1
|
Cox AM, Langan-Evans C, Jenkins D, Reale R, Pelly F, Slater GJ. Body Mass Management Practices of Olympic Weightlifting Athletes. Int J Sport Nutr Exerc Metab 2025; 35:67-75. [PMID: 39467540 DOI: 10.1123/ijsnem.2024-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/12/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024]
Abstract
This study explored the body mass (BM) management practices among competitive male and female Olympic weightlifting athletes, hypothesizing that athletes compete in lighter weight categories than their habitual training weight (i.e., making weight). Utilizing a validated, anonymous survey, data were collected from 149 Olympic weightlifting athletes (>18 years; female = 94). The survey comprised five sections: demographics, training/competition history, weight history, source of influence, and BM management practices. The prevalence, magnitude, and methods employed for BM management were analyzed with subgroup analysis using one-way analysis of variance. Post hoc testing including Spearman's rho and chi-square analysis was completed when a significant effect was found. Three quarters (76%) of athletes acknowledged using chronic weight loss and/or acute weight loss strategies to make weight. Usual BM loss (2%-3%) in the week before competition was within recommended guidelines. Gradual dieting, fluid restriction, and low food weight, high-calorie options were the most commonly used BM management strategies. Female athletes were more likely to use gradual dieting (p = .043; r = .104) and were less likely to increase their exercise (p = .046; r = -.105) and utilize fasting (p = .038; r = .05) compared with their male counterparts. Women further identified dietitians/nutritionists (p = .006; r = .022) as a highly influential source of information. This research offers new insights into the BM management practices of Olympic weightlifting athletes, identifying that the majority of athletes compete at a BM lighter than their habitual training weight, achieved using a range of chronic weight loss and acute weight loss strategies.
Collapse
Affiliation(s)
- Amie M Cox
- School of Health, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Carl Langan-Evans
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - David Jenkins
- School of Health, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
- Applied Sports Science Technology and Medicine Research Centre, Swansea University, Wales, United Kingdom
| | - Reid Reale
- UFC Performance Institute, Shanghai, China
| | - Fiona Pelly
- School of Health, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Gary J Slater
- School of Health, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| |
Collapse
|
2
|
Kuikman MA, McKay AKA, McCormick R, Tee N, Vallance B, Ackerman KE, Harris R, Elliott-Sale KJ, Stellingwerff T, Burke LM. The Temporal Effects of Altitude and Low Energy Availability Manipulation on Resting Metabolic Rate in Female Race Walkers. Med Sci Sports Exerc 2025; 57:123-133. [PMID: 39160704 DOI: 10.1249/mss.0000000000003534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
PURPOSE This study aimed to investigate the temporal effects of ~1800 m altitude exposure and energy availability (EA) manipulation on resting metabolic rate (RMR). METHODS Twenty elite female race walkers underwent a 3-wk training camp at an altitude of ~1800 m. During the first 2 wk, athletes consumed a high EA (HEA) diet of 45 kcal·kg fat-free mass (FFM) -1 ·d -1 . During the final week, half the athletes consumed a low EA (LEA) diet of 15 kcal·kg FFM -1 ·d -1 , whereas the others continued on an HEA diet. Athletes followed individualized training plans throughout the study. To assess the effect of altitude on RMR, athletes in the HEA group had RMR measured at baseline (~580 m) before altitude exposure (Pre-alt), at 36 h (36h-alt), 2 wk (Wk2-alt), and 3 wk into altitude exposure (Wk3-alt), and at 36 h post-altitude exposure at ~580 m (36h-post). To assess the effect of LEA exposure on RMR while at altitude, athletes in the LEA group underwent RMR measurements at Pre-alt and before (Wk2-alt) and after the 7 d of LEA (Wk3-alt). RESULTS Compared with Pre-alt, the RMR of HEA athletes was increased at 36h-alt (+5.3% ± 3.1%; P = 0.026) and Wk2-alt (+4.9% ± 4.9%; P = 0.049), but was no longer elevated at Wk3-alt (+1.7% ± 4.2%; P = 0.850). The RMR of HEA athletes at 36h-post was lower than all timepoints at altitude ( P < 0.05) but was not different from Pre-alt (-3.9% ± 7.2%; P = 0.124). The 7-d period of LEA exposure at altitude did not affect RMR ( P = 0.347). CONCLUSIONS RMR was transiently increased with ~1800-m altitude exposure in female athletes and was unaffected by short-term LEA. However, the altitude-induced increase was small (~25-75 kcal·d -1 ) and was unlikely to have clinically significant implications for daily energy requirements.
Collapse
Affiliation(s)
- Megan A Kuikman
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, AUSTRALIA
| | - Alannah K A McKay
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, AUSTRALIA
| | - Rachel McCormick
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, AUSTRALIA
| | - Nicolin Tee
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, AUSTRALIA
| | | | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | | | - Kirsty J Elliott-Sale
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UNITED KINGDOM
| | | | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, AUSTRALIA
| |
Collapse
|
3
|
Ritson AJ, McDonald L, Agu J, Bannock LG. From semi-starvation to the stage: a case report on indicators of low energy availability in a drug-free bodybuilder during contest preparation and peak week. Front Nutr 2024; 11:1465001. [PMID: 39606576 PMCID: PMC11601077 DOI: 10.3389/fnut.2024.1465001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024] Open
Abstract
Natural bodybuilding competitions involve periods of low energy availability (EA) combined with resistance training and high-protein diets to achieve extreme leanness. This study tracked a drug-free bodybuilder adopting evidence-based nutrition practices during 18 weeks of contest preparation. We measured endocrine function, resting energy expenditure, respiratory exchange ratio, body composition, resting heart rate, oral temperature, mood, and strength performance. Endocrine function was remeasured after 2 days of energy repletion. From baseline to week 18, free triiodothyronine (T3) and total testosterone (TT) fell into clinically low (2.7 pmol/L-1) and sub-clinically low (9.1 nmol/L-1) ranges. Resting energy expenditure decreased by -519 kcal (REEratio 0.78), and respiratory exchange ratio decreased from 0.95 to 0.85. Body mass reduced by -5.1 kg, with a sum of eight skinfold loss of -15.7 mm. Correlations were observed between body mass and decreases in oral temperature (r = 0.674, p = 0.002) and resting heart rate (r = 0.560, p = 0.016). Mood remained stable until the final 2 weeks and relative one-repetition maximum decreased in the squat (-5.4%), bench (-2.6%), and deadlift (-3.6%). Following 2 days of modest energy repletion, free T3 increased (18.5%), returning to sub-clinically low values (3.2 pmol/L-1), whereas TT fell (-20.9%), reaching clinically low values (7.2 nmol/L-1). These results offer insight into the dynamics of T3 and TT following a short-term period of modest energy repletion and further information on indicators of low EA during chronic energy restriction.
Collapse
Affiliation(s)
- Alex J. Ritson
- Department of Education, Institute of Performance Nutrition, London, United Kingdom
| | | | - Joseph Agu
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Laurent G. Bannock
- Department of Education, Institute of Performance Nutrition, London, United Kingdom
| |
Collapse
|
4
|
Tarocchi M, Pellegrino A, Skroce K, Zignoli A, Cavadini LC, Bodini C, Pagliai G, Toncelli L, Stefani L, Vanni S, Boddi M, Modesti A, Modesti PA. Assessing Energy Availability and Glucose Dynamics in Adolescent Cyclists: Implications for Nutritional Interventions During the Competitive Season. Nutrients 2024; 16:3824. [PMID: 39599610 PMCID: PMC11597734 DOI: 10.3390/nu16223824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The risk of developing a state of low energy availability (LEA) (<30 kcals/kg free-fat mass) in endurance athletes is known and recommendations for nutrition are available. However, information on male adolescent cyclists and the influence of hot temperatures is limited. OBJECTIVES The aim of this study was to investigate the impact on energy availability of two 4-day nutritional intervention strategies: (1) supplementary carbohydrate (CHO) intake during exercise and (2) designing and implementing individual nutritional interventions. METHODS Each intervention was preceded by a 4-day basal assessment. Eight competitive male junior road cyclists (aged 16-17 years) were investigated using a 4-day diet and activity records, alongside bioelectric impedance analysis. Their real-time power output, interstitial glucose, and temperature were recorded via sensors and a bike computer. Their energy intake (EI) was estimated from daily, self-reported food diaries. RESULTS Overall, 100% and 71% of the cyclists were in a state of LEA during the baseline assessment of the supplementary CHO and nutritional interventions, respectively. LEA prevalence, not modified by supplementary CHO intake alone (from 100% to 87%, ns), was markedly reduced by the individual nutritional intervention (from 71% to 14%, p < 0.05). When considering all the data as a whole, LEA was positively influenced by the training load (OR 1.06; 95% Cl 1.03 to 1.09) and free-fat mass (OR 1.46; 1.04 to 2.04) and was negatively affected by EI (OR 0.994; 0.991 to 0.997). A hot environment (air temperature) failed to influence the LEA or glucose dynamics. CONCLUSIONS the nutritional intervention, but not the supplementary CHO intake, markedly reduced the prevalence of LEA in adolescents, who often fail to match their energy expenditure with their energy intake during the competitive season. Nutritional education is essential for adolescent endurance cycling teams.
Collapse
Affiliation(s)
- Matteo Tarocchi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Sports Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Alessio Pellegrino
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Sports Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| | | | | | - Letizia Clara Cavadini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Chiara Bodini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Giuditta Pagliai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Loira Toncelli
- Sports Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Laura Stefani
- Sports Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Simone Vanni
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Maria Boddi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Sports Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Pietro Amedeo Modesti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Sports Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
5
|
Kirk C, Clark D, Langan-Evans C. The influence of aerobic capacity on the loads and intensities of mixed martial arts sparring bouts. J Sports Sci 2024; 42:2093-2102. [PMID: 39551930 DOI: 10.1080/02640414.2024.2419239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024]
Abstract
The influence of aerobic variables on mixed martial arts (MMA) performance is currently unknown. This study aimed to compare the laboratory-measured aerobic variables of MMA participants to the external load and intensity of MMA sparring bouts to determine the effect of aerobic capacity on performance. Ten participants (age = 24 ± 2.8 years; mass = 74.3 ± 8.2 kg; stature = 176.8 ± 7.9 cm) completed the following: a treadmill-graded exercise test to measure V̇O2max, VT1 and VT2; 3 × 5 mins sparring bout equipped with a Catapult Optimeye S5 accelerometer recording Playerload (PLdACC) and Playerload per minute (PLdACC∙min-1), with a sessional rating of perceived exertion (sRPE) recorded as internal intensity. Median V̇O2max (53.3 ml∙kg∙min-1) was used to split the cohort into the top 50% and bottom 50%. Pearson's r correlations (BF10 ≥ 3) were calculated between GXT and sparring variables. V̇O2max (53.1 ± 5.9 ml∙kg∙min-1) was found to have very large (r ≥ .70) linear relationships with PLdACC (161.4 ± 27.2 AU) and PLdACC∙min-1 (10.7 ± 1.8AU). The top 50% group maintained moderate sRPE (4-6AU) and greater PLdACC∙min-1 throughout the bout, with the bottom 50% group's sRPE moving from moderate to high (>7AU) indicating V̇O2max <53 ml∙kg∙min-1 is related to increased internal intensity. These data support the aerobic nature of MMA and may provide aerobic capacity targets for athletes and coaches to aim for during competition preparation.
Collapse
Affiliation(s)
- Christopher Kirk
- Sport and Human Performance Research Group, Collegiate Hall, Sheffield Hallam University, Sheffield, UK
| | - David Clark
- School of Health Sciences, Robert Gordon University, Aberdeen, UK
| | - Carl Langan-Evans
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
6
|
Jeukendrup AE, Areta JL, Van Genechten L, Langan-Evans C, Pedlar CR, Rodas G, Sale C, Walsh NP. Does Relative Energy Deficiency in Sport (REDs) Syndrome Exist? Sports Med 2024; 54:2793-2816. [PMID: 39287777 PMCID: PMC11561064 DOI: 10.1007/s40279-024-02108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
Relative energy deficiency in sport (REDs) is a widely adopted model, originally proposed by an International Olympic Committee (IOC) expert panel in 2014 and recently updated in an IOC 2023 consensus statement. The model describes how low energy availability (LEA) causes a wide range of deleterious health and performance outcomes in athletes. With increasing frequency, sports practitioners are diagnosing athletes with "REDs," or "REDs syndrome," based largely upon symptom presentation. The purpose of this review is not to "debunk" REDs but to challenge dogmas and encourage rigorous scientific processes. We critically discuss the REDs concept and existing empirical evidence available to support the model. The consensus (IOC 2023) is that energy availability, which is at the core of REDs syndrome, is impossible to measure accurately enough in the field, and therefore, the only way to diagnose an athlete with REDs appears to be by studying symptom presentation and risk factors. However, the symptoms are rather generic, and the causes likely multifactorial. Here we discuss that (1) it is very difficult to isolate the effects of LEA from other potential causes of the same symptoms (in the laboratory but even more so in the field); (2) the model is grounded in the idea that one factor causes symptoms rather than a combination of factors adding up to the etiology. For example, the model does not allow for high allostatic load (psychophysiological "wear and tear") to explain the symptoms; (3) the REDs diagnosis is by definition biased because one is trying to prove that the correct diagnosis is REDs, by excluding other potential causes (referred to as differential diagnosis, although a differential diagnosis is supposed to find the cause, not demonstrate that it is a pre-determined cause); (4) observational/cross-sectional studies have typically been short duration (< 7 days) and do not address the long term "problematic LEA," as described in the IOC 2023 consensus statement; and (5) the evidence is not as convincing as it is sometimes believed to be (i.e., many practitioners believe REDs is well established). Very few studies can demonstrate causality between LEA and symptoms, most studies demonstrate associations and there is a worrying number of (narrative) reviews on the topic, relative to original research. Here we suggest that the athlete is best served by an unbiased approach that places health at the center, leaving open all possible explanations for the presented symptoms. Practitioners could use a checklist that addresses eight categories of potential causes and involve the relevant experts if and when needed. The Athlete Health and Readiness Checklist (AHaRC) we introduce here simply consists of tools that have already been developed by various expert/consensus statements to monitor and troubleshoot aspects of athlete health and performance issues. Isolating the purported effects of LEA from the myriad of other potential causes of REDs symptoms is experimentally challenging. This renders the REDs model somewhat immune to falsification and we may never definitively answer the question, "does REDs syndrome exist?" From a practical point of view, it is not necessary to isolate LEA as a cause because all potential areas of health and performance improvement should be identified and tackled.
Collapse
Affiliation(s)
- Asker E Jeukendrup
- Loughborough University, Loughborough, UK
- Netherlands Olympic Committee, Arnhem, The Netherlands
| | | | | | | | | | - Gil Rodas
- Medical Department, Futbol Club Barcelona, Barça Innovation Hub, Barcelona, Spain
| | - Craig Sale
- Manchester Metropolitan University, Manchester, UK
| | - Neil P Walsh
- Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
7
|
Hänisch T, Nieß AM, Carlsohn A. Effects of low energy availability on performance in male athletes: A scoping review. J Sci Med Sport 2024:S1440-2440(24)00552-8. [PMID: 39547891 DOI: 10.1016/j.jsams.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVES The primary aim of this study was to investigate the effects of low energy availability on different performance outcomes in male athletes. Secondary aims were to examine an assumed dose-response relationship and identify knowledge gaps. DESIGN Scoping review. METHODS The electronic database PubMed was searched until the end of June 2023. Additionally, we used reference tracking and hand-searching for related articles. Six studies with a total of 103 male athletes met the inclusion criteria. RESULTS Four of the included studies had an interventional study design, including one case study, and the remaining two were cross-sectional studies. Different performance outcomes (i.e., strength, endurance, speed) were either positively, negatively, or unaffected by low energy availability. The length and magnitude of the low energy availability, as well as the baseline status of the athletes could have influenced the results. Additionally, there are methodological considerations that might limit the validity of the results. CONCLUSIONS Current evidence shows heterogeneous results, as some studies suggested improvements in certain performance parameters, whilst other studies showed neutral or detrimental effects of low energy availability. Due to the limitations mentioned; additional research is warranted for a more comprehensive understanding.
Collapse
Affiliation(s)
- Tim Hänisch
- Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, Germany; Department of Nutrition and Home Economics, University of Applied Sciences Hamburg, Germany.
| | - Andreas M Nieß
- Department of Sports Medicine, University Hospital Tübingen, Germany
| | - Anja Carlsohn
- Department of Nutrition and Home Economics, University of Applied Sciences Hamburg, Germany
| |
Collapse
|
8
|
Sim A, Tan HQ, Ali Y, Burns SF. Original investigation: manipulating energy availability in male endurance runners: a randomised controlled trial. Appl Physiol Nutr Metab 2024; 49:1163-1174. [PMID: 38713922 DOI: 10.1139/apnm-2024-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
This study investigated the effect of 4 days low energy availability (LEA) on physiological markers and mood states in male endurance runners. Twelve participants (mean (standard deviation); age: 25.8 (3.8) years; fat-free mass (FFM): 52.8 (5.5) kg) completed three 4-day conditions: adequate energy availability (AEA): 45 kcal/kg FFM/day; LEA1: 30 kcal/kg FFM/day; and LEA2: 15 kcal/kg FFM/day, in a randomized order. Participants ran on a treadmill at 65% of V̇O2max until they expended 15 kcal/kg FFM/day of energy. Energy intake was adjusted to achieve the desired energy availability. Pre- and post-measurements of bone turnover, metabolism, testosterone and estradiol (plasma), resting metabolic rate (indirect calorimetry), and mood states (Brunel Mood Scale) were assessed. The results reported a significant decrease in testosterone (condition × time interaction, p = 0.03) occurred on LEA2 (Pre: 23.8 (7.0) nmol/L vs. Post: 20.3 (7.7) nmol/L) compared with AEA (Pre: 22.9 (5.5) nmol/L vs. Post: 23.3 (6.1) nmol/L) or LEA1 (Pre: 23.6 (8.6) nmol/L vs. Post: 20.9 (8.8) nmol/L). Fatigue level significantly increased (condition × time interaction, p = 0.02) in LEA2 (Pre: 3.5 (1.7) vs. Post: 6.5 (2.9)) but did not change in AEA (Pre: 2.8 (1.5) vs. Post: 2.5 (2.7)) or LEA1 (Pre: 2.8(2.4) vs. Post: 2.9 (2.0)). Other measures were unaffected by the interventions. In conclusion, this study suggests that testosterone and fatigue may serve as early indicators of LEA in male runners. However, other physiological markers and mood states appeared largely unaffected, aligning with existing literature indicating minimal disruption of physiological functions during acute LEA in male athletes. Study registration: Australian New Zealand Clinical Trials Registry (Trial No.: 381278).
Collapse
Affiliation(s)
- Alexiaa Sim
- Physical Education and Sports Science, National Institute of Education, Nanyang Technological University, 637616, Singapore
| | - Hui Qing Tan
- Physical Education and Sports Science, National Institute of Education, Nanyang Technological University, 637616, Singapore
| | - Yusuf Ali
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Stephen F Burns
- Physical Education and Sports Science, National Institute of Education, Nanyang Technological University, 637616, Singapore
| |
Collapse
|
9
|
Reale R, Wang J, Hu Stull C, French D, Amasinger D, Wang R. Acute and Chronic Weight-Making Practice in Professional Mixed Martial Arts Athletes: An Analysis of 33 Athletes Across 80 Fights. Int J Sport Nutr Exerc Metab 2024; 34:275-285. [PMID: 38871343 DOI: 10.1123/ijsnem.2023-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 06/15/2024]
Abstract
Mixed martial arts' popularity has increased in recent years, alongside descriptive research and evidence-based performance recommendations. Guidelines for (both chronic and acute) weight making exist; however, how these translate in real-life scenarios and detailed investigations on practices in larger groups deserve attention. The present study examined the body mass (BM) and composition of 33 professional mixed martial arts athletes preparing for 80 fights. Athletes were supported by on-site dietitians, who encouraged evidence-based practices. Fasted BM was measured throughout the last ∼10 days before all bouts (acute weight management phase). A subset of athletes had body composition assessed before and after the chronic weight loss phase for 40 fights. Most athletes engaged in chronic BM loss, and all engaged in acute weight loss. Many lost fat-free mass (FFM) during the chronic phase, with rates of BM loss <0.5% best preserving FFM. Regardless of losses, the present athletes possessed greater FFM than other combat sport athletes and engaged in greater acute weight loss. Dehydration in the 24-48 hr before the weigh-in was not reflective of weight regain after the weigh-in, rather BM 7-10 days before the weigh-in was most reflective. These findings suggest that many mixed martial arts athletes could increase FFM at the time of competition by maintaining leaner physiques outside of competition and/or allowing increased time to reduce BM chronically. Acutely, athletes can utilize evidence-based protocols, eliminating carbohydrates, fiber, sodium, and finally fluid in a staged approach, before the weigh-in, reducing the amount of sweating required, thus theoretically better protecting health and preserving performance.
Collapse
Affiliation(s)
- Reid Reale
- UFC Performance Institute, Shanghai, SHG, China
| | - Junzhu Wang
- UFC Performance Institute, Shanghai, SHG, China
| | | | | | | | - Ran Wang
- Shanghai University of Sport, Shanghai, SHG, China
| |
Collapse
|
10
|
Suzuki D, Suzuki Y. Identifying and Analyzing Low Energy Availability in Athletes: The Role of Biomarkers and Red Blood Cell Turnover. Nutrients 2024; 16:2273. [PMID: 39064716 PMCID: PMC11279570 DOI: 10.3390/nu16142273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Low energy availability (LEA) is a growing concern that can lead to several problems for athletes. However, adaptation to LEA occurs to maintain balance over time, making diagnosis difficult. In this review, we categorize LEA into two phases: the initial phase leading to adaptation and the phase in which adaptation is achieved and maintained. We review the influence of LEA on sports performance and health and discuss biomarkers for diagnosing LEA in each phase. This review also proposes future research topics for diagnosing LEA, with an emphasis on the recently discovered association between red blood cell turnover and LEA.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Tokyo, Japan;
| | - Yoshio Suzuki
- Graduate School of Health and Sports Science, Juntendo University, Inzai 276-1695, Chiba, Japan
| |
Collapse
|
11
|
Hiromatsu C, Goto K. Energy Availability and Interstitial Fluid Glucose Changes in Elite Male Japanese Triathletes during Training Camp: A Case Study. Nutrients 2024; 16:2048. [PMID: 38999796 PMCID: PMC11243290 DOI: 10.3390/nu16132048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
This study explored the impact of varying energy availability (EA) on the 24-h interstitial fluid glucose concentration (IGC) in five elite male Japanese triathletes at a training camp. Measurements of IGC, energy and macronutrient intake, and exercise energy expenditure (EEE) through metabolic equivalents (METs) from training logs were conducted. Three subjects were evaluated over two 4-day periods, and two subjects over one 4-day period. Findings revealed significant correlations of daily mean nocturnal IGC with daily EA (r = 0.553, p = 0.001) and energy intake (EI) (r = 0.595, p < 0.001). However, no significant correlation was found between mean daily nocturnal IGC and EEE (r = -0.278, p = 0.124). Daytime IGC was ≥110 mg/dL for >50% of the time in all subjects, except on 1 day in one subject, and never fell <70 mg/dL. Therefore, daily EA may influence nocturnal IGC in elite male triathletes, although high daytime IGC levels were maintained without hypoglycemia.
Collapse
Affiliation(s)
- Chiyori Hiromatsu
- Graduate School of Sports and Health Science, Ritsumeikan University, Shiga 525-8577, Japan
| | - Kazushige Goto
- Graduate School of Sports and Health Science, Ritsumeikan University, Shiga 525-8577, Japan
| |
Collapse
|
12
|
Vardardottir B, Gudmundsdottir SL, Tryggvadottir EA, Olafsdottir AS. Patterns of energy availability and carbohydrate intake differentiate between adaptable and problematic low energy availability in female athletes. Front Sports Act Living 2024; 6:1390558. [PMID: 38783864 PMCID: PMC11111999 DOI: 10.3389/fspor.2024.1390558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Background Problematic low energy availability (EA) is the underlying culprit of relative energy deficiency in sport (REDs), and its consequences have been suggested to be exacerbated when accompanied by low carbohydrate (CHO) intakes. Objectives This study compared dietary intake, nutrition status and occurrence of REDs symptoms in groups of female athletes, displaying different patterns of EA and CHO intake. Methods Female athletes (n = 41, median age 20.4 years) from various sports weighed and recorded their food intake and training for 7 consecutive days via a photo-assisted mobile application. Participants were divided into four groups based on patterns of EA and CHO intakes: sufficient to optimal EA and sufficient to optimal CHO intake (SEA + SCHO), SEA and low CHO intake (SEA + LCHO), low energy availability and SCHO (LEA + SCHO), and LEA and LCHO (LEA + LCHO). SEA patterns were characterised by EA ≥30 and LEA by EA <30 kcal/kg fat free mass, and SCHO patterns characterised by CHO intake ≥3.0 and LCHO <3.0 g/kg body weight for most of the registered days. Body composition was measured with dual energy x-ray absorptiometry, resting metabolic rate with indirect calorimetry and serum blood samples were collected for evaluation of nutrition status. Behavioural risk factors and self-reported symptoms of REDs were assessed with the Low Energy Availability in Females Questionnaire, Eating Disorder Examination Questionnaire Short (EDE-QS), Exercise Addiction Inventory, and Muscle Dysmorphic Disorder Inventory. Results In total, 36.6% were categorised as SEA + SCHO, of which 5/16 were ball sport, 7/10 endurance, 1/7 aesthetic, 2/5 weight-class, and 0/3 weight-class athletes. Of LEA + LCHO athletes (19.5% of all), 50% came from ball sports. Aesthetic and endurance athletes reported the greatest training demands, with weekly training hours higher for aesthetic compared to ball sports (13.1 ± 5.7 vs. 6.7 ± 3.4 h, p = 0.012). Two LEA + LCHO and one SEA + LCHO athlete exceeded the EDE-QS cutoff. LEA + LCHO evaluated their sleep and energy levels as worse, and both LEA groups rated their recovery as worse compared to SEA + SCHO. Conclusion Repeated exposures to LEA and LCHO are associated with a cluster of negative implications in female athletes. In terms of nutrition strategies, sufficient EA and CHO intakes appear to be pivotal in preventing REDs.
Collapse
|
13
|
Oxfeldt M, Marsi D, Christensen PM, Andersen OE, Johansen FT, Bangshaab M, Risikesan J, Jeppesen JS, Hellsten Y, Phillips SM, Melin AK, Ørtenblad N, Hansen M. Low Energy Availability Followed by Optimal Energy Availability Does Not Benefit Performance in Trained Females. Med Sci Sports Exerc 2024; 56:902-916. [PMID: 38181220 DOI: 10.1249/mss.0000000000003370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
PURPOSE Short periods of reduced energy availability are commonly undertaken by athletes to decrease body mass, possibly improve the power-to-mass ratio, and enhance physical performance. Our primary aim was to investigate the impact of 10 d of low energy availability (LEA) followed by 2 d of optimal energy availability (OEA) on physical performance parameters in trained females. Second, physiological markers at the whole-body and molecular level related to performance were evaluated. METHODS Thirty young trained eumenorrheic females were matched in pairs based on training history and randomized to a 10-d intervention period of LEA (25 kcal·fat-free mass (FFM) -1 ·d -1 ) or OEA (50 kcal·FFM -1 ·d -1 ) along with supervised exercise training. Before the intervention, participants underwent a 5-d run-in period with OEA + supervised exercise training. After the LEA intervention, 2 d of recovery with OEA was completed. Participants underwent muscle biopsies, blood sampling, physical performance tests, body composition measurements, and resting metabolic rate measurements. A linear mixed model was used with group and time as fixed effects and subject as random effects. RESULTS Compared with OEA, LEA resulted in reduced body mass, muscle glycogen content, repeated sprint ability, 4-min time-trial performance, and rate of force development of the knee extensors (absolute values; P < 0.05). Two days of recovery restored 4-min time-trial performance and partly restored repeated sprint ability, but performance remained inferior to the OEA group. When the performance data were expressed relative to body mass, LEA did not enhance performance. CONCLUSIONS Ten days of LEA resulted in impaired performance (absolute values), with concomitant reductions in muscle glycogen. Two days of recovery with OEA partially restored these impairments, although physical performance (absolute values) was still inferior to being in OEA. Our findings do not support the thesis that LEA giving rise to small reductions in body mass improves the power-to-mass ratio and thus increases physical performance.
Collapse
Affiliation(s)
- Mikkel Oxfeldt
- Department of Public Health, Aarhus University, Aarhus C, DENMARK
| | - Daniel Marsi
- Department of Public Health, Aarhus University, Aarhus C, DENMARK
| | | | | | | | | | - Jeyanthini Risikesan
- Department of Child and Adolescent Medicine, Regional Hospital Gødstrup, Gødstrup, DENMARK
| | - Jan S Jeppesen
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - Anna K Melin
- Department of Sport Science, Linnaeus University, Växjö/Kalmar, SWEDEN
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense M, DENMARK
| | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus C, DENMARK
| |
Collapse
|
14
|
Ellis DG, Morton JP, Close GL, Donovan TF. Energy Expenditure of Elite Male and Female Professional Tennis Players During Habitual Training. Int J Sport Nutr Exerc Metab 2024; 34:172-178. [PMID: 38281487 DOI: 10.1123/ijsnem.2023-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
Understanding the daily energy expenditure of athletes during training is important to support recovery, adaptation, and the maintenance of performance. The aim of the current research was to assess the total daily energy expenditure (TDEE) and the acute energy expenditure (EE) of tennis training sessions during habitual training of elite tennis players. Using a cohort study design, 27 (n = 10, male; age; 22.3 ± 3.2 years and n = 17, female; age: 23.8 ± 3.5 years) elite singles tennis players were assessed for TDEE and tennis training EE. Using Actiheart activity monitors during a 2- to 5-day training period, male players were analyzed for 26 days and 33 (1.3 ± 0.5 sessions/day) tennis training sessions, and female players for 43 days and 58 (1.2 ± 0.4 sessions/day) tennis training sessions. Male TDEE (4,708 ± 583 kcal/day) was significantly higher than female (3,639 ± 305 kcal/day). Male absolute and relative tennis training EEs (10.2 ± 2.3 kcal/min and 7.9 ± 1.4 kcal·hr-1·kg-1) were significantly higher than those of females (7.6 ± 1.0 kcal/min and 6.8 ± 0.9 kcal·hr-1·kg-1). The resting metabolic rate was assessed via indirect calorimetry. The physical activity level for both groups was 2.3 AU. The TDEE of male and female players during habitual training now highlights the continual cycle of high energy demands experienced by the elite tennis player. The broad ranges of TDEE and EE reported here suggest individual assessment and nutritional planning be prioritized, with a particular focus on carbohydrate requirements.
Collapse
Affiliation(s)
- Daniel G Ellis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Lawn Tennis Association, London, United Kingdom
| | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Tim F Donovan
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
15
|
Lebron MA, Stout JR, Fukuda DH. Physiological Perturbations in Combat Sports: Weight Cycling and Metabolic Function-A Narrative Review. Metabolites 2024; 14:83. [PMID: 38392975 PMCID: PMC10890020 DOI: 10.3390/metabo14020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Combat sports athletes seeking a competitive edge often engage in weight management practices to become larger than their opponents, which ultimately includes periods of gradual weight loss, rapid weight loss, and weight regain. This pattern of weight loss and regain is known as weight cycling and often includes periods of low energy availability, making combat sports athletes susceptible to metabolic dysfunction. This narrative review represents an effort to explore the metabolic perturbations associated with weight cycling and outline the short-, medium-, and long-term effects on metabolic flexibility, function, and health. The short-term effects of rapid weight loss, such as a reduced metabolic rate and alterations to insulin and leptin levels, may prelude the more pronounced metabolic disturbances that occur during weight regain, such as insulin resistance. Although definitive support is not currently available, this cycle of weight loss and regain and associated metabolic changes may contribute to metabolic syndrome or other metabolic dysfunctions over time.
Collapse
Affiliation(s)
- Modesto A Lebron
- Physiology of Work and Exercise Response Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA
| | - Jeffrey R Stout
- Physiology of Work and Exercise Response Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA
| | - David H Fukuda
- Physiology of Work and Exercise Response Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
16
|
Melin AK, Areta JL, Heikura IA, Stellingwerff T, Torstveit MK, Hackney AC. Direct and indirect impact of low energy availability on sports performance. Scand J Med Sci Sports 2024; 34:e14327. [PMID: 36894187 DOI: 10.1111/sms.14327] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 03/11/2023]
Abstract
Low energy availability (LEA) occurs inadvertently and purposefully in many athletes across numerous sports; and well planned, supervised periods with moderate LEA can improve body composition and power to weight ratio possibly enhancing performance in some sports. LEA however has the potential to have negative effects on a multitude of physiological and psychological systems in female and male athletes. Systems such as the endocrine, cardiovascular, metabolism, reproductive, immune, mental perception, and motivation as well as behaviors can all be impacted by severe (serious and/or prolonged or chronic) LEA. Such widely diverse effects can influence the health status, training adaptation, and performance outcomes of athletes leading to both direct changes (e.g., decreased strength and endurance) as well as indirect changes (e.g., reduced training response, increased risk of injury) in performance. To date, performance implications have not been well examined relative to LEA. Therefore, the intent of this narrative review is to characterize the effects of short-, medium-, and long-term exposure to LEA on direct and indirect sports performance outcomes. In doing so we have focused both on laboratory settings as well as descriptive athletic case-study-type experiential evidence.
Collapse
Affiliation(s)
- Anna K Melin
- Department of Sport Science, Faculty of Social Sciences, Swedish Olympic Committee Research Fellow, Linnaeus University, Växjö/Kalmar, Sweden
| | - José L Areta
- School of Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Ida A Heikura
- Canadian Sport Institute - Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Trent Stellingwerff
- Canadian Sport Institute - Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Monica Klungland Torstveit
- Department of Sport Science and Physical Education, Faculty of Health and Sport Science, University of Agder, Kristiansand, Norway
| | - Anthony C Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
17
|
O'Neill JER, Corish CA, Horner K. Accuracy of Resting Metabolic Rate Prediction Equations in Athletes: A Systematic Review with Meta-analysis. Sports Med 2023; 53:2373-2398. [PMID: 37632665 PMCID: PMC10687135 DOI: 10.1007/s40279-023-01896-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Resting metabolic rate (RMR) prediction equations are often used to calculate RMR in athletes; however, their accuracy and precision can vary greatly. OBJECTIVE The aim of this systematic review and meta-analysis was to determine which RMR prediction equations are (i) most accurate (average predicted values closest to measured values) and (ii) most precise (number of individuals within 10% of measured value). DATA SOURCES A systematic search of PubMed, CINAHL, SPORTDiscus, Embase, and Web of Science up to November 2021 was conducted. ELIGIBILITY CRITERIA Randomised controlled trials, cross-sectional observational studies, case studies or any other study wherein RMR, measured by indirect calorimetry, was compared with RMR predicted via prediction equations in adult athletes were included. ANALYSIS A narrative synthesis and random-effects meta-analysis (where possible) was conducted. To explore heterogeneity and factors influencing accuracy, subgroup analysis was conducted based on sex, body composition measurement method, athlete characteristics (athlete status, energy availability, body weight), and RMR measurement characteristics (adherence to best practice guidelines, test preparation and prior physical activity). RESULTS Twenty-nine studies (mixed sports/disciplines n = 8, endurance n = 5, recreational exercisers n = 5, rugby n = 3, other n = 8), with a total of 1430 participants (822 F, 608 M) and 100 different RMR prediction equations were included. Eleven equations satisfied criteria for meta-analysis for accuracy. Effect sizes for accuracy ranged from 0.04 to - 1.49. Predicted RMR values did not differ significantly from measured values for five equations (Cunningham (1980), Harris-Benedict (1918), Cunningham (1991), De Lorenzo, Ten-Haaf), whereas all others significantly underestimated or overestimated RMR (p < 0.05) (Mifflin-St. Jeor, Owen, FAO/WHO/UNU, Nelson, Koehler). Of the five equations, large heterogeneity was observed for all (p < 0.05, I2 range: 80-93%) except the Ten-Haaf (p = 0.48, I2 = 0%). Significant differences between subgroups were observed for some but not all equations for sex, athlete status, fasting status prior to RMR testing, and RMR measurement methodology. Nine equations satisfied criteria for meta-analysis for precision. Of the nine equations, the Ten-Haaf was found to be the most precise, predicting 80.2% of participants to be within ± 10% of measured values with all others ranging from 40.7 to 63.7%. CONCLUSION Many RMR prediction equations have been used in athletes, which can differ widely in accuracy and precision. While no single equation is guaranteed to be superior, the Ten-Haaf (age, weight, height) equation appears to be the most accurate and precise in most situations. Some equations are documented as consistently underperforming and should be avoided. Choosing a prediction equation based on a population of similar characteristics (physical characteristics, sex, sport, athlete status) is preferable. Caution is warranted when interpreting RMR ratio of measured to predicted values as a proxy of energy availability from a single measurement. PROSPERO REGISTRATION CRD42020218212.
Collapse
Affiliation(s)
- Jack Eoin Rua O'Neill
- Institute for Sport and Health and School of Public Health, Physiotherapy and Sport Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Clare A Corish
- School of Public Health, Physiotherapy and Sport Science, University College Dublin, Dublin 4, Ireland
| | - Katy Horner
- Institute for Sport and Health and School of Public Health, Physiotherapy and Sport Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
18
|
Areta JL. Physical performance during energy deficiency in humans: An evolutionary perspective. Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111473. [PMID: 37406958 DOI: 10.1016/j.cbpa.2023.111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Energy deficiency profoundly disrupts normal endocrinology, metabolism, and physiology, resulting in an orchestrated response for energy preservation. As such, despite energy deficit is typically thought as positive for weight-loss and treatment of cardiometabolic diseases during the current obesity pandemic, in the context of contemporary sports and exercise nutrition, chronic energy deficiency is associated to negative health and athletic performance consequences. However, the evidence of energy deficit negatively affecting physical capacity and sports performance is unclear. While severe energy deficiency can negatively affect physical capacity, humans can also improve aerobic fitness and strength while facing significant energy deficit. Many athletes, also, compete at an elite and world-class level despite showing clear signs of energy deficiency. Maintenance of high physical capacity despite the suppression of energetically demanding physiological traits seems paradoxical when an evolutionary viewpoint is not considered. Humans have evolved facing intermittent periods of food scarcity in their natural habitat and are able to thrive in it. In the current perspective it is argued that when facing limited energy availability, maintenance of locomotion and physical capacity are of high priority given that they are essential for food procurement for survival in the habitat where humans evolved. When energetic resources are limited, energy may be allocated to tasks essential for survival (e.g. locomotion) while minimising energy allocation to traits that are not (e.g. growth and reproduction). The current perspective provides a model of energy allocation during energy scarcity supported by observation of physiological and metabolic responses that are congruent with this paradigm.
Collapse
Affiliation(s)
- José L Areta
- Research Institute for Sport and Exercise Sciences, School of Sport and Exercise Sciences, Liverpool John Moores University, UK.
| |
Collapse
|
19
|
Hsu C, Huang YW, Lin SM, Lu CS, Chen CY, Chang CK. Low- or moderate-carbohydrate calorie-restricted diets have similar effects on body composition and taekwondo performance after high-carbohydrate recovery meals. Eur J Sport Sci 2023; 23:1983-1992. [PMID: 37010257 DOI: 10.1080/17461391.2023.2199423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Low-carbohydrate (LC) diets are popular among general and athletic populations attempting to lose body mass. This study investigated the effect of a 7-day LC or moderate-carbohydrate (MC) calorie-restricted diet followed by 18-h recovery on body composition and taekwondo-specific performance. In this randomised cross-over study, 12 male taekwondo athletes consumed an LC (10% of carbohydrate, 41% of protein, 49% of fat, and 15.8 ± 0.4 kcal/kg/day) or an isocaloric MC diet (60% of carbohydrate, 30% of protein, and 10% of fat) for 7 days. The participants then consumed a carbohydrate-rich recovery dinner (39.2 ± 3.1 kcal/kg) followed by breakfast (6.2 ± 0.4 kcal/kg) in both the trials. Three repeated sprint ability (RSA) tests were conducted after breakfast. The taekwondo-specific reaction battery was administered before the first RSA test and after each RSA test. The participants experienced similar magnitudes of significant loss of body mass in the LC (-2.4 ± 1.7%) and MC (-2.3 ± 1.7%) trials. Fat mass and fat percentage significantly decreased in the MC trial but remained unchanged in the LC trial after body mass loss. Fat free mass was maintained in both the trials. The average and peak power in the RSA tests and the premotor reaction time were similar between the trials. The participants experienced significantly higher fatigue in the LC trial. In conclusion, both the diets can help athletes rapidly lose body mass while maintaining performance as long as an adequate amount of carbohydrate is consumed during the recovery period.
Collapse
Affiliation(s)
- Chin Hsu
- Department of Exercise Health Science, National Taiwan University of Sport, Taichung, Taiwan
| | - Yun-Wen Huang
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan
| | - Shu-Mei Lin
- Department of Nutrition, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Ching-Shih Lu
- Department of Nutrition, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Chung-Yu Chen
- Department of Physical Education, National Taiwan University of Sport, Taichung, Taiwan
| | - Chen-Kang Chang
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan
| |
Collapse
|
20
|
Stellingwerff T, Mountjoy M, McCluskey WT, Ackerman KE, Verhagen E, Heikura IA. Review of the scientific rationale, development and validation of the International Olympic Committee Relative Energy Deficiency in Sport Clinical Assessment Tool: V.2 (IOC REDs CAT2)-by a subgroup of the IOC consensus on REDs. Br J Sports Med 2023; 57:1109-1118. [PMID: 37752002 DOI: 10.1136/bjsports-2023-106914] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/28/2023]
Abstract
Relative Energy Deficiency in Sport (REDs) has various different risk factors, numerous signs and symptoms and is heavily influenced by one's environment. Accordingly, there is no singular validated diagnostic test. This 2023 International Olympic Committee's REDs Clinical Assessment Tool-V.2 (IOC REDs CAT2) implements a three-step process of: (1) initial screening; (2) severity/risk stratification based on any identified REDs signs/symptoms (primary and secondary indicators) and (3) a physician-led final diagnosis and treatment plan developed with the athlete, coach and their entire health and performance team. The CAT2 also introduces a more clinically nuanced four-level traffic-light (green, yellow, orange and red) severity/risk stratification with associated sport participation guidelines. Various REDs primary and secondary indicators have been identified and 'weighted' in terms of scientific support, clinical severity/risk and methodological validity and usability, allowing for objective scoring of athletes based on the presence or absence of each indicator. Early draft versions of the CAT2 were developed with associated athlete-testing, feedback and refinement, followed by REDs expert validation via voting statements (ie, online questionnaire to assess agreement on each indicator). Physician and practitioner validity and usability assessments were also implemented. The aim of the IOC REDs CAT2 is to assist qualified clinical professionals in the early and accurate diagnosis of REDs, with an appropriate clinical severity and risk assessment, in order to protect athlete health and prevent prolonged and irreversible outcomes of REDs.
Collapse
Affiliation(s)
- Trent Stellingwerff
- Canadian Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Margo Mountjoy
- Association for Summer Olympic International Federations (ASOIF), Lausanne, Switzerland
- Department of Family Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Evert Verhagen
- Amsterdam Collaboration on Health and Safety in Sports and Department of Public and Occupational Health, VU University Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Ida A Heikura
- Canadian Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
21
|
Mountjoy M, Ackerman KE, Bailey DM, Burke LM, Constantini N, Hackney AC, Heikura IA, Melin A, Pensgaard AM, Stellingwerff T, Sundgot-Borgen JK, Torstveit MK, Jacobsen AU, Verhagen E, Budgett R, Engebretsen L, Erdener U. 2023 International Olympic Committee's (IOC) consensus statement on Relative Energy Deficiency in Sport (REDs). Br J Sports Med 2023; 57:1073-1097. [PMID: 37752011 DOI: 10.1136/bjsports-2023-106994] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
Relative Energy Deficiency in Sport (REDs) was first introduced in 2014 by the International Olympic Committee's expert writing panel, identifying a syndrome of deleterious health and performance outcomes experienced by female and male athletes exposed to low energy availability (LEA; inadequate energy intake in relation to exercise energy expenditure). Since the 2018 REDs consensus, there have been >170 original research publications advancing the field of REDs science, including emerging data demonstrating the growing role of low carbohydrate availability, further evidence of the interplay between mental health and REDs and more data elucidating the impact of LEA in males. Our knowledge of REDs signs and symptoms has resulted in updated Health and Performance Conceptual Models and the development of a novel Physiological Model. This Physiological Model is designed to demonstrate the complexity of either problematic or adaptable LEA exposure, coupled with individual moderating factors, leading to changes in health and performance outcomes. Guidelines for safe and effective body composition assessment to help prevent REDs are also outlined. A new REDs Clinical Assessment Tool-Version 2 is introduced to facilitate the detection and clinical diagnosis of REDs based on accumulated severity and risk stratification, with associated training and competition recommendations. Prevention and treatment principles of REDs are presented to encourage best practices for sports organisations and clinicians. Finally, methodological best practices for REDs research are outlined to stimulate future high-quality research to address important knowledge gaps.
Collapse
Affiliation(s)
- Margo Mountjoy
- Family Medicine, McMaster University Michael G DeGroote School of Medicine, Waterloo, Ontario, Canada
- Games Group, International Olympic Committee, Lausanne, Switzerland
| | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Naama Constantini
- Sports Medicine Center, Shaare Zedek Medical Center, The Hebrew University, Jerusalem, Israel
| | - Anthony C Hackney
- Exercise and Sport Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ida Aliisa Heikura
- Canada Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Anna Melin
- Department of Sport Science - Swedish Olympic Committee Research Fellow, Linnaeus University, Kalmar, Sweden
| | - Anne Marte Pensgaard
- Department of Sport and Social Sciences, Norwegian School of Sports Sciences, Oslo, Norway
| | - Trent Stellingwerff
- Canada Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | - Evert Verhagen
- Amsterdam Collaboration on Health & Safety in Sports, Department of Public and Occupational Health, Amsterdam Movement Science, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Richard Budgett
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Lars Engebretsen
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Uğur Erdener
- Department of Ophthalmology, Hacettepe University, Ankara, Turkey
- World Archery, Lausanne, Switzerland
| |
Collapse
|
22
|
Mathisen TF, Ackland T, Burke LM, Constantini N, Haudum J, Macnaughton LS, Meyer NL, Mountjoy M, Slater G, Sundgot-Borgen J. Best practice recommendations for body composition considerations in sport to reduce health and performance risks: a critical review, original survey and expert opinion by a subgroup of the IOC consensus on Relative Energy Deficiency in Sport (REDs). Br J Sports Med 2023; 57:1148-1158. [PMID: 37752006 DOI: 10.1136/bjsports-2023-106812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND The assessment of body composition (BC) in sport raises concern for athlete health, especially where an overfocus on being lighter or leaner increases the risk of Relative Energy Deficiency in Sport (REDs) and disordered eating. METHODS We undertook a critical review of the effect of BC on performance (29 longitudinal, prospective or intervention studies) and explored current practice related to BC considerations via a follow-up to a 2013 internationally distributed survey. RESULTS The review found that a higher level of body fat was negatively associated with endurance performance, while a gain in muscle mass resulted in performance benefits across sports. BC did not contribute to early talent identification, and no unique cut-off to signify a performance advantage for BC was identified. BC appears to be one of an array of variables impacting performance, and its influence should not be overstated. The survey (125 practitioners, 61 sports and 26 countries) showed subtle changes in BC considerations over time, such as an increased role for sport dietitian/nutrition practitioners as BC measurers (2013: 54%, 2022: 78%); less emphasis on reporting of body fat percentage (2013: 68%, 2022: 46%) and reduced frequency of BC assessment if ≥every fourth week (2013: 18%, 2022: 5%). Respondents remained concerned about a problematic focus on BC (2013: 69%, 2022: 78%). To address these findings, we provide detailed recommendations for BC considerations, including an overview of preferable BC methodology. CONCLUSIONS The 'best practice' guidelines stress the importance of a multidisciplinary athlete health and performance team, and the treatment of BC data as confidential medical information. The guidelines provide a health focus around BC, aiming to reduce the associated burden of disordered eating, problematic low energy availability and REDs.
Collapse
Affiliation(s)
| | - Timothy Ackland
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Louise M Burke
- Faculty of Health Sciences, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Naama Constantini
- Sport Medicine, Shaare Zedek Medical Center, Hebrew University, Jerusalem, Israel
| | - Judith Haudum
- Department of Sport and Exercise Science, University of Salzburg, Hallein-Rif, Salzburg, Austria
| | | | - Nanna L Meyer
- Department of Human Physiology and Nutrition, University of Colorado Colorado Springs, Colorado Springs, Colorado, USA
| | - Margo Mountjoy
- Department of Family Medicine, McMaster University, Hamilton, Ontario, Canada
- REDs Consensus Writing Group, International Olympic Committee, Lausanne, Switzerland
| | - Gary Slater
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | | |
Collapse
|
23
|
Pensgaard AM, Sundgot-Borgen J, Edwards C, Jacobsen AU, Mountjoy M. Intersection of mental health issues and Relative Energy Deficiency in Sport (REDs): a narrative review by a subgroup of the IOC consensus on REDs. Br J Sports Med 2023; 57:1127-1135. [PMID: 37752005 DOI: 10.1136/bjsports-2023-106867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/28/2023]
Abstract
Overall athlete health is a stated priority by the International Olympic Committee (IOC), yet it can be difficult for athletes to safely balance nutritional needs, training load, recovery, social interactions, expectations and other demands. The effect of energy intake and, especially, low energy availability (LEA) on athlete mental health, is understudied. In this narrative review, we examine research that has included psychological factors and mental health variables when investigating the effect of LEA, dieting/restrictive eating and Relative Energy Deficiency in Sport (REDs), since the 2018 IOC consensus statement on REDs. Based on currently available data, early psychological indicators associated with problematic LEA are mood changes, fatigue and psychological conflict. More severe mental health outcomes associated with REDs are reduced well-being, elevated anxiety, depressive symptoms and eating disorders. We propose a psychological model that helps structure how possible risk factors (eg, body dissatisfaction, environmental demands or increased training load) and moderating (eg, gender, sport) and/or potential mediating (eg, social climate, self-esteem) factors are associated with LEA and ultimately REDs. The current scientific literature underscores the importance of including mental health factors when screening for REDs and for developing a clinical approach to address the psychological sequelae of REDs once diagnosed. An interdisciplinary perspective is recommended. Lastly, and importantly, the athlete perspective urges clinicians to not underestimate the drive for success and denial of health consequences that athletes demonstrate when pursuing their sport goals.
Collapse
Affiliation(s)
| | | | - Carla Edwards
- McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada
| | | | - Margo Mountjoy
- Association for Summer Olympic International Federations (ASOIF), Lausanne, Switzerland
- Department of Family Medicine, Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
24
|
Siedler MR, De Souza MJ, Albracht-Schulte K, Sekiguchi Y, Tinsley GM. The Influence of Energy Balance and Availability on Resting Metabolic Rate: Implications for Assessment and Future Research Directions. Sports Med 2023; 53:1507-1526. [PMID: 37213050 DOI: 10.1007/s40279-023-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/23/2023]
Abstract
Resting metabolic rate (RMR) is a significant contributor to an individual's total energy expenditure. As such, RMR plays an important role in body weight regulation across populations ranging from inactive individuals to athletes. In addition, RMR may also be used to screen for low energy availability and energy deficiency in athletes, and thus may be useful in identifying individuals at risk for the deleterious consequences of chronic energy deficiency. Given its importance in both clinical and research settings within the fields of exercise physiology, dietetics, and sports medicine, the valid assessment of RMR is critical. However, factors including varying states of energy balance (both short- and long-term energy deficit or surplus), energy availability, and prior food intake or exercise may influence resulting RMR measures, potentially introducing error into observed values. The purpose of this review is to summarize the relationships between short- and long-term changes in energetic status and resulting RMR measures, consider these findings in the context of relevant recommendations for RMR assessment, and provide suggestions for future research.
Collapse
Affiliation(s)
- Madelin R Siedler
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Mary Jane De Souza
- Departments of Kinesiology and Physiology, Pennsylvania State University, University Park, PA, USA
| | | | - Yasuki Sekiguchi
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Grant M Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
25
|
Cupka M, Sedliak M. Hungry runners - low energy availability in male endurance athletes and its impact on performance and testosterone: mini-review. Eur J Transl Myol 2023. [PMID: 37052052 PMCID: PMC10388605 DOI: 10.4081/ejtm.2023.11104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Low Energy Availability (LEA) arises from the inability to cover energy needs and requirements of training or normal physiological functions. This value differs from the energy balance, which takes into account the total daily energy intake compared to all the energy expended, regardless of the amount of fat-free mass. Insufficient energy consumption affects recovery, adaptation processes, increases the risk of injury or illness, so all of this can negatively affect performance. This mini-review is written on research articles in Pubmed database related to LEA in endurance-trained men and its impact on performance and testosterone. This article also clarifies the prevalence of LEA in male endurance athletes and its correlation to Relative Energy Deficiency in Sports (RED-S). LEA occurs in male endurance athletes and correlates with decreased testosterone levels, decreased bone density and also Resting Metabolic Rate. In endurance-trained men, there is great potential for the negative consequences of low energy availability. It can also be said that there are possibilities for primary screening, so we recommend regular check-ups of blood markers, body structure and keeping not only training but also dietary records, which can increase awareness of an adequate energy balance.
Collapse
Affiliation(s)
- Martin Cupka
- Comenius University in Bratislava, Faculty of Physical Education and Sport, Department of Biological and Medical Sciences, Bratislava.
| | - Milan Sedliak
- Comenius University in Bratislava, Faculty of Physical Education and Sport, Department of Biological and Medical Sciences, Bratislava.
| |
Collapse
|
26
|
Iraki J, Paulsen G, Garthe I, Slater G, Areta JL. Reliability of resting metabolic rate between and within day measurements using the Vyntus CPX system and comparison against predictive formulas. Nutr Health 2023; 29:107-114. [PMID: 34931931 PMCID: PMC10009490 DOI: 10.1177/02601060211057324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: To detect longitudinal changes of resting metabolic rate (RMR) resulting from the effects of energetic stress, reliable RMR measurements are crucial. The Vyntus CPX is a new automated indirect calorimetry system for which RMR reliability has not been determined. Additionally, its agreement with common predictive RMR formulas is unknown. Aim: To determine the within and between-day reliability of RMR measurements using the Vyntus CPX system and its agreement with predictive RMR formulas. Methods: Young (31 ± 7 years) healthy participants (n = 26, 12 females, 14 males) completed three measurements of RMR, two consecutive measures on the same day, one the day before/after, all under standardised conditions. Reliability was assessed with pairwise comparisons of between-day at the same time (BDST), within day consecutive measurements (WDCM) and between-day different time (BDDT), for parameters of reliability (mean change (MC), intraclass correlation (ICC) and typical error of measurement (TEM)). Measured RMR values (kcal/day) were compared against predictive values of 4 common formulas. Results: Parameters of reliability (mean, (95% confidence interval)) were: -BDST: MC, 0.2(-2.3-2.7)% (p = 0.67); ICC, 0.92(0.84-0.97); TEM, 4.5(3.5-6.2)%. -WDCM: MC, -2.5(-6.2-1.3)% (p = 0.21); ICC, 0.88(0.74-0.88); TEM, 7.0(5.4-9.8)%. -BDDT: MC, -1.5(-4.8-1.9)% (p = 0.57); ICC, 0.90(0.76-0.95); TEM, 6.1(4.8-8.5)%. RMRratios (measured/predicted) were: 1.04 ± 0.14 (Nelson, p = 0.13), 1.03 ± 0.10 (Mifflin, p = 0.21), 0.98 ± 0.09 (Harris-benedict, p = 0.30), 0.95 ± 0.11 (Cunningham1980, p = 0.01), 1.00 ± 0.12 (Cunningham1991, p = 0.90) and 0.96 ± 0.13 (DXA, p = 0.03). Conclusions: The Vyntus CPX is reliable and measured RMR values agreed with four predictive formulas but are lower than Cunningham1980 and DXA RMR estimates for this population.
Collapse
Affiliation(s)
- J Iraki
- Iraki Nutrition, Lørenskog, Norway
| | - G Paulsen
- Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - I Garthe
- Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - G Slater
- School of Health and Behavioural Sciences, 5333University of the Sunshine Coast, Queensland, Australia
| | - J L Areta
- Research institute for Sport and Exercise Sciences, 4589Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
27
|
Thomas C, Langan-Evans C, Germaine M, Artukovic M, Jones H, Whitworth-Turner C, Close GL, Louis J. Case Report: Effect of low energy availability and training load on sleep in a male combat sport athlete. Front Sports Act Living 2023; 4:981755. [PMID: 36733958 PMCID: PMC9887639 DOI: 10.3389/fspor.2022.981755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Purpose The aim of this case report was to describe the sleep responses in a male combat sport athlete, who was engaging in both chronic (CWL) and acute (AWL) weight loss practices in order to reduce body mass for a national competition. Methods During the first seven weeks of training (Phases 1 and 2), the athlete adhered to a daily energy intake (EI) equating to their resting metabolic rate (1700 kcal·day-1) followed by a reduction in EI (915-300 kcal·day-1) in the 5 days before weighing in (Phase 3). Nocturnal sleep was monitored throughout the 8-week training period using wristwatch actigraphy and frequent measurements of body mass/composition, daily exercise energy expenditure and training load (TL) were taken. Results The athlete was in a state of low energy availability (LEA) during the entire training period. There was a very large decrease in LEA status during phase 3 compared with phases 1 and 2 (3 vs. 20 kcal·kgFFM·day-1) and there was a small decrease in TL during phase 3 compared with phase 2 (410 vs. 523 AU). The athlete's sleep efficiency increased throughout the training period, but total sleep time displayed a small to moderate decrease in phase 3 compared with phases 1 and 2 (386 vs. 429 and 430 min). However, correlational analysis demonstrated trivial to small, non-significant relationships between sleep characteristics and the athlete's LEA status and TL. Conclusion These findings suggest that CWL and AWL practices that cause fluctuations in LEA and TL may be implemented without compromising the sleep of combat sport athletes.
Collapse
Affiliation(s)
- Craig Thomas
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom,School of Sport, Exercise and Health Sciences (SSEHS), Loughborough University, Loughborough, United Kingdom,Correspondence: Craig Thomas
| | - Carl Langan-Evans
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Mark Germaine
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom,SFI Centre for Research Training in Machine Learning, Dublin City University, Dublin, Ireland
| | - Mario Artukovic
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Helen Jones
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Graeme L. Close
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Julien Louis
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
28
|
O'Donnell J, White C, Dobbin N. Perspectives on relative energy deficiency in sport (RED-S): A qualitative case study of athletes, coaches and medical professionals from a super league netball club. PLoS One 2023; 18:e0285040. [PMID: 37134124 PMCID: PMC10155971 DOI: 10.1371/journal.pone.0285040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Research into relative energy deficiency in sport (RED-S) has increased substantially over recent years given the impact on athletes' health and performance. Most studies have considered sports that place emphasis on the aesthetics, endurance, or weight-restriction. Fewer studies exist in team sports. Netball is a team sport yet to be explored despite players potentially being at risk of RED-S given the high training volumes, sporting culture, internal and external pressures, and small network of coaches and medical professionals. A qualitative case study was used to explore the perspective of athletes, coaches, and medical professionals on RED-S. METHODS Semi-structured interviews were conducted with 13 players, 4 coaches and 4 medical professionals affiliated to a Super League club. Interviews were recorded and transcribed verbatim. The data was analysed using thematic analysis. RESULTS Five main themes were identified in this study. Awareness of RED-S amongst athletes and coaches was generally inadequate whereas medical professionals had some awareness of RED-S. Some athletes used contraception to reduce discomfort/pain during menstruation whilst others expressed concerns around long-term contraceptive use and previous menstrual cycle disturbance. Sporting demands, individual and contextual factors, and a preoccupation with body image were associated with nutritional restriction, whilst appearance was a source of internal and external pressure. External pressures also extended to coaches, assessments/feedback, social media, and commentary. Strategies suggested to reduce the risk of RED-S included "hard hitting cases", multidisciplinary team involvement, and support from the governing body. CONCLUSION The findings of this study provide insight into factors potentially associated with the risk of RED-S from an athletes, coaches, and medical professional perspective. This insight can be used to increase overall awareness of RED-S in key stakeholders as well as improve the recognition for the pressures netball athletes face that might alter the level of risk.
Collapse
Affiliation(s)
- Justine O'Donnell
- Department of Health Professions, Manchester Metropolitan University, Manchester, United Kingdom
| | - Chris White
- Department of Health and Well-being, Wrexham Glyndwr University, Wrexham, United Kingdom
| | - Nick Dobbin
- Department of Health Professions, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
29
|
Rapid Weight Gain and Weight Differential Predict Competitive Success in 2100 Professional Combat-Sport Athletes. Int J Sports Physiol Perform 2023; 18:85-94. [PMID: 36473482 DOI: 10.1123/ijspp.2022-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Combat-sport athletes commonly undergo rapid weight loss prior to prebout weigh-in and subsequently rapid weight gain (RWG) prior to competition. This investigation aimed to evaluate the effect of RWG and weight differential (WD) between opponents on competitive success. METHODS A retrospective cohort study was performed using data from professional mixed martial arts (MMA) and boxing events held between 2015 and 2019. The primary outcome was RWG (relative and absolute) between weigh-in and competition stratified by bout winners and losers. Binary logistic regression was used to explore the relationships among bout outcome, RWG, and WD between competitors on the day of their bout. RESULTS Among 708 MMA athletes included, winners regained more relative body mass (8.7% [3.7%] vs 7.9% [3.8%], P < .01) than losers. In 1392 included male boxers, winners regained significantly more relative body mass (8.0% [3.0%] vs 6.9% [3.2%], P < .01) than losers. Each percentage body mass increase resulted in a 7% increased likelihood of victory in MMA and a 13% increase in boxing. The relationship between RWG and competitive success remained significant in regional and male international MMA athletes, as well as boxers. WD predicted victory in international mixed martial artists and boxers. WD predicted victory by knockout or technical knockout in international MMA athletes and regional boxers. CONCLUSION This analysis of combat-sport athletes indicates that RWG and WD influence competitive success. These findings raise fair-play and safety concerns in these popular sports and may help guide risk-mitigating regulation strategies.
Collapse
|
30
|
Murugappan KR, Reale R, Baribeau V, O'Gara BP, Mueller A, Sarge T. Rapid weight gain following weight cutting in male professional boxers. PHYSICIAN SPORTSMED 2022; 50:494-500. [PMID: 34310264 DOI: 10.1080/00913847.2021.1960780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Weight classifications are used in boxing and other combat sports to match opponents of similar size. Professional boxers commonly engage in a potentially harmful practice known as rapid weight loss or 'weight cutting' to make weight the day prior to competition before rehydrating and refueling. This investigation describes the prevalence and magnitude of rapid weight gain in boxers following weigh-in as well as differences in practice with respect to weight class and promotion. METHODS This analysis describes official weight data from male professional boxers collected by the California State Athletic Commission between 2015 and 2018. A total of 399 athletes were included in the study. RESULTS Among included athletes, 389 (97.5%) athletes gained weight between official weigh-in and competition. Total absolute body mass gained was 4.4 ± 2.2 kg corresponding to a total relative body mass gain of 7.2 ± 3.5%. Boxers competing in international promotions gained significantly more body mass than regional competitors (8.0 ± 3.0% vs. 6.6 ± 3.7%; p < 0.001). In total, 82 (20.6%) athletes gained 10% body mass or more before competition. More international competitors reached this 10% threshold than regional competitors (25.3% vs. 17.4%; p = 0.03). CONCLUSIONS These findings indicate high prevalence and magnitude of RWG in professional boxing, particularly in boxers competing in elite international promotions.
Collapse
Affiliation(s)
- Kadhiresan R Murugappan
- Department of Anesthesia, Critical Care, and Pain Medicine at Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Reid Reale
- Performance Nutrition Department, UFC Performance Institute, Shanghai, China
| | - Vincent Baribeau
- Department of Anesthesia, Critical Care, and Pain Medicine at Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Brian P O'Gara
- Department of Anesthesia, Critical Care, and Pain Medicine at Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Ariel Mueller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Todd Sarge
- Department of Anesthesia, Critical Care, and Pain Medicine at Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Abstract
Relative Energy Deficiency in Sport (RED-S) refers to a condition in which energy imbalance leads to impaired physiological function of multiple organ systems and expands on the diagnosis previously known as the Female Athlete Triad. Researchers attribute the medical complications of RED-S to low energy availability, in which energy availability is defined as dietary energy intake minus exercise energy expenditure divided by fat-free mass. This article reviews the history of this diagnosis, the changing terminology, and the reasons for the expansion. Accepted definitions of each part of the energy availability equation are considered and the difficulties that exist using these equations in practice or comparatively in the literature are assessed. The review analyzes the broad spectrum of health consequences of RED-S, especially as it relates to hypoestrogenemia and menstrual function, gives guidance to those caring for athletes on the identification and management of RED-S, and sheds lights on the important role of coaches, athletic trainers, and families in recognizing this diagnosis and in helping getting patients to care.
Collapse
|
32
|
Moris JM, Olendorff SA, Zajac CM, Fernandez Del Valle M, Webb BL, Zuercher J, Smith BK, Tucker KR, Guilford BL. Collegiate Male Athletes Exhibit Conditions of the Male Athlete Triad. Appl Physiol Nutr Metab 2021; 47:328-336. [PMID: 34807739 DOI: 10.1139/apnm-2021-0512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The primary purpose of this study was to determine prevalence of the Male Athlete Triad (MAT) conditions: low energy availability (EA), low bone mineral density (BMD), and low testosterone in male collegiate athletes from different sports. Participants included 44 collegiate male athletes (age, 20.4 ± 0.2 yr; BMI, 25.3 ± 1.3 kg/m2) from seven sports (cross country, soccer, basketball, wrestling, track, golf, and baseball). Resting metabolic rate, three-day food intake, seven-day exercise energy expenditure, body composition, and reproductive and metabolic hormones were assessed. Of the total participants, 15% had low EA, 0% had low BMD, 28% had low total testosterone (TT), and 80% had low calculated free testosterone (cFT). There were no significant correlations between EA, BMD, TT, and cFT. Insulin and sex hormone binding globulin (SHBG) were below and on the upper end of the reference range for healthy male adults, respectively. Insulin was negatively correlated with total (r = -0.330, p = 0.043) and lumbar spine BMD z-scores (r = -0.413, p = 0.010). Low TT and low cFT were the most prevalent MAT conditions among all athletes. Further research should investigate the relationship between insulin and SHBG and the role of these hormones in the MAT. Novelty Bullets • Assessment of energy availability alone is not sufficient to identify physiological disturbances in collegiate male athletes. • Low total and/or free testosterone may be present in some collegiate male athletes, regardless of BMD status. • Low insulin and high SHBG concentration may portray the presence of conditions of the MAT in male collegiate athletes.
Collapse
Affiliation(s)
- Jose M Moris
- Southern Illinois University Edwardsville, 33140, Applied Health, Edwardsville, Illinois, United States;
| | - Samantha A Olendorff
- Southern Illinois University Edwardsville, 33140, Chemistry, Edwardsville, Illinois, United States;
| | - Chelsie M Zajac
- Southern Illinois University Edwardsville, 33140, Applied Health, Edwardsville, Illinois, United States;
| | - Maria Fernandez Del Valle
- Southern Illinois University Edwardsville, 33140, Applied Health, Vadalabene Center, Campus box 1126, VC 2626, Edwardsville, Illinois, United States, 62026-1001;
| | - Benjamin L Webb
- Southern Illinois University Edwardsville, 33140, Applied Health, Edwardsville, Illinois, United States;
| | - Jennifer Zuercher
- Southern Illinois University Edwardsville, 33140, Applied Health, Edwardsville, Illinois, United States;
| | - Bryan K Smith
- Southern Illinois University Edwardsville, 33140, Applied Health, Edwardsville, Illinois, United States;
| | - Kevin R Tucker
- Southern Illinois University Edwardsville, 33140, Chemistry, Edwardsville, Illinois, United States;
| | - Brianne L Guilford
- Southern Illinois University Edwardsville, 33140, Applied Health, Edwardsville, Illinois, United States;
| |
Collapse
|
33
|
Prevalence of Triad-RED-S symptoms in high-level Kenyan male and female distance runners and corresponding control groups. Eur J Appl Physiol 2021; 122:199-208. [PMID: 34643795 DOI: 10.1007/s00421-021-04827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE This study examined and compared select Triad-RED-S components/risk factors in high-level Kenyan male and female distance runners to corresponding control groups; focusing on examining energy intake (EI), bone indices, and hormonal markers. METHODS A cross-sectional, observational design was used in which Kenyan male and female (n = 30 and n = 26, respectively) middle- and long-distance runners and corresponding male and female control groups (n = 29 and n = 29, respectively) were examined. The participant's bone mineral density (BMD) at the lumbar spine, right femur, and total body were measured using a dual-energy X-ray absorptiometry analysis. Complete blood counts (CBC) were done on the whole blood specimens and hormonal measurements were performed on plasma specimens. In addition, athletes completed metabolic testing to determine maximal oxygen uptakes and 7-day dietary diaries. RESULTS Overall daily EI across runners and controls within each sex were low, but not significantly different (p > 0.05). Prevalence of low BMD values (Z score < - 2.0) was comparable across groups in each sex (p > 0.05). CBC measures suggested that both runners and controls were healthy. Finally, slight hormonal differences between runners and their respective controls existed (p < 0.05), but were not clinically meaningful or observed in typical Triad-RED-S-related parameters. CONCLUSION High-level Kenyan male and female runners had low daily EI, but no tendency toward a higher prevalence of low BMD, or Triad-RED-S-related hormonal abnormalities. The occurrence of low EI was not a major risk factor in our athletes; this calls into question whether the current criteria for Triad-RED-S are entirely applicable for athletes of African ethnicity.
Collapse
|
34
|
Prevalence of Surrogate Markers of Relative Energy Deficiency in Male Norwegian Olympic-Level Athletes. Int J Sport Nutr Exerc Metab 2021; 31:497-506. [PMID: 34489365 DOI: 10.1123/ijsnem.2020-0368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/10/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022]
Abstract
The syndrome of Relative Energy Deficiency in Sport (RED-S) includes wide-ranging effects on physiological and psychological functioning, performance, and general health. However, RED-S is understudied among male athletes at the highest performance levels. This cross-sectional study aimed to investigate surrogate RED-S markers prevalence in Norwegian male Olympic-level athletes. Athletes (n = 44) aged 24.7 ± 3.8 years, body mass 81.3 ± 15.9 kg, body fat 13.7% ± 5.8%, and training volume 76.1 ± 22.9 hr/month were included. Assessed parameters included resting metabolic rate (RMR), body composition, and bone mineral density by dual-energy X-ray absorptiometry and venous blood variables (testosterone, free triiodothyronine, cortisol, and lipids). Seven athletes (16%) grouped by the presence of low RMR (RMRratio < 0.90) (0.81 ± 0.07 vs. 1.04 ± 0.09, p < .001, effect size 2.6), also showed lower testosterone (12.9 ± 5.3 vs. 19.0 ± 5.3 nmol/L, p = .020) than in normal RMR group. In low RMRratio individuals, prevalence of other RED-S markers (-subclinical-low testosterone, low free triiodothyronine, high cortisol, and elevated low-density lipoprotein) was (N/number of markers): 2/0, 2/1, 2/2, 1/3. Low bone mineral density (z-score < -1) was found in 16% of the athletes, all with normal RMR. Subclinical low testosterone and free triiodothyronine levels were found in nine (25%) and two (5%) athletes, respectively. Subclinical high cortisol was found in 23% of athletes while 34% had elevated low-density lipoprotein cholesterol levels. Seven of 12 athletes with two or more RED-S markers had normal RMR. In conclusion, this study found that multiple RED-S markers also exist in male Olympic-level athletes. This highlights the importance of regular screening of male elite athletes, to ensure early detection and treatment of RED-S.
Collapse
|
35
|
A 5-Year Analysis of Weight Cycling Practices in a Male World Champion Professional Boxer: Potential Implications for Obesity and Cardiometabolic Disease. Int J Sport Nutr Exerc Metab 2021; 31:507-513. [PMID: 34480009 DOI: 10.1123/ijsnem.2021-0085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/22/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022]
Abstract
Weight cycling is thought to increase the risk of obesity and cardiometabolic disease in nonathletic and athletic populations. However, the magnitude and frequency of weight cycling is not well characterized in elite athletes. To this end, we quantified the weight cycling practices of a male World Champion professional boxer competing at super middleweight (76.2 kg). Over a 5-year period comprising 11 contests, we assessed changes in body mass (n = 8 contests) and body composition (n = 6 contests) during the training camp preceding each contest. Time taken to make weight was 11 ± 4 weeks (range: 4-16). Absolute and relative weight loss for each contest was 12.4 ± 2.1 kg (range: 9.8-17.0) and 13.9% ± 2.0% (range: 11.3-18.2), respectively. Notably, the athlete commenced each training camp with progressive increases in fat mass (i.e., 12.5 and 16.1 kg for Contests 1 and 11) and reductions in fat-free mass (i.e., 69.8 and 67.5 kg for Contests 1 and 11, respectively). Data suggest that weight cycling may lead to "fat overshooting" and further weight gain in later life. Larger scale studies are now required to characterize the weight cycling practices of elite athletes and robustly assess future cardiometabolic disease risk. From an ethical perspective, practitioners should be aware of the potential health consequences associated with weight cycling.
Collapse
|
36
|
Stellingwerff T, Heikura IA, Meeusen R, Bermon S, Seiler S, Mountjoy ML, Burke LM. Overtraining Syndrome (OTS) and Relative Energy Deficiency in Sport (RED-S): Shared Pathways, Symptoms and Complexities. Sports Med 2021; 51:2251-2280. [PMID: 34181189 DOI: 10.1007/s40279-021-01491-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 12/14/2022]
Abstract
The symptom similarities between training-overload (with or without an Overtraining Syndrome (OTS) diagnosis) and Relative Energy Deficiency in Sport (RED-S) are significant, with both initiating from a hypothalamic-pituitary origin, that can be influenced by low carbohydrate (CHO) and energy availability (EA). In this narrative review we wish to showcase that many of the negative outcomes of training-overload (with, or without an OTS diagnosis) may be primarily due to misdiagnosed under-fueling, or RED-S, via low EA and/or low CHO availability. Accordingly, we undertook an analysis of training-overload/OTS type studies that have also collected and analyzed for energy intake (EI), CHO, exercise energy expenditure (EEE) and/or EA. Eighteen of the 21 studies (86%) that met our criteria showed indications of an EA decrease or difference between two cohorts within a given study (n = 14 studies) or CHO availability decrease (n = 4 studies) during the training-overload/OTS period, resulting in both training-overload/OTS and RED-S symptom outcomes compared to control conditions. Furthermore, we demonstrate significantly similar symptom overlaps across much of the OTS (n = 57 studies) and RED-S/Female Athlete Triad (n = 88 studies) literature. It is important to note that the prevention of under-recovery is multi-factorial, but many aspects are based around EA and CHO availability. Herein we have demonstrated that OTS and RED-S have many shared pathways, symptoms, and diagnostic complexities. Substantial attention is required to increase the knowledge and awareness of RED-S, and to enhance the diagnostic accuracy of both OTS and RED-S, to allow clinicians to more accurately exclude LEA/RED-S from OTS diagnoses.
Collapse
Affiliation(s)
- Trent Stellingwerff
- Pacific Institute for Sport Excellence, Canadian Sport Institute-Pacific, 4371 Interurban Road, Victoria, BC, V9E 2C5, Canada.
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada.
| | - Ida A Heikura
- Pacific Institute for Sport Excellence, Canadian Sport Institute-Pacific, 4371 Interurban Road, Victoria, BC, V9E 2C5, Canada
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | - Romain Meeusen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stéphane Bermon
- Université Côte d'Azur, LAMHESS Nice, Nice, France
- World Athletics, Health and Science Department, Monte Carlo, Monaco
| | - Stephen Seiler
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Margo L Mountjoy
- Department of Family Medicine, McMaster University, Hamilton, ON, Canada
- IOC Medical Commission Games Group, Lausanne, Switzerland
| | - Louise M Burke
- Australian Institute of Sport, Bruce, ACT, Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
37
|
Langan-Evans C, Reale R, Sullivan J, Martin D. Nutritional Considerations for Female Athletes in Weight Category Sports. Eur J Sport Sci 2021; 22:720-732. [PMID: 34043489 DOI: 10.1080/17461391.2021.1936655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Weight making can be described as the process of reducing body mass in events where aesthetics, propulsion or the requirement to meet a specific weight category limit, are considered to be of competitive importance. Cross sectional research specifically focussed on weight category sports, has highlighted behaviours and practices that are similar in athletes of both sexes. Regardless of this and despite parallel participation in weight category sporting events, females are drastically underrepresented in studies examining body mass loss interventions across both chronic and acute timeframes. However, it has been well characterised that these types of body mass loss strategies can be causative of low energy availability, leading to consequences of female athlete triad and relative energy deficiency in sports. Furthermore, female-specific body composition and physiological systems modulated by the anterior pituitary and ovarian hormones within the menstrual cycle or use of hormonal contraception, can lead to potential outcomes which need to be considered carefully, particularly when employing acute weight loss strategies that are often utilised by weight making athletes. Therefore, the aim of this article serves to review the aforementioned issues, whilst offering practical recommendations via initial assessment, chronic/acute interventions and refeeding/recovery plans to help support the implementation of body mass loss strategies in the context of weight making specifically with female athletes.
Collapse
Affiliation(s)
- Carl Langan-Evans
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, England, UK
| | - Reid Reale
- Ultimate Fighting Championship Performance Institute (UFCPI), Shanghai, People's Republic of China
| | | | - Daniel Martin
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, England, UK
| |
Collapse
|
38
|
Kasper AM, Langan-Evans C, Hudson JF, Brownlee TE, Harper LD, Naughton RJ, Morton JP, Close GL. Come Back Skinfolds, All Is Forgiven: A Narrative Review of the Efficacy of Common Body Composition Methods in Applied Sports Practice. Nutrients 2021; 13:nu13041075. [PMID: 33806245 PMCID: PMC8065383 DOI: 10.3390/nu13041075] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 01/11/2023] Open
Abstract
Whilst the assessment of body composition is routine practice in sport, there remains considerable debate on the best tools available, with the chosen technique often based upon convenience rather than understanding the method and its limitations. The aim of this manuscript was threefold: (1) provide an overview of the common methodologies used within sport to measure body composition, specifically hydro-densitometry, air displacement plethysmography, bioelectrical impedance analysis and spectroscopy, ultra-sound, three-dimensional scanning, dual-energy X-ray absorptiometry (DXA) and skinfold thickness; (2) compare the efficacy of what are widely believed to be the most accurate (DXA) and practical (skinfold thickness) assessment tools and (3) provide a framework to help select the most appropriate assessment in applied sports practice including insights from the authors' experiences working in elite sport. Traditionally, skinfold thickness has been the most popular method of body composition but the use of DXA has increased in recent years, with a wide held belief that it is the criterion standard. When bone mineral content needs to be assessed, and/or when it is necessary to take limb-specific estimations of fat and fat-free mass, then DXA appears to be the preferred method, although it is crucial to be aware of the logistical constraints required to produce reliable data, including controlling food intake, prior exercise and hydration status. However, given the need for simplicity and after considering the evidence across all assessment methods, skinfolds appear to be the least affected by day-to-day variability, leading to the conclusion 'come back skinfolds, all is forgiven'.
Collapse
Affiliation(s)
- Andreas M. Kasper
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.M.K.); (C.L.-E.); (J.F.H.); (T.E.B.); (J.P.M.)
| | - Carl Langan-Evans
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.M.K.); (C.L.-E.); (J.F.H.); (T.E.B.); (J.P.M.)
| | - James F. Hudson
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.M.K.); (C.L.-E.); (J.F.H.); (T.E.B.); (J.P.M.)
| | - Thomas E. Brownlee
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.M.K.); (C.L.-E.); (J.F.H.); (T.E.B.); (J.P.M.)
| | - Liam D. Harper
- School of Human and Health Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; (L.D.H.); (R.J.N.)
| | - Robert J. Naughton
- School of Human and Health Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; (L.D.H.); (R.J.N.)
| | - James P. Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.M.K.); (C.L.-E.); (J.F.H.); (T.E.B.); (J.P.M.)
| | - Graeme L. Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.M.K.); (C.L.-E.); (J.F.H.); (T.E.B.); (J.P.M.)
- Correspondence: ; Tel.: +44-151-904-6266
| |
Collapse
|