females (23.0 ± 4.8 yr) completed an acute bout of resistance exercise before and after 8 wk of whole body resistance training. Muscle biopsies were taken from the vastus lateralis immediately before and 24 and 48 h after each bout to determine SC and myonuclear content by immunohistochemistry. Males had greater SC associated with type II fibers (P ≤ 0.03). There was no effect of acute resistance exercise on SC content in either fiber type (P ≥ 0.58) for either sex; however, training increased SC in type II fibers (P < 0.01) irrespective of sex. The change in mean 0-48 h type II SC was positively correlated with muscle fiber hypertrophy in type II fibers (r = 0.47; P = 0.035). Furthermore, the change in myonuclei per fiber was positively correlated with type I and type II fiber hypertrophy (both r = 0.68; P < 0.01). Our results suggest that SC responses to acute and chronic resistance exercise are similar in males and females and that SC and myonuclear accretion is related to training-induced muscle fiber hypertrophy.NEW & NOTEWORTHY We demonstrate that training-induced increase in SC content in type II fibers and myonuclear content in type I and II fibers is similar between males and females. Furthermore, these changes are related to the extent of muscle fiber hypertrophy. Thus, SC and myonuclear accretion appear to contribute to muscle hypertrophy irrespective of sex, highlighting the importance of these muscle stem cells in human skeletal muscle growth.
Collapse
Affiliation(s)
- Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Paul Babits
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Julia M Malowany
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Shamim B, Camera DM, Whitfield J. Myofibre Hypertrophy in the Absence of Changes to Satellite Cell Content Following Concurrent Exercise Training in Young Healthy Men. Front Physiol 2021; 12:625044. [PMID: 34149439 PMCID: PMC8213074 DOI: 10.3389/fphys.2021.625044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Concurrent exercise training has been suggested to create an ‘interference effect,’ attenuating resistance training-based skeletal muscle adaptations, including myofibre hypertrophy. Satellite cells support myofibre hypertrophy and are influenced by exercise mode. To determine whether satellite cells contribute to the ‘interference effect’ changes in satellite cell and myonuclear content were assessed following a period of training in 32 recreationally active males (age: 25 ± 5 year; body mass index: 24 ± 3 kg⋅m–2; mean ± SD) who undertook 12-week of either isolated (3 d⋅w–1) resistance (RES; n = 10), endurance (END; n = 10), or alternate day (6 d⋅w–1) concurrent (CET, n = 12) training. Skeletal muscle biopsies were obtained pre-intervention and after 2, 8, and 12 weeks of training to determine fibre type-specific cross-sectional area (CSA), satellite cell content (Pax7+DAPI+), and myonuclei (DAPI+) using immunofluorescence microscopy. After 12 weeks, myofibre CSA increased in all training conditions in type II (P = 0.0149) and mixed fibres (P = 0.0102), with no difference between conditions. Satellite cell content remained unchanged after training in both type I and type II fibres. Significant correlations were observed between increases in fibre type-specific myonuclear content and CSA of Type I (r = 0.63, P < 0.0001), Type II (r = 0.69, P < 0.0001), and mixed fibres (r = 0.72, P < 0.0001). Resistance, endurance, and concurrent training induce similar myofibre hypertrophy in the absence of satellite cell and myonuclear pool expansion. These findings suggest that myonuclear accretion via satellite cell fusion is positively correlated with hypertrophy after 12 weeks of concurrent training, and that individuals with more myonuclear content displayed greater myofibre hypertrophy.
Collapse
Affiliation(s)
- Baubak Shamim
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Donny M Camera
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Jamie Whitfield
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Chapman MA, Arif M, Emanuelsson EB, Reitzner SM, Lindholm ME, Mardinoglu A, Sundberg CJ. Skeletal Muscle Transcriptomic Comparison between Long-Term Trained and Untrained Men and Women. Cell Rep 2021; 31:107808. [PMID: 32579934 DOI: 10.1016/j.celrep.2020.107808] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/23/2020] [Accepted: 06/02/2020] [Indexed: 12/23/2022] Open
Abstract
To better understand the health benefits of lifelong exercise in humans, we conduct global skeletal muscle transcriptomic analyses of long-term endurance- (9 men, 9 women) and strength-trained (7 men) humans compared with age-matched untrained controls (7 men, 8 women). Transcriptomic analysis, Gene Ontology, and genome-scale metabolic modeling demonstrate changes in pathways related to the prevention of metabolic diseases, particularly with endurance training. Our data also show prominent sex differences between controls and that these differences are reduced with endurance training. Additionally, we compare our data with studies examining muscle gene expression before and after a months-long training period in individuals with metabolic diseases. This analysis reveals that training shifts gene expression in individuals with impaired metabolism to become more similar to our endurance-trained group. Overall, our data provide an extensive examination of the accumulated transcriptional changes that occur with decades-long training and identify important "exercise-responsive" genes that could attenuate metabolic disease.
Collapse
Affiliation(s)
- Mark A Chapman
- Department of Integrated Engineering, University of San Diego, San Diego, CA 92110, USA; Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Muhammad Arif
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171 65 Solna, Sweden
| | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Stefan M Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Maléne E Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Medicine, School of Medicine, Stanford University, Stanford CA 94305, USA
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171 65 Solna, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| |
Collapse
|
25
|
Guilherme JPLF, Semenova EA, Borisov OV, Kostryukova ES, Vepkhvadze TF, Lysenko EA, Andryushchenko ON, Andryushchenko LB, Lednev EM, Larin AK, Bondareva EA, Generozov EV, Ahmetov II. The BDNF-Increasing Allele is Associated With Increased Proportion of Fast-Twitch Muscle Fibers, Handgrip Strength, and Power Athlete Status. J Strength Cond Res 2020; 36:1884-1889. [PMID: 33306590 DOI: 10.1519/jsc.0000000000003756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Guilherme, JPLF, Semenova, EA, Borisov, OV, Kostryukova, ES, Vepkhvadze, TF, Lysenko, EA, Andryushchenko, ON, Andryushchenko, LB, Lednev, EM, Larin, AK, Bondareva, EA, Generozov, EV, and Ahmetov, II. The BDNF-increasing allele is associated with increased proportion of fast-twitch muscle fibers, handgrip strength, and power athlete status. J Strength Cond Res XX(X): 000-000, 2020-The brain-derived neurotrophic factor (BDNF) is involved in neurogenesis and formation of regenerated myofibers following injury or damage. A recent study suggested that the BDNF overexpression increases the proportion of fast-twitch muscle fibers, while the BDNF deletion promotes a fast-to-slow transition. The purpose of this study was to evaluate the association between the BDNF gene rs10501089 polymorphism (associated with blood BDNF levels), muscle fiber composition, and power athlete status. Muscle fiber composition was determined in 164 physically active individuals (113 men, 51 women). BDNF genotype and allele frequencies were compared between 508 Russian power athletes, 178 endurance athletes, and 190 controls. We found that carriers of the minor A-allele (the BDNF-increasing allele) had significantly higher percentage of fast-twitch muscle fibers than individuals homozygous for the G-allele (males: 64.3 [7.8] vs. 50.3 [15.8]%, p = 0.0015; all subjects: 64.1 ± 7.9 vs. 49.6 ± 14.7%, p = 0.0002). Furthermore, the A-allele was associated (p = 0.036) with greater handgrip strength in a sub-group of physically active subjects (n = 83) and over-represented in power athletes compared with controls (7.7 vs. 2.4%, p = 0.0001). The presence of the A-allele (i.e., AA+AG genotypes) rather than GG genotype increased the odds ratio of being a power athlete compared with controls (odds ratio [OR]: 3.43, p = 0.00071) or endurance athletes (OR: 2.36, p = 0.0081). In conclusion, the rs10501089 A-allele is associated with increased proportion of fast-twitch muscle fibers and greater handgrip strength, and these may explain, in part, the association between the AA/AG genotypes and power athlete status.
Collapse
Affiliation(s)
- João Paulo L F Guilherme
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Oleg V Borisov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Elena S Kostryukova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Tatiana F Vepkhvadze
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Evgeny A Lysenko
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Oleg N Andryushchenko
- Department of Physical Education, Financial University under the Government of the Russian Federation, Moscow, Russia
| | | | - Egor M Lednev
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey K Larin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Elvira A Bondareva
- Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russia
| | - Edward V Generozov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ildus I Ahmetov
- Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.,Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St. Petersburg, Russia.,Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
26
|
Masschelein E, D'Hulst G, Zvick J, Hinte L, Soro-Arnaiz I, Gorski T, von Meyenn F, Bar-Nur O, De Bock K. Exercise promotes satellite cell contribution to myofibers in a load-dependent manner. Skelet Muscle 2020; 10:21. [PMID: 32646489 PMCID: PMC7346400 DOI: 10.1186/s13395-020-00237-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Satellite cells (SCs) are required for muscle repair following injury and are involved in muscle remodeling upon muscular contractions. Exercise stimulates SC accumulation and myonuclear accretion. To what extent exercise training at different mechanical loads drive SC contribution to myonuclei however is unknown. RESULTS By performing SC fate tracing experiments, we show that 8 weeks of voluntary wheel running increased SC contribution to myofibers in mouse plantar flexor muscles in a load-dependent, but fiber type-independent manner. Increased SC fusion however was not exclusively linked to muscle hypertrophy as wheel running without external load substantially increased SC fusion in the absence of fiber hypertrophy. Due to nuclear propagation, nuclear fluorescent fate tracing mouse models were inadequate to quantify SC contribution to myonuclei. Ultimately, by performing fate tracing at the DNA level, we show that SC contribution mirrors myonuclear accretion during exercise. CONCLUSIONS Collectively, mechanical load during exercise independently promotes SC contribution to existing myofibers. Also, due to propagation of nuclear fluorescent reporter proteins, our data warrant caution for the use of existing reporter mouse models for the quantitative evaluation of satellite cell contribution to myonuclei.
Collapse
Affiliation(s)
- Evi Masschelein
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Gommaar D'Hulst
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Joel Zvick
- Department Health Sciences and Technology, Laboratory of Regenerative and Movement Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Laura Hinte
- Department Health Sciences and Technology, Laboratory of Nutrition and Metabolic Epigenetics, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Inés Soro-Arnaiz
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Tatiane Gorski
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ferdinand von Meyenn
- Department Health Sciences and Technology, Laboratory of Nutrition and Metabolic Epigenetics, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ori Bar-Nur
- Department Health Sciences and Technology, Laboratory of Regenerative and Movement Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Katrien De Bock
- Department Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
27
|
Jorgenson KW, Phillips SM, Hornberger TA. Identifying the Structural Adaptations that Drive the Mechanical Load-Induced Growth of Skeletal Muscle: A Scoping Review. Cells 2020; 9:cells9071658. [PMID: 32660165 PMCID: PMC7408414 DOI: 10.3390/cells9071658] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
The maintenance of skeletal muscle mass plays a critical role in health and quality of life. One of the most potent regulators of skeletal muscle mass is mechanical loading, and numerous studies have led to a reasonably clear understanding of the macroscopic and microscopic changes that occur when the mechanical environment is altered. For instance, an increase in mechanical loading induces a growth response that is mediated, at least in part, by an increase in the cross-sectional area of the myofibers (i.e., myofiber hypertrophy). However, very little is known about the ultrastructural adaptations that drive this response. Even the most basic questions, such as whether mechanical load-induced myofiber hypertrophy is mediated by an increase in the size of the pre-existing myofibrils and/or an increase in the number myofibrils, have not been resolved. In this review, we thoroughly summarize what is currently known about the macroscopic, microscopic and ultrastructural changes that drive mechanical load-induced growth and highlight the critical gaps in knowledge that need to be filled.
Collapse
Affiliation(s)
- Kent W. Jorgenson
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA;
| | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Troy A. Hornberger
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA;
- Correspondence:
| |
Collapse
|
28
|
Murach KA, Vechetti IJ, Van Pelt DW, Crow SE, Dungan CM, Figueiredo VC, Kosmac K, Fu X, Richards CI, Fry CS, McCarthy JJ, Peterson CA. Fusion-Independent Satellite Cell Communication to Muscle Fibers During Load-Induced Hypertrophy. FUNCTION 2020; 1:zqaa009. [PMID: 32864621 PMCID: PMC7448100 DOI: 10.1093/function/zqaa009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023] Open
Abstract
The "canonical" function of Pax7+ muscle stem cells (satellite cells) during hypertrophic growth of adult muscle fibers is myonuclear donation via fusion to support increased transcriptional output. In recent years, however, emerging evidence suggests that satellite cells play an important secretory role in promoting load-mediated growth. Utilizing genetically modified mouse models of delayed satellite cell fusion and in vivo extracellular vesicle (EV) tracking, we provide evidence for satellite cell communication to muscle fibers during hypertrophy. Myogenic progenitor cell-EV-mediated communication to myotubes in vitro influences extracellular matrix (ECM)-related gene expression, which is congruent with in vivo overload experiments involving satellite cell depletion, as well as in silico analyses. Satellite cell-derived EVs can transfer a Cre-induced, cytoplasmic-localized fluorescent reporter to muscle cells as well as microRNAs that regulate ECM genes such as matrix metalloproteinase 9 (Mmp9), which may facilitate growth. Delayed satellite cell fusion did not limit long-term load-induced muscle hypertrophy indicating that early fusion-independent communication from satellite cells to muscle fibers is an underappreciated aspect of satellite cell biology. We cannot exclude the possibility that satellite cell-mediated myonuclear accretion is necessary to maintain prolonged growth, specifically in the later phases of adaptation, but these data collectively highlight how EV delivery from satellite cells can directly contribute to mechanical load-induced muscle fiber hypertrophy, independent of cell fusion to the fiber.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Ivan J Vechetti
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Douglas W Van Pelt
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Samuel E Crow
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Cory M Dungan
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Vandre C Figueiredo
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Kate Kosmac
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Xu Fu
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher I Richards
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
29
|
Lundberg TR, Martínez-Aranda LM, Sanz G, Hansson B, von Walden F, Tesch PA, Fernandez-Gonzalo R. Early accentuated muscle hypertrophy is strongly associated with myonuclear accretion. Am J Physiol Regul Integr Comp Physiol 2020; 319:R50-R58. [DOI: 10.1152/ajpregu.00061.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The current study explored whether the marked hypertrophic response noted with a short-term unilateral concurrent exercise paradigm was associated with more prominent changes in myonuclei accretion, ribosome biogenesis, and capillarization compared with resistance exercise alone (RE). Ten men (age 25 ± 4 yr) performed aerobic and resistance exercise (AE + RE) for one leg while the other leg did RE. Muscle biopsies were obtained before and after 5 wk of training and subjected to fiber-type specific immunohistochemical analysis, and quantification of total RNA content and mRNA/rRNA transcript abundance. Type II fiber cross-sectional area (CSA) increased with both AE + RE (22%) and RE (16%), while type I fiber CSA increased mainly with AE + RE (16%). The change score tended to differ between legs for type I CSA ( P = 0.099), and the increase in smallest fiber diameter was greater in AE + RE than RE ( P = 0.029). The number of nuclei per fiber increased after AE + RE in both fiber types, and this increase was greater ( P = 0.027) than after RE. A strong correlation was observed between changes in number of nuclei per fiber and fiber CSA in both fiber types, for both AE + RE and RE ( r > 0.8, P < 0.004). RNA content increased after AE + RE (24%, P = 0.019), but the change-scores did not differ across legs. The capillary variables generally increased in both fiber types, with no difference across legs. In conclusion, the accentuated hypertrophic response to AE + RE was associated with more pronounced myonuclear accretion, which was strongly correlated with the degree of fiber hypertrophy. This suggests that myonuclear accretion could play a role in facilitating muscle hypertrophy also during very short training periods.
Collapse
Affiliation(s)
- Tommy R. Lundberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Luis Manuel Martínez-Aranda
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
- Faculty of Sport, Neuroscience of Human Movement Research Group (Neuromove), Catholic University of San Antonio, Murcia, Spain
| | - Gema Sanz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Gnomics, Murcia, Spain
| | - Björn Hansson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ferdinand von Walden
- Neuropediatrics Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Per A. Tesch
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
30
|
Hromowyk KJ, Talbot JC, Martin BL, Janssen PML, Amacher SL. Cell fusion is differentially regulated in zebrafish post-embryonic slow and fast muscle. Dev Biol 2020; 462:85-100. [PMID: 32165147 PMCID: PMC7225055 DOI: 10.1016/j.ydbio.2020.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 02/08/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fusion occurs during development, growth, and regeneration. To investigate how muscle fusion compares among different muscle cell types and developmental stages, we studied muscle cell fusion over time in wild-type, myomaker (mymk), and jam2a mutant zebrafish. Using live imaging, we show that embryonic myoblast elongation and fusion correlate tightly with slow muscle cell migration. In wild-type embryos, only fast muscle fibers are multinucleate, consistent with previous work showing that the cell fusion regulator gene mymk is specifically expressed throughout the embryonic fast muscle domain. However, by 3 weeks post-fertilization, slow muscle fibers also become multinucleate. At this late-larval stage, mymk is not expressed in muscle fibers, but is expressed in small cells near muscle fibers. Although previous work showed that both mymk and jam2a are required for embryonic fast muscle cell fusion, we observe that muscle force and function is almost normal in mymk and jam2a mutant embryos, despite the lack of fast muscle multinucleation. We show that genetic requirements change post-embryonically, with jam2a becoming much less important by late-larval stages and mymk now required for muscle fusion and growth in both fast and slow muscle cell types. Correspondingly, adult mymk mutants perform poorly in sprint and endurance tests compared to wild-type and jam2a mutants. We show that adult mymk mutant muscle contains small mononucleate myofibers with average myonuclear domain size equivalent to that in wild type adults. The mymk mutant fibers have decreased Laminin expression and increased numbers of Pax7-positive cells, suggesting that impaired fiber growth and active regeneration contribute to the muscle phenotype. Our findings identify several aspects of muscle fusion that change with time in slow and fast fibers as zebrafish develop beyond embryonic stages.
Collapse
Affiliation(s)
- Kimberly J Hromowyk
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jared C Talbot
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA.
| | - Brit L Martin
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Paul M L Janssen
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharon L Amacher
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
31
|
Hansen SK, Ratzer J, Nielsen JL, Suetta C, Karlsen A, Kvorning T, Frandsen U, Aagaard P. Effects of alternating blood flow restricted training and heavy-load resistance training on myofiber morphology and mechanical muscle function. J Appl Physiol (1985) 2020; 128:1523-1532. [PMID: 32324471 DOI: 10.1152/japplphysiol.00015.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To investigate if short-term block-structured training consisting of alternating weeks of blood flow restricted low-load resistance training (BFR-RT) and conventional free-flow heavy-load resistance training (HL-RT) leads to superior gains in mechanical muscle function, myofiber size, and satellite cell (SC) content and myonuclear number compared with HL-RT alone. Eighteen active young participants (women/men: 5/13, 23 ± 1.2 yr) were randomized to 6 wk (22 sessions) of lower limb HL-RT [70-90% one repetition maximum (1-RM)] (HRT, n = 9) or block-structured training alternating weekly between BFR-RT (20% 1-RM) and HL-RT (BFR-HRT, n = 9). Maximal isometric knee extensor strength (MVC) and muscle biopsies (VL) were obtained pre- and posttraining to examine changes in muscle strength, myofiber cross-sectional area (CSA), myonuclear (MN) number, and SC content. MVC increased in both training groups (BFR-HRT: +12%, HRT: +7%; P < 0.05). Type II myofiber CSA increased similarly (+16%) in BFR-HRT and HRT (P < 0.05), while gains in type I CSA were observed following HRT only (+12%, P < 0.05). In addition, myonuclear number remained unchanged, whereas SC content increased in type II myofibers following HRT (+59%, P < 0.05). Short-term alternating BFR-RT and HL-RT did not produce superior gains in muscle strength or myofiber size compared with HL-RT alone. Noticeably, however, conventional HL-RT could be periodically replaced by low-load BFR-RT without compromising training-induced gains in maximal muscle strength and type II myofiber size, respectively.NEW & NOTEWORTHY The present data demonstrate that periodically substituting heavy-load resistance training (HL-RT) with low-load blood flow restricted resistance training (BFR-RT) leads to similar gains in type II myofiber CSA and muscle strength as achieved by HL-RT alone. Furthermore, we have for the first time evaluated myonuclear content and myonuclear domain size before and after training intervention across separate fiber size clusters and found no within-cluster changes for these parameters with training.
Collapse
Affiliation(s)
- S K Hansen
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.,Geriatric Research Unit, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark
| | - J Ratzer
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - J L Nielsen
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - C Suetta
- Geriatric Research Unit, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark.,Geriatric Research Unit, Herlev-Gentofte University Hospital, Copenhagen, Denmark
| | - A Karlsen
- Institute of Sports Medicine Copenhagen, Denmark.,Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center of Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - T Kvorning
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.,Team Danmark (The Danish Elite Sport Institution), Brøndby, Denmark
| | - U Frandsen
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - P Aagaard
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
32
|
Nunes JP, Schoenfeld BJ, Nakamura M, Ribeiro AS, Cunha PM, Cyrino ES. Does stretch training induce muscle hypertrophy in humans? A review of the literature. Clin Physiol Funct Imaging 2020; 40:148-156. [DOI: 10.1111/cpf.12622] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 12/24/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Affiliation(s)
- João Pedro Nunes
- Metabolism, Nutrition, and Exercise Laboratory Physical Education and Sport Center Londrina State University Londrina Brazil
| | | | - Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| | - Alex S. Ribeiro
- Metabolism, Nutrition, and Exercise Laboratory Physical Education and Sport Center Londrina State University Londrina Brazil
- Center for Research in Health Sciences University of Northern Paraná Londrina Brazil
| | - Paolo M. Cunha
- Metabolism, Nutrition, and Exercise Laboratory Physical Education and Sport Center Londrina State University Londrina Brazil
| | - Edilson S. Cyrino
- Metabolism, Nutrition, and Exercise Laboratory Physical Education and Sport Center Londrina State University Londrina Brazil
| |
Collapse
|
33
|
Lundberg TR, Gustafsson T. Fibre hypertrophy, satellite cell and myonuclear adaptations to resistance training: Have very old individuals reached the ceiling for muscle fibre plasticity? Acta Physiol (Oxf) 2019; 227:e13287. [PMID: 31009166 DOI: 10.1111/apha.13287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Tommy R. Lundberg
- Department of Laboratory Medicine, Division of Clinical Physiology Karolinska Institutet Stockholm Sweden
- Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Division of Clinical Physiology Karolinska Institutet Stockholm Sweden
- Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
34
|
Karlsen A, Bechshøft RL, Malmgaard‐Clausen NM, Andersen JL, Schjerling P, Kjaer M, Mackey AL. Lack of muscle fibre hypertrophy, myonuclear addition, and satellite cell pool expansion with resistance training in 83-94-year-old men and women. Acta Physiol (Oxf) 2019; 227:e13271. [PMID: 30828982 DOI: 10.1111/apha.13271] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/26/2022]
Abstract
AIMS To examine satellite cell and myonuclear content in very old (≥83 years) individuals, and the response to heavy resistance training. METHODS A group of very old men and women (Old, 83-94 years, n = 29) was randomized to 12 weeks of heavy resistance training or untrained controls. A group of young men who did not resistance train (Young, 19-27 years, n = 9) were included for comparison. RESULTS Compared to young men, prior to training the old men had smaller type II fibres (-38%, P < 0.001), lower satellite cell content (-52%, P < 0.001), smaller myonuclear domain (-30%, P < 0.001), and a trend for lower myonuclear content (-13%, P = 0.09). Old women were significantly different from old men for these parameters, except for satellite cell content. Resistance training had no effect on these parameters in these old men and women. Fibre-size specific analysis showed strong correlations between fibre size and myonuclei per fibre and between fibre size and myonuclear domain for both fibre types (r = 0.94-0.99, P < 0.0001). In contrast, muscle fibre perimeter per myonucleus seemed to be constant across the range in fibre size, particularly in type I fibres (r = -0.31, P = 0.17). CONCLUSIONS The present data demonstrate that type II fibre size, satellite cell content and myonuclear domain is significantly smaller in very old men compared to young men, while myonuclear content is less affected. These parameters were not improved with heavy resistance training at the most advanced stage of ageing.
Collapse
Affiliation(s)
- Anders Karlsen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Rasmus L. Bechshøft
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
| | - Nikolaj M. Malmgaard‐Clausen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
| | - Jesper L. Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Abigail L. Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
35
|
Psilander N, Eftestøl E, Cumming KT, Juvkam I, Ekblom MM, Sunding K, Wernbom M, Holmberg HC, Ekblom B, Bruusgaard JC, Raastad T, Gundersen K. Effects of training, detraining, and retraining on strength, hypertrophy, and myonuclear number in human skeletal muscle. J Appl Physiol (1985) 2019; 126:1636-1645. [PMID: 30991013 DOI: 10.1152/japplphysiol.00917.2018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previously trained mouse muscles acquire strength and volume faster than naïve muscles; it has been suggested that this is related to increased myonuclear density. The present study aimed to determine whether a previously strength-trained leg (mem-leg) would respond better to a period of strength training than a previously untrained leg (con-leg). Nine men and 10 women performed unilateral strength training (T1) for 10 wk, followed by 20 wk of detraining (DT) and a 5-wk bilateral retraining period (T2). Muscle biopsies were taken before and after each training period and analyzed for myonuclear number, fiber volume, and cross-sectional area (CSA). Ultrasound and one repetition of maximum leg extension were performed to determine muscle thickness (MT) and strength. CSA (~17%), MT (~10%), and strength (~20%) increased during T1 in the mem-leg. However, the myonuclear number and fiber volume did not change. MT and CSA returned to baseline values during DT, but strength remained elevated (~60%), supporting previous findings of a long-lasting motor learning effect. MT and strength increased similarly in the mem-leg and con-leg during T2, whereas CSA, fiber volume, and myonuclear number remained unaffected. In conclusion, training response during T2 did not differ between the mem-leg and con-leg. However, this does not discount the existence of human muscle memory, since no increase in the number of myonuclei was detected during T1 and no clear detraining effect was observed for cell size during DT; thus, the present data did not allow for a rigorous test of the muscle memory hypothesis. NEW & NOTEWORTHY If a long-lasting intramuscular memory exists in humans, this will affect strength-training advice for both athletes and the public. Based on animal experiments, we hypothesized that such a memory exists and that it is related to the myonuclear number. However, a period of unilateral strength training, followed by detraining, did not increase the myonuclear number. The training response, during a subsequent bilateral retraining period, was not enhanced in the previously trained leg.
Collapse
Affiliation(s)
- Niklas Psilander
- Department of Sport Performance and Training, The Swedish School of Sport and Health Sciences , Stockholm , Sweden
| | - Einar Eftestøl
- Department of Biosciences, University of Oslo , Oslo , Norway
| | | | - Inga Juvkam
- Department of Biosciences, University of Oslo , Oslo , Norway
| | - Maria M Ekblom
- Department of Sport Performance and Training, The Swedish School of Sport and Health Sciences , Stockholm , Sweden
| | - Kerstin Sunding
- Stockholm Sport Trauma Research Center, Karolinska Institutet , Stockholm , Sweden
| | - Mathias Wernbom
- Department of Food and Nutrition and Sport Science, Center for Health and Performance, University of Gothenburg , Gothenburg , Sweden
| | - Hans-Christer Holmberg
- Department of Health Sciences, Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| | - Björn Ekblom
- Department of Sport Performance and Training, The Swedish School of Sport and Health Sciences , Stockholm , Sweden
| | - Jo C Bruusgaard
- Department of Biosciences, University of Oslo , Oslo , Norway.,Department of Health Sciences, Kristiania University College , Oslo , Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences , Oslo , Norway
| | | |
Collapse
|
36
|
Franco I, Fernandez-Gonzalo R, Vrtačnik P, Lundberg TR, Eriksson M, Gustafsson T. Healthy skeletal muscle aging: The role of satellite cells, somatic mutations and exercise. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:157-200. [DOI: 10.1016/bs.ircmb.2019.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Wackerhage H, Schoenfeld BJ, Hamilton DL, Lehti M, Hulmi JJ. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol (1985) 2018; 126:30-43. [PMID: 30335577 DOI: 10.1152/japplphysiol.00685.2018] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the most striking adaptations to exercise is the skeletal muscle hypertrophy that occurs in response to resistance exercise. A large body of work shows that a mammalian target of rapamycin complex 1 (mTORC1)-mediated increase of muscle protein synthesis is the key, but not sole, mechanism by which resistance exercise causes muscle hypertrophy. While much of the hypertrophy signaling cascade has been identified, the initiating, resistance exercise-induced and hypertrophy-stimulating stimuli have remained elusive. For the purpose of this review, we define an initiating, resistance exercise-induced and hypertrophy-stimulating signal as "hypertrophy stimulus," and the sensor of such a signal as "hypertrophy sensor." In this review we discuss our current knowledge of specific mechanical stimuli, damage/injury-associated and metabolic stress-associated triggers, as potential hypertrophy stimuli. Mechanical signals are the prime hypertrophy stimuli candidates, and a filamin-C-BAG3-dependent regulation of mTORC1, Hippo, and autophagy signaling is a plausible albeit still incompletely characterized hypertrophy sensor. Other candidate mechanosensing mechanisms are nuclear deformation-initiated signaling or several mechanisms related to costameres, which are the functional equivalents of focal adhesions in other cells. While exercise-induced muscle damage is probably not essential for hypertrophy, it is still unclear whether and how such muscle damage could augment a hypertrophic response. Interventions that combine blood flow restriction and especially low load resistance exercise suggest that resistance exercise-regulated metabolites could be hypertrophy stimuli, but this is based on indirect evidence and metabolite candidates are poorly characterized.
Collapse
Affiliation(s)
- Henning Wackerhage
- Department of Sport and Exercise Sciences, Technical University of Munich , Munich , Germany
| | | | - D Lee Hamilton
- Faculty of Health, School of Exercise and Nutrition Sciences, Deakin University , Victoria , Australia
| | - Maarit Lehti
- LIKES Research Centre for Physical Activity and Health , Jyväskylä , Finland
| | - Juha J Hulmi
- Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä , Jyväskylä , Finland
| |
Collapse
|
38
|
Heisterberg MF, Andersen JL, Schjerling P, Lund A, Dalskov S, Jønsson AO, Warming N, Fogelstrøm M, Kjaer M, Mackey AL. Losartan has no additive effect on the response to heavy-resistance exercise in human elderly skeletal muscle. J Appl Physiol (1985) 2018; 125:1536-1554. [PMID: 30091666 DOI: 10.1152/japplphysiol.00106.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our purpose here was to investigate the potential of blocking the angiotensin II type I receptor (AT1R) on the hypertrophy response of elderly human skeletal muscle to 4 mo of heavy-resistance exercise training. Fifty-eight healthy elderly men (+65 yr) were randomized into three groups, consuming either AT1R blocker (losartan, 100 mg/day) or placebo for 4 mo. Two groups performed resistance training (RT) and were treated with either losartan or placebo, and one group did not train but was treated with losartan. Quadriceps muscle biopsies, MR scans, and strength tests were performed at baseline and after 8 and 16 wk. Biopsies were sectioned for immunohistochemistry to determine the number of satellite cells, capillaries, fiber type distribution, and fiber area. Gene expression levels of myostatin, connective tissue, and myogenic signaling pathways were determined by real-time RT-PCR. Four months of heavy-resistance training led in both training groups to expected improvements in quadriceps (∼3-4%) and vastus lateralis (∼5-6%), cross-sectional area, and type II fiber area (∼10-18%), as well as dynamic (∼13%) and isometric (∼19%) quadriceps peak force, but with absolutely no effect of losartan on these outcomes. Furthermore, no changes were seen in satellite cell number with training, and most gene targets failed to show any changes induced by training or losartan treatment. We conclude that there does not appear to be any effect of AT1R blocking in elderly men during 4 mo of resistance training. Therefore, we do not find any support for using AT1R blockers for promoting muscle adaptation to training in humans. NEW & NOTEWORTHY Animal studies have suggested that blocking angiotensin II type I receptor (AT1R) enhances muscle regeneration and prevents disuse atrophy, but studies in humans are limited. Focusing on hypertrophy, satellite cells, and gene expression, we found that AT1R blocking did not result in any greater responses with 4 mo of resistance training. These results do not support previous findings and question the value of blocking AT1R in the context of preserving aging human muscle.
Collapse
Affiliation(s)
- Mette Flindt Heisterberg
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jesper L Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Alberte Lund
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Simone Dalskov
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Anders Overgård Jønsson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Nichlas Warming
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Mathilde Fogelstrøm
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
39
|
Murach KA, Englund DA, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Myonuclear Domain Flexibility Challenges Rigid Assumptions on Satellite Cell Contribution to Skeletal Muscle Fiber Hypertrophy. Front Physiol 2018; 9:635. [PMID: 29896117 PMCID: PMC5986879 DOI: 10.3389/fphys.2018.00635] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/11/2018] [Indexed: 12/29/2022] Open
Abstract
Satellite cell-mediated myonuclear accretion is thought to be required for skeletal muscle fiber hypertrophy, and even drive hypertrophy by preceding growth. Recent studies in humans and rodents provide evidence that challenge this axiom. Specifically, Type 2 muscle fibers reliably demonstrate a substantial capacity to hypertrophy in the absence of myonuclear accretion, challenging the notion of a tightly regulated myonuclear domain (i.e., area that each myonucleus transcriptionally governs). In fact, a “myonuclear domain ceiling”, or upper limit of transcriptional output per nucleus to support hypertrophy, has yet to be identified. Satellite cells respond to muscle damage, and also play an important role in extracellular matrix remodeling during loading-induced hypertrophy. We postulate that robust satellite cell activation and proliferation in response to mechanical loading is largely for these purposes. Future work will aim to elucidate the mechanisms by which Type 2 fibers can hypertrophy without additional myonuclei, the extent to which Type 1 fibers can grow without myonuclear accretion, and whether a true myonuclear domain ceiling exists.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Davis A Englund
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - John J McCarthy
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Charlotte A Peterson
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|