1
|
Précart C, Bouten J, Giroux C, Morales-Artacho A, Rousseau Q, Rabita G, Hollville E, De la Calle-Herrero J, Brocherie F. Individual sex-based variability to altitude training in elite badminton players. J Sports Sci 2024; 42:2535-2540. [PMID: 39742425 DOI: 10.1080/02640414.2024.2448358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/23/2024] [Indexed: 01/03/2025]
Abstract
To assess how altitude training impacts force-velocity-power (F-V-P) profiling and muscular power and anaerobic capacity in elite badminton players in reference to intra- and inter-individual sex-based variability. Following a quasi-experimental design, 14 players (6 females, 8 males) from the French national badminton singles and doubles teams performed a 3-week 'living high-training high' camp at natural altitude (2320 m). F-V-P profile and Wingate anaerobic test were assessed Pre- and Post-intervention, using ANOVA repeated measures conventional statistics, with further estimation statistics to show the magnitude of the testing condition and visualize intra- and inter-individual responses. No significant interaction nor time effect (Pre- vs. Post-) was observed for any variables (all p > 0.05), but a significant sex effect was observed for maximal theoretical velocity (p < 0.01), relative maximal theoretical power (Pmaxrel) (p = 0.02) and relative F-V-P profile and for peak and mean power outputs (both p < 0.001) during Wingate test. Pre-to-Post changes (from -11.0% to + 14.4%) did not significantly differ between sexes, except for Pmaxrel (p < 0.05) in favor of female athletes (+10.2% vs. -4.3% for male athletes). Hedge's g effect sizes (male minus female) revealed moderate and large effects for F-V-P profiling-derived variables. Mean conventional statistics did not reveal significant effect of altitude training, mainly due to high intra- and inter-variability across F-V-P profiling-derived variables and Wingate test. Substantial sex-based difference contributes to this variability, emphasizing the importance of individualized approach to enhance participant responsiveness to altitude training.
Collapse
Affiliation(s)
- Camille Précart
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Janne Bouten
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Caroline Giroux
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Antonio Morales-Artacho
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Quentin Rousseau
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Giuseppe Rabita
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Enzo Hollville
- French Federation of Badminton, Saint-Ouen-sur-Seine, France
| | | | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| |
Collapse
|
2
|
Siebenmann C, Roche J, Schlittler M, Simpson LL, Stembridge M. Regulation of haemoglobin concentration at high altitude. J Physiol 2024; 602:5587-5600. [PMID: 38051656 DOI: 10.1113/jp284578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
Lowlanders sojourning for more than 1 day at high altitude (HA) experience a reduction in plasma volume (PV) that increases haemoglobin concentration and thus restores arterial oxygen content. If the sojourn extends over weeks, an expansion of total red cell volume (RCV) occurs and contributes to the haemoconcentration. While the reduction in PV was classically attributed to an increased diuretic fluid loss, recent studies support fluid redistribution, rather than loss, as the underlying mechanism. The fluid redistribution is presumably driven by a disappearance of proteins from the circulation and the resulting reduction in oncotic pressure exerted by the plasma, although the fate of the disappearing proteins remains unclear. The RCV expansion is the result of an accelerated erythropoietic activity secondary to enhanced renal erythropoietin release, but a contribution of other mechanisms cannot be excluded. After return from HA, intravascular volumes return to normal values and the normalisation of RCV might involve selective destruction of newly formed erythrocytes, although this explanation has been strongly challenged by recent studies. In contrast to acclimatised lowlanders, native highlanders originating from the Tibetan and the Ethiopian plateaus present with a normal or only mildly elevated haemoglobin concentration. Genetic adaptations blunting the erythropoietic response to HA exposure have been proposed as an explanation for the absence of more pronounced haemoconcentration in these populations, but new evidence also supports a contribution of a larger than expected PV. The functional significance of the relatively low haemoglobin concentration in Tibetan and Ethiopian highlanders is incompletely understood and warrants further investigation.
Collapse
Affiliation(s)
| | - Johanna Roche
- Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| | - Maja Schlittler
- AO Research Institute Davos, Regenerative Orthopaedics Program, Davos, Switzerland
| | - Lydia L Simpson
- Department of Sport Science, Division of Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
3
|
Urianstad T, Villanova S, Odden I, Hansen J, Mølmen KS, Porcelli S, Rønnestad BR, Cardinale DA. Carbon monoxide supplementation: evaluating its potential to enhance altitude training effects and cycling performance in elite athletes. J Appl Physiol (1985) 2024; 137:1092-1105. [PMID: 39236115 DOI: 10.1152/japplphysiol.00469.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
Altitude training is a cornerstone for endurance athletes for improving blood variables and performance, with optimal effects observed at ∼2,300-2,500 meters above sea level (m.a.s.l.). However, elite cyclists face challenges such as limited access to such altitudes, inadequate training facilities, and high expenses. To address these issues, a novel method involving daily exposure to carbon monoxide (CO) has been proposed to amplify altitude training adaptations at suboptimal altitudes. Thirty-one male cyclists were assigned to three groups: Live-High Train-High with CO inhalation (LHTHCO), Live-High Train-High (LHTH), and Live-Low Train-Low (LLTL). The LHTHCO group underwent CO inhalation twice daily in the afternoon/evening to elevate carboxyhemoglobin concentration to ∼10%. Hematological variables, in vivo muscle oxidative capacity, and physiological indicators of cycling performance were assessed before and after a 3-week altitude training camp at 2,100 m.a.s.l. LHTHCO demonstrated a larger increase in hemoglobin mass (Hbmass) compared to both LHTH and LLTL. Although there were no statistical differences between LHTHCO and LHTH in submaximal and maximal performance measures, LHTHCO displayed greater improvements in 1-min maximal power output during incremental testing (Wmax), power output at lactate threshold, and maximal oxygen consumption (V̇o2max) compared to LLTL. LHTH demonstrated a larger improvement than LLTL in Wmax and V̇o2max, with no group differences in Hbmass or submaximal measures. Muscle oxidative capacity did not differ between groups. These findings suggest that combining moderate-altitude training with daily CO inhalation promotes hematological adaptations more effectively than moderate altitude alone and enhances cycling performance metrics in cyclists more than sea-level training.NEW & NOTEWORTHY Three weeks of training at moderate altitude with exposure to low doses of CO can significantly enhance hematological adaptations in elite cyclists compared to moderate-altitude training alone. Cycling performance determinants improved more with CO inhalation at moderate altitude compared to sea-level training, whereas there were no differences in submaximal and maximal performance measures compared to moderate-altitude training alone. This study highlights the potential of CO supplementation as an effective adjunct to altitude training regimens.
Collapse
Affiliation(s)
- Tomas Urianstad
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Simone Villanova
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Ingvill Odden
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Joar Hansen
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Knut S Mølmen
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Bent R Rønnestad
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Daniele A Cardinale
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences GIH, Stockholm, Sweden
- The Swedish Sports Confederation (Riksidrottsförbundet), Stockholm, Sweden
| |
Collapse
|
4
|
Millet GP, Brocherie F. Hypoxic training as a doping method - the final whistle from Norway and Italy. J Physiol 2024; 602:4693-4694. [PMID: 39126349 DOI: 10.1113/jp287323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Affiliation(s)
- Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| |
Collapse
|
5
|
Astridge DJ, McKenna M, Campbell A, Turner AP. Haemoglobin mass responses and performance outcomes among high-performance swimmers following a 3-week live-high, train-high camp at 2320 m. Eur J Appl Physiol 2024; 124:2389-2399. [PMID: 38526610 DOI: 10.1007/s00421-024-05454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
AIM Greater quantification and characterisation of training load (TL) throughout Live-high, train-high (LHTH) altitude (ALT) training is required to identify periodisation strategies that may lead to physiological and performance improvements in swimmers. PURPOSE This study aimed to examine the physiological responses and performance outcomes of 14 high-performance swimmers (FINA points: 836.0 ± 35.1) following 3 weeks of LHTH at 2320 m, while characterising the training load periodisation strategy adopted during the intervention. METHODS Haemoglobin (Hb) mass was measured pre-, 7 and 14 days post-ALT via CO rebreathing. Performance in each athlete's primary event at national standard meets were converted to FINA points and compared from pre-to-post-ALT. TL was quantified at sea level (SL) and ALT through session rating of perceived exertion (RPE), where duration of each session was multiplied by its RPE for each athlete, with all sessions totalled to give a weekly TL. Pre-to-post-ALT changes were evaluated using repeated-measures ANOVA. RESULTS Hb mass increased significantly from 798 ± 182 g pre-ALT to 828 ± 187 g at 7 days post (p = 0.013) and 833 ± 205 g 14 days post-ALT (p = 0.026). Weekly TL increased from SL (3179 ± 638 au) during week one (4797 ± 1349 au, p < 0.001) and week two (4373 ± 967 au, p < 0.001), but not week three (3511 ± 730 au, p = 0.149). No evidence of improved SL swimming performance was identified. CONCLUSION A periodisation strategy characterised by a sharp spike in TL followed by a slight de-load towards the end of a LHTH intervention led to improved physiological characteristics but no change in the competitive performance of high-performance swimmers.
Collapse
Affiliation(s)
- Daniel J Astridge
- Human Performance Science Research Group, Institute of Sport, Physical Education and Health Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
| | - Michael McKenna
- Performance Physiology Department, Sportscotlandscotland Institute of Sport, Stirling, Scotland, UK
| | - Adrian Campbell
- Performance Physiology Department, Sportscotlandscotland Institute of Sport, Stirling, Scotland, UK
| | - Anthony P Turner
- Human Performance Science Research Group, Institute of Sport, Physical Education and Health Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
6
|
Feng X, Chen Y, Yan T, Lu H, Wang C, Zhao L. Effects of various living-low and training-high modes with distinct training prescriptions on sea-level performance: A network meta-analysis. PLoS One 2024; 19:e0297007. [PMID: 38635743 PMCID: PMC11025749 DOI: 10.1371/journal.pone.0297007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/22/2023] [Indexed: 04/20/2024] Open
Abstract
This study aimed to separately compare and rank the effect of various living-low and training-high (LLTH) modes on aerobic and anaerobic performances in athletes, focusing on training intensity, modality, and volume, through network meta-analysis. We systematically searched PubMed, Web of Science, Embase, EBSCO, and Cochrane from their inception date to June 30, 2023. Based on the hypoxic training modality and the intensity and duration of work intervals, LLTH was divided into intermittent hypoxic exposure, continuous hypoxic training, repeated sprint training in hypoxia (RSH; work interval: 5-10 s and rest interval: approximately 30 s), interval sprint training in hypoxia (ISH; work interval: 15-30 s), short-duration high-intensity interval training (s-IHT; short work interval: 1-2 min), long-duration high-intensity interval training (l-IHT; long work interval: > 5 min), and continuous and interval training under hypoxia. A meta-analysis was conducted to determine the standardized mean differences (SMDs) among the effects of various hypoxic interventions on aerobic and anaerobic performances. From 2,072 originally identified titles, 56 studies were included in the analysis. The pooled data from 53 studies showed that only l-IHT (SMDs: 0.78 [95% credible interval; CrI, 0.52-1.05]) and RSH (SMDs: 0.30 [95% CrI, 0.10-0.50]) compared with normoxic training effectively improved athletes' aerobic performance. Furthermore, the pooled data from 29 studies revealed that active intermittent hypoxic training compared with normoxic training can effectively improve anaerobic performance, with SMDs ranging from 0.97 (95% CrI, 0.12-1.81) for l-IHT to 0.32 (95% CrI, 0.05-0.59) for RSH. When adopting a program for LLTH, sufficient duration and work intensity intervals are key to achieving optimal improvements in athletes' overall performance, regardless of the potential improvement in aerobic or anaerobic performance. Nevertheless, it is essential to acknowledge that this study incorporated merely one study on the improvement of anaerobic performance by l-IHT, undermining the credibility of the results. Accordingly, more related studies are needed in the future to provide evidence-based support. It seems difficult to achieve beneficial adaptive changes in performance with intermittent passive hypoxic exposure and continuous low-intensity hypoxic training.
Collapse
Affiliation(s)
- Xinmiao Feng
- Sports Coaching College, Beijing Sport University, Haidian, Beijing, China
| | - Yonghui Chen
- Sports Coaching College, Beijing Sport University, Haidian, Beijing, China
| | - Teishuai Yan
- Sports Coaching College, Beijing Sport University, Haidian, Beijing, China
| | - Hongyuan Lu
- Sports Coaching College, Beijing Sport University, Haidian, Beijing, China
| | - Chuangang Wang
- Sports Coaching College, Beijing Sport University, Haidian, Beijing, China
| | - Linin Zhao
- Sports Coaching College, Beijing Sport University, Haidian, Beijing, China
| |
Collapse
|
7
|
Girard O, Peeling P, Racinais S, Périard JD. Combining Heat and Altitude Training to Enhance Temperate, Sea-Level Performance. Int J Sports Physiol Perform 2024; 19:322-327. [PMID: 38237571 DOI: 10.1123/ijspp.2023-0250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND Repeated exposure to heat (ie, plasma volume expansion) or altitude (ie, increase in total hemoglobin mass), in conjunction with exercise, induces hematological adaptations that enhance endurance performance in each respective environment. Recently, combining heat and altitude training has become increasingly common for athletes preparing to compete in temperate, sea-level conditions. PURPOSE To review the physiological adaptations to training interventions combining thermal and hypoxic stimuli and summarize the implications for temperate, sea-level performance. Current Evidence: To date, research on combining heat and hypoxia has employed 2 main approaches: simultaneously combining the stressors during training or concurrently training in the heat and sleeping at altitude, sometimes with additional training in hypoxia. When environmental stimuli are combined in a training session, improvements in aerobic fitness and time-trial performance in temperate, sea-level conditions are generally similar in magnitude to those observed with heat, or altitude, training alone. Similarly, training in the heat and sleeping at altitude does not appear to provide any additional hematological or nonhematological benefits for temperate; sea-level performance relative to training in hot, hypoxic, or control conditions. CONCLUSIONS Current research regarding combined heat and altitude interventions does not seem to indicate that it enhances temperate, sea-level performance to a greater extent than "traditional" (heat or hypoxia alone) training approaches. A major challenge in implementing combined-stressor approaches lies in the uncertainty surrounding the prescription of dosing regimens (ie, exercise and environmental stress). The potential benefits of conducting heat and altitude exposure sequentially (ie, one after the other) warrants further investigation.
Collapse
Affiliation(s)
- Olivier Girard
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA, Australia
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA, Australia
- Western Australian Institute of Sport, Mt Claremont, WA, Australia
| | - Sébastien Racinais
- Environmental Stress Unit, CREPS Montpellier-Font Romeu, Montpellier, France
| | - Julien D Périard
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
8
|
Feng X, Zhao L, Chen Y, Wang Z, Lu H, Wang C. Optimal type and dose of hypoxic training for improving maximal aerobic capacity in athletes: a systematic review and Bayesian model-based network meta-analysis. Front Physiol 2023; 14:1223037. [PMID: 37745240 PMCID: PMC10513096 DOI: 10.3389/fphys.2023.1223037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Objective: This study aimed to compare and rank the effect of hypoxic practices on maximum oxygen consumption (VO2max) in athletes and determine the hypoxic dose-response correlation using network meta-analysis. Methods: The Web of Science, PubMed, EMBASE, and EBSCO databases were systematically search for randomized controlled trials on the effect of hypoxc interventions on the VO2max of athletes published from inception until 21 February 2023. Studies that used live-high train-high (LHTH), live-high train-low (LHTL), live-high, train-high/low (HHL), intermittent hypoxic training (IHT), and intermittent hypoxic exposure (IHE) interventions were primarily included. LHTL was further defined according to the type of hypoxic environment (natural and simulated) and the altitude of the training site (low altitude and sea level). A meta-analysis was conducted to determine the standardized mean difference between the effects of various hypoxic interventions on VO2max and dose-response correlation. Furthermore, the hypoxic dosage of the different interventions were coordinated using the "kilometer hour" model. Results: From 2,072 originally identified titles, 59 studies were finally included in this study. After data pooling, LHTL, LHTH, and IHT outperformed normoxic training in improving the VO2max of athletes. According to the P-scores, LHTL combined with low altitude training was the most effective intervention for improving VO2max (natural: 0.92 and simulated: 0.86) and was better than LHTL combined with sea level training (0.56). A reasonable hypoxic dose range for LHTH (470-1,130 kmh) and HL (500-1,415 kmh) was reported with an inverted U-shaped curve relationship. Conclusion: Different types of hypoxic training compared with normoxic training serve as significant approaches for improving aerobic capacity in athletes. Regardless of the type of hypoxic training and the residential condition, LHTL with low altitude training was the most effective intervention. The characteristics of the dose-effect correlation of LHTH and LHTL may be associated with the negative effects of chronic hypoxia.
Collapse
Affiliation(s)
- Xinmiao Feng
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Linlin Zhao
- Sports Coaching College, Beijing Sports University, Beijing, China
| | | | - Zihao Wang
- Capital Institute of Physical Education and Sports, Beijing, Beijing, China
| | - Hongyuan Lu
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Chuangang Wang
- Sports Coaching College, Beijing Sports University, Beijing, China
| |
Collapse
|
9
|
Burtscher J, Hohenauer E, Burtscher M, Millet GP, Egg M. Environmental and behavioral regulation of HIF-mitochondria crosstalk. Free Radic Biol Med 2023; 206:63-73. [PMID: 37385566 DOI: 10.1016/j.freeradbiomed.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Reduced oxygen availability (hypoxia) can lead to cell and organ damage. Therefore, aerobic species depend on efficient mechanisms to counteract detrimental consequences of hypoxia. Hypoxia inducible factors (HIFs) and mitochondria are integral components of the cellular response to hypoxia and coordinate both distinct and highly intertwined adaptations. This leads to reduced dependence on oxygen, improved oxygen supply, maintained energy provision by metabolic remodeling and tapping into alternative pathways and increased resilience to hypoxic injuries. On one hand, many pathologies are associated with hypoxia and hypoxia can drive disease progression, for example in many cancer and neurological diseases. But on the other hand, controlled induction of hypoxia responses via HIFs and mitochondria can elicit profound health benefits and increase resilience. To tackle pathological hypoxia conditions or to apply health-promoting hypoxia exposures efficiently, cellular and systemic responses to hypoxia need to be well understood. Here we first summarize the well-established link between HIFs and mitochondria in orchestrating hypoxia-induced adaptations and then outline major environmental and behavioral modulators of their interaction that remain poorly understood.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland; International University of Applied Sciences THIM, Landquart, Switzerland; Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland; Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Kettunen O, Leppävuori A, Mikkonen R, Peltonen JE, Nummela A, Wikström B, Linnamo V. Hemoglobin mass and performance responses during 4 weeks of normobaric "live high-train low and high". Scand J Med Sci Sports 2023. [PMID: 37114394 DOI: 10.1111/sms.14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE To investigate whether 4 weeks of normobaric "live high-train low and high" (LHTLH) causes different hematological, cardiorespiratory, and sea-level performance changes compared to living and training in normoxia during a preparation season. METHODS Nineteen (13 women, 6 men) cross-country skiers competing at the national or international level completed a 28-day period (∼18 h day-1 ) of LHTLH in normobaric hypoxia of ∼2400 m (LHTLH group) including two 1 h low-intensity training sessions per week in normobaric hypoxia of 2500 m while continuing their normal training program in normoxia. Hemoglobin mass (Hbmass ) was assessed using a carbon monoxide rebreathing method. Time to exhaustion (TTE) and maximal oxygen uptake (VO2max ) were measured using an incremental treadmill test. Measurements were completed at baseline and within 3 days after LHTLH. The control group skiers (CON) (seven women, eight men) performed the same tests while living and training in normoxia with ∼4 weeks between the tests. RESULTS Hbmass in LHTLH increased 4.2 ± 1.7% from 772 ± 213 g (11.7 ± 1.4 g kg-1 ) to 805 ± 226 g (12.5 ± 1.6 g kg-1 ) (p < 0.001) while it was unchanged in CON (p = 0.21). TTE improved during the study regardless of the group (3.3 ± 3.4% in LHTLH; 4.3 ± 4.8% in CON, p < 0.001). VO2max did not increase in LHTLH (61.2 ± 8.7 mL kg-1 min-1 vs. 62.1 ± 7.6 mL kg-1 min-1 , p = 0.36) while a significant increase was detected in CON (61.3 ± 8.0-64.0 ± 8.1 mL kg-1 min-1 , p < 0.001). CONCLUSIONS Four-week normobaric LHTLH was beneficial for increasing Hbmass but did not support the short-term development of maximal endurance performance and VO2max when compared to the athletes who lived and trained in normoxia.
Collapse
Affiliation(s)
- Oona Kettunen
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Antti Leppävuori
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Ritva Mikkonen
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Juha E Peltonen
- Helsinki Sports and Exercise Medicine Clinic (HULA), Foundation for Sports and Exercise Medicine, Helsinki, Finland
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland
| | - Ari Nummela
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland
| | - Bettina Wikström
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Vesa Linnamo
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| |
Collapse
|
11
|
Haugen T, Sandbakk Ø, Seiler S, Tønnessen E. The Training Characteristics of World-Class Distance Runners: An Integration of Scientific Literature and Results-Proven Practice. SPORTS MEDICINE - OPEN 2022; 8:46. [PMID: 35362850 PMCID: PMC8975965 DOI: 10.1186/s40798-022-00438-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/22/2022] [Indexed: 11/23/2022]
Abstract
In this review we integrate the scientific literature and results-proven practice and outline a novel framework for understanding the training and development of elite long-distance performance. Herein, we describe how fundamental training characteristics and well-known training principles are applied. World-leading track runners (i.e., 5000 and 10,000 m) and marathon specialists participate in 9 ± 3 and 6 ± 2 (mean ± SD) annual competitions, respectively. The weekly running distance in the mid-preparation period is in the range 160–220 km for marathoners and 130–190 km for track runners. These differences are mainly explained by more running kilometers on each session for marathon runners. Both groups perform 11–14 sessions per week, and ≥ 80% of the total running volume is performed at low intensity throughout the training year. The training intensity distribution vary across mesocycles and differ between marathon and track runners, but common for both groups is that volume of race-pace running increases as the main competition approaches. The tapering process starts 7–10 days prior to the main competition. While the African runners live and train at high altitude (2000–2500 m above sea level) most of the year, most lowland athletes apply relatively long altitude camps during the preparation period. Overall, this review offers unique insights into the training characteristics of world-class distance runners by integrating scientific literature and results-proven practice, providing a point of departure for future studies related to the training and development in the Olympic long-distance events.
Collapse
|
12
|
Usaj A, Kapus J, Štrumbelj B, Debevec T, Vodičar J. Effects of Moderate Altitude Training Combined with Moderate or High-altitude Residence. Int J Sports Med 2022; 43:1129-1136. [PMID: 35926513 DOI: 10.1055/a-1885-4053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
We aimed to identify potential physiological and performance differences of trained cross-country skiers (V˙o2max=60±4 ml ∙ kg-1 ∙ min-1) following two, 3-week long altitude modalities: 1) training at moderate altitudes (600-1700 m) and living at 1500 m (LMTM;N=8); and 2) training at moderate altitudes (600-1700 m) and living at 1500 m with additional nocturnal normobaric hypoxic exposures (FiO2 =0.17;LHTM; N=8). All participants conducted the same training throughout the altitude training phase and underwent maximal roller ski trials and submaximal cyclo-ergometery before, during and one week after the training camps. No exercise performance or hematological differences were observed between the two modalities. The average roller ski velocities were increased one week after the training camps following both LMTM (p=0.03) and LHTM (p=0.04) with no difference between the two (p=0.68). During the submaximal test, LMTM increased the Tissue Oxygenation Index (11.5±6.5 to 1.0±8.5%; p=0.04), decreased the total hemoglobin concentration (15.1±6.5 to 1.7±12.9 a.u.;p=0.02), and increased blood pH (7.36±0.03 to 7.39±0.03;p=0.03). On the other hand, LHTM augmented minute ventilation (76±14 to 88±10 l·min-1;p=0.04) and systemic blood oxygen saturation by 2±1%; (p=0.02) with no such differences observed following the LMTM. Collectively, despite minor physiological differences observed between the two tested altitude training modalities both induced comparable exercise performance modulation.
Collapse
Affiliation(s)
- Anton Usaj
- Laboratory of Biodynamics, Faculty of Sport, University of Ljubljana, Slovenia
| | - Jernej Kapus
- Laboratory of Biodynamics, Faculty of Sport, University of Ljubljana, Slovenia
| | - Boro Štrumbelj
- Laboratory of Biodynamics, Faculty of Sport, University of Ljubljana, Slovenia
| | - Tadej Debevec
- Laboratory of Biodynamics, Faculty of Sport, University of Ljubljana, Slovenia.,Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Janez Vodičar
- Institute of Sport, Faculty of Sport, University of Ljubljana, Slovenia
| |
Collapse
|
13
|
Behrendt T, Bielitzki R, Behrens M, Herold F, Schega L. Effects of Intermittent Hypoxia-Hyperoxia on Performance- and Health-Related Outcomes in Humans: A Systematic Review. SPORTS MEDICINE - OPEN 2022; 8:70. [PMID: 35639211 PMCID: PMC9156652 DOI: 10.1186/s40798-022-00450-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/17/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intermittent hypoxia applied at rest or in combination with exercise promotes multiple beneficial adaptations with regard to performance and health in humans. It was hypothesized that replacing normoxia by moderate hyperoxia can increase the adaptive response to the intermittent hypoxic stimulus. OBJECTIVE Our objective was to systematically review the current state of the literature on the effects of chronic intermittent hypoxia-hyperoxia (IHH) on performance- and health-related outcomes in humans. METHODS PubMed, Web of Science™, Scopus, and Cochrane Library databases were searched in accordance with PRISMA guidelines (January 2000 to September 2021) using the following inclusion criteria: (1) original research articles involving humans, (2) investigation of the chronic effect of IHH, (3) inclusion of a control group being not exposed to IHH, and (4) articles published in peer-reviewed journals written in English. RESULTS Of 1085 articles initially found, eight studies were included. IHH was solely performed at rest in different populations including geriatric patients (n = 1), older patients with cardiovascular (n = 3) and metabolic disease (n = 2) or cognitive impairment (n = 1), and young athletes with overtraining syndrome (n = 1). The included studies confirmed the beneficial effects of chronic exposure to IHH, showing improvements in exercise tolerance, peak oxygen uptake, and global cognitive functions, as well as lowered blood glucose levels. A trend was discernible that chronic exposure to IHH can trigger a reduction in systolic and diastolic blood pressure. The evidence of whether IHH exerts beneficial effects on blood lipid levels and haematological parameters is currently inconclusive. A meta-analysis was not possible because the reviewed studies had a considerable heterogeneity concerning the investigated populations and outcome parameters. CONCLUSION Based on the published literature, it can be suggested that chronic exposure to IHH might be a promising non-pharmacological intervention strategy for improving peak oxygen consumption, exercise tolerance, and cognitive performance as well as reducing blood glucose levels, and systolic and diastolic blood pressure in older patients with cardiovascular and metabolic diseases or cognitive impairment. However, further randomized controlled trials with adequate sample sizes are needed to confirm and extend the evidence. This systematic review was registered on the international prospective register of systematic reviews (PROSPERO-ID: CRD42021281248) ( https://www.crd.york.ac.uk/prospero/ ).
Collapse
Affiliation(s)
- Tom Behrendt
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39104 Magdeburg, Germany
| | - Robert Bielitzki
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39104 Magdeburg, Germany
| | - Martin Behrens
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39104 Magdeburg, Germany
- Department of Orthopaedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany
| | - Fabian Herold
- Research Group Degenerative and Chronic Disease, Movement, Faculty of Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Lutz Schega
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39104 Magdeburg, Germany
| |
Collapse
|
14
|
Karlsson Ø, Laaksonen MS, McGawley K. Monitoring Acclimatization and Training Responses Over 17–21 Days at 1,800 m in Elite Cross-Country Skiers and Biathletes. Front Sports Act Living 2022; 4:852108. [PMID: 35647539 PMCID: PMC9130592 DOI: 10.3389/fspor.2022.852108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To monitor the daily variations and time course of changes in selected variables during a 17–21-day altitude training camp at 1,800 m in a group of elite cross-country skiers (9 women, 12 men) and biathletes (7 women, 4 men). Methods Among other variables, resting peripheral oxygen saturation (SpO2rest), resting heart rate (HRrest) and urine specific gravity (USG) were monitored daily at altitude, while illness symptoms were monitored weekly. Before and after the camp, body composition (i.e., lean and fat mass) and body mass were assessed in all athletes, while roller-skiing speed at a blood lactate concentration of 4 mmol·L−1 (Speed@4mmol) was assessed in the biathletes only. Results Neither SpO2rest, HRrest nor USG changed systematically during the camp (p > 0.05), although some daily time points differed from day one for the latter two variables (p < 0.05). In addition, body composition and body mass were unchanged from before to after the camp (p > 0.05). Eleven out of 15 illness episodes were reported within 4 days of the outbound or homebound flight. The five biathletes who remained free of illness increased their Speed@4mmol by ~ 4% from before to after the camp (p = 0.031). Conclusions The present results show that measures typically recommended to monitor acclimatization and responses to altitude in athletes (e.g., SpO2rest and HRrest) did not change systematically over time. Further research is needed to explore the utility of these and other measures in elite endurance athletes at altitudes typical of competition environments.
Collapse
|
15
|
Huang L, Li T, Zhou M, Deng M, Zhang L, Yi L, Zhu J, Zhu X, Mi M. Hypoxia Improves Endurance Performance by Enhancing Short Chain Fatty Acids Production via Gut Microbiota Remodeling. Front Microbiol 2022; 12:820691. [PMID: 35197946 PMCID: PMC8859164 DOI: 10.3389/fmicb.2021.820691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hypoxia environment has been widely used to promote exercise capacity. However, the underlying mechanisms still need to be further elucidated. In this study, mice were exposed to the normoxia environment (21% O2) or hypoxia environment (16.4% O2) for 4 weeks. Hypoxia-induced gut microbiota remodeling characterized by the increased abundance of Akkermansia and Bacteroidetes genera, and their related short-chain fatty acids (SCFAs) production. It was observed that hypoxia markedly improved endurance by significantly prolonging the exhaustive running time, promoting mitochondrial biogenesis, and ameliorating exercise fatigue biochemical parameters, including urea nitrogen, creatine kinase, and lactic acid, which were correlated with the concentrations of SCFAs. Additionally, the antibiotics experiment partially inhibited hypoxia-induced mitochondrial synthesis. The microbiota transplantation experiment demonstrated that the enhancement of endurance capacity induced by hypoxia was transferable, indicating that the beneficial effects of hypoxia on exercise performance were partly dependent on the gut microbiota. We further identified that acetate and butyrate, but not propionate, stimulated mitochondrial biogenesis and promoted endurance performance. Our results suggested that hypoxia exposure promoted endurance capacity partially by the increased production of SCFAs derived from gut microbiota remodeling.
Collapse
|
16
|
Does Altitude of Birth Influence the Performance of National- to Elite-Level Colombian Cyclists? Int J Sports Physiol Perform 2022; 17:1756-1759. [DOI: 10.1123/ijspp.2022-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022]
Abstract
Objective: To determine whether the altitude of birth/childhood influences the values in peak power output (PPO) and estimated maximum oxygen uptake (estVO2max) in male Colombian road cyclists of different performance levels. This study also aimed to determine whether cyclists born at high altitudes tend to be more successful. Methods: Eighty riders aged between 17 and 22 years of 3 performance levels (U23 world-class level, WC, n = 8; U23 national level, N23, n = 41; junior national level, J, n = 31) and 3 altitude levels (<800 m, low; 800–2000 m, moderate; >2000 m, high) performed an ergocycle maximal incremental test to exhaustion at an altitude of 2570 m. Results: Altogether, while cyclists born at an altitude >2000 m represented ∼50% of the analyzed sample, there was a significantly higher proportion (84%) of these cyclists who had participated as professionals in a Grand Tour (χ2[1, N = 80] = 4.58, P < .05). Riders of the low group had lower values of PPO and estVO2max than cyclists of moderate and high altitudes, while no differences were noted between moderate- and high-altitude groups. In N23, PPO and estVO2max were lower in the low- than in the moderate-altitude group, while in the J cyclists, PPO and estVO2max were lower in the low-altitude compared with both moderate- and high-altitude groups. Discussion: Among the cyclists tested at altitude in junior and U23, there is an overrepresentation of individuals who reached an elite level and were born at a high altitude (>2000 m). As no clear differences were observed between moderate- and high-altitude cyclists, the higher prevalence of elite cyclists in the latter group may originate from various—still unclear—mechanisms.
Collapse
|
17
|
Liu X, Ma C, Wang S, Liang Z, Yang J, Zhou J, Shu Y, He Z, Zong J, Wu L, Peng P, Su Y, Gao M, Shen K, Zhao H, Ruan J, Ji S, Yang Y, Tang T, Yang Z, Luo G, Zeng M, Zhang W, He B, Cheng X, Wang G, Wang L, Lyu L. Screening of osteoporosis and sarcopenia in individuals aged 50 years and older at different altitudes in Yunnan province: Protocol of a longitudinal cohort study. Front Endocrinol (Lausanne) 2022; 13:1010102. [PMID: 36452328 PMCID: PMC9704050 DOI: 10.3389/fendo.2022.1010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Musculoskeletal system gradually degenerates with aging, and a hypoxia environment at a high altitude may accelerate this process. However, the comprehensive effects of high-altitude environments on bones and muscles remain unclear. This study aims to compare the differences in bones and muscles at different altitudes, and to explore the mechanism and influencing factors of the high-altitude environment on the skeletal muscle system. METHODS This is a prospective, multicenter, cohort study, which will recruit a total of 4000 participants over 50 years from 12 research centers with different altitudes (50m~3500m). The study will consist of a baseline assessment and a 5-year follow-up. Participants will undergo assessments of demographic information, anthropomorphic measures, self-reported questionnaires, handgrip muscle strength assessment (HGS), short physical performance battery (SPPB), blood sample analysis, and imaging assessments (QCT and/or DXA, US) within a time frame of 3 days after inclusion. A 5-year follow-up will be conducted to evaluate the changes in muscle size, density, and fat infiltration in different muscles; the muscle function impairment; the decrease in BMD; and the osteoporotic fracture incidence. Statistical analyses will be used to compare the research results between different altitudes. Multiple linear, logistic regression and classification tree analyses will be conducted to calculate the effects of various factors (e.g., altitude, age, and physical activity) on the skeletal muscle system in a high-altitude environment. Finally, a provisional cut-off point for the diagnosis of sarcopenia in adults at different altitudes will be calculated. ETHICS AND DISSEMINATION The study has been approved by the institutional research ethics committee of each study center (main center number: KHLL2021-KY056). Results will be disseminated through scientific conferences and peer-reviewed publications, as well as meetings with stakeholders. CLINICAL TRIAL REGISTRATION NUMBER http://www.chictr.org.cn/index.aspx, identifier ChiCTR2100052153.
Collapse
Affiliation(s)
- Xingli Liu
- Faculty of Life science and Technology, Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Cunwen Ma
- Department of Radiology, The People’s Hospital of Wenshan Prefecture, Wenshan, China
| | - Shiping Wang
- Department of Radiology, Anning First people’s Hospital, Kunming University of Science and Technology, Anning, China
| | - Zhengrong Liang
- Department of Radiology, Qujing Second People’s Hospital of Yunnan Province, Qujing, China
| | - Juntao Yang
- Department of Radiology, Dali Bai Autonomous Prefecture People’s Hospital, Dali, China
| | - Jun Zhou
- Department of Radiology, Xishuangbanna Dai Autonomous Prefecture People’s Hospital, Jinghong, China
| | - Yi Shu
- Department of Radiology, Southern Central Hospital of Yunnan Province, Honghe, China
| | - Zhengying He
- Department of Radiology, Diqing Tibetan Autonomous Prefecture People’s Hospital, Xianggelila, China
| | - Jilong Zong
- Department of Radiology, The First People’s Hospital of Zhaotong, Zhaotong, China
| | - Lizhi Wu
- Department of Radiology, Hekou People’s Hospital, Honghe, China
| | - Peiqian Peng
- Department of Radiology, Nujiang People’s Hospital, Nujiang, China
| | - Yi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Meng Gao
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Kaiming Shen
- Department of Radiology, The People’s Hospital of Wenshan Prefecture, Wenshan, China
| | - Hong Zhao
- Department of Radiology, Anning First people’s Hospital, Kunming University of Science and Technology, Anning, China
| | - Jilu Ruan
- Department of Radiology, Qujing Second People’s Hospital of Yunnan Province, Qujing, China
| | - Shaoxuan Ji
- Department of Radiology, Dali Bai Autonomous Prefecture People’s Hospital, Dali, China
| | - Yunhui Yang
- Department of Radiology, Xishuangbanna Dai Autonomous Prefecture People’s Hospital, Jinghong, China
| | - Taisong Tang
- Department of Radiology, Southern Central Hospital of Yunnan Province, Honghe, China
| | - Zongfa Yang
- Department of Radiology, Diqing Tibetan Autonomous Prefecture People’s Hospital, Xianggelila, China
| | - Guangyin Luo
- Department of Radiology, The First People’s Hospital of Zhaotong, Zhaotong, China
| | - Meng Zeng
- Department of Radiology, Hekou People’s Hospital, Honghe, China
| | - Weiwan Zhang
- Department of Radiology, Nujiang People’s Hospital, Nujiang, China
| | - Bo He
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Gang Wang
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- *Correspondence: Gang Wang, ; Ling Wang, ; Liang Lyu,
| | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
- *Correspondence: Gang Wang, ; Ling Wang, ; Liang Lyu,
| | - Liang Lyu
- Faculty of Life science and Technology, Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- *Correspondence: Gang Wang, ; Ling Wang, ; Liang Lyu,
| |
Collapse
|
18
|
Pre-acclimation to altitude in young adults: choosing a hypoxic pattern at sea level which provokes significant haematological adaptations. Eur J Appl Physiol 2021; 122:395-407. [PMID: 34750724 DOI: 10.1007/s00421-021-04837-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/17/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE This single-blind, repeated measures study evaluated adaptive and maladaptive responses to continuous and intermittent hypoxic patterns in young adults. METHODS Changes in haematological profile, stress and cardiac damage were measured in ten healthy young participants during three phases: (1) breathing normoxic air (baseline); (2) breathing normoxic air via a mask (Sham-controls); (3) breathing intermittent hypoxia (IH) via a mask, mean peripheral oxygen saturation (SpO2) of 85% ~ 70 min of hypoxia. After a 5-month washout period, participants repeated this three-phase protocol with phase, (4) consisting of continuous hypoxia (CH), mean SpO2 = 85%, ~ 70 min of hypoxia. Measures of the red blood cell count (RBCc), haemoglobin concentration ([Hb]), haematocrit (Hct), percentage of reticulocytes (% Retics), secretory immunoglobulin A (S-IgA), cortisol, cardiac troponin T (cTnT) and the erythropoietic stimulation index (calculated OFF-score) were compared across treatments. RESULTS Despite identical hypoxic durations at the same fixed SpO2, no significant effects were observed in either CH or Sham-CH control, compared to baseline. While IH and Sham-IH controls demonstrated significant increases in: RBCc; [Hb]; Hct; and the erythropoietic stimulation index. Notably, the % Retics decreased significantly in response to IH (-31.9%) or Sham-IH control (-23.6%), highlighting the importance of including Sham-controls. No difference was observed in S-IgA, cortisol or cTnT. CONCLUSION The IH but not CH pattern significantly increased key adaptive haematological responses, without maladaptive increases in S-IgA, cortisol or cTnT, indicating that the IH hypoxic pattern would be the best method to boost haematological profiles prior to ascent to altitude.
Collapse
|
19
|
Hrozanova M, Talsnes R, Karlsson Ø, McGawley K, Moen F. An observational study of sleep characteristics in elite endurance athletes during an altitude training camp at 1800 m. Sleep Health 2021; 7:691-698. [PMID: 34635445 DOI: 10.1016/j.sleh.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To observe changes in sleep from baseline and during an altitude training camp in elite endurance athletes. DESIGN Prospective, observational. SETTING Baseline monitoring at <500 m for 2 weeks and altitude monitoring at 1800 m for 17-22 days. PARTICIPANTS Thirty-three senior national-team endurance athletes (mean age 25.8 ± S.D. 2.8 years, 16 women). MEASUREMENTS Daily measurements of sleep (using a microwave Doppler radar at baseline and altitude), oxygen saturation (SpO2), training load and subjective recovery (at altitude). RESULTS At altitude vs. baseline, sleep duration (P = .036) and light sleep (P < .001) decreased, while deep sleep (P < .001) and respiration rate (P = .020) increased. During the first altitude week vs. baseline, deep sleep increased (P = .001). During the first vs. the second and third altitude weeks, time in bed (P = .005), sleep duration (P = .001), and light sleep (P < .001) decreased. Generally, increased SpO2 was associated with increased deep sleep while increased training load was associated with increased respiration rate. CONCLUSION This is the first study to document changes in sleep from near-sea-level baseline and during a training camp at 1800 m in elite endurance athletes. Ascending to altitude reduced total sleep time and light sleep, while deep sleep and respiration rate increased. SpO2 and training load at altitude were associated with these responses. This research informs our understanding of the changes in sleep occurring in elite endurance athletes attending training camps at competition altitudes.
Collapse
Affiliation(s)
- Maria Hrozanova
- Center for Elite Sports Research, Faculty of Medicine and Health Sciences, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Rune Talsnes
- Meråker High School, Trøndelag County Council, Meråker, Norway; Department of Sports Science and Physical Education, Nord University, Bodø, Norway
| | - Øyvind Karlsson
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Kerry McGawley
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Frode Moen
- Faculty of Social and Educational Sciences, Department of Education and Lifelong Learning, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
20
|
van der Zwaard S, Brocherie F, Jaspers RT. Under the Hood: Skeletal Muscle Determinants of Endurance Performance. Front Sports Act Living 2021; 3:719434. [PMID: 34423293 PMCID: PMC8371266 DOI: 10.3389/fspor.2021.719434] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
In the past decades, researchers have extensively studied (elite) athletes' physiological responses to understand how to maximize their endurance performance. In endurance sports, whole-body measurements such as the maximal oxygen consumption, lactate threshold, and efficiency/economy play a key role in performance. Although these determinants are known to interact, it has also been demonstrated that athletes rarely excel in all three. The leading question is how athletes reach exceptional values in one or all of these determinants to optimize their endurance performance, and how such performance can be explained by (combinations of) underlying physiological determinants. In this review, we advance on Joyner and Coyle's conceptual framework of endurance performance, by integrating a meta-analysis of the interrelationships, and corresponding effect sizes between endurance performance and its key physiological determinants at the macroscopic (whole-body) and the microscopic level (muscle tissue, i.e., muscle fiber oxidative capacity, oxygen supply, muscle fiber size, and fiber type). Moreover, we discuss how these physiological determinants can be improved by training and what potential physiological challenges endurance athletes may face when trying to maximize their performance. This review highlights that integrative assessment of skeletal muscle determinants points toward efficient type-I fibers with a high mitochondrial oxidative capacity and strongly encourages well-adjusted capillarization and myoglobin concentrations to accommodate the required oxygen flux during endurance performance, especially in large muscle fibers. Optimisation of endurance performance requires careful design of training interventions that fine tune modulation of exercise intensity, frequency and duration, and particularly periodisation with respect to the skeletal muscle determinants.
Collapse
Affiliation(s)
- Stephan van der Zwaard
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, Netherlands
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | - Richard T. Jaspers
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|
21
|
Effects of Acute Hypoxia on Lactate Thresholds and High-Intensity Endurance Performance-A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147573. [PMID: 34300024 PMCID: PMC8306057 DOI: 10.3390/ijerph18147573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
The present project compared acute hypoxia-induced changes in lactate thresholds (methods according to Mader, Dickhuth and Cheng) with changes in high-intensity endurance performance. Six healthy and well-trained volunteers conducted graded cycle ergometer tests in normoxia and in acute normobaric hypoxia (simulated altitude 3000 m) to determine power output at three lactate thresholds (PMader, PDickhuth, PCheng). Subsequently, participants performed two maximal 30-min cycling time trials in normoxia (test 1 for habituation) and one in normobaric hypoxia to determine mean power output (Pmean). PMader, PDickhuth and PCheng decreased significantly from normoxia to hypoxia by 18.9 ± 9.6%, 18.4 ± 7.3%, and 11.5 ± 6.0%, whereas Pmean decreased by only 8.3 ± 1.6%. Correlation analyses revealed strong and significant correlations between Pmean and PMader (r = 0.935), PDickhuth (r = 0.931) and PCheng (r = 0.977) in normoxia and partly weaker significant correlations between Pmean and PMader (r = 0.941), PDickhuth (r = 0.869) and PCheng (r = 0.887) in hypoxia. PMader and PCheng did not significantly differ from Pmean (p = 0.867 and p = 0.784) in normoxia, whereas this was only the case for PCheng (p = 0.284) in hypoxia. Although investigated in a small and select sample, the results suggest a cautious application of lactate thresholds for exercise intensity prescription in hypoxia.
Collapse
|
22
|
Sandbakk Ø, Solli GS, Talsnes RK, Holmberg HC. Preparing for the Nordic Skiing Events at the Beijing Olympics in 2022: Evidence-Based Recommendations and Unanswered Questions. JOURNAL OF SCIENCE IN SPORT AND EXERCISE 2021; 3:257-269. [PMID: 38624672 PMCID: PMC8107804 DOI: 10.1007/s42978-021-00113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/26/2021] [Indexed: 11/06/2022]
Abstract
At the 2022 Winter Olympics in Beijing, the XC skiing, biathlon and nordic combined events will be held at altitudes of ~ 1700 m above sea level, possibly in cold environmental conditions and while requiring adjustment to several time zones. However, the ongoing COVID-19 pandemic may lead to sub-optimal preparations. The current commentary provides the following evidence-based recommendations for the Olympic preparations: make sure to have extensive experience of training (> 60 days annually) and competition at or above the altitude of competition (~ 1700 m), to optimize and individualize your strategies for acclimatization and competition. In preparing for the Olympics, 10-14 days at ~ 1700 m seems to optimize performance at this altitude effectively. An alternative strategy involves two-three weeks of training at > 2000 m, followed by 7-10 days of tapering off at ~ 1700 m. During each of the last 3 or 4 days prior to departure, shift your sleeping and eating schedule by 0.5-1 h towards the time zone in Beijing. In addition, we recommend that you arrive in Beijing one day earlier for each hour change in time zone, followed by appropriate timing of exposure to daylight, meals, social contacts, and naps, in combination with a gradual increase in training load. Optimize your own individual procedures for warming-up, as well as for maintaining body temperature during the period between the warm-up and competition, effective treatment of asthma (if necessary) and pacing at ~ 1700 m with cold ambient temperatures. Although we hope that these recommendations will be helpful in preparing for the Beijing Olympics in 2022, there is a clear need for more solid evidence gained through new sophisticated experiments and observational studies.
Collapse
Affiliation(s)
- Øyvind Sandbakk
- Department of Neuromedicine and Movement Science, Centre for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Guro Strøm Solli
- Department of Neuromedicine and Movement Science, Centre for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Sports Science and Physical Education, Nord University, Bodø, Norway
| | - Rune Kjøsen Talsnes
- Department of Sports Science and Physical Education, Nord University, Bodø, Norway
- Meråker High School, Trøndelag County Council, Steinkjer, Norway
| | - Hans-Christer Holmberg
- Department of Health Sciences, Mid Sweden University, Östersund, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev 2021; 101:1873-1979. [PMID: 33829868 DOI: 10.1152/physrev.00038.2020] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.
Collapse
Affiliation(s)
- Julien D Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australia
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Is Altitude Training Bad for the Running Mechanics of Middle-Distance Runners? Int J Sports Physiol Perform 2021; 16:1359-1362. [PMID: 33477107 DOI: 10.1123/ijspp.2020-0737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 11/18/2022]
Abstract
AIMS It has been hypothesized that altitude training may alter running mechanics due to several factors such as the slower training velocity with associated alteration in muscle activation and coordination. This would lead to an altered running mechanics attested by an increase in mechanical work for a given intensity and to the need to "re-establish" the neuromuscular coordination and running biomechanics postaltitude. Therefore, the present study aimed to test the hypothesis that "live high-train high" would induce alteration in the running biomechanics (ie, longer contact time, higher vertical oscillations, decreased stiffness, higher external work). METHODS Before and 2 to 3 days after 3 weeks of altitude training (1850-2200 m), 9 national-level middle-distance (800-5000 m) male runners performed 2 successive 5-minute bouts of running at moderate intensity on an instrumented treadmill with measured ground reaction forces and gas exchanges. Immediately after the running trials, peak knee extensor torque was assessed during isometric maximal voluntary contraction. RESULTS Except for a slight (-3.0%; P = .04) decrease in vertical stiffness, no mechanical parameters (stride frequency and length, contact and flight times, ground reaction forces, and kinetic and potential work) were modified from prealtitude to postaltitude camp. Running oxygen cost was also unchanged. DISCUSSION The present study is the first one to report that "live high-train high" did not change the main running mechanical parameters, even when measured immediately after the altitude camp. This result has an important practical implication: there is no need for a corrective period at sea level for "normalizing" the running mechanics after an altitude camp.
Collapse
|
25
|
Yan B, Ge X, Yu J, Hu Y, Girard O. Hypoxic re-exposure retains hematological but not performance adaptations post-altitude training. Eur J Appl Physiol 2021; 121:1049-1059. [PMID: 33426576 DOI: 10.1007/s00421-020-04589-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE To test the hypothesis that hypoxic re-exposure after return from natural altitude training is beneficial in retaining hematological and performance adaptations. METHODS Eighteen mixed martial art fighters completed a 3-weeks natural altitude training camp at 2418 m. Afterwards, participants were randomly assigned to a living high-training low (12 h/d at a simulated altitude of 2800 m) group (LHTL, n = 9) or a living low-training low group (LLTL, n = 9) for a 3-week sea-level training period. At baseline and after return to sea level, hematological [hemoglobin mass (Hbmass) on days 2, 6, 9, 12, 15 and 21] and performance (3000 m time trial and maximal oxygen uptake on days 4, 6, 9, 15 and 21) markers were assessed. RESULTS Mean Hbmass increased from baseline to day 2 (11.7 ± 0.9 vs. 12.4 ± 1.3 g/kg; + 6.6 ± 7.5%; P < 0.05). While Hbmass remained elevated above baseline in LHTL (P < 0.001), it returned near baseline levels from day 9 in LLTL. Irrespective of groups, mean V̇O2max was only elevated above baseline at day 2 (+ 4.5 ± 0.8%) and day 9 (+ 3.8 ± 8.0%) (both P < 0.05). Compared to baseline, 3000 m running time decreased at day 4 (- 3.1 ± 3.3%; P < 0.05) and day 15 (- 2.8 ± 2.3%; P < 0.05) only. CONCLUSIONS Despite re-exposure to hypoxia allowing a recovery of the hypoxic stimulus to retain Hbmass gains from previous altitude sojourn, there is no performance advantage of this practice above sea level residence. Our results also give support to empirical observations describing alternance of periods of optimal and attenuated performance upon return to sea level.
Collapse
Affiliation(s)
- Bing Yan
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Xiaochuan Ge
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Jiabei Yu
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China.,Beijing Institute of Sports Science, Beijing, China
| | - Yang Hu
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China.
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA, Australia
| |
Collapse
|
26
|
Dempsey JA, La Gerche A, Hull JH. Is the healthy respiratory system built just right, overbuilt, or underbuilt to meet the demands imposed by exercise? J Appl Physiol (1985) 2020; 129:1235-1256. [PMID: 32790594 DOI: 10.1152/japplphysiol.00444.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the healthy, untrained young adult, a case is made for a respiratory system (airways, pulmonary vasculature, lung parenchyma, respiratory muscles, and neural ventilatory control system) that is near ideally designed to ensure a highly efficient, homeostatic response to exercise of varying intensities and durations. Our aim was then to consider circumstances in which the intra/extrathoracic airways, pulmonary vasculature, respiratory muscles, and/or blood-gas distribution are underbuilt or inadequately regulated relative to the demands imposed by the cardiovascular system. In these instances, the respiratory system presents a significant limitation to O2 transport and contributes to the occurrence of locomotor muscle fatigue, inhibition of central locomotor output, and exercise performance. Most prominent in these examples of an "underbuilt" respiratory system are highly trained endurance athletes, with additional influences of sex, aging, hypoxic environments, and the highly inbred equine. We summarize by evaluating the relative influences of these respiratory system limitations on exercise performance and their impact on pathophysiology and provide recommendations for future investigation.
Collapse
Affiliation(s)
- Jerome A Dempsey
- John Robert Sutton Professor of Population Health Sciences, John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Andre La Gerche
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Australia.,National Center for Sports Cardiology, St. Vincent's Hospital, Melbourne, Fitzroy, Australia
| | - James H Hull
- Department of Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom.,Institute of Sport, Exercise and Health (ISEH), University College London, United Kingdom
| |
Collapse
|
27
|
Joyner MJ, Hunter SK, Lucia A, Jones AM. Last Word on Viewpoint: Physiology and fast marathons. J Appl Physiol (1985) 2020; 128:1086-1087. [PMID: 32293918 DOI: 10.1152/japplphysiol.00181.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, Minnesota
| | - Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| | - Alejandro Lucia
- Universidad Europea de Madrid, Department of Sport Sciences, and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Andrew M Jones
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
28
|
MILLET GRÉGOIREP, BROCHERIE FRANCK. Hypoxic Training Is Beneficial in Elite Athletes. Med Sci Sports Exerc 2020; 52:515-518. [DOI: 10.1249/mss.0000000000002142] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|