1
|
Li J, Zhou Z, Gao G, Zang L. Effectiveness of exercise intervention in improving physical and mental status of patients with alcohol use disorders: A systematic review and meta-analysis. PLoS One 2024; 19:e0311166. [PMID: 39475843 PMCID: PMC11524501 DOI: 10.1371/journal.pone.0311166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 11/02/2024] Open
Abstract
OBJECTIVES This meta-analysis and systematic review examined the effects of an exercise intervention on alcohol dependence and physical and mental states in patients with alcohol use disorder (AUD). DATA SOURCES PubMed, Web of Science, Cochrane Library, EBSCO, and Embase. STUDY INCLUSION AND EXCLUSION CRITERIA Randomized controlled trials published in English from the inception of the database until June 30, 2024, were included. All forms of exercise intervention (aerobic, resistance, yoga, mixed exercise, etc.) were included in the study, using an exercise intervention for patients with AUD and a non-exercise control group. Studies that excluded acute exercise or did not describe a specific intervention program; duplicate publications; review articles, conference articles, etc.; and studies that did not report appropriate outcome metrics. DATA EXTRACTION This protocol was prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol standard. The risk of bias was assessed via the Cochrane risk-of-bias tool as described by the Cochrane Handbook for Systematic Reviews and Interventions. DATA SYNTHESIS Alcohol dependence (number of drinks per day, number of drinks per week, AUDIT), physical and mental status [maximal oxygen uptake (VO2 max), resting heart rate, anxiety state, depression state, stress level]. RESULTS Seventeen RCTs with a total of 1,905 patients with alcohol use disorders were included as subjects, and the results revealed that the exercise intervention had a significant effect on alcohol dependence, the number of drinks per day and the AUDIT score, the exercise intervention also had a significant effect on physical and mental status, VO2max, the resting heart rate, the anxiety state, the depression state, and the stress level. High heterogeneity in the number of drinks per day, anxiety, depression and stress outcomes (I2 > 50%), but Egger's test showed no publication bias for all outcome indicators (p > 0.05). CONCLUSIONS Exercise intervention can effectively reduce alcohol dependence and significantly improve the physical and mental states of AUD patients, and exercise intervention as an adjunct to the treatment of AUD patients is significantly effective.
Collapse
Affiliation(s)
- Jihai Li
- Institute of Physical Education, Xinjiang Normal University, Urumqi, Xinjiang, China
| | - Zhidong Zhou
- Institute of Physical Education, Jishou University, Jishou, Hunan, China
| | - Gang Gao
- Institute of Physical Education, Xinjiang Normal University, Urumqi, Xinjiang, China
| | - Liuhong Zang
- Institute of Physical Education, Xinjiang Normal University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Humińska-Lisowska K. Dopamine in Sports: A Narrative Review on the Genetic and Epigenetic Factors Shaping Personality and Athletic Performance. Int J Mol Sci 2024; 25:11602. [PMID: 39519153 PMCID: PMC11546834 DOI: 10.3390/ijms252111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
This narrative review examines the relationship between dopamine-related genetic polymorphisms, personality traits, and athletic success. Advances in sports genetics have identified specific single nucleotide polymorphisms (SNPs) in dopamine-related genes linked to personality traits crucial for athletic performance, such as motivation, cognitive function, and emotional resilience. This review clarifies how genetic variations can influence athletic predisposition through dopaminergic pathways and environmental interactions. Key findings reveal associations between specific SNPs and enhanced performance in various sports. For example, polymorphisms such as COMT Val158Met rs4680 and BDNF Val66Met rs6265 are associated with traits that could benefit performance, such as increased focus, stress resilience and conscientiousness, especially in martial arts. DRD3 rs167771 is associated with higher agreeableness, benefiting teamwork in sports like football. This synthesis underscores the multidimensional role of genetics in shaping athletic ability and advocates for integrating genetic profiling into personalized training to optimize performance and well-being. However, research gaps remain, including the need for standardized training protocols and exploring gene-environment interactions in diverse populations. Future studies should focus on how genetic and epigenetic factors can inform tailored interventions to enhance both physical and psychological aspects of athletic performance. By bridging genetics, personality psychology, and exercise science, this review paves the way for innovative training and performance optimization strategies.
Collapse
Affiliation(s)
- Kinga Humińska-Lisowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdańsk, Poland
| |
Collapse
|
3
|
Liu SX, Harris AC, Gewirtz JC. How life events may confer vulnerability to addiction: the role of epigenetics. Front Mol Neurosci 2024; 17:1462769. [PMID: 39359689 PMCID: PMC11446245 DOI: 10.3389/fnmol.2024.1462769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Substance use disorder (SUD) represents a large and growing global health problem. Despite the strong addictive potency of drugs of abuse, only a minority of those exposed develop SUDs. While certain life experiences (e.g., childhood trauma) may increase subsequent vulnerability to SUDs, mechanisms underlying these effects are not yet well understood. Given the chronic and relapsing nature of SUDs, and the length of time that can elapse between prior life events and subsequent drug exposure, changes in SUD vulnerability almost certainly involve long-term epigenetic dysregulation. To validate this idea, functional effects of specific epigenetic modifications in brain regions mediating reinforcement learning (e.g., nucleus accumbens, prefrontal cortex) have been investigated in a variety of animal models of SUDs. In addition, the effects of epigenetic modifications produced by prior life experiences on subsequent SUD vulnerability have been studied, but mostly in a correlational manner. Here, we review how epigenetic mechanisms impact SUD-related behavior in animal models and summarize our understanding of the relationships among life experiences, epigenetic regulation, and future vulnerability to SUDs. Despite variations in study design, epigenetic modifications that most consistently affect SUD-related behavior are those that produce predominantly unidirectional effects on gene regulation, such as DNA methylation and histone phosphorylation. Evidence explicitly linking environmentally induced epigenetic modifications to subsequent SUD-related behavior is surprisingly sparse. We conclude by offering several directions for future research to begin to address this critical research gap.
Collapse
Affiliation(s)
- Shirelle X Liu
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Andrew C Harris
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
4
|
Dissinger A, Rimoldi S, Terova G, Kwasek K. Chronic social isolation affects feeding behavior of juvenile zebrafish (Danio rerio). PLoS One 2024; 19:e0307967. [PMID: 39058733 PMCID: PMC11280532 DOI: 10.1371/journal.pone.0307967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Many organisms exhibit social behaviors and are part of some scheme of social structure. Zebrafish are highly social, shoaling fish and therefore, social isolation may have notable impacts on their physiology and behavior. The objective of this study was to evaluate the effects of social isolation on feed intake, monoaminergic system related gene expression, and intestinal health of juvenile zebrafish fed a high-inclusion soybean meal based diet. At 20 days post-fertilization zebrafish were randomly assigned to chronic isolation (1 fish per 1.5 L tank) or social housing (6 fish per 9 L tank) with 18 tanks per treatment group (n = 18). Dividers were placed between all tanks to prevent visual cues between fish. Zebrafish were fed a commercial fishmeal based diet until 35 days post-fertilization and then fed the experimental high-inclusion soybean meal based diet until 50 days post-fertilization. At the end of the experiment (51 days post-fertilization), the mean total length, weight, and weight gain were not significantly different between treatment groups. Feed intake and feed conversion ratio were significantly higher in chronic isolation fish than in social housing fish. Expression of monoaminergic and appetite-related genes were not significantly different between groups. The chronic isolation group showed higher expression of the inflammatory gene il-1b, however, average intestinal villi width was significantly smaller and average length-to-width ratio was significantly higher in chronic isolation fish, suggesting morphological signs of inflammation were not present at the time of sampling. These results indicate that chronic isolation positively affects feed intake of juvenile zebrafish and suggest that isolation may be useful in promoting feed intake of less-palatable diets such as those based on soybean meal.
Collapse
Affiliation(s)
- Aubrey Dissinger
- Department of Zoology, Southern Illinois University – Carbondale, Carbondale, Illinois, United States of America
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Karolina Kwasek
- Department of Zoology, Southern Illinois University – Carbondale, Carbondale, Illinois, United States of America
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| |
Collapse
|
5
|
Sedhom S, Hammond N, Thanos KZ, Blum K, Elman I, Bowirrat A, Dennen CA, Thanos PK. Potential Link Between Exercise and N-Methyl-D-Aspartate Glutamate Receptors in Alcohol Use Disorder: Implications for Therapeutic Strategies. Psychol Res Behav Manag 2024; 17:2363-2376. [PMID: 38895648 PMCID: PMC11185169 DOI: 10.2147/prbm.s462403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Alcohol use disorder (AUD) is a significant risk factor, accounting for approximately 13% of all deaths in the US. AUD not only destroys families but also causes economic losses due to reduced productivity, absenteeism, and healthcare expenses. Statistics revealing the sustained number of individuals affected by AUD over the years underscore the need for further understanding of the underlying pathophysiology to advance novel therapeutic strategies. Previous research has implicated the limbic brain regions N-methyl-D-aspartate glutamate receptors (NMDAR) in the emotional and behavioral effects of AUD. Given that aerobic exercise can modulate NMDAR activity and sensitivity to alcohol, this review presents a summary of clinical and basic science studies on NMDAR levels induced by alcohol consumption, as well as acute and protracted withdrawal, highlighting the potential role of aerobic exercise as an adjunctive therapy for AUD. Based on our findings, the utility of exercise in the modulation of reward-linked receptors and AUD may be mediated by its effects on NMDA signaling. These data support further consideration of the potential of aerobic exercise as a promising adjunctive therapy for AUD.
Collapse
Affiliation(s)
- Susan Sedhom
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Nikki Hammond
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kyriaki Z Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Sports, Exercise & Global Mental Health, Western University Health Sciences, Pomona, CA, USA
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Igor Elman
- Department of Psychiatry, Harvard School of Medicine, Cambridge Health Alliance, Cambridge, MA, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
6
|
Hallgren M, Moller EB, Andreasson S, Dunstan DW, Vancampfort D, Ekblom Ö. Associations of device-measured and self-reported physical activity with alcohol consumption: Secondary analyses of a randomized controlled trial (FitForChange). Drug Alcohol Depend 2024; 259:111315. [PMID: 38685154 DOI: 10.1016/j.drugalcdep.2024.111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Physical activity (PA) is increasingly used as an adjunct treatment for alcohol use disorder (AUD). Previous studies have relied on self-report measures of PA, which are prone to measurement error. In the context of a randomized controlled trial of PA for AUD, we examined: (1) associations between device-measured and self-reported PA, (2) associations between PA measurements and alcohol use, and (3) the feasibility of obtaining device-measured PA data in this population. METHOD One-hundred and forty individuals with clinician-diagnosed AUD participated in a 12-week intervention comparing usual care (phone counselling) to yoga-based exercise and aerobic exercise. Device-measured PA (Actigraph GT3x), self-reported PA (International Physical Activity Questionnaire) and alcohol consumption (Timeline Follow Back Method) were assessed before and after the trial. Effects of the interventions on PA levels were assessed using linear mixed models. RESULTS In total, 42% (n=59) of participants returned usable device-measured PA data (mean age= 56±10 years, 73% male). Device-measured and self-reported vigorous-intensity PA were correlated (β= -0.02, 95%CI= -0.03, -0.00). No associations were found for moderate-intensity PA. Compared to usual care, time spent in device-measured light-intensity PA increased in the aerobic exercise group (∆= 357, 95%CI= 709, 5.24). Increases in device-measured light-intensity PA were associated with fewer standard drinks (∆= -0.24, 95%CI= -0.03, -0.44), and fewer heavy drinking days (∆= -0.06, 95%CI=-0.01, -0.10). CONCLUSION Increases in light-intensity/habitual PA were associated with less alcohol consumption in adults with AUD. Self-reported PA data should be interpreted with caution. Incentives are needed to obtain device-measured PA data in AUD populations.
Collapse
Affiliation(s)
- Mats Hallgren
- Department of Global Public Health Sciences, Karolinska Institutet, Sweden; Institute for Physical Activity and Nutrition (IPAN), Faculty of Health, Deakin University, Melbourne, Australia.
| | | | - Sven Andreasson
- Department of Global Public Health Sciences, Karolinska Institutet, Sweden
| | - David W Dunstan
- Institute for Physical Activity and Nutrition (IPAN), Faculty of Health, Deakin University, Burwood, Australia; Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Davy Vancampfort
- Research Group for Adapted Physical Activity and Psychomotor Rehabilitation, University of Leuven, Belgium
| | - Örjan Ekblom
- The Swedish School of Sports and Health Sciences (GIH), Sweden; Department of Neurobiology, Care Sciences and Society, Division of Nursing, Karolinska Institutet, Sweden
| |
Collapse
|
7
|
Xu C, Zhang Z, Hou D, Wang G, Li C, Ma X, Wang K, Luo H, Zhu M. Effects of exercise interventions on negative emotions, cognitive performance and drug craving in methamphetamine addiction. Front Psychiatry 2024; 15:1402533. [PMID: 38827441 PMCID: PMC11140390 DOI: 10.3389/fpsyt.2024.1402533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Methamphetamine is currently one of the most commonly used addictive substances with strong addiction and a high relapse rate. This systematic review aims to examine the effectiveness of physical activity in improving negative emotions, cognitive impairment, and drug craving in people with methamphetamine use disorder (MUD). Methods A total of 17 studies out of 133 found from Embase and PubMed were identified, reporting results from 1836 participants from MUD populations. Original research using clearly described physical activity as interventions and reporting quantifiable outcomes of negative mood, cognitive function and drug craving level in people with MUD were eligible for inclusion. We included prospective studies, randomized controlled trials, or intervention studies, focusing on the neurological effects of physical activity on MUD. Results Taken together, the available clinical evidence showed that physical activity-based interventions may be effective in managing MUD-related withdrawal symptoms. Discussion Physical exercise may improve drug rehabilitation efficiency by improving negative emotions, cognitive behaviors, and drug cravings. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024530359.
Collapse
Affiliation(s)
- Conghui Xu
- School of Medicine, Yunnan University, Kunming, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Zunyue Zhang
- School of Medicine, Yunnan University, Kunming, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Dezhi Hou
- School of Medicine, Yunnan University, Kunming, China
- Department of General Surgery I, First People’s Hospital of Yunnan Province, Kunming, China
| | - Guangqing Wang
- Department of Rehabilitation Education and Corrections, Drug Rehabilitation Administration of Yunnan Province, Kunming, China
| | - Congbin Li
- Department of Rehabilitation Education and Corrections, Drug Rehabilitation Administration of Yunnan Province, Kunming, China
| | - Xingfeng Ma
- Department of Rehabilitation Education and Corrections, Drug Rehabilitation Administration of Yunnan Province, Kunming, China
| | - Kunhua Wang
- School of Medicine, Yunnan University, Kunming, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Huayou Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Zhu
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
8
|
Powell A, Hanna C, Sajjad M, Yao R, Blum K, Gold MS, Quattrin T, Thanos PK. Exercise Influences the Brain's Metabolic Response to Chronic Cocaine Exposure in Male Rats. J Pers Med 2024; 14:500. [PMID: 38793082 PMCID: PMC11122626 DOI: 10.3390/jpm14050500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Cocaine use is associated with negative health outcomes: cocaine use disorders, speedballing, and overdose deaths. Currently, treatments for cocaine use disorders and overdose are non-existent when compared to opioid use disorders, and current standard cocaine use disorder treatments have high dropout and recidivism rates. Physical exercise has been shown to attenuate addiction behavior as well as modulate brain activity. This study examined the differential effects of chronic cocaine use between exercised and sedentary rats. The effects of exercise on brain glucose metabolism (BGluM) following chronic cocaine exposure were assessed using Positron Emission Tomography (PET) and [18F]-Fluorodeoxyglucose (FDG). Compared to sedentary animals, exercise decreased metabolism in the SIBF primary somatosensory cortex. Activation occurred in the amygdalopiriform and piriform cortex, trigeminothalamic tract, rhinal and perirhinal cortex, and visual cortex. BGluM changes may help ameliorate various aspects of cocaine abuse and reinstatement. Further investigation is needed into the underlying neuronal circuits involved in BGluM changes and their association with addiction behaviors.
Collapse
Affiliation(s)
- Aidan Powell
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.P.); (C.H.)
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.P.); (C.H.)
| | - Munawwar Sajjad
- Department of Nuclear Medicine, University at Buffalo, Buffalo, NY 14214, USA; (M.S.); (R.Y.)
| | - Rutao Yao
- Department of Nuclear Medicine, University at Buffalo, Buffalo, NY 14214, USA; (M.S.); (R.Y.)
| | - Kenneth Blum
- Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Teresa Quattrin
- UBMD Pediatrics, JR Oishei Children’s Hospital, University at Buffalo, Buffalo, NY 14203, USA;
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.P.); (C.H.)
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
9
|
Mohr P, Hanna C, Powell A, Penman S, Blum K, Sharafshah A, Lewandrowski KU, Badgaiyan RD, Bowirrat A, Pinhasov A, Thanos PK. Selenoprotein P in a Rodent Model of Exercise; Theorizing Its Interaction with Brain Reward Dysregulation, Addictive Behavior, and Aging. J Pers Med 2024; 14:489. [PMID: 38793071 PMCID: PMC11122084 DOI: 10.3390/jpm14050489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Exercise promotes health and wellness, including its operation as a protective factor against a variety of psychological, neurological, and chronic diseases. Selenium and its biomarker, selenoprotein P (SEPP1), have been implicated in health, including cancer prevention, neurological function, and dopamine signaling. SEPP1 blood serum levels were compared with a one-way ANOVA between sedentary (SED), moderately exercised (MOD) [10 m/min starting at 10 min, increasing to 60 min], and high-intensity interval training (HIIT) exercised rats [30 min in intervals of 2-min followed by a 1-min break, speed progressively increased from 10 to 21 m/min]. HIIT rats showed significantly higher serum SEPP1 concentrations compared to MOD and SED. More specifically, HIIT exercise showed an 84% increase in SEPP1 levels compared to sedentary controls. MOD rats had greater serum SEPP1 concentrations compared to SED, a 33% increase. The results indicated that increased exercise intensity increases SEPP1 levels. Exercise-induced increases in SEPP1 may indicate an adaptive response to the heightened oxidative stress. Previous studies found a significant increase in dopamine D2 receptor (D2R) binding in these same rats, suggesting a potential association between SEPP1 and dopamine signaling during exercise. Modulating antioxidants like SEPP1 through personalized therapies, including exercise, has broad implications for health, disease, and addiction.
Collapse
Affiliation(s)
- Patrick Mohr
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
| | - Aidan Powell
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
| | - Samantha Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
| | - Kenneth Blum
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Division of Addiction Research & Education, Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Alireza Sharafshah
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht 8813833435, Iran
| | - Kai-Uwe Lewandrowski
- Department of Orthopaedics, Universitaria Sanitas, Fundación, Bogotá P.O. Box 011, Colombia
| | | | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Department of Psychology, University at Buffalo, Buffalo, NY 14260-4110, USA
| |
Collapse
|
10
|
Wu J, Yang P, Wu X, Yu X, Zeng F, Wang H. Analysis of physical activity and prescription opioid use among US adults: a cross-sectional study. BMC Public Health 2024; 24:698. [PMID: 38443876 PMCID: PMC10913271 DOI: 10.1186/s12889-024-18220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Opioid crisis has become a global concern, but whether physical activity (PA) can effectively reduce prescription opioid use remains unclear. The study aimed to examine the relationship of different domains of PA (e.g., occupation-related PA [OPA], transportation-related PA [TPA], leisure-time PA [LTPA]) with prescription opioid use and duration of prescription opioid use. METHODS This cross-sectional study was conducted on 27,943 participants aged ≥ 18 years from National Health and Nutrition Examination Survey (NHANES, 2007- March 2020). We examined the relationship of different domains of PA with prescription opioid use and duration of prescription opioid use using multivariable logistic regression. Stratified analysis and a series of sensitivity analysis were used to elevate robustness. All analyses were conducted using appropriate sampling weights. RESULTS Of the 27,943 participants, the mean age was 45.10 years, with 14,018 [weighted, 50.0%] females and 11,045 [weighted, 66.0%] non-Hispanic White. After multivariable adjustment, inverse associations between PA and prescription opioid use were observed for sufficient (≥ 150 min/week) total PA (OR,0.68 95%CI [0.56-0.81]), TPA (OR,0.73 95%CI [0.58-0.92]), and LTPA (OR,0.60 95%CI [0.48-0.75]) compared with insufficient PA(< 150 min/week), but not for sufficient OPA (OR,0.93 95%CI [0.79-1.10]). In addition, the associations were dose-responsive, participants had 22-40%, 27-36%, and 26-47% lower odds of using prescription opioids depending on the duration of total PA, TPA, and LTPA, respectively. Nevertheless, the impact of PA on prescription opioid use varied by duration of opioid use. Sufficient total PA was associated with elevated odds of short-term use of prescription opioids (< 90 days). Comparatively, sufficient total PA, TPA, and LTPA had different beneficial effects on reducing long-term use of prescription opioids (≥ 90 days) depending on the strength of opioids. CONCLUSIONS This study demonstrated sufficient total PA, TPA, and LTPA were inversely associated with prescription opioid use and varied depending on the duration and strength of prescription opioid use. These findings highlight PA can provide policy guidance to address opioid crisis.
Collapse
Affiliation(s)
- Junpeng Wu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Panpan Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Xiaodan Wu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Xiaoxuan Yu
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangdong, China
| | - Fanfang Zeng
- Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Guangdong, China
| | - Haitang Wang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
11
|
Alizadeh Pahlavani H. Possible role of exercise therapy on depression: Effector neurotransmitters as key players. Behav Brain Res 2024; 459:114791. [PMID: 38048912 DOI: 10.1016/j.bbr.2023.114791] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
About 280 million people suffer from depression as the most common neurological disorder and the most common cause of death worldwide. Exercise with serotonin released in the brain by the 5-HT3-IGF-1 mechanism can lead to antidepressant effects. Swimming exercise has antidepressant effects by increasing the sensitivity of serotonin 5-HT2 receptors and postsynaptic 5-HT1A receptors, increasing 5-HT and 5HIAA levels, increasing TPH and serotonin, and decreasing inflammatory levels of IFN-γ and TNF-α. Anaerobic and aerobic exercises increase beta-endorphin, enkephalin, and dynorphin and have antidepressant effects. Exercise by increasing dopamine, D1R, and D2R leads to the expression of BDNF and activation of TrkB and has antidepressant behavior. Exercise leads to a significant increase in GABAAR (γ2 and α2 subunits) and reduces neurodegenerative disorders caused by GABA imbalance through anti-inflammatory pathways. By increasing glutamate and PGC1α and reducing glutamatergic neurotoxicity, exercise enhances neurogenesis and synaptogenesis and prevents neurodegeneration and the onset of depression. Irisin release during exercise shows an important role in depression by increasing dopamine, BDNF, NGF, and IGF-1 and decreasing inflammatory mediators such as IL-6 and IL-1β. In addition, exercise-induced orexin and NPY can increase hippocampal neurogenesis and relieve depression. After exercise, the tryptophan to large neutral amino acids (TRP/LNAA) ratio and the tryptophan to branched-chain amino acids (BCAA) ratio increase, which may have antidepressant effects. The expression of M5 receptor and nAChR α7 increases after exercise and significantly increases dopamine and acetylcholine and ameliorates depression. It appears that during exercise, muscarinic receptors can reduce depression through dopamine in the absence of acetylcholine. Therefore, exercise can be used to reduce depression by affecting neurotransmitters, neuromodulators, cytokines, and/or neurotrophins.
Collapse
|
12
|
Boecker H, Daamen M, Maurer A, Bodensohn L, Werkhausen J, Lohaus M, Manunzio C, Manunzio U, Radbruch A, Attenberger U, Dukart J, Upadhyay N. Fractional amplitude of low-frequency fluctuations associated with μ-opioid and dopamine receptor distributions in the central nervous system after high-intensity exercise bouts. FRONTIERS IN NEUROIMAGING 2024; 3:1332384. [PMID: 38455686 PMCID: PMC10917966 DOI: 10.3389/fnimg.2024.1332384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
Introduction Dopaminergic, opiod and endocannabinoid neurotransmission are thought to play an important role in the neurobiology of acute exercise and, in particular, in mediating positive affective responses and reward processes. Recent evidence indicates that changes in fractional amplitude of low-frequency fluctuations (zfALFF) in resting-state functional MRI (rs-fMRI) may reflect changes in specific neurotransmitter systems as tested by means of spatial correlation analyses. Methods Here, we investigated this relationship at different exercise intensities in twenty young healthy trained athletes performing low-intensity (LIIE), high-intensity (HIIE) interval exercises, and a control condition on three separate days. Positive And Negative Affect Schedule (PANAS) scores and rs-fMRI were acquired before and after each of the three experimental conditions. Respective zfALFF changes were analyzed using repeated measures ANOVAs. We examined the spatial correspondence of changes in zfALFF before and after training with the available neurotransmitter maps across all voxels and additionally, hypothesis-driven, for neurotransmitter maps implicated in the neurobiology of exercise (dopaminergic, opiodic and endocannabinoid) in specific brain networks associated with "reward" and "emotion." Results Elevated PANAS Positive Affect was observed after LIIE and HIIE but not after the control condition. HIIE compared to the control condition resulted in differential zfALFF decreases in precuneus, temporo-occipital, midcingulate and frontal regions, thalamus, and cerebellum, whereas differential zfALFF increases were identified in hypothalamus, pituitary, and periaqueductal gray. The spatial alteration patterns in zfALFF during HIIE were positively associated with dopaminergic and μ-opioidergic receptor distributions within the 'reward' network. Discussion These findings provide new insight into the neurobiology of exercise supporting the importance of reward-related neurotransmission at least during high-intensity physical activity.
Collapse
Affiliation(s)
- Henning Boecker
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Marcel Daamen
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE) Bonn, Bonn, Germany
| | - Angelika Maurer
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Luisa Bodensohn
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Judith Werkhausen
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Marvin Lohaus
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Christian Manunzio
- Sportsmedicine, Department of Paediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | - Ursula Manunzio
- Sportsmedicine, Department of Paediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | | | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Neeraj Upadhyay
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
13
|
Ahmed R, Zyla S, Hammond N, Blum K, Thanos PK. The Role of Estrogen Signaling and Exercise in Drug Abuse: A Review. Clin Pract 2024; 14:148-163. [PMID: 38248436 PMCID: PMC10801537 DOI: 10.3390/clinpract14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Discovering how sex differences impact the efficacy of exercise regimens used for treating drug addiction is becoming increasingly important. Estrogen is a hormone believed to explain a large portion of sex differences observed during drug addiction, and why certain exercise regimens are not equally effective between sexes in treatment. Addiction is currently a global hindrance to millions, many of whom are suffering under the influence of their brain's intrinsic reward system coupled with external environmental factors. Substance abuse disorders in the U.S. alone cost billions of dollars annually. REVIEW SUMMARY Studies involving the manipulation of estrogen levels in female rodents, primarily via ovariectomy, highlight its impact regarding drug addiction. More specifically, female rodents with higher estrogen levels during the estrus phase increase cocaine consumption, whereas those in the non-estrus phase (low estrogen levels) decrease cocaine consumption. If estrogen is reintroduced, self-administration increases once again. Exercise has been proven to decrease relapse tendency, but its effect on estrogen levels is not fully understood. CONCLUSIONS Such findings and results discussed in this review suggest that estrogen influences the susceptibility of females to relapse. Therefore, to improve drug-abuse-related treatment, exercise regimens for females should be generated based on key sex differences with respect to males.
Collapse
Affiliation(s)
- Rania Ahmed
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA;
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA; (S.Z.); (N.H.)
| | - Samuel Zyla
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA; (S.Z.); (N.H.)
| | - Nikki Hammond
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA; (S.Z.); (N.H.)
| | - Kenneth Blum
- Division of Addiction Research Education, Center for Sports, Exercise and Mental Health, Western University Health Sciences, Pomona, CA 91766, USA;
| | - Panayotis K. Thanos
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA;
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA; (S.Z.); (N.H.)
| |
Collapse
|
14
|
Tyler J, Podaras M, Richardson B, Roeder N, Hammond N, Hamilton J, Blum K, Gold M, Baron DA, Thanos PK. High intensity interval training exercise increases dopamine D2 levels and modulates brain dopamine signaling. Front Public Health 2023; 11:1257629. [PMID: 38192549 PMCID: PMC10773799 DOI: 10.3389/fpubh.2023.1257629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Background Previous research has outlined the health benefits of exercise including its therapeutic potential for substance use disorders (SUD). These data have already been utilized and it is now common to find exercise as part of SUD treatment and relapse prevention programs. However, we need to better understand different exercise regimens and determine which would be the most beneficial for SUDs. Recently, high intensity interval training (HIIT) has gained attention in comparison with aerobic and resistance exercise. Little is known regarding the neurobiological mechanisms of HIIT, including its effects on dopamine signaling and receptor levels in the brain. The present study examined the effects of chronic HIIT exercise on dopamine signaling as measured by dopamine type 1-like receptor (D1R)-like, dopamine type 2-like receptor (D2R)-like, and tyrosine hydroxylase (TH) quantification in the brains of male and female rats as measured by [3H] SCH 23390 and [3H] spiperone autoradiography, and TH-immunoreactive optical density values. Methods Rats were separated in two groups: sedentary and HIIT exercise. Exercise was on a treadmill for 30 min daily (10 3 min cycles) for six weeks with progressive speed increased up to 0.8 mph (21.5 m/min). Results Results showed for D2R-like binding, a significant effect across the ventral caudate putamen (V CPU) between sexes, such that mean D2R-like binding was 14% greater for males than females. In the nucleus accumbens shell (Nac Shell), the HIIT Exercise rats showed 16% greater D2R-like binding as compared to the sedentary rats. No significant effects of HIIT exercise were found across groups for brain D1R-like binding levels or TH expression. Conclusion These results suggest that HIIT exercise can modulate dopamine signaling by way of increased D2R. These findings support the premise that HIIT exercise plays an important role in dopamine signaling and, may provide a potential mechanism for how HIIT exercise can impact the brain and behavior.
Collapse
Affiliation(s)
- John Tyler
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Department of Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Madeline Podaras
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Department of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, United States
| | - Brittany Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Department of Psychology, University at Buffalo, Buffalo, NY, United States
| | - Nicole Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Department of Psychology, University at Buffalo, Buffalo, NY, United States
| | - Nikki Hammond
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Kenneth Blum
- Center for Sports, Exercsie and Mental Health, Western University of Health Sciences, Pomona, CA, United States
| | - Mark Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - David A. Baron
- Center for Sports, Exercsie and Mental Health, Western University of Health Sciences, Pomona, CA, United States
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Department of Psychology, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
15
|
Hanna C, Yao R, Sajjad M, Gold M, Blum K, Thanos PK. Exercise Modifies the Brain Metabolic Response to Chronic Cocaine Exposure Inhibiting the Stria Terminalis. Brain Sci 2023; 13:1705. [PMID: 38137153 PMCID: PMC10742065 DOI: 10.3390/brainsci13121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
It is well known that exercise promotes health and wellness, both mentally and physiologically. It has been shown to play a protective role in many diseases, including cardiovascular, neurological, and psychiatric diseases. The present study examined the effects of aerobic exercise on brain glucose metabolic activity in response to chronic cocaine exposure in female Lewis rats. Rats were divided into exercise and sedentary groups. Exercised rats underwent treadmill running for six weeks and were compared to the sedentary rats. Using positron emission tomography (PET) and [18F]-Fluorodeoxyglucose (FDG), metabolic changes in distinct brain regions were observed when comparing cocaine-exposed exercised rats to cocaine-exposed sedentary rats. This included activation of the secondary visual cortex and inhibition in the cerebellum, stria terminalis, thalamus, caudate putamen, and primary somatosensory cortex. The functional network of this brain circuit is involved in sensory processing, fear and stress responses, reward/addiction, and movement. These results show that chronic exercise can alter the brain metabolic response to cocaine treatment in regions associated with emotion, behavior, and the brain reward cascade. This supports previous findings of the potential for aerobic exercise to alter the brain's response to drugs of abuse, providing targets for future investigation. These results can provide insights into the fields of exercise neuroscience, psychiatry, and addiction research.
Collapse
Affiliation(s)
- Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Rutao Yao
- Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Munawwar Sajjad
- Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Mark Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth Blum
- Division of Addiction Research and Education, Center for Sports, Exercise and Global Mental Health, Western University Health Sciences, Pomona, CA 91766, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
16
|
Richardson BJ, Hamilton J, Roeder N, Thanos KZ, Marion M, Thanos PK. Fatty acid-binding protein 5 differentially impacts dopamine signaling independent of sex and environment. ADDICTION NEUROSCIENCE 2023; 8:100118. [PMID: 37664218 PMCID: PMC10470066 DOI: 10.1016/j.addicn.2023.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Epidermal/brain fatty acid-binding protein 5 (FABP5) plays an integral role in the intracellular trafficking of bioactive lipids/endocannabinoids and the subsequent initiation of cellular cascades affecting cannabinoid and dopamine (DA) systems. Social isolation (SI) and environmental enrichment (EE) during adolescence have been shown to impact DA signaling, and, specifically, DA transporter (DAT) and receptor levels of DA type 1 (D1) and 2 (D2); however, the relationship between FABP5, environment and DA signaling remains unclear. The present study quantified DAT and DA receptor levels in male/female FABP5-/- and FABP5+/+ mice raised in either SI or EE. Results showed that FABP5-/- mice had 6.09-8.81% greater D1 levels in striatal sub-regions of the caudal brain, independent of sex or environment. D1 levels were 8.03% greater only in the olfactory tubercle of enrichment-reared animals. In summary, these results supported that FABP5 plays an important function in regulating striatal DA signaling, and this may have important implications as a target with therapeutic potential for various psychiatric disorders.
Collapse
Affiliation(s)
- Brittany J. Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Nicole Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Kyriaki Z. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA
| | - Matthew Marion
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
17
|
Gan Y, Dong Y, Dai S, Shi H, Li X, Wang F, Fu Y, Dong Y. The different cell-specific mechanisms of voluntary exercise and forced exercise in the nucleus accumbens. Neuropharmacology 2023; 240:109714. [PMID: 37690678 DOI: 10.1016/j.neuropharm.2023.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Physical inactivity is a global epidemic. People who take the initiative to exercise will feel pleasure during the exercise process and stick with it for a long time, while people who passively ask for exercise will feel pain and cannot stick with it. However, the neural mechanisms underlying voluntary and forced exercise remain unclear. Here, we report that voluntary running increased the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSC) but decreased membrane excitability in D1R-MSNs, whereas D2R-MSNs did not change in mEPSC and membrane excitability. Forced running increased the frequency of mEPSC and membrane excitability in D2R-MSNs, but D1R-MSNs did not change, which may be the mechanism by which forced exercise has a non-rewarding effect. These findings provide new insights into how voluntary and forced exercise mediate reward and non-reward effects.
Collapse
Affiliation(s)
- Yixia Gan
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Yigang Dong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Shanghua Dai
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Haifeng Shi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Xinyi Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Fanglin Wang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Yingmei Fu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Yi Dong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
18
|
Huang X, Wang X, Shao Y, Lin A, Zhang Z, Qi H, Sun C, Yang H. Effects of health qigong exercise on sleep and life quality in patients with drug abuse. Hong Kong J Occup Ther 2023; 36:13-19. [PMID: 37332297 PMCID: PMC10273793 DOI: 10.1177/15691861231156002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/24/2023] [Indexed: 09/20/2023] Open
Abstract
Objective The aim of this study was to investigate the effect of Health Qigong (HQ) exercise on the subjective and objective sleep quality and the quality of life in male patients with drug abuse who received treatment at a mandatory drug rehabilitation residential institution. Methods Ninety male patients (mean age, 36.85 ± 8.72 y) were included and randomly divided into the Health Qigong (HQ) group, aerobic exercise (AE) group, or control group. The participants in the HQ and AE groups exercised four times a week for 1 hour per session for 12 weeks, while the control group maintained their original lifestyle. The following parameters were recorded before and after exercise: Pittsburgh Sleep Quality Index (PSQI); SF-36; and total sleep time, sleep efficiency, sleep latency, deep sleep time, deep sleep rate, light sleep time, and light sleep rate using actigraphy. Results Health Qigong improved the subjective sleep quality, objective sleep quality, and quality of life after a 12-week intervention. Considering the subjective sleep quality, Health Qigong helped improve several aspects of the PSQI, including the overall sleep quality (p < 0.01), sleep latency (p < 0.01), sleep duration (p < 0.01), sleep latency (p < 0.01), sleep disturbance (p < 0.01), and day dysfunction (p < 0.01). In relation to the objective sleep quality, Health Qigong improved the total sleep time (p < 0.01), sleep efficiency (p < 0.01), sleep latency (p < 0.01), deep and light sleep rate (p < 0.01). Considering the quality of life, Health Qigong helped improve the role-physical (p < 0.01), general health (p < 0.01), bodily pain (p < 0.01), and mental health (p < 0.01) aspects of SF-36. Conclusion Health Qigong may be an effective approach to improve the subjective and objective quality of sleep and life quality of patients with drug abuse.
Collapse
Affiliation(s)
- Xuetong Huang
- China Wushu School, Beijing Sport University, Beijing, China
| | - Xiaojun Wang
- China Wushu School, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Anna Lin
- Beihu Road Primary School, Nanning, China
| | - Zhuolin Zhang
- China Wushu School, Beijing Sport University, Beijing, China
| | - Huanhuan Qi
- China Wushu School, Beijing Sport University, Beijing, China
| | - Chao Sun
- School of Psychology, Beijing Sport University, Beijing, China
| | - Hui Yang
- China Wushu School, Beijing Sport University, Beijing, China
| |
Collapse
|
19
|
Kiraz S, Yıldırım S. The effect of regular exercise on depression, anxiety, treatment motivation and mindfulness in addiction: a randomized controlled trial. JOURNAL OF SUBSTANCE USE 2023. [DOI: 10.1080/14659891.2023.2194417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Seda Kiraz
- Faculty of Medicine, Department of Psychiatry, Hitit University, Çorum, Turkey
| | - Sibel Yıldırım
- Faculty of Sports Sciences, Department of Coach Training, Hitit University, Çorum, Turkey
| |
Collapse
|
20
|
Jia W, Kawahata I, Cheng A, Sasaki T, Sasaoka T, Fukunaga K. Amelioration of Nicotine-Induced Conditioned Place Preference Behaviors in Mice by an FABP3 Inhibitor. Int J Mol Sci 2023; 24:ijms24076644. [PMID: 37047614 PMCID: PMC10095245 DOI: 10.3390/ijms24076644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
We previously demonstrated that fatty acid-binding protein 3 null (FABP3−/−) mice exhibit resistance to nicotine-induced conditioned place preference (CPP). Here, we confirm that the FABP3 inhibitor, MF1 ((4-(2-(1-(2-chlorophenyl)-5-phenyl-1H-pyrazol-3-yl)phenoxy) butanoic acid), successfully reduces nicotine-induced CPP scores in mice. MF1 (0.3 or 1.0 mg/kg) was orally administered 30 min before nicotine, and CPP scores were assessed in the conditioning, withdrawal, and relapse phases. MF1 treatment decreased CPP scores in a dose-dependent manner. Failure of CPP induction by MF1 (1.0 mg/kg, p.o.) was associated with the inhibition of both CaMKII and ERK activation in the nucleus accumbens (NAc) and hippocampal CA1 regions. MF1 treatment reduced nicotine-induced increases in phosphorylated CaMKII and cAMP-response element-binding protein (CREB)-positive cells. Importantly, the increase in dopamine D2 receptor (D2R) levels following chronic nicotine exposure was inhibited by MF1 treatment. Moreover, the quinpirole (QNP)-induced increase in the level of CaMKII and ERK phosphorylation was significantly inhibited by MF1 treatment of cultured NAc slices from wild type (WT) mice; however, QNP treatment had no effect on CaMKII and ERK phosphorylation levels in the NAc of D2R null mice. Taken together, these results show that MF1 treatment suppressed D2R/FABP3 signaling, thereby preventing nicotine-induced CPP induction. Hence, MF1 can be used as a novel drug to block addiction to nicotine and other drugs by inhibiting the dopaminergic system.
Collapse
Affiliation(s)
- Wenbin Jia
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - An Cheng
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Toshikuni Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- BRI Pharma Inc., Sendai 982-0804, Japan
| |
Collapse
|
21
|
Abstract
OBJECTIVE Research points to exercise having a positive effect in fighting relapse and use of drugs of abuse. Through conducting this research, differences have been observed in the effects of exercise on drug abuse between sexes. Many of the studies found that exercise tends to cause a more profound effect in blocking drug relapse or reinstatement in males when compared with females. METHODS Our hypothesis is that these differences in response to drugs of abuse after an exercise regimen could in part be attributed to variations in testosterone levels between males and females. RESULTS Testosterone has been shown to have a modulatory impact on the dopaminergic activity in the brain, causing an effect on the brain's response to drugs of abuse. Exercise has demonstrated a causal effect on increasing testosterone levels in males, whereas drugs of abuse decrease testosterone levels in males. CONCLUSIONS Thus, exercise raising testosterone levels in males helps to decrease the dopaminergic response in the brain to drugs of abuse causing attenuation to drugs. To find sex-specific exercise treatments for drugs of abuse, it is important to continue researching exercise's efficacy against drugs of abuse.
Collapse
|
22
|
von Cederwald BF, Johansson J, Riklund K, Karalija N, Boraxbekk CJ. White matter lesion load determines exercise-induced dopaminergic plasticity and working memory gains in aging. Transl Psychiatry 2023; 13:28. [PMID: 36720847 PMCID: PMC9889313 DOI: 10.1038/s41398-022-02270-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 02/01/2023] Open
Abstract
Age-related dopamine reductions have been suggested to contribute to maladaptive working memory (WM) function in older ages. One promising intervention approach is to increase physical activity, as this has been associated with plasticity of the striatal dopamine system and WM improvements, however with individual differences in efficacy. The present work focused on the impact of individual differences in white-matter lesion burden upon dopamine D2-like receptor (DRD2) availability and WM changes in response to a 6 months physical activity intervention. While the intervention altered striatal DRD2 availability and WM performance in individuals with no or only mild lesions (p < 0.05), no such effects were found in individuals with moderate-to-severe lesion severity (p > 0.05). Follow-up analyses revealed a similar pattern for processing speed, but not for episodic memory performance. Linear analyses further revealed that lesion volume (ml) at baseline was associated with reduced DRD2 availability (r = -0.41, p < 0.05), and level of DRD2 change (r = 0.40, p < 0.05). Taken together, this study underlines the necessity to consider cerebrovascular health in interventions with neurocognitive targets. Future work should assess whether these findings extend beyond measures of DRD2 availability and WM.
Collapse
Affiliation(s)
- Bryn Farnsworth von Cederwald
- grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Jarkko Johansson
- grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Katrine Riklund
- grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden. .,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden. .,Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden. .,Danish Research Center for Magnetic Resonance (DRCMR), Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Amager and Hvidovre, Copenhagen, Denmark. .,Institute of Sports Medicine Copenhagen (ISMC) and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark. .,Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
Alvarez-Monell A, Subias-Gusils A, Mariné-Casadó R, Boqué N, Caimari A, Solanas M, Escorihuela RM. Impact of Calorie-Restricted Cafeteria Diet and Treadmill Exercise on Sweet Taste in Diet-Induced Obese Female and Male Rats. Nutrients 2022; 15:nu15010144. [PMID: 36615803 PMCID: PMC9823820 DOI: 10.3390/nu15010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
The goal of the present study was to evaluate the sweet taste function in obese rats fed with a 30% calorie-restricted cafeteria diet (CAFR) and/or subjected to moderate treadmill exercise (12-17 m/min, 35 min, 5 days per week) for 9 weeks. A two-bottle preference test, a taste reactivity test, and a brief-access licking test were carried out when animals were aged 21 weeks; biometric and metabolic parameters were also measured along the interventions. Two separate experiments for females and males were performed. Behaviorally, CAF diet decreased sucrose intake and preference, as well as perceived palatability, in both sexes and decreased hedonic responses in males. Compared to the CAF diet, CAFR exerted a corrective effect on sweet taste variables in females by increasing sucrose intake in the preference test and licking responses, while exercise decreased sucrose intake in both sexes and licking responses in females. As expected, CAF diet increased body weight and Lee index and worsened the metabolic profile in both sexes, whereas CAFR diet ameliorated these effects mainly in females. Exercise had no noticeable effects on these parameters. We conclude that CAF diet might diminish appetitive behavior toward sucrose in both sexes, and that this effect could be partially reverted by CAFR diet in females only, while exercise might exert protective effects against overconsumption of sucrose in both sexes.
Collapse
Affiliation(s)
- Adam Alvarez-Monell
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08913 Bellaterra, Spain
| | - Alex Subias-Gusils
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department de Psiquiatria i Medicina Legal, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Noemi Boqué
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Montserrat Solanas
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08913 Bellaterra, Spain
- Correspondence: (M.S.); (R.M.E.); Tel.: +34-93-5811373 (M.S.); +34-93-5813296 (R.M.E.)
| | - Rosa M. Escorihuela
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department de Psiquiatria i Medicina Legal, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (M.S.); (R.M.E.); Tel.: +34-93-5811373 (M.S.); +34-93-5813296 (R.M.E.)
| |
Collapse
|
24
|
Exercise Modulates Brain Glucose Utilization Response to Acute Cocaine. J Pers Med 2022; 12:jpm12121976. [PMID: 36556197 PMCID: PMC9788493 DOI: 10.3390/jpm12121976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Exercise, a proven method of boosting health and wellness, is thought to act as a protective factor against many neurological and psychological diseases. Recent studies on exercise and drug exposure have pinpointed some of the neurological mechanisms that may characterize this protective factor. Using positron emission tomography (PET) imaging techniques and the glucose analog [18F]-Fluorodeoxyglucose (18F-FDG), our team sought to identify how chronic aerobic exercise modulates brain glucose metabolism (BGluM) after drug-naïve rats were exposed to an acute dose of cocaine. Using sedentary rats as a control group, we observed significant differences in regional BGluM. Chronic treadmill exercise treatment coupled with acute cocaine exposure induced responses in BGluM activity in the following brain regions: postsubiculum (Post), parasubiculum (PaS), granular and dysgranular insular cortex (GI and DI, respectively), substantia nigra reticular (SNR) and compact part dorsal tier (SNCD), temporal association cortex (TeA), entopenduncular nucleus (EP), and crus 1 of the ansiform lobule (crus 1). Inhibition, characterized by decreased responses due to our exercise, was found in the ventral endopiriform nucleus (VEn). These areas are associated with memory and various motor functions. They also include and share connections with densely dopaminergic areas of the mesolimbic system. In conclusion, these findings suggest that treadmill exercise in rats mediates brain glucose response to an acute dose of cocaine differently as compared to sedentary rats. The modulated brain glucose utilization occurs in brain regions responsible for memory and association, spatial navigation, and motor control as well as corticomesolimbic regions related to reward, emotion, and movement.
Collapse
|
25
|
Abstract
The current addiction crisis has destroyed a multitude of lives, leaving millions of fatalities worldwide in its wake. At the same time, various governmental agencies dedicated to solving this seemingly never-ending dilemma have not yet succeeded or delivered on their promises. We understand that addictive behavioral seeking is a multi-faceted neurobiological and spiritually complicated phenomenon. However, although the substitution replacement approach, especially to treat Opioid Use Disorder (OUD), has importance for harm reduction in the short term, it does not bring about a harm-free recovery or prevention. Instead, we propose a promising novel approach that uses genetic risk testing with induction of dopamine homeostasis and an objective Brain Health Check during youth. Our model involves a six-hit approach known as the "Reward Dysregulation Syndrome Solution System," which can identify addiction risk and target the root cause of addiction, dopamine dysregulation. While we applaud all past sophisticated neurogenetic and neuropharmacological research, our opinion is that in the long term, addiction scientists and clinicians might characterize preaddiction using tests; for example, administering the validated RDSQuestionarre29, genetic risk assessment, a modified brain health check, or diagnostic framing of mild to moderate Substance Use Disorder (SUD). The preaddiction concept could incentivize the development of interventions to prevent addiction from developing in the first place and target and treat neurotransmitter imbalances and other early indications of addiction. WC 222.
Collapse
|
26
|
Wang M, Chen Y, Xu Y, Zhang X, Sun T, Li H, Yuan C, Li J, Ding ZH, Ma Z, Sun Y. A Randomized Controlled Trial Evaluating the Effect of Tai Chi on the Drug Craving in Women. Int J Ment Health Addict 2022; 22:1-13. [PMID: 36119946 PMCID: PMC9469824 DOI: 10.1007/s11469-022-00917-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 10/27/2022] Open
Abstract
This study was conducted in the purpose of investigating the effect of Tai Chi on drug craving for women with drug disorders. One hundred and twelve women were recruited from a drug rehabilitation center in China, and 47 and 48 were finally analyzed in the control group and exercise group, respectively. The exercise group underwent a 3-month Tai Chi training, whereas the control group experienced no exercise intervention during the same time period. The drug craving was measured by the visual analog scale. In data analysis, repeated-measures were utilized to test the differences between the control and exercise group over the course of the experiment time. The mean of the craving score significantly dropped from pre-test (control: mean = 5.38, SD = 3.04; exercise: mean = 4.68, SD = 2.93) to post-test (control: mean = 4.03, SD = 2.73; exercise: mean = 1.91, SD = 1.90) in both groups (control group: t = 3.84, df = 46, p < 0.001; exercise group: t = 5.941, df = 47, p < 0.001), with more decrease witnessed in the exercise group. Repeated-measures analysis with a Huynh-Feldt correction showed the significant effect of time (F = 27.383, p < 0.001) as well as the study group by time interaction (F = 3.52, p = 0.024). Tai Chi can ameliorate the drug craving in women and it could be a supportive treatment for drug addiction.
Collapse
Affiliation(s)
- Mu Wang
- Institute of Intelligent Machines, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hubin Building, Science Island, Shushan, Hefei, 230031 Anhui People’s Republic of China
- University of Science and Technology of China, Hefei, 230026 People’s Republic of China
| | - Yanyan Chen
- Institute of Intelligent Machines, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hubin Building, Science Island, Shushan, Hefei, 230031 Anhui People’s Republic of China
| | - Yubing Xu
- Institute of Intelligent Machines, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hubin Building, Science Island, Shushan, Hefei, 230031 Anhui People’s Republic of China
| | - Xiaoyu Zhang
- Institute of Intelligent Machines, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hubin Building, Science Island, Shushan, Hefei, 230031 Anhui People’s Republic of China
- University of Science and Technology of China, Hefei, 230026 People’s Republic of China
| | - Ting Sun
- Institute of Intelligent Machines, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hubin Building, Science Island, Shushan, Hefei, 230031 Anhui People’s Republic of China
| | - Huazhi Li
- Women Specific Drug Rehabilitation Center, Hefei, Anhui People’s Republic of China
| | - Cunfeng Yuan
- Drug Rehabilitation Administration of the Ministry of Justice of the People’s Republic of China, Beijing, People’s Republic of China
| | - Jin Li
- Women Specific Drug Rehabilitation Center, Hefei, Anhui People’s Republic of China
| | - Zeng-Hui Ding
- Institute of Intelligent Machines, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hubin Building, Science Island, Shushan, Hefei, 230031 Anhui People’s Republic of China
| | - Zuchang Ma
- Institute of Intelligent Machines, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hubin Building, Science Island, Shushan, Hefei, 230031 Anhui People’s Republic of China
| | - Yining Sun
- Institute of Intelligent Machines, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hubin Building, Science Island, Shushan, Hefei, 230031 Anhui People’s Republic of China
| |
Collapse
|
27
|
Bajaj A, Blum K, Bowirrat A, Gupta A, Baron D, Fugel D, Nicholson A, Fitch T, Downs BW, Bagchi D, Dennen CA, Badgaiyan RD. DNA Directed Pro-Dopamine Regulation Coupling Subluxation Repair, H-Wave® and Other Neurobiologically Based Modalities to Address Complexities of Chronic Pain in a Female Diagnosed with Reward Deficiency Syndrome (RDS): Emergence of Induction of “Dopamine Homeostasis” in the Face of the Opioid Crisis. J Pers Med 2022; 12:jpm12091416. [PMID: 36143203 PMCID: PMC9503998 DOI: 10.3390/jpm12091416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Addiction is a complex multifactorial condition. Established genetic factors can provide clear guidance in assessing the risk of addiction to substances and behaviors. Chronic stress can accumulate, forming difficult to recognize addiction patterns from both genetic and epigenetic (environmental) factors. Furthermore, psychological/physical/chemical stressors are typically categorized linearly, delaying identification and treatment. The patient in this case report is a Caucasian female, aged 36, who presented with chronic pain and partial disability following a surgically repaired trimalleolar fracture. The patient had a history of unresolved attention deficit disorder and an MRI scan of her brain revealed atrophy and functional asymmetry. In 2018, the patient entered the Bajaj Chiropractic Clinic, where initial treatment focused on re-establishing integrity of the spine and lower extremity biomechanics and graduated into cognitive behavior stabilization assisted by DNA pro-dopamine regulation guided by Genetic Addiction Risk Severity testing. During treatment (2018–2021), progress achieved included: improved cognitive clarity, focus, sleep, anxiety, and emotional stability in addition to pain reduction (75%); elimination of powerful analgesics; and reduced intake of previously unaddressed alcoholism. To help reduce hedonic addictive behaviors and pain, coupling of H-Wave with corrective chiropractic care seems prudent. We emphasize the importance of genetic assessment along with attempts at inducing required dopaminergic homeostasis via precision KB220PAM. It is hypothesized that from preventive care models, a new standard is emerging including self-awareness and accountability for reward deficiency as a function of hypodopaminergia. This case study documents the progression of a patient dealing with the complexities of an injury, pain management, cognitive impairment, anxiety, depression, and the application of universal health principles towards correction versus palliative care.
Collapse
Affiliation(s)
- Anish Bajaj
- Bajaj Chiropractic Clinic, New York, NY 10010, USA
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, and Primary Care, (Office of the Provost), Western University Health Sciences, Pomona, CA 91766, USA
- The Kenneth Blum Institute on Behavior & Neurogenetics, Austin, TX 78701, USA
- Correspondence:
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, and Primary Care, (Office of the Provost), Western University Health Sciences, Pomona, CA 91766, USA
| | - David Fugel
- Bajaj Chiropractic Clinic, New York, NY 10010, USA
| | | | - Taylor Fitch
- Bajaj Chiropractic Clinic, New York, NY 10010, USA
| | - B. William Downs
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Southern University College of Pharmacy, Houston, TX 77004, USA
| | - Catherine A. Dennen
- The Kenneth Blum Institute on Behavior & Neurogenetics, Austin, TX 78701, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA
| |
Collapse
|
28
|
Gunnarsson B, Entezarjou A, Fernández-Aranda F, Jiménez-Murcia S, Kenttä G, Håkansson A. Understanding exercise addiction, psychiatric characteristics and use of anabolic androgenic steroids among recreational athletes – An online survey study. Front Sports Act Living 2022; 4:903777. [PMID: 35979064 PMCID: PMC9376369 DOI: 10.3389/fspor.2022.903777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background The purpose of this paper was to explore maladaptive behaviors among physically active individuals, including exercise dependence and use of anabolic steroids. Both exercise addiction (EA) and use of anabolic androgenic steroids (AAS) correlate to high amounts of exercise and EA have been linked to eating disorders and other mental health problems. Methods An internet survey was spread through fitness-related social media. Inclusion criteria were age ≥ 15 years and exercise frequency ≥ thrice weekly. Exercise addiction inventory identified those at-risk of EA (rEA). Characteristics of rEA were compared to those not at risk. In a separate analysis, AAS users were compared to AAS-naïve individuals. Results In total, 3,029 participants completed the questionnaire. Of these, 11% screened positive for being rEA, and 23% for ED. Factors associated with EA included daily exercise, social phobia, eating disorders and OCD. Risk consumption of alcohol was a negative predictor. Thirty seven participants had taken AAS the last year. These were mainly men, bodybuilders/powerlifters and more often used amphetamines and opioids. Discussion This exploratory study supports EA being strongly associated with eating disorders. Identified associations between EA and compulsive or anxiety disorders warrant further research to clarify if these associations arise prior to, together with, or secondary to EA.
Collapse
Affiliation(s)
- Björn Gunnarsson
- Helsingborg University Hospital, Region Skåne, Helsingborg, Sweden
| | - Artin Entezarjou
- Department of Clinical Sciences in Malmö, Center for Primary Health Care Research, Lund University, Malmö, Sweden
- Skåne University Hospital, Region Skåne, Malmö, Sweden
| | - Fernando Fernández-Aranda
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Göran Kenttä
- The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Swedish Sport Federation, Stockholm, Sweden
| | - Anders Håkansson
- Clinical Sports and Mental Health Unit, Malmö Addiction Center, Region Skåne, Malmö, Sweden
- Division of Psychiatry, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- *Correspondence: Anders Håkansson
| |
Collapse
|
29
|
Segat HJ, Martini F, Roversi K, Rosa SG, Muller SG, Rossato DR, Nogueira CW, Burger ME. Impact of two different types of exercise training on AMPH addiction: Role of hippocampal neurotrophins. Physiol Behav 2022; 251:113804. [PMID: 35398334 DOI: 10.1016/j.physbeh.2022.113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Amphetamine (AMPH) abuse results in neurobehavioral alterations related to the reward circuit. The hippocampus plays a role in cognition, reward, and drug addiction. There are no pharmacological approaches to prevent AMPH relapse. Physical exercise has been studied as a non-pharmacological promising influence to attenuate reward symptoms related to addictive drugs. OBJECTIVE This study aimed to compare the effects of non-weight-loaded and weight-loaded physical exercise on behavioral (relapse, memory and anxiety) and hippocampal molecular parameters associated with AMPH addiction in Wistar rats. METHODS Male rats were subjected to the AMPH-Conditioned Place Preference (CPP) paradigm. After 8-conditioning days, they were subjected to swimming physical exercise protocol (without or with weight-load). Behavioral evaluations were performed to assess the influence of both exercise protocols in addiction parameters, including relapse after AMPH reconditioning, working memory, locomotor activity, and anxiety-like symptoms. Subsequently, protein levels of Brain-Derived Neurotrophic Factor (BDNF) and pro-BDNF ex-vivo assays were carried out in samples of the hippocampus of the animals. RESULTS AMPH relapse and anxiety-like behaviors were reduced only in rats subjected to non-weight-loaded exercise. Hippocampal BDNF and pro-BDNF immunoreactivity were increased in non-weight-loaded exercise rats. Behavioral and molecular analyses were not modified in rats subjected to weight-loaded exercise. CONCLUSION These findings demonstrate that non-weight-loaded exercise was more effective against relapse and anxiety-like behavior induced by AMPH. Non-weight-loaded exercise upregulated the hippocampal immunocontent levels in rats.
Collapse
Affiliation(s)
- Hecson Jesser Segat
- Pós-Graduação em Bioquímica Toxicológica; Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Franciele Martini
- Pós-Graduação em Bioquímica Toxicológica; Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - Karine Roversi
- Departement de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| | - Suzan Gonçalves Rosa
- Pós-Graduação em Bioquímica Toxicológica; Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - Sabrina Grendene Muller
- Pós-Graduação em Bioquímica Toxicológica; Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | | | - Cristina Wayne Nogueira
- Pós-Graduação em Bioquímica Toxicológica; Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - Marilise Escobar Burger
- Pós-Graduação em Bioquímica Toxicológica; Universidade Federal de Santa Maria (UFSM), RS, Brazil; Pós-Graduação em Farmacologia; UFSM, RS, Brazil
| |
Collapse
|
30
|
Hanna C, Hamilton J, Arnavut E, Blum K, Thanos PK. Brain Mapping the Effects of Chronic Aerobic Exercise in the Rat Brain Using FDG PET. J Pers Med 2022; 12:jpm12060860. [PMID: 35743644 PMCID: PMC9224807 DOI: 10.3390/jpm12060860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Exercise is a key component to health and wellness and is thought to play an important role in brain activity. Changes in brain activity after exercise have been observed through various neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). The precise impact of exercise on brain glucose metabolism (BGluM) is still unclear; however, results from PET studies seem to indicate an increase in regional metabolism in areas related to cognition and memory, direction, drive, motor functions, perception, and somatosensory areas in humans. Using PET and the glucose analog [18F]-Fluorodeoxyglucose (18F-FDG), we assessed the changes in BGluM between sedentary and chronic exercise in rats. Chronic treadmill exercise treatment demonstrated a significant increase in BGluM activity in the following brain regions: the caudate putamen (striatum), external capsule, internal capsule, deep cerebellar white matter, primary auditory cortex, forceps major of the corpus callosum, postsubiculum, subiculum transition area, and the central nucleus of the inferior colliculus. These brain regions are functionally associated with auditory processing, memory, motor function, and motivated behavior. Therefore, chronic daily treadmill running in rats stimulates BGluM in distinct brain regions. This identified functional circuit provides a map of brain regions for future molecular assessment which will help us understand the biomarkers involved in specific brain regions following exercise training, as this is critical in exploring the therapeutic potential of exercise in the treatment of neurodegenerative disease, traumatic brain injury, and addiction.
Collapse
Affiliation(s)
- Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.); (J.H.); (E.A.)
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.); (J.H.); (E.A.)
| | - Eliz Arnavut
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.); (J.H.); (E.A.)
| | - Kenneth Blum
- Graduate College, Western University Health Sciences, Pomona, CA 91766, USA;
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.); (J.H.); (E.A.)
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Correspondence: ; Tel.: +1-(716)-881-7520
| |
Collapse
|
31
|
Overcoming reward deficiency syndrome by the induction of “dopamine homeostasis” instead of opioids for addiction: illusion or reality? J Osteopath Med 2022; 122:333-337. [DOI: 10.1515/jom-2021-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/03/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Many individuals in the United States are plagued by addiction, and the rate at which it is affecting people in the United States only seems to be increasing. Research shows that addiction is a preventable disorder rather than a flaw in one’s moral fiber. It is driven by the imbalance of dopamine and the brain’s reward system. Although medication-assisted treatment (MAT), the most common treatment for addiction, are effective in reducing harm, they provide minimal aid in addressing the root cause of this preventable disorder. The authors aim to convey that the proper treatment should help restore dopamine balance so the quality of life can be improved in the recovering community. Osteopathic principles emphasize the importance of homeostasis and allostasis in allowing the body to heal itself. Viewing reward deficiency syndrome (RDS) through this osteopathic lens can bring about treatments that aim to restore the dopamine homeostasis. The article discusses various potential therapeutic modalities that can provide dopamine homeostasis via activation of dopaminergic pathways.
Collapse
|
32
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
33
|
Abdullah M, Huang LC, Lin SH, Yang YK. Dopaminergic and glutamatergic biomarkers disruption in addiction and regulation by exercise: a mini review. Biomarkers 2022; 27:306-318. [PMID: 35236200 DOI: 10.1080/1354750x.2022.2049367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Drug addiction is associated with disruption of a multitude of biomarkers in various brain regions, particularly in the reward center. The most pronounced are dopaminergic and glutamatergic biomarkers, which are affected at various levels. Neuropathological changes in biomarkers alter the homeostasis of the glutamatergic and dopaminergic nervous systems and promote addiction-associated characteristics such as repeated intake, maintenance, withdrawal, reinstatement, and relapse. Exercise has been shown to have a buffering effect on such biomarkers and reverse the effects of addictive substances. METHODS A review of the literature searched in PubMed, examining drug addiction and physical exercise in relation to dopaminergic and glutamatergic systems at any of the three biomarker levels (i.e., neurotransmitter, receptor, or transporter). RESULTS We review the collective impact of addictive substances on the dopaminergic and glutamatergic systems and the beneficial effect of exercise in terms of reversing the damage to these systems. We propose future directions, including implications of exercise as an add-on therapy, substance use disorder (SUD) prognosis and diagnosis and designing of optimized exercise and pharmaceutical regimens based on the aforementioned biomarkers. CONCLUSION Exercise is beneficial for all types of drug addiction at all stages, by reversing molecular damages caused to dopaminergic and glutamatergic systems.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Li-Chung Huang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, Chia-Yi Branch, Taichung Veterans General Hospital, Chia-Yi, Taiwan
| | - Shih-Hsien Lin
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| |
Collapse
|
34
|
Sadat‐Shirazi M, Nouri Zadeh‐Tehrani S, Akbarabadi A, Mokri A, Taleb Zadeh Kasgari B, Zarrindast M. Exercise can restore behavioural and molecular changes of intergenerational morphine effects. Addict Biol 2022; 27:e13122. [PMID: 34931742 DOI: 10.1111/adb.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/28/2022]
Abstract
In our previous studies, the offspring of morphine-exposed parents (MEO) showed pharmacological tolerance to the morphine's reinforcing effect. According to the role of exercise in treatment of morphine addiction, the current study was designed to utilize exercise to improve the effect of parental morphine exposure on the morphine's reinforcing effect. Male and female rats received morphine for 10 days and were drug-free for another 10 days. Each morphine-exposed animal was allowed to mate either with a drug-naïve or a morphine-exposed rat. The offspring were divided into two groups: (1) offspring that were subjected to treadmill exercise and (2) offspring that were not subjected to exercise. The reinforcing effect of morphine was evaluated using conditioned place preference (CPP) and two-bottle choice (TBC) tests. Levels of dopamine receptors (D1DR and D2DR), μ-opioid receptor (MOR), and ΔFosB were evaluated in the nucleus accumbens. The MEO obtained lower preference scores in CPP and consumed morphine more than the control group in TBC. After 3 weeks of exercise, the reinforcing effect of morphine in the MEO was similar to the control. D1DR, D2DR, and MOR were increased in MEO compared with the controls before exercise. Levels of D1DR and MOR were decreased after exercise in the MEO; however, D1DR was increased in control. D2DR level did not change after exercise in MEO, but it increased in control group. Moreover, the level of ΔFosB was decreased among MEO while it was increased after exercise. In conclusion, exercise might modulate the reinforcing effect of morphine via alteration in levels of D1DR, MOR, and ΔFosB.
Collapse
Affiliation(s)
| | | | - Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies Tehran University of Medical Sciences Tehran Iran
| | - Azarakhsh Mokri
- Iranian National Center for Addiction Studies Tehran University of Medical Sciences Tehran Iran
- Roozbeh Hospital Tehran University of Medical Sciences Tehran Iran
| | - Bahar Taleb Zadeh Kasgari
- Iranian National Center for Addiction Studies Tehran University of Medical Sciences Tehran Iran
- School of Biology, College of Science University of Tehran Tehran Iran
| | - Mohammad‐Reza Zarrindast
- Iranian National Center for Addiction Studies Tehran University of Medical Sciences Tehran Iran
- Department of Pharmacology, School of Medicine Tehran University of Medical Sciences Tehran Iran
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Islamic Azad University Tehran Iran
- Endocrinology and Metabolism Research Institute Tehran University of Medical Science Tehran Iran
| |
Collapse
|
35
|
Gunillasdotter V, Andréasson S, Jirwe M, Ekblom Ö, Hallgren M. Effects of exercise in non-treatment seeking adults with alcohol use disorder: A three-armed randomized controlled trial (FitForChange). Drug Alcohol Depend 2022; 232:109266. [PMID: 35033949 DOI: 10.1016/j.drugalcdep.2022.109266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Most individuals with alcohol use disorder (AUD) do not seek treatment. Stigma and the desire to self-manage the problem are likely explanations. Exercise is an emerging treatment option but studies in non-treatment seeking individuals are lacking. We compared the effects of aerobic exercise, yoga, and treatment as usual (phone-based support) on alcohol consumption in non-treatment seeking adults with AUD. METHODS Three-group parallel, single blind, randomized controlled trial. 140 physically inactive adults aged 18-75 diagnosed with AUD were included in this community-based trial. Participants were randomized to either aerobic exercise (n = 49), yoga (n = 46) or treatment as usual (n = 45) for 12-weeks. The primary study outcome was weekly alcohol consumption at week 13 (Timeline Follow-back). RESULTS A significant decrease in weekly alcohol consumption was seen in all three groups: aerobic exercise (mean ∆ = - 5.0, 95% C = - 10.3, - 3.5), yoga group (mean ∆ = - 6.9, 95% CI = - 10.3, - 3.5) and TAU (mean ∆ = - 6.6, 95% CI = - 8.8, - 4.4). The between group changes were not statistically significant at follow-up. Per-protocol analyzes showed that the mean number of drinks per week reduced more in both TAU (mean ∆ = - 7.1, 95% CI = - 10.6, - 3.7) and yoga (mean ∆ = - 8.7, 95% CI = - 13.2, - 4.1) compared to aerobic exercise (mean ∆ = - 1.7, 95% CI = - 4.4, 1. 0), [F(2, 55) = 4.9, p = 0.011]. CONCLUSIONS Participation in a 12-week stand-alone exercise program was associated with clinically meaningful reductions in alcohol consumption comparable to usual care (phone counseling) by an alcohol treatment specialist.
Collapse
Affiliation(s)
- Victoria Gunillasdotter
- Epidemiology of Psychiatric Conditions, Substance use and Social Environment (EPiCSS), Department of Public Health Sciences, Karolinska Institutet, 171 77 Stockholm, Sweden; Centre for Psychiatry Research, Sweden, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Services, 114 35 Stockholm, Sweden
| | - Sven Andréasson
- Epidemiology of Psychiatric Conditions, Substance use and Social Environment (EPiCSS), Department of Public Health Sciences, Karolinska Institutet, 171 77 Stockholm, Sweden; Centre for Psychiatry Research, Sweden, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Services, 114 35 Stockholm, Sweden
| | - Maria Jirwe
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83 Huddinge, Sweden; Department of Health Sciences, the Swedish Red Cross University College, 14121 Huddinge, Sweden
| | - Örjan Ekblom
- Swedish School of Sport and Health Science (GIH), Lidingövägen 1, 114 33 Stockholm, Sweden
| | - Mats Hallgren
- Epidemiology of Psychiatric Conditions, Substance use and Social Environment (EPiCSS), Department of Public Health Sciences, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
36
|
Qureshi AR, Jamal MK, Rahman E, Paul DA, Oghli YS, Mulaffer MT, Qureshi D, Danish MA, Rana AQ. Non-pharmacological therapies for pain management in Parkinson's disease: A systematic review. Acta Neurol Scand 2021; 144:115-131. [PMID: 33982803 DOI: 10.1111/ane.13435] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/29/2022]
Abstract
Among the various non-motor symptoms of Parkinson's disease (PD), pain is often cited as the most common and debilitating feature. Currently, the literature contains gaps in knowledge with respect to the various forms of treatment available, particularly non-pharmacological therapies. Thus, the purpose of this systematic review is to provide an examination of the literature on non-pharmacological therapies for pain in PD. We compared the findings of research articles indexed within various literature databases related to non-pharmacological treatments of pain in PD patients. Our review identified five major non-pharmacological methods of pain therapy in PD: acupuncture, hydrotherapy, massage therapy, neuromodulation, and exercise. Treatments such as exercise therapy found a reduction in pain perception due to various factors, including the analgesic effects of neurotransmitter release during exercise and increased activity leading to a decrease in musculoskeletal rigidity and stiffness. By the same token, hydrotherapy has been shown to reduce pain perception within PD patients, with authors often citing a combined treatment of exercise and hydrotherapy as an effective treatment for pain management. Multiple methods of neurostimulation were also observed, including deep brain stimulation and spinal cord stimulation. Deep brain stimulation showed efficacy in alleviating certain pain types (dystonic and central), while not others (musculoskeletal). Hence, patients may consider deep brain stimulation as an additive procedure for their current treatment protocol. On the other hand, spinal cord stimulation showed significant improvement in reducing VAS scores for pain. Finally, although the literature on massage therapy and acupuncture effectiveness on pain management is limited, both have demonstrated a reduction in pain perception, with common reasons such as tactile stimulation and release of anti-nociceptive molecules in the body. Although literature pertaining to non-pharmacological treatments of pain in PD is sparse, there is copious support for these treatments as beneficial to pain management. Further exploration in the form of clinical trials is warranted to assess the efficacy of such therapies.
Collapse
Affiliation(s)
- Abdul Rehman Qureshi
- Neurology Parkinson's Clinic of Eastern Toronto & Movement Disorders Centre Toronto ON Canada
- Department of Health Research Methods, Evidence, and Impact McMaster University Hamilton ON Canada
| | - Muhammad Khizar Jamal
- Neurology Parkinson's Clinic of Eastern Toronto & Movement Disorders Centre Toronto ON Canada
| | - Eraad Rahman
- Neurology Parkinson's Clinic of Eastern Toronto & Movement Disorders Centre Toronto ON Canada
| | - Dion A. Paul
- Neurology Parkinson's Clinic of Eastern Toronto & Movement Disorders Centre Toronto ON Canada
| | - Yazan Shamli Oghli
- Neurology Parkinson's Clinic of Eastern Toronto & Movement Disorders Centre Toronto ON Canada
| | - Mohamed Thariq Mulaffer
- Neurology Parkinson's Clinic of Eastern Toronto & Movement Disorders Centre Toronto ON Canada
| | - Danial Qureshi
- Clinical Epidemiology Program Ottawa Hospital Research Institute Ottawa ON Canada
- Bruyère Research Institute Ottawa ON Canada
| | - Muhammad Affan Danish
- Neurology Parkinson's Clinic of Eastern Toronto & Movement Disorders Centre Toronto ON Canada
| | - Abdul Qayyum Rana
- Neurology Parkinson's Clinic of Eastern Toronto & Movement Disorders Centre Toronto ON Canada
| |
Collapse
|
37
|
Hallgren M, Vancampfort D, Hoang MT, Andersson V, Ekblom Ö, Andreasson S, Herring MP. Effects of acute exercise on craving, mood and anxiety in non-treatment seeking adults with alcohol use disorder: An exploratory study. Drug Alcohol Depend 2021; 220:108506. [PMID: 33461151 DOI: 10.1016/j.drugalcdep.2021.108506] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Exercise is increasingly being used in the treatment of alcohol use disorder (AUD). We examined the short-term effects of acute exercise on alcohol craving, mood states and state anxiety in physically inactive, non-treatment seeking adults with AUD. METHODS Exploratory, single-arm study. In total, 140 adults with AUD (53.7 ± 11.8 years; 70 % female) were included in a randomized controlled trial (RCT) to study effects of physical activity on alcohol consumption. This acute exercise study was nested within the larger RCT. The intervention was a 12-minute sub-maximal fitness test performed on a cycle ergometer. Participants self-rated their desire for alcohol (DAQ) and completed mood (POMS-Brief) and state anxiety (STAI-Y1) questionnaires 30-minutes before exercise, immediately before, immediately after, and 30-minutes post. Ratings of perceived exertion (RPE) were collected. Effects of exercise were assessed using RM-ANOVA and dependent sample t-tests with effect sizes (Hedges g). RESULTS In total, 70.6 % had mild or moderate AUD (DSM-5 criteria = 4.9 ± 2). The intervention was generally perceived as 'strenuous' (RPE = 16.1 ± 1.6). In the total sample, there was a main effect of time with reductions in alcohol craving [F(3,411) = 27.33, p < 0.001], mood disturbance [F(3,411) = 53.44, p < 0.001], and state anxiety [F(3,411) = 3.83, p = 0.013]. Between-group analyses indicated larger magnitude effects in those with severe compared to mild AUD, however, AUD severity did not significantly moderate the within-group improvements: group x time interaction for alcohol craving [F(6,411) = 1.21, p = 0.305]. Positive effects of exercise were maintained 30-minutes post-exercise. CONCLUSION A short bout of aerobic exercise reduced alcohol craving and improved mood states in adults with AUD.
Collapse
Affiliation(s)
- Mats Hallgren
- Epidemiology of Psychiatric Conditions, Substance Use and Social Environment (EPiCSS), Department of Global Public Health Sciences, Karolinska Institutet, Stockholm, 171 77, Sweden.
| | - Davy Vancampfort
- Department of Rehabilitation Sciences, University of Leuven, and University Psychiatric Center, Katholieke Universiteit Leuven, Belgium
| | - Minh Tuan Hoang
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Victoria Andersson
- Epidemiology of Psychiatric Conditions, Substance Use and Social Environment (EPiCSS), Department of Global Public Health Sciences, Karolinska Institutet, Stockholm, 171 77, Sweden; Centre for Psychiatry Research, Sweden
| | - Örjan Ekblom
- Swedish School for Sport and Health Sciences (GIH), Sweden
| | - Sven Andreasson
- Epidemiology of Psychiatric Conditions, Substance Use and Social Environment (EPiCSS), Department of Global Public Health Sciences, Karolinska Institutet, Stockholm, 171 77, Sweden; Centre for Psychiatry Research, Sweden
| | - Matthew P Herring
- Physical Activity for Health Research Cluster, Health Research Institute, University of Limerick, Ireland
| |
Collapse
|
38
|
Buhr TJ, Reed CH, Shoeman A, Bauer EE, Valentine RJ, Clark PJ. The Influence of Moderate Physical Activity on Brain Monoaminergic Responses to Binge-Patterned Alcohol Ingestion in Female Mice. Front Behav Neurosci 2021; 15:639790. [PMID: 33716684 PMCID: PMC7947191 DOI: 10.3389/fnbeh.2021.639790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/25/2021] [Indexed: 01/16/2023] Open
Abstract
Monoamine neurotransmitter activity in brain reward, limbic, and motor areas play key roles in the motivation to misuse alcohol and can become modified by exercise in a manner that may affect alcohol craving. This study investigated the influence of daily moderate physical activity on monoamine-related neurochemical concentrations across the mouse brain in response to high volume ethanol ingestion. Adult female C57BL/6J mice were housed with or without 2.5 h of daily access to running wheels for 30 days. On the last 5 days, mice participated in the voluntary binge-like ethanol drinking procedure, “Drinking in the dark” (DID). Mice were sampled immediately following the final episode of DID. Monoamine-related neurochemical concentrations were measured across brain regions comprising reward, limbic, and motor circuits using ultra High-Performance Liquid Chromatography (UHPLC). The results suggest that physical activity status did not influence ethanol ingestion during DID. Moreover, daily running wheel access only mildly influenced alcohol-related norepinephrine concentrations in the hypothalamus and prefrontal cortex, as well as serotonin turnover in the hippocampus. However, access to alcohol during DID eliminated wheel running-related decreases of norepinephrine, serotonin, and 5-HIAA content in the hypothalamus, but also to a lesser extent for norepinephrine in the hippocampus and caudal cortical areas. Finally, alcohol access increased serotonin and dopamine-related neurochemical turnover in the striatum and brainstem areas, regardless of physical activity status. Together, these data provide a relatively thorough assessment of monoamine-related neurochemical levels across the brain in response to voluntary binge-patterned ethanol drinking, but also adds to a growing body of research questioning the utility of moderate physical activity as an intervention to curb alcohol abuse.
Collapse
Affiliation(s)
- Trevor J Buhr
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States.,Neuroscience Program, Iowa State University, Ames, IA, United States
| | - Carter H Reed
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States.,Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Allyse Shoeman
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States.,Neuroscience Program, Iowa State University, Ames, IA, United States
| | - Ella E Bauer
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States.,Neuroscience Program, Iowa State University, Ames, IA, United States.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States
| | - Rudy J Valentine
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States.,Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Peter J Clark
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States.,Neuroscience Program, Iowa State University, Ames, IA, United States.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
39
|
Rosa HZ, Segat HJ, Barcelos RCS, Roversi K, Rossato DR, de Brum GF, Burger ME. Involvement of the endogenous opioid system in the beneficial influence of physical exercise on amphetamine-induced addiction parameters. Pharmacol Biochem Behav 2020; 197:173000. [PMID: 32702398 DOI: 10.1016/j.pbb.2020.173000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/31/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Psychostimulant drugs addiction is a chronic public health problem and individuals remain susceptible to relapses increasing public expenses even after withdrawal and treatment. Our research group has focused on finding new therapies to be employed in drug addiction treatment, suggesting the physical exercise as a promising tool. This way, it is necessary to know the mechanisms involved in the beneficial influences of physical exercise observing the pathway that could be explored in drug addiction treatment. Male Wistar rats were conditioned with amphetamine (AMPH) following the conditioned place preference (CPP) protocol and subsequently submitted to swimming for 5 weeks (1 h per day, 5 days per week). Half of the animals were injected with Naloxone (0.3 mg/mL/kg body weight, i.p.) 5 min prior each physical exercise day. After AMPH-CPP re-exposure, our outcomes showed that physical exercise, in addition to minimizing the relapse behavior in the CPP, it increased D1R, D2R and DAT in the Ventral Tegmental Area (VTA), but not in the Nucleus accumbens (NAc). Interestingly, while naloxone inhibited the partial beneficial influence of the exercise on drug-relapse behavior, exercise-induced changes in the dopaminergic system were not observed in the group administered with naloxone as well. Based on these evidences, besides reinforcing the beneficial influence of the physical exercise on AMPH-induced drug addiction, we propose the involvement of endogenous opioid system activation, not as a single one, but as a possible mechanism of action resulting from the physical activity practice, thus characterizing an important therapeutic approach, which may contribute to drug withdrawal consequently preventing relapse.
Collapse
Affiliation(s)
- H Z Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - H J Segat
- Departamento de Patologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - R C S Barcelos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Kr Roversi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - D R Rossato
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - G F de Brum
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - M E Burger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil; Departamento de Patologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil; Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil.
| |
Collapse
|
40
|
Rahman N, Mihalkovic A, Geary O, Haffey R, Hamilton J, Thanos PK. Chronic aerobic exercise: Autoradiographic assessment of GABA(a) and mu-opioid receptor binding in adult rats. Pharmacol Biochem Behav 2020; 196:172980. [PMID: 32593790 DOI: 10.1016/j.pbb.2020.172980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022]
Abstract
Exercise programs have shown great potential for both the prevention and treatment of substance use disorder (SUD). As exercise has been shown to have potent effects on physical and psychological health, it is reasonable to examine the mechanism of how exercise can be used as an adjunct treatment for addiction. The present study examined the effects of chronic aerobic (treadmill) exercise on both GABA(a) and mu-opioid receptor levels in the brains of male and female rats. GABA(a) receptor binding, measured by [3H] Flunitrazepam, was increased in the cingulate cortex following exercise, but only in females. Mu-opioid receptor expression, measured by [3H] ([D-Ala2, N-MePhe4, Gly-ol]-enkephalin) (DAMGO), showed no effect of exercise while showing an effect of sex, with increased [3H] DAMGO binding in the brains of sedentary males compared to that of sedentary females. Our findings support the potential role for GABA(a) signaling in the cingulate cortex as part of the mechanism of action of aerobic exercise. These data, along with prior reports, aid our understanding of the neurochemical impact and mechanism of chronic aerobic exercise on neuropsychiatric disease, particularly regarding addiction.
Collapse
Affiliation(s)
- Nabeel Rahman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States of America
| | - Abrianna Mihalkovic
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States of America; Department of Psychology, University at Buffalo, Buffalo, NY 14203, United States of America
| | - Olivia Geary
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States of America
| | - Rylee Haffey
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States of America
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States of America; Department of Psychology, University at Buffalo, Buffalo, NY 14203, United States of America
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States of America; Department of Psychology, University at Buffalo, Buffalo, NY 14203, United States of America.
| |
Collapse
|
41
|
Swenson S, Blum K, McLaughlin T, Gold MS, Thanos PK. The therapeutic potential of exercise for neuropsychiatric diseases: A review. J Neurol Sci 2020; 412:116763. [PMID: 32305746 DOI: 10.1016/j.jns.2020.116763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Exercise is known to have a myriad of health benefits. There is much to be learned from the effects of exercise and its potential for prevention, attenuation and treatment of multiple neuropsychiatric diseases and behavioral disorders. Furthermore, recent data and research on exercise benefits with respect to major health crises, such as, that of opioid and general substance use disorders, make it very important to better understand and review the mechanisms of exercise and how it could be utilized for effective treatments or adjunct treatments for these diseases. In addition, mechanisms, epigenetics and sex differences are examined and discussed in terms of future research implications.
Collapse
Affiliation(s)
- Sabrina Swenson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Western Univesity Health Sciences, Graduate College, Pomona, CA, USA
| | | | - Mark S Gold
- Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA; Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
42
|
Solanki N, Abijo T, Galvao C, Darius P, Blum K, Gondré-Lewis MC. Administration of a putative pro-dopamine regulator, a neuronutrient, mitigates alcohol intake in alcohol-preferring rats. Behav Brain Res 2020; 385:112563. [PMID: 32070691 DOI: 10.1016/j.bbr.2020.112563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Excessive alcohol intake is a serious but preventable public health problem in the United States and worldwide. Alcohol and other substance use disorders occur co-morbid with more generalized reward deficiency disorders, characterized by a reduction in dopamine (DA) signaling within the reward pathway, and classically associated with increased impulsivity, risk taking and subsequent drug seeking behavior. It is postulated that increasing dopamine availability and thus restoring DA homeostasis in the mesocorticolimbic system could reduce the motivation to seek and consume ethanol. Here, we treated animals with a neuro-nutrient, KB220Z also known as Synaptamine, designed to augment DA signaling. METHOD KB220Z was administered to genetically alcohol-preferring (P) adult male and female rats by oral gavage (PO), intraperioneally (IP), or subcutaneously (SQ) for 4 consecutive days at a 3.4 mL/Kg rat equivalent dose and compared to saline (SQ, IP) or water (PO) controls. Subsequent to treatment, lever pressing and consumption of 10 % ethanol or control 3% sucrose during operant responding was assessed using a drinking in the dark multiple scheduled access (DIDMSA) binge drinking protocol. Locomotor and elevated zero maze activity, and DRD2 mRNA expression via in situ hybridization (ISH) were assessed independently following 4 days of a SQ regimen of KB220Z. RESULTS KB220Z administered via IP and SQ markedly and immediately reduced binge drinking of 10 % ethanol in both male and female rats whereas PO administration took at least 3 days to decrease lever pressing for ethanol in both male and female rats. There was no effect of SQ KB220Z on 3% sucrose drinking. Elevated activity in the open field was significantly decreased, and time spent in the open arm of the EZM was moderately reduced. The regimen of SQ KB220Z did not impact the number of DRD2 punctae in neurons of the NAc, but the NAc shell expressed more DRD2 mRNA/cell than NAc core independent of KB220Z. CONCLUSION KB220Z attenuates ethanol drinking and other RDS behaviors in P rats possibly by acting on the dopaminergic system, but not by effecting an increase in NAc DRD2 mRNA expression.
Collapse
Affiliation(s)
- Naimesh Solanki
- Department of Anatomy, Howard University, Washington D.C., 20059, USA; Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, Washington D.C., 20059, USA
| | - Tomilowo Abijo
- Department of Anatomy, Howard University, Washington D.C., 20059, USA; Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, Washington D.C., 20059, USA
| | - Carine Galvao
- Department of Anatomy, Howard University, Washington D.C., 20059, USA; Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, Washington D.C., 20059, USA
| | - Philippe Darius
- Department of Anatomy, Howard University, Washington D.C., 20059, USA; Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, Washington D.C., 20059, USA
| | - Kenneth Blum
- Western University Health Science Center, Graduate School of Biomedical Sciences, Pomona, CA, 91766 USA; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Marjorie C Gondré-Lewis
- Department of Anatomy, Howard University, Washington D.C., 20059, USA; Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, Washington D.C., 20059, USA.
| |
Collapse
|
43
|
Exercise-Induced Adaptations to the Mouse Striatal Adenosine System. Neural Plast 2020; 2020:5859098. [PMID: 32399024 PMCID: PMC7204111 DOI: 10.1155/2020/5859098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Adenosine acts as a key regulator of striatum activity, in part, through the antagonistic modulation of dopamine activity. Exercise can increase adenosine activity in the brain, which may impair dopaminergic functions in the striatum. Therefore, long-term repeated bouts of exercise may subsequently generate plasticity in striatal adenosine systems in a manner that promotes dopaminergic activity. This study investigated the effects of long-term voluntary wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor protein expression in adult mouse dorsal and ventral striatum structures using immunohistochemistry. In addition, equilibrative nucleoside transporter 1 (ENT1) protein expression was examined after wheel running, as ENT1 regulates the bidirectional flux of adenosine between intra- and extracellular space. The results suggest that eight weeks of running wheel access spared age-related increases of A1R and A2AR protein concentrations across the dorsal and ventral striatal structures. Wheel running mildly reduced ENT1 protein levels in ventral striatum subregions. Moreover, wheel running mildly increased D2R protein density within striatal subregions in the dorsal medial striatum, nucleus accumbens core, and the nucleus accumbens shell. However, D1R protein expression in the striatum was unchanged by wheel running. These data suggest that exercise promotes adaptations to striatal adenosine systems. Exercise-reduced A1R and A2AR and exercise-increased D2R protein levels may contribute to improved dopaminergic signaling in the striatum. These findings may have implications for cognitive and behavioral processes, as well as motor and psychiatric diseases that involve the striatum.
Collapse
|
44
|
Blum K, Lott L, Baron D, Smith DE, Badgaiyan RD, Gold MS. Improving naltrexone compliance and outcomes with putative pro- dopamine regulator KB220, compared to treatment as usual. ACTA ACUST UNITED AC 2020; 7. [PMID: 32934823 PMCID: PMC7489288 DOI: 10.15761/jsin.1000229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A recent analysis from Stanford University suggested that without any changes in currently available treatment, prevention, and public health approaches, we should expect to have 510,000 deaths from prescription opioids and street heroin from 2016 to 2025 in the US. In a recent review, Mayo Clinic Proceedings (October 2019), Gold and colleagues at Mayo Clinic reviewed the available medications used in opioid use disorders and concluded that in private and community practice adherence is more important as a limiting factor to retention, relapse, and repeat overdose. It is agreed that the primary utilization of known opioid agonists like methadone, buprenorphine and naloxone combinations, while useful as a way of reducing societal harm, is limited by 50% of more discontinuing treatment within 6 months, their diversion, and addiction liability. Opioid agonists may have other unintended consequences, like continuing the down regulation of dopamine systems. While naltrexone would be expected to have opposite effects, adherence is also low even after detoxification and long acting naltrexone injections. Recent studies have shown Naltrexone is beneficial by attenuation of craving via “psychological extinction” and reducing relapse. Buprenorphine is the MAT of choice currently but injectable Naltrexone plus an agent to improve dopaminergic function and tone may renew interest amongst addiction physicians and patients. Understanding this dilemma there is increasing movement to opt for the non-addicting narcotic antagonist Naltrexone. Even with extended injectable option there is still poor compliance. As such, we describe an open label investigation in humans showing improvement of naltrexone compliance and outcomes with dopamine augmentation with the pro- dopamine regulator KB220 (262 days) compared to naltrexone alone (37days). This well studied complex consists of amino-acid neurotransmitter precursors and enkephalinase inhibitor therapy compared to treatment as usual. Consideration of this novel paradigm shift may assist in not only addressing the current opioid epidemic but the broader question of reward deficiency in general.
Collapse
Affiliation(s)
- Kenneth Blum
- Western University Health Sciences, Graduate College, Pomona, CA, USA
| | - Lisa Lott
- Division of Behavioral Precision Management, Geneus Health, LLC, San Antonio, TX, USA
| | - David Baron
- Western University Health Sciences, Graduate College, Pomona, CA, USA
| | - David E Smith
- Department of Pharmacology, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Icahn School of Medicine Mt Sinai, New York, NY, USA and Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Mo, USA
| |
Collapse
|
45
|
Therapeutic efficacy of environmental enrichment for substance use disorders. Pharmacol Biochem Behav 2019; 188:172829. [PMID: 31778722 DOI: 10.1016/j.pbb.2019.172829] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
Abstract
Addiction to drug and alcohol is regarded as a major health problem worldwide for which available treatments show limited effectiveness. The biggest challenge remains to enhance the capacities of interventions to reduce craving, prevent relapse and promote long-term recovery. New strategies to meet these challenges are being explored. Findings from preclinical work suggest that environmental enrichment (EE) holds therapeutic potential for the treatment of substance use disorders, as demonstrated in a number of animal models of drug abuse. The EE intervention introduced after drug exposure leads to attenuation of compulsive drug taking, attenuation of the rewarding (and reinforcing) effects of drugs, reductions in control of behavior by drug cues, and, very importantly, relapse prevention. Clinical work also suggests that multidimensional EE interventions (involving physical activity, social interaction, vocational training, recreational and community involvement) might produce similar therapeutic effects, if implemented continuously and rigorously. In this review we survey preclinical and clinical studies assessing the efficacy of EE as a behavioral intervention for substance use disorders and address related challenges. We also review work providing empirical evidence for EE-induced neuroplasticity within the mesocorticolimbic system that is believed to contribute to the seemingly therapeutic effects of EE on drug and alcohol-related behaviors.
Collapse
|
46
|
Downs BW, Blum K, Baron D, Bowirrat A, Lott L, Brewer R, Boyett B, Siwicki D, Roy AK, Podesta A, Badgaiyan S, Hajela R, Fried L, Badgaiyan RD. Death by Opioids: Are there non-addictive scientific solutions? ACTA ACUST UNITED AC 2019; 5. [PMID: 31824737 DOI: 10.15761/jsin.1000211] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the face of the current Opioid crisis in America killing close to 800,000 people since 2004, we are proposing a novel approach to assist in at least attenuating these unwanted premature deaths. While we applaud the wonderful efforts of our governmental institutes and professional societies (NIDA, NIAAA, ASAM, ABAM ) in their extraordinary efforts in combating this continued dilemma, the current approach is failing, and other alternative approaches should at least be tested. These truths present a serious ethical dilemma to scientists, clinicians and counselors in the Reward Deficiency Syndrome (RDS) treatment community. It is important to realize that the current DSM-5 does not actually accurately display the natural brain reward process. The human brain has not been designed to carve out specific drugs like opioids, alcohol, nicotine, cocaine, benzodiazepines or cannabis and process addictions such as gambling as distinct endophenotypes. This is true in spite of natural ligands for cannabinoids, endorphins, or even benzodiazepines. The most accurate endophenotype is indeed reward dysfunction (e.g hypodopaminergic or hyperdopaminergic). With this mind, we are hereby proposing that the current Medication Assisted Treatment (i.e. 'MAT') expands to needed individuals as an initial "Band-Aid" to reduce harm avoidance, with the long-term goal of prophylaxis. So, to be clear, there may be other promising modalities other than MAT such as repetitive transcranial magnetic stimulation (rTMS), exercise and even new medications with positive allosteric modulators of GABA-A receptors, as well as the highly researched Genetic Addiction Risk Score (GARS) coupled with precision KB220Z. This will induce "dopamine homeostasis" to effectively rebalance and restore healthier brain function by promoting the cross talk between various brain regions (e.g. Nucleus accumbens, cingulate gyrus, hippocampus etc.) resulting in dopamine homeostasis. Our laudable goal is to not only save lives, but to redeem joy and improve the quality of life in the recovery community through scientifically sound natural non-addicting alternatives.
Collapse
Affiliation(s)
- B William Downs
- Department of Nutrigenomic Research, Victory Nutrition International, Inc., Lederach, PA, USA
| | - Kenneth Blum
- Department of Nutrigenomic Research, Victory Nutrition International, Inc., Lederach, PA, USA.,Western University, Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA, USA.,Division of Neuroscience and Addiction Research, Pathway Healthcare, Birmingham, AL, USA.,Eotvos Loránd University, Institute of Psychology, Budapest, Hungary.,Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH, USA.,Division of Precision Nutrigenomics, Geneus Health, LLC., San Antonio, TX, USA
| | - David Baron
- Western University, Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA, USA
| | - Abdalla Bowirrat
- Department of Neuroscience and Genetics, Interdisciplinary Center Herzliya, Israel
| | - Lisa Lott
- Division of Precision Nutrigenomics, Geneus Health, LLC., San Antonio, TX, USA
| | - Raymond Brewer
- Division of Precision Nutrigenomics, Geneus Health, LLC., San Antonio, TX, USA
| | - Brent Boyett
- Division of Neuroscience and Addiction Research, Pathway Healthcare, Birmingham, AL, USA
| | - David Siwicki
- Division of Precision Nutrigenomics, Geneus Health, LLC., San Antonio, TX, USA
| | - A Kenison Roy
- Department of Psychiatry, Tulane University School of Medicine, New Orleans, LA, USA
| | - Arwen Podesta
- Department of Psychiatry, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sampada Badgaiyan
- Division of Precision Nutrigenomics, Geneus Health, LLC., San Antonio, TX, USA
| | - Raju Hajela
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Lyle Fried
- Transformations Treatment Center, Delray Beach, FL, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| |
Collapse
|
47
|
Swenson S, Hamilton J, Robison L, Thanos PK. Chronic aerobic exercise: Lack of effect on brain CB1 receptor levels in adult rats. Life Sci 2019; 230:84-88. [DOI: 10.1016/j.lfs.2019.05.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 01/25/2023]
|
48
|
Sanchez V, Bakhti-Suroosh A, Chen A, Brunzell DH, Erisir A, Lynch WJ. Exercise during abstinence normalizes ultrastructural synaptic plasticity associated with nicotine-seeking following extended access self-administration. Eur J Neurosci 2019; 50:2707-2721. [PMID: 30888721 PMCID: PMC6742551 DOI: 10.1111/ejn.14408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022]
Abstract
Nicotine-craving progressively increases, or incubates, over abstinence following extended access self-administration. While not yet examined for nicotine, the incubation of cocaine-seeking is accompanied by changes in synaptic plasticity in the nucleus accumbens. Here, we determined whether such changes also accompany enhanced nicotine-seeking following extended access self-administration and abstinence, and whether exercise, a potential intervention for nicotine addiction, may exert its efficacy by normalizing these changes. Given that in humans, tobacco/nicotine use begins during adolescence, we used an adolescent-onset model. Nicotine-seeking was assessed in male rats following extended access nicotine or saline self-administration (23-hr/day, 10 days) and 10 days of abstinence, conditions known to induce the incubation of nicotine-seeking, using a within-session extinction/cue-induced reinstatement procedure. A subset of rats had 2-hr/day access to a running wheel during abstinence. Ultrastructural alterations of synapses in the nucleus accumbens core and shell were examined using electron microscopy. Nicotine-seeking was elevated following extended access self-administration and abstinence (in sedentary group), and levels of seeking were associated with an increase in the density of asymmetric (excitatory) and symmetric (inhibitory) synapses onto dendrites in the core, as well as longer asymmetric synapses onto spines, a marker of synaptic potentiation, in both the core and shell. Exercise normalized each of these changes; however, in the shell, exercise and nicotine similarly increased the synapse length. Together, these findings indicate an association between nicotine-seeking and synaptic plasticity in the nucleus accumbens, particularly the core, and indicate that the efficacy of exercise to reduce nicotine-seeking may be mediated by reversing these adaptations.
Collapse
Affiliation(s)
- Victoria Sanchez
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Anousheh Bakhti-Suroosh
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Andrew Chen
- Department of Psychology, University of Virginia, Charlottesville, Virginia
| | - Darlene H Brunzell
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, Virginia
| | - Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
49
|
Schneider ML, Moore CF, Ahlers EO, Barnhart TE, Christian BT, DeJesus OT, Engle JW, Holden JE, Larson JA, Moirano JM, Murali D, Nickles RJ, Resch LM, Converse AK. PET Measures of D1, D2, and DAT Binding Are Associated With Heightened Tactile Responsivity in Rhesus Macaques: Implications for Sensory Processing Disorder. Front Integr Neurosci 2019; 13:29. [PMID: 31379528 PMCID: PMC6652150 DOI: 10.3389/fnint.2019.00029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 01/11/2023] Open
Abstract
Sensory processing disorder (SPD), a developmental regulatory condition characterized by marked under- or over-responsivity to non-noxious sensory stimulation, is a common but poorly understood disorder that can profoundly affect mood, cognition, social behavior and adaptive life skills. Little is known about the etiology and neural underpinnings. Clinical research indicates that children with SPD show greater prevalence of difficulties in complex cognitive behavior including working memory, behavioral flexibility, and regulation of sensory and affective functions, which are related to prefrontal cortex (PFC), striatal, and midbrain regions. Neuroimaging may provide insight into mechanisms underlying SPD, and animal experiments provide important evidence that is not available in human studies. Rhesus monkeys (N = 73) were followed over a 20-year period from birth into old age. We focused on a single sensory modality, the tactile system, measured at 5-7 years, because of its critical importance for nourishment, attachment, and social reward in development. Positron emission tomography imaging was conducted at ages 12-18 years to quantify the availability of the D1 and D2 subtypes of the DA receptor (D1R and D2R), and the DA transporter (DAT). Heightened tactile responsivity was related to (a) elevated D1R in PFC overall, including lateral, ventrolateral, medial, anterior cingulate (aCg), frontopolar, and orbitofrontal (OFC) subregions, as well as nucleus accumbens (Acb), (b) reduced D2R in aCg, OFC, and substantia nigra/ventral tegmental area, and (c) elevated DAT in putamen. These findings suggest a mechanism by which DA pathways may be altered in SPD. These pathways are associated with reward processing and pain regulation, providing top-down regulation of sensory and affective processes. The balance between top-down cognitive control in the PFC-Acb pathway and bottom-up motivational function of the VTA-Acb-PFC pathway is critical for successful adaptive function. An imbalance in these two systems might explain DA-related symptoms in children with SPD, including reduced top-down regulatory function and exaggerated responsivity to stimuli. These results provide more direct evidence that SPD may involve altered DA receptor and transporter function in PFC, striatal, and midbrain regions. More work is needed to extend these results to humans.
Collapse
Affiliation(s)
- Mary L Schneider
- Occupational Therapy Program, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.,Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | - Colleen F Moore
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Psychology, Montana State University, Bozeman, MT, United States
| | - Elizabeth O Ahlers
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Bradley T Christian
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Onofre T DeJesus
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - James E Holden
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Julie A Larson
- Occupational Therapy Program, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.,Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jeffrey M Moirano
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Dhanabalan Murali
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert J Nickles
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Leslie M Resch
- Occupational Therapy Program, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.,Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | | |
Collapse
|
50
|
Lee JR, Parker KE, Tapia M, Johns HW, Floros TG, Roberts MD, Booth FW, Will MJ. Voluntary wheel running effects on intra-accumbens opioid high-fat feeding and locomotor behavior in Sprague-Dawley and Wistar rat strains. Physiol Behav 2019; 206:67-75. [PMID: 30807769 DOI: 10.1016/j.physbeh.2019.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 12/30/2022]
Abstract
The present study examined the influence of physical activity vs. sedentary home cage conditions on baseline and opioid-driven high-fat feeding behaviors in two common strains of laboratory rats. Sprague-Dawley and Wistar rats were singly housed with either access to a voluntary running wheel (RUN) or locked-wheel (SED) for 5 weeks, before being stereotaxically implanted with bilateral cannulae targeting the nucleus accumbens. Following recovery, with RUN or SED conditions continuing the duration of the experiment, all rats were given 2 h daily access to a high-fat diet for 6 consecutive days to establish a stable baseline intake. Over the next 2 weeks, all subjects were administered the μ-opioid agonist D-Ala2, NMe-Phe4, Glyol5-enkephalin (DAMGO) (multiple dose range) or saline into the nucleus accumbens, immediately followed by 2 h access to a high-fat diet. Drug treatments were separated by at least 1 day and treatment order was counterbalanced. Baseline consumption of the high-fat diet during the 1-week baseline acclimation period did not differ between RUN and SED groups in either rat strain. Higher doses of DAMGO produced increased fat consumption in both strains of rats, yet no differences were observed between RUN vs. SED treated groups. However, SED treatment produced a greater locomotor response following intra-accumbens DAMGO administration, compared to the RUN condition, during the 2 h feeding session. The data suggest that the animals housed in sedentary versus voluntary wheel running conditions may differ in behavioral tolerance to the locomotor but not the orexigenic activating properties of intra-accumbens DAMGO treatment.
Collapse
Affiliation(s)
- Jenna R Lee
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA.
| | - Kyle E Parker
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA
| | - Melissa Tapia
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Howard W Johns
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Ted G Floros
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Michael D Roberts
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Frank W Booth
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Matthew J Will
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA.
| |
Collapse
|