1
|
de Oliveira NG, de Oliveira LF, da Silva RP, Oliveira TN, Möller GB, Murasaki J, Ramires MA, Azevedo RDA, Artioli GG, Roschel H, Gualano B, Saunders B. Trehalose Improved 20-min Cycling Time-Trial Performance After 100-min Cycling in Amateur Cyclists. Int J Sport Nutr Exerc Metab 2024; 34:199-206. [PMID: 38458180 DOI: 10.1123/ijsnem.2023-0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 03/10/2024]
Abstract
Carbohydrate (CHO) supplementation during endurance exercise can improve performance. However, it is unclear whether low glycemic index (GI) CHO leads to differential ergogenic and metabolic effects compared with a standard high GI CHO. This study investigated the ergogenic and metabolic effects of CHO supplementation with distinct GIs, namely, (a) trehalose (30 g/hr), (b) isomaltulose (30 g/hr), (c) maltodextrin (60 g/hr), and (d) placebo (water). In this double-blind, crossover, counterbalanced, placebo-controlled study, 13 male cyclists cycled a total of 100 min at varied exercise intensity (i.e., 10-min stages at 1.5, 2.0, and 2.5 W/kg; repeated three times plus two 5-min stages at 1.0 W/kg before and after the protocol), followed by a 20-min time trial on four separated occasions. Blood glucose and lactate (every 20 min), heart rate, and ratings of perceived exertion were collected throughout, and muscle biopsies were taken before and immediately after exercise. The results showed that trehalose improved time-trial performance compared with placebo (total work done 302 ± 39 vs. 287 ± 48 kJ; p = .01), with no other differences between sessions (all p ≥ .07). Throughout the 100-min protocol, blood glucose was higher with maltodextrin compared with the other supplements at all time points (all p < .05). Heart rate, ratings of perceived exertion, muscle glycogen content, blood glucose, and lactate were not different between conditions when considering the 20-min time trial (all p > .05). Trehalose supplementation throughout endurance exercise improved cycling performance and appears to be an appropriate CHO source for exercise tasks up to 2 hr. No ergogenic superiority between the different types of CHO was established.
Collapse
Affiliation(s)
- Nathan Gobbi de Oliveira
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Luana Farias de Oliveira
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Rafael Pires da Silva
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Tamires Nunes Oliveira
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Gabriella Berwig Möller
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Juliana Murasaki
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Manoel Antônio Ramires
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Rafael de Almeida Azevedo
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Guilherme Giannini Artioli
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, Sao Paulo, SP, Brazil
- Food Research Center, University of São Paulo, Sao Paulo, SP, Brazil
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, Sao Paulo, SP, Brazil
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
2
|
Pan S, Guo S, Dai J, Gu Y, Wang G, Wang Y, Qin Z, Luo L. Trehalose ameliorates autophagy dysregulation in aged cortex and acts as an exercise mimetic to delay brain aging in elderly mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Brouns F, Blaak E. Can one teaspoon of trehalose a day mitigate metabolic syndrome and diabetes risks? Nutr J 2021; 20:28. [PMID: 33722234 PMCID: PMC7962266 DOI: 10.1186/s12937-021-00685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/02/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Fred Brouns
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, NUTRIM- School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands, Post Box 616, MD, 6200, Maastricht, Netherlands.
| | - Ellen Blaak
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, NUTRIM- School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands, Post Box 616, MD, 6200, Maastricht, Netherlands
| |
Collapse
|
4
|
Baur DA, Saunders MJ. Carbohydrate supplementation: a critical review of recent innovations. Eur J Appl Physiol 2020; 121:23-66. [PMID: 33106933 DOI: 10.1007/s00421-020-04534-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE To critically examine the research on novel supplements and strategies designed to enhance carbohydrate delivery and/or availability. METHODS Narrative review. RESULTS Available data would suggest that there are varying levels of effectiveness based on the supplement/supplementation strategy in question and mechanism of action. Novel carbohydrate supplements including multiple transportable carbohydrate (MTC), modified carbohydrate (MC), and hydrogels (HGEL) have been generally effective at modifying gastric emptying and/or intestinal absorption. Moreover, these effects often correlate with altered fuel utilization patterns and/or glycogen storage. Nevertheless, performance effects differ widely based on supplement and study design. MTC consistently enhances performance, but the magnitude of the effect is yet to be fully elucidated. MC and HGEL seem unlikely to be beneficial when compared to supplementation strategies that align with current sport nutrition recommendations. Combining carbohydrate with other ergogenic substances may, in some cases, result in additive or synergistic effects on metabolism and/or performance; however, data are often lacking and results vary based on the quantity, timing, and inter-individual responses to different treatments. Altering dietary carbohydrate intake likely influences absorption, oxidation, and and/or storage of acutely ingested carbohydrate, but how this affects the ergogenicity of carbohydrate is still mostly unknown. CONCLUSIONS In conclusion, novel carbohydrate supplements and strategies alter carbohydrate delivery through various mechanisms. However, more research is needed to determine if/when interventions are ergogenic based on different contexts, populations, and applications.
Collapse
Affiliation(s)
- Daniel A Baur
- Department of Physical Education, Virginia Military Institute, 208 Cormack Hall, Lexington, VA, 24450, USA.
| | - Michael J Saunders
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22801, USA
| |
Collapse
|
5
|
Suzuki Y, Sato K, Sakuraba K, Akaishi T, Sugiyama K, Suzuki H, Ymawaki K. Pre-exercise Trehalose Ingestion Enhanced Exercise Performance in Male Collegiate Distance Runners. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20933727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A total of 10 male collegiate distance runners participated in a randomized crossover trial. After completing a warm-up, each participant ingested 300 mL of a test drink and performed 2 sets of pedaling for the duration of 10 minutes (tests 1 and 3) and a 30-second sprint test (tests 2 and 4) with 3-minute interval. During the exercise tests, participants were instructed to make a full power output in 30-second sprint tests and to keep the effort equivalent to their own pace in 10 000 m track race without a final push in the 10-minute pedaling phase. The test drinks allocated to the participants were either trehalose (6% w/v), glucose (6% w/v), or water. During the 4 tests, trehalose presented with the highest mean power outputs compared to that of glucose and water. It was statistically significant against water and glucose especially in the first 10 minutes of pedaling (test 1) and the last 30 seconds of sprint tests (test 4). Therefore, data indicate that trehalose may enhance exercise performance.
Collapse
Affiliation(s)
- Yoshio Suzuki
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
- Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Kotaro Sato
- Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Keishoku Sakuraba
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
- Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Tatsuyuki Akaishi
- Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Kana Sugiyama
- Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Hiroyuki Suzuki
- Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Koudai Ymawaki
- Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| |
Collapse
|
6
|
Trehalose as glucose surrogate in proliferation and cellular mobility of adult neural progenitor cells derived from mouse hippocampus. J Neural Transm (Vienna) 2019; 126:1485-1491. [PMID: 31468180 DOI: 10.1007/s00702-019-02070-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/19/2019] [Indexed: 01/21/2023]
Abstract
The disaccharide trehalose (TRE) represents a natural energy supply for distinct non-mammalian species. Evidence has shown that TRE impacts on various properties including the stabilization of protein structure and cell membranes, which are important neuroprotective features against neurodegeneration. In this study, we tested the specific effect of TRE on cell proliferation and mobilization using an established experimental paradigm of adult neural progenitor cells (NPCs) derived from murine hippocampus. NPC proliferation, both measured by growth curve analysis over 25 days and by bromodeoxyuridine (BrdU) incorporation, was not altered by adding TRE instead of GLC to the culture media. Using Boyden chamber experiments, the mobility in regular glucose-containing media did not differ from glucose-free TRE-supplemented media. Our observation suggests that TRE has the capacity to replace glucose (GLC) as energy source in neural cells in our experimental paradigm.
Collapse
|
7
|
Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, Collins R, Cooke M, Davis JN, Galvan E, Greenwood M, Lowery LM, Wildman R, Antonio J, Kreider RB. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr 2018; 15:38. [PMID: 30068354 PMCID: PMC6090881 DOI: 10.1186/s12970-018-0242-y] [Citation(s) in RCA: 423] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Background Sports nutrition is a constantly evolving field with hundreds of research papers published annually. In the year 2017 alone, 2082 articles were published under the key words ‘sport nutrition’. Consequently, staying current with the relevant literature is often difficult. Methods This paper is an ongoing update of the sports nutrition review article originally published as the lead paper to launch the Journal of the International Society of Sports Nutrition in 2004 and updated in 2010. It presents a well-referenced overview of the current state of the science related to optimization of training and performance enhancement through exercise training and nutrition. Notably, due to the accelerated pace and size at which the literature base in this research area grows, the topics discussed will focus on muscle hypertrophy and performance enhancement. As such, this paper provides an overview of: 1.) How ergogenic aids and dietary supplements are defined in terms of governmental regulation and oversight; 2.) How dietary supplements are legally regulated in the United States; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of nutritional approaches to augment skeletal muscle hypertrophy and the potential ergogenic value of various dietary and supplemental approaches. Conclusions This updated review is to provide ISSN members and individuals interested in sports nutrition with information that can be implemented in educational, research or practical settings and serve as a foundational basis for determining the efficacy and safety of many common sport nutrition products and their ingredients.
Collapse
Affiliation(s)
- Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA.
| | - Colin D Wilborn
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | | | - Abbie Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Rick Collins
- Collins Gann McCloskey and Barry PLLC, Mineola, NY, USA
| | - Mathew Cooke
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Jaci N Davis
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | - Elfego Galvan
- University of Texas Medical Branch, Galveston, TX, USA
| | - Mike Greenwood
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA
| | - Lonnie M Lowery
- Department of Human Performance & Sport Business, University of Mount Union, Alliance, OH, USA
| | | | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| | - Richard B Kreider
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
8
|
Tien NT, Karaca I, Tamboli IY, Walter J. Trehalose Alters Subcellular Trafficking and the Metabolism of the Alzheimer-associated Amyloid Precursor Protein. J Biol Chem 2016; 291:10528-40. [PMID: 26957541 DOI: 10.1074/jbc.m116.719286] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 01/28/2023] Open
Abstract
The disaccharide trehalose is commonly considered to stimulate autophagy. Cell treatment with trehalose could decrease cytosolic aggregates of potentially pathogenic proteins, including mutant huntingtin, α-synuclein, and phosphorylated tau that are associated with neurodegenerative diseases. Here, we demonstrate that trehalose also alters the metabolism of the Alzheimer disease-related amyloid precursor protein (APP). Cell treatment with trehalose decreased the degradation of full-length APP and its C-terminal fragments. Trehalose also reduced the secretion of the amyloid-β peptide. Biochemical and cell biological experiments revealed that trehalose alters the subcellular distribution and decreases the degradation of APP C-terminal fragments in endolysosomal compartments. Trehalose also led to strong accumulation of the autophagic marker proteins LC3-II and p62, and decreased the proteolytic activation of the lysosomal hydrolase cathepsin D. The combined data indicate that trehalose decreases the lysosomal metabolism of APP by altering its endocytic vesicular transport.
Collapse
Affiliation(s)
- Nguyen T Tien
- From the Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Ilker Karaca
- From the Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Irfan Y Tamboli
- From the Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Jochen Walter
- From the Department of Neurology, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
9
|
Fontan JDS, Amadio MB. O uso do carboidrato antes da atividade física como recurso ergogênico: revisão sistemática. REV BRAS MED ESPORTE 2015. [DOI: 10.1590/1517-86922015210201933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A dieta dos atletas requer aporte energético adequado, sendo a principal fonte energética os carboidratos CHO que são encontrados livremente na corrente sanguínea ou armazenados nos músculos e no fígado. Com base na rotina de treinos e competições, ou mesmo na quantidade exacerbada de energia necessária, é comum a necessidade de suplementação de CHO, seja na forma de bebidas, géis, barras ou balas energéticas, antes, durante ou depois da atividade física. Devido à importância dos CHO foram reunidos estudos que testaram a suplementação com diferentes CHO antes do exercício para aumento da performance. Foram investigados artigos e teses cuja publicação ocorreu a partir de 2006 em bases científicas eletrônicas e banco de teses de faculdades renomadas na área. Os CHO podem ser divididos segundo a quantidade de moléculas que o compõem, as quais também são diferenciadas também por digestão, absorção, viscosidade, dulçor, índice glicêmico IG e oxidação durante a atividade. Comparando-se a taxa de oxidação, foram encontrados melhores resultados quando os CHO ingeridos são de alto teor de IG glicose e sacarose e baixo teor de IG frutose ao se realizar atividade de média a alta intensidade de longa duração. A ingestão de CHO antes do exercício mostrou-se eficiente nos nove estudos analisados, sendo que dois deles apresentaram relevância p < 0,005. Mesmo com a ingestão de CHO com diferentes IG, observou-se melhora, não sendo relatada hipoglicemia de rebote como teorizado na literatura. A suplementação de CHO com a composição e administração apropriadas mostrou-se eficiente para aumento do desempenho físico.
Collapse
|
10
|
Welch KC, Péronnet F, Hatch KA, Voigt CC, McCue MD. Carbon stable-isotope tracking in breath for comparative studies of fuel use. Ann N Y Acad Sci 2015; 1365:15-32. [PMID: 25817456 DOI: 10.1111/nyas.12737] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Almost half a century ago, researchers demonstrated that the ratio of stable carbon isotopes in exhaled breath of rats and humans could reveal the oxidation of labeled substrates in vivo, opening a new chapter in the study of fuel use, the fate of ingested substrates, and aerobic metabolism. Until recently, the combined use of respirometry and stable-isotope tracer techniques had not been broadly employed to study fuel use in other animal groups. In this review, we summarize the history of this approach in human and animal research and define best practices that maximize its utility. We also summarize several case studies that use stable-isotope measurements of breath to explore the limits of aerobic metabolism and substrate turnover among several species and various physiological states. We highlight the importance of a comparative approach in revealing the profound effects that phylogeny, ecology, and behavior can have in shaping aerobic metabolism and energetics as well as the fundamental biological principles that underlie fuel use and metabolic function across taxa. New analytical equipment and refinement of methodology make the combined use of respirometry and stable-isotope tracer techniques simpler to perform, less costly, and more field ready than ever before.
Collapse
Affiliation(s)
- Kenneth C Welch
- Department of Biology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - François Péronnet
- Département de Kinésiologie, Université de Montréal, Montréal, Québec, Canada
| | - Kent A Hatch
- Department of Biology, Long Island University Post, Brookville, New York
| | - Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Marshall D McCue
- Department of Biological Sciences, St. Mary's University, San Antonio, Texas
| |
Collapse
|
11
|
O'Hara JP, Carroll S, Cooke CB, Morrison DJ, Preston T, King RFGJ. Preexercise galactose and glucose ingestion on fuel use during exercise. Med Sci Sports Exerc 2013; 44:1958-67. [PMID: 22525771 DOI: 10.1249/mss.0b013e318258bf85] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study determined the effect of ingesting galactose and glucose 30 min before exercise on exogenous and endogenous fuel use during exercise. METHODS Nine trained male cyclists completed three bouts of cycling at 60% W(max) for 120 min after an overnight fast. Thirty minutes before exercise, the cyclists ingested a fluid formulation containing placebo, 75 g of galactose (Gal), or 75 g of glucose (Glu) to which (13)C tracers had been added, in a double-blind randomized manner. Indirect calorimetry and isotope ratio mass spectrometry were used to calculate fat oxidation, total carbohydrate (CHO) oxidation, exogenous CHO oxidation, plasma glucose oxidation, and endogenous liver and muscle CHO oxidation rates. RESULTS Peak exogenous CHO oxidation was significantly higher after Glu (0.68 ± 0.08 g.min(-1), P < 0.05) compared with Gal (0.44 ± 0.02 g.min(-1)); however, mean rates were not significantly different (0.40 ± 0.03 vs. 0.36 ± 0.02 g.min(-1), respectively). Glu produced significantly higher exogenous CHO oxidation rates during the initial hour of exercise (P < 0.01), whereas glucose rates derived from Gal were significantly higher during the last hour (P < 0.01). Plasma glucose and liver glucose oxidation at 60 min of exercise were significantly higher for Glu (1.07 ± 0.1 g.min(-1), P < 0.05, and 0.57 ± 0.08 g.min(-1), P < 0.01) compared with Gal (0.64 ± 0.05 and 0.29 ± 0.03 g.min(-1), respectively). There were no significant differences in total CHO, whole body endogenous CHO, muscle glycogen, or fat oxidation between conditions. CONCLUSION The preexercise consumption of Glu provides a higher exogenous source of CHO during the initial stages of exercise, but Gal provides the predominant exogenous source of fuel during the latter stages of exercise and reduces the reliance on liver glucose.
Collapse
Affiliation(s)
- John P O'Hara
- Research Institute for Sport, Physical Activity and Leisure, Leeds Metropolitan University, Leeds, United Kingdom.
| | | | | | | | | | | |
Collapse
|
12
|
Blaak EE, Antoine JM, Benton D, Björck I, Bozzetto L, Brouns F, Diamant M, Dye L, Hulshof T, Holst JJ, Lamport DJ, Laville M, Lawton CL, Meheust A, Nilson A, Normand S, Rivellese AA, Theis S, Torekov SS, Vinoy S. Impact of postprandial glycaemia on health and prevention of disease. Obes Rev 2012; 13:923-84. [PMID: 22780564 PMCID: PMC3494382 DOI: 10.1111/j.1467-789x.2012.01011.x] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/11/2012] [Accepted: 04/27/2012] [Indexed: 12/11/2022]
Abstract
Postprandial glucose, together with related hyperinsulinemia and lipidaemia, has been implicated in the development of chronic metabolic diseases like obesity, type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). In this review, available evidence is discussed on postprandial glucose in relation to body weight control, the development of oxidative stress, T2DM, and CVD and in maintaining optimal exercise and cognitive performance. There is mechanistic evidence linking postprandial glycaemia or glycaemic variability to the development of these conditions or in the impairment in cognitive and exercise performance. Nevertheless, postprandial glycaemia is interrelated with many other (risk) factors as well as to fasting glucose. In many studies, meal-related glycaemic response is not sufficiently characterized, or the methodology with respect to the description of food or meal composition, or the duration of the measurement of postprandial glycaemia is limited. It is evident that more randomized controlled dietary intervention trials using effective low vs. high glucose response diets are necessary in order to draw more definite conclusions on the role of postprandial glycaemia in relation to health and disease. Also of importance is the evaluation of the potential role of the time course of postprandial glycaemia.
Collapse
Affiliation(s)
- E E Blaak
- Department of Human Biology, School of Nutrition & Toxicology Research and Metabolism (NUTRIM), Maastricht UniversityMaastricht, the Netherlands
| | | | - D Benton
- Department of Psychology, University of SwanseaWales, UK
| | - I Björck
- Division of Applied Nutrition and Food Chemistry, Department of Food Technology, Engineering and Nutrition, Lund UniversityLund, Sweden
| | - L Bozzetto
- Department of Clinical and Experimental Medicine, University Federico IINaples, Italy
| | - F Brouns
- Department of Human Biology, School of Nutrition & Toxicology Research and Metabolism (NUTRIM), Maastricht UniversityMaastricht, the Netherlands
| | - M Diamant
- Diabetes Center, Department of Internal Medicine, VU University Medical CenterAmsterdam, the Netherlands
| | - L Dye
- Institute of Psychological Sciences, University of LeedsLeeds, UK
| | - T Hulshof
- Kellogg EuropeDen Bosch, the Netherlands
| | - J J Holst
- Department of Biomedical Sciences and Novo Nordisk Foundation Centre of Basic Metabolic Research, University of CopenhagenCopenhagen, Denmark
| | - D J Lamport
- Institute of Psychological Sciences, University of LeedsLeeds, UK
| | - M Laville
- Centre de Recherche en Nutrition Humaine, Rhône-Alpes, Center for European Nutrition, Safety and Health, Centre Hospitalier Lyon SudLyon, France
| | - C L Lawton
- Institute of Psychological Sciences, University of LeedsLeeds, UK
| | | | - A Nilson
- Division of Applied Nutrition and Food Chemistry, Department of Food Technology, Engineering and Nutrition, Lund UniversityLund, Sweden
| | - S Normand
- Centre de Recherche en Nutrition Humaine, Rhône-Alpes, Center for European Nutrition, Safety and Health, Centre Hospitalier Lyon SudLyon, France
| | - A A Rivellese
- Department of Clinical and Experimental Medicine, University Federico IINaples, Italy
| | - S Theis
- Südzucker/BENEO GroupObrigheim, Germany
| | - S S Torekov
- Department of Biomedical Sciences and Novo Nordisk Foundation Centre of Basic Metabolic Research, University of CopenhagenCopenhagen, Denmark
| | - S Vinoy
- Kraft Foods, R&D Centre, Nutrition DepartmentSaclay, France
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Carbohydrate feeding has been shown to be ergogenic, but recently substantial advances have been made in optimizing the guidelines for carbohydrate intake during prolonged exercise. RECENT FINDINGS It was found that limitations to carbohydrate oxidation were in the absorptive process most likely because of a saturation of carbohydrate transporters. By using a combination of carbohydrates that use different intestinal transporters for absorption it was shown that carbohydrate delivery and oxidation could be increased. Studies demonstrated increases in exogenous carbohydrate oxidation rates of up to 65% of glucose: fructose compared with glucose only. Exogenous carbohydrate oxidation rates reach values of 1.75 g/min whereas previously it was thought that 1 g/min was the absolute maximum. The increased carbohydrate oxidation with multiple transportable carbohydrates was accompanied by increased fluid delivery and improved oxidation efficiency, and thus the likelihood of gastrointestinal distress may be diminished. Studies also demonstrated reduced fatigue and improved exercise performance with multiple transportable carbohydrates compared with a single carbohydrate. SUMMARY Multiple transportable carbohydrates, ingested at high rates, can be beneficial during endurance sports in which the duration of exercise is 3 h or more.
Collapse
Affiliation(s)
- Asker E Jeukendrup
- School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
14
|
Kreider RB, Wilborn CD, Taylor L, Campbell B, Almada AL, Collins R, Cooke M, Earnest CP, Greenwood M, Kalman DS, Kerksick CM, Kleiner SM, Leutholtz B, Lopez H, Lowery LM, Mendel R, Smith A, Spano M, Wildman R, Willoughby DS, Ziegenfuss TN, Antonio J. ISSN exercise & sport nutrition review: research & recommendations. J Int Soc Sports Nutr 2010. [PMCID: PMC2853497 DOI: 10.1186/1550-2783-7-7] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients.
Collapse
|
15
|
ISHIJIMA T, HASHIMOTO H, SATOU K, MURAOKA I, SUZUKI K, HIGUCHI M. The Different Effects of Fluid with and without Carbohydrate Ingestion on Subjective Responses of Untrained Men during Prolonged Exercise in a Hot Environment. J Nutr Sci Vitaminol (Tokyo) 2009; 55:506-10. [DOI: 10.3177/jnsv.55.506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|