1
|
Müller L, Hatzfeld M. Emerging functions of Plakophilin 4 in the control of cell contact dynamics. Cell Commun Signal 2025; 23:109. [PMID: 40001215 PMCID: PMC11863852 DOI: 10.1186/s12964-025-02106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Plakophilin 4 (PKP4, also called p0071) is a unique armadillo family protein localized at adherens junctions that acts as a scaffold protein capable of clustering cadherins. PKP4 also regulates cadherin recycling which is vital to enable junction dynamics. In addition, PKP4 controls the mechanical properties of cells by regulating actin filament organization through small Rho-GTPases. In this setting, PKP4 controls the localization and activity of specific guanine exchange factors (GEFs) and of their opponents, the GTPase activating proteins (GAPs). Through the formation of multiprotein complexes with Rho-GTPases, their regulators and their effectors, PKP4 controls the spatio-temporal activity of Rho signaling to regulate cell adhesion and cell mechanics. In keratinocytes, PKP4 prevents differentiation and at the same time dampens proliferation. This is, in part achieved through an interaction with the Hippo pathway, which controls the activity of the transcriptional co-factors YAP and TAZ. In a feedback loop, YAP/TAZ modulate PKP4 localization and function. Here, we review the various functions of PKP4 in cell signaling, cell mechanics, cell adhesion and growth control. We discuss how these functions converge in the regulation of cell adhesion dynamics to allow cells to adapt to their changing environment and enable proliferation, delamination but, at the same time, guarantee cell barrier function.
Collapse
Affiliation(s)
- Lisa Müller
- Institute of Molecular Medicine, Section for RNA biology and Pathogenesis, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany.
| | - Mechthild Hatzfeld
- Institute of Molecular Medicine, Section for Pathobiochemistry, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| |
Collapse
|
2
|
Juárez JCC, Gómez AA, Díaz AES, Arévalo GS. Understanding pathophysiology in fragile X syndrome: a comprehensive review. Neurogenetics 2024; 26:6. [PMID: 39585476 DOI: 10.1007/s10048-024-00794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Fragile X syndrome (FXS) is the leading hereditary cause of intellectual disability and the most commonly associated genetic cause of autism. Historically, research into its pathophysiology has focused predominantly on neurons; however, emerging evidence suggests involvement of additional cell types and systems. The objective of this study was to review and synthesize current evidence regarding the pathophysiology of Fragile X syndrome. A comprehensive literature review was conducted using databases such as PubMed and Google Scholar, employing MeSH terms including "Fragile X Syndrome," "FMR1 gene," and "FMRP." Studies on both human and animal models, from inception to 2022, published in recognized journals were included. The evidence supports those neurons, glial cells, stem cells, the immune system, and lipid metabolism pathways contribute to the pathophysiology of Fragile X syndrome. Further research is necessary to explore these fields independently and to elucidate their interactions.
Collapse
Affiliation(s)
| | - Alejandro Aguilar Gómez
- Faculty of Medical Sciences, Universidad of San Carlos of Guatemala, Guatemala City, Guatemala
| | | | - Gabriel Silva Arévalo
- Genetics and Metabolic Clinic Coordinator, Hospital Obras Sociales del Santo Hermano Pedro, Antigua Guatemala City, Guatemala
| |
Collapse
|
3
|
Müller L, Keil R, Glaß M, Hatzfeld M. Plakophilin 4 controls the spatio-temporal activity of RhoA at adherens junctions to promote cortical actin ring formation and tissue tension. Cell Mol Life Sci 2024; 81:291. [PMID: 38970683 PMCID: PMC11335210 DOI: 10.1007/s00018-024-05329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
Plakophilin 4 (PKP4) is a component of cell-cell junctions that regulates intercellular adhesion and Rho-signaling during cytokinesis with an unknown function during epidermal differentiation. Here we show that keratinocytes lacking PKP4 fail to develop a cortical actin ring, preventing adherens junction maturation and generation of tissue tension. Instead, PKP4-depleted cells display increased stress fibers. PKP4-dependent RhoA localization at AJs was required to activate a RhoA-ROCK2-MLCK-MLC2 axis and organize actin into a cortical ring. AJ-associated PKP4 provided a scaffold for the Rho activator ARHGEF2 and the RhoA effectors MLCK and MLC2, facilitating the spatio-temporal activation of RhoA signaling at cell junctions to allow cortical ring formation and actomyosin contraction. In contrast, association of PKP4 with the Rho suppressor ARHGAP23 reduced ARHGAP23 binding to RhoA which prevented RhoA activation in the cytoplasm and stress fiber formation. These data identify PKP4 as an AJ component that transduces mechanical signals into cytoskeletal organization.
Collapse
Affiliation(s)
- Lisa Müller
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany.
| | - René Keil
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| | - Mechthild Hatzfeld
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| |
Collapse
|
4
|
Taha MS, Ahmadian MR. Fragile X Messenger Ribonucleoprotein Protein and Its Multifunctionality: From Cytosol to Nucleolus and Back. Biomolecules 2024; 14:399. [PMID: 38672417 PMCID: PMC11047961 DOI: 10.3390/biom14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene and a consequent lack of FMR protein (FMRP) synthesis are associated with fragile X syndrome, one of the most common inherited intellectual disabilities. FMRP is a multifunctional protein that is involved in many cellular functions in almost all subcellular compartments under both normal and cellular stress conditions in neuronal and non-neuronal cell types. This is achieved through its trafficking signals, nuclear localization signal (NLS), nuclear export signal (NES), and nucleolar localization signal (NoLS), as well as its RNA and protein binding domains, and it is modulated by various post-translational modifications such as phosphorylation, ubiquitination, sumoylation, and methylation. This review summarizes the recent advances in understanding the interaction networks of FMRP with a special focus on FMRP stress-related functions, including stress granule formation, mitochondrion and endoplasmic reticulum plasticity, ribosome biogenesis, cell cycle control, and DNA damage response.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
- Research on Children with Special Needs Department, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo 12622, Egypt
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
5
|
St Paul A, Corbett C, Peluzzo A, Kelemen S, Okune R, Haines DS, Preston K, Eguchi S, Autieri MV. FXR1 regulates vascular smooth muscle cell cytoskeleton, VSMC contractility, and blood pressure by multiple mechanisms. Cell Rep 2023; 42:112381. [PMID: 37043351 PMCID: PMC10564969 DOI: 10.1016/j.celrep.2023.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 04/13/2023] Open
Abstract
Appropriate cytoskeletal organization is essential for vascular smooth muscle cell (VSMC) conditions such as hypertension. This study identifies FXR1 as a key protein linking cytoskeletal dynamics with mRNA stability. RNA immunoprecipitation sequencing (RIP-seq) in human VSMCs identifies that FXR1 binds to mRNA associated with cytoskeletal dynamics, and FXR1 depletion decreases their mRNA stability. FXR1 binds and regulates actin polymerization. Mass spectrometry identifies that FXR1 interacts with cytoskeletal proteins, particularly Arp2, a protein crucial for VSMC contraction, and CYFIP1, a WASP family verprolin-homologous protein (WAVE) regulatory complex (WRC) protein that links mRNA processing with actin polymerization. Depletion of FXR1 decreases the cytoskeletal processes of adhesion, migration, contraction, and GTPase activation. Using telemetry, conditional FXR1SMC/SMC mice have decreased blood pressure and an abundance of cytoskeletal-associated transcripts. This indicates that FXR1 is a muscle-enhanced WRC modulatory protein that regulates VSMC cytoskeletal dynamics by regulation of cytoskeletal mRNA stability and actin polymerization and cytoskeletal protein-protein interactions, which can regulate blood pressure.
Collapse
Affiliation(s)
- Amanda St Paul
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Cali Corbett
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Amanda Peluzzo
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Sheri Kelemen
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Rachael Okune
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Dale S Haines
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Kyle Preston
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Michael V Autieri
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
6
|
Donta MS, Srivastava Y, Di Mauro CM, Paulucci-Holthauzen A, Waxham MN, McCrea PD. p120-catenin subfamily members have distinct as well as shared effects on dendrite morphology during neuron development in vitro. Front Cell Neurosci 2023; 17:1151249. [PMID: 37082208 PMCID: PMC10112520 DOI: 10.3389/fncel.2023.1151249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 04/22/2023] Open
Abstract
Dendritic arborization is essential for proper neuronal connectivity and function. Conversely, abnormal dendrite morphology is associated with several neurological pathologies like Alzheimer's disease and schizophrenia. Among major intrinsic mechanisms that determine the extent of the dendritic arbor is cytoskeletal remodeling. Here, we characterize and compare the impact of the four proteins involved in cytoskeletal remodeling-vertebrate members of the p120-catenin subfamily-on neuronal dendrite morphology. In relation to each of their own distributions, we find that p120-catenin and delta-catenin are expressed at relatively higher proportions in growth cones compared to ARVCF-catenin and p0071-catenin; ARVCF-catenin is expressed at relatively high proportions in the nucleus; and all catenins are expressed in dendritic processes and the soma. Through altering the expression of each p120-subfamily catenin in neurons, we find that exogenous expression of either p120-catenin or delta-catenin correlates with increased dendritic length and branching, whereas their respective depletion decreases dendritic length and branching. While increasing ARVCF-catenin expression also increases dendritic length and branching, decreasing expression has no grossly observable morphological effect. Finally, increasing p0071-catenin expression increases dendritic branching, but not length, while decreasing expression decreases dendritic length and branching. These distinct localization patterns and morphological effects during neuron development suggest that these catenins have both shared and distinct roles in the context of dendrite morphogenesis.
Collapse
Affiliation(s)
- Maxsam S. Donta
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yogesh Srivastava
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christina M. Di Mauro
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - M. Neal Waxham
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Pierre D. McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
7
|
Wang X, Sela-Donenfeld D, Wang Y. Axonal and presynaptic FMRP: Localization, signal, and functional implications. Hear Res 2023; 430:108720. [PMID: 36809742 PMCID: PMC9998378 DOI: 10.1016/j.heares.2023.108720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Fragile X mental retardation protein (FMRP) binds a selected set of mRNAs and proteins to guide neural circuit assembly and regulate synaptic plasticity. Loss of FMRP is responsible for Fragile X syndrome, a neuropsychiatric disorder characterized with auditory processing problems and social difficulty. FMRP actions in synaptic formation, maturation, and plasticity are site-specific among the four compartments of a synapse: presynaptic and postsynaptic neurons, astrocytes, and extracellular matrix. This review summarizes advancements in understanding FMRP localization, signals, and functional roles in axons and presynaptic terminals.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
8
|
Bax M, Romanov V, Junday K, Giannoulatou E, Martinac B, Kovacic JC, Liu R, Iismaa SE, Graham RM. Arterial dissections: Common features and new perspectives. Front Cardiovasc Med 2022; 9:1055862. [PMID: 36561772 PMCID: PMC9763901 DOI: 10.3389/fcvm.2022.1055862] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Arterial dissections, which involve an abrupt tear in the wall of a major artery resulting in the intramural accumulation of blood, are a family of catastrophic disorders causing major, potentially fatal sequelae. Involving diverse vascular beds, including the aorta or coronary, cervical, pulmonary, and visceral arteries, each type of dissection is devastating in its own way. Traditionally they have been studied in isolation, rather than collectively, owing largely to the distinct clinical consequences of dissections in different anatomical locations - such as stroke, myocardial infarction, and renal failure. Here, we review the shared and unique features of these arteriopathies to provide a better understanding of this family of disorders. Arterial dissections occur commonly in the young to middle-aged, and often in conjunction with hypertension and/or migraine; the latter suggesting they are part of a generalized vasculopathy. Genetic studies as well as cellular and molecular investigations of arterial dissections reveal striking similarities between dissection types, particularly their pathophysiology, which includes the presence or absence of an intimal tear and vasa vasorum dysfunction as a cause of intramural hemorrhage. Pathway perturbations common to all types of dissections include disruption of TGF-β signaling, the extracellular matrix, the cytoskeleton or metabolism, as evidenced by the finding of mutations in critical genes regulating these processes, including LRP1, collagen genes, fibrillin and TGF-β receptors, or their coupled pathways. Perturbances in these connected signaling pathways contribute to phenotype switching in endothelial and vascular smooth muscle cells of the affected artery, in which their physiological quiescent state is lost and replaced by a proliferative activated phenotype. Of interest, dissections in various anatomical locations are associated with distinct sex and age predilections, suggesting involvement of gene and environment interactions in disease pathogenesis. Importantly, these cellular mechanisms are potentially therapeutically targetable. Consideration of arterial dissections as a collective pathology allows insight from the better characterized dissection types, such as that involving the thoracic aorta, to be leveraged to inform the less common forms of dissections, including the potential to apply known therapeutic interventions already clinically available for the former.
Collapse
Affiliation(s)
- Monique Bax
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Valentin Romanov
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Keerat Junday
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Jason C. Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- St. Vincent’s Hospital, Darlinghurst, NSW, Australia
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - Renjing Liu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Siiri E. Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Robert M. Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
9
|
Briševac D, Scholz R, Du D, Elagabani MN, Köhr G, Kornau HC. The small GTPase Arf6 is dysregulated in a mouse model for fragile X syndrome. J Neurochem 2020; 157:666-683. [PMID: 33125726 DOI: 10.1111/jnc.15230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 11/29/2022]
Abstract
Fragile X syndrome (FXS), the most common inherited cause of intellectual disability, results from silencing of the fragile X mental retardation gene 1 (FMR1). The analyses of FXS patients' brain autopsies revealed an increased density of immature dendritic spines in cortical areas. We hypothesize that the small GTPase Arf6, an actin regulator critical for the development of glutamatergic synapses and dendritic spines, is implicated in FXS. Here, we determined the fraction of active, GTP-bound Arf6 in cortical neuron cultures and synaptoneurosomes from Fmr1 knockout mice, measured actin polymerization in neurons expressing Arf6 mutants with variant GTP- or GDP-binding properties, and recorded hippocampal long-term depression induced by metabotropic glutamate receptors (mGluR-LTD) in acute brain slices. We detected a persistently elevated Arf6 activity, a loss of Arf6 sensitivity to synaptic stimulation and an increased Arf6-dependent dendritic actin polymerization in mature Fmr1 knockout neurons. Similar imbalances in Arf6-GTP levels and actin filament assembly were caused in wild-type neurons by RNAi-mediated depletion of the postsynaptic Arf6 guanylate exchange factors IQSEC1 (BRAG2) or IQSEC2 (BRAG1). Targeted deletion of Iqsec1 in hippocampal neurons of 3-week-old mice interfered with mGluR-LTD in wild-type, but not in Fmr1 knockout mice. Collectively, these data suggest an aberrant Arf6 regulation in Fmr1 knockout neurons with consequences for the actin cytoskeleton, spine morphology, and synaptic plasticity. Moreover, FXS and syndromes caused by genetic variants in IQSEC1 and IQSEC2 share intellectual disabilities and developmental delay as main symptoms. Therefore, dysregulation of Arf6 may contribute to the cognitive impairment in FXS.
Collapse
Affiliation(s)
- Dušica Briševac
- Neuroscience Research Center (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ralf Scholz
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dan Du
- Central Institute of Mental Health, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Georg Köhr
- Central Institute of Mental Health, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Neurophysiology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans-Christian Kornau
- Neuroscience Research Center (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| |
Collapse
|
10
|
Taha MS, Haghighi F, Stefanski A, Nakhaei-Rad S, Kazemein Jasemi NS, Al Kabbani MA, Görg B, Fujii M, Lang PA, Häussinger D, Piekorz RP, Stühler K, Ahmadian MR. Novel FMRP interaction networks linked to cellular stress. FEBS J 2020; 288:837-860. [PMID: 32525608 DOI: 10.1111/febs.15443] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Silencing of the fragile X mental retardation 1 (FMR1) gene and consequently lack of synthesis of FMR protein (FMRP) are associated with fragile X syndrome, which is one of the most prevalent inherited intellectual disabilities, with additional roles in increased viral infection, liver disease, and reduced cancer risk. FMRP plays critical roles in chromatin dynamics, RNA binding, mRNA transport, and mRNA translation. However, the underlying molecular mechanisms, including the (sub)cellular FMRP protein networks, remain elusive. Here, we employed affinity pull-down and quantitative LC-MS/MS analyses with FMRP. We identified known and novel candidate FMRP-binding proteins as well as protein complexes. FMRP interacted with 180 proteins, 28 of which interacted with its N terminus. Interaction with the C terminus of FMRP was observed for 102 proteins, and 48 proteins interacted with both termini. This FMRP interactome comprises known FMRP-binding proteins, including the ribosomal proteins FXR1P, NUFIP2, Caprin-1, and numerous novel FMRP candidate interacting proteins that localize to different subcellular compartments, including CARF, LARP1, LEO1, NOG2, G3BP1, NONO, NPM1, SKIP, SND1, SQSTM1, and TRIM28. Our data considerably expand the protein and RNA interaction networks of FMRP, which thereby suggest that, in addition to its known functions, FMRP participates in transcription, RNA metabolism, ribonucleoprotein stress granule formation, translation, DNA damage response, chromatin dynamics, cell cycle regulation, ribosome biogenesis, miRNA biogenesis, and mitochondrial organization. Thus, FMRP seems associated with multiple cellular processes both under normal and cell stress conditions in neuronal as well as non-neuronal cell types, as exemplified by its role in the formation of stress granules.
Collapse
Affiliation(s)
- Mohamed S Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany.,Research on Children with Special Needs Department, Medical Research Branch, National Research Centre, Cairo, Egypt
| | - Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Neda S Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Boris Görg
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Phillip A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
11
|
Kenny PJ, Kim M, Skariah G, Nielsen J, Lannom MC, Ceman S. The FMRP-MOV10 complex: a translational regulatory switch modulated by G-Quadruplexes. Nucleic Acids Res 2020; 48:862-878. [PMID: 31740951 PMCID: PMC7145700 DOI: 10.1093/nar/gkz1092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 01/19/2023] Open
Abstract
The Fragile X Mental Retardation Protein (FMRP) is an RNA binding protein that regulates translation and is required for normal cognition. FMRP upregulates and downregulates the activity of microRNA (miRNA)-mediated silencing in the 3' UTR of a subset of mRNAs through its interaction with RNA helicase Moloney leukemia virus 10 (MOV10). This bi-functional role is modulated through RNA secondary structures known as G-Quadruplexes. We elucidated the mechanism of FMRP's role in suppressing Argonaute (AGO) family members' association with mRNAs by mapping the interacting domains of FMRP, MOV10 and AGO and then showed that the RGG box of FMRP protects a subset of co-bound mRNAs from AGO association. The N-terminus of MOV10 is required for this protection: its over-expression leads to increased levels of the endogenous proteins encoded by this co-bound subset of mRNAs. The N-terminus of MOV10 also leads to increased RGG box-dependent binding to the SC1 RNA G-Quadruplex and is required for outgrowth of neurites. Lastly, we showed that FMRP has a global role in miRNA-mediated translational regulation by recruiting AGO2 to a large subset of RNAs in mouse brain.
Collapse
Affiliation(s)
- Phillip J Kenny
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Miri Kim
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Geena Skariah
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Joshua Nielsen
- Integrative Biology, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Monica C Lannom
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Stephanie Ceman
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Yau SY, Bettio L, Chiu J, Chiu C, Christie BR. Fragile-X Syndrome Is Associated With NMDA Receptor Hypofunction and Reduced Dendritic Complexity in Mature Dentate Granule Cells. Front Mol Neurosci 2019; 11:495. [PMID: 30705620 PMCID: PMC6344420 DOI: 10.3389/fnmol.2018.00495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. It is caused by the overexpansion of cytosine-guanine-guanine (CGG) trinucleotide in Fmr1 gene, resulting in complete loss of the fragile X mental retardation protein (FMRP). Previous studies using Fmr1 knockout (Fmr1 KO) mice have suggested that a N-methyl-D-aspartate receptors (NMDAR) hypofunction in the hippocampal dentate gyrus may partly contribute to cognitive impairments in FXS. Since activation of NMDAR plays an important role in dendritic arborization during neuronal development, we examined whether deficits in NMDAR function are associated with alterations in dendritic complexity in the hippocampal dentate region. The dentate granule cell layer (GCL) presents active postnatal neurogenesis, and consists of a heterogenous neuronal population with gradient ages from the superficial to its deep layer. Here, we show that neurons with multiple primary dendrites that reside in the outer GCL of Fmr1 KO mice display significantly smaller NMDAR excitatory post-synaptic currents (EPSCs) and a higher α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) to NMDA ratio in comparison to their wild-type counterparts. These deficits were associated with a significant decrease in dendritic complexity, with both dendritic length and number of intersections being significantly reduced. In contrast, although neurons with a single primary dendrite resided in the inner GCL of Fmr1 KO mice had a trend toward a reduction in NMDAR EPSCs and a higher AMPA/NMDA ratio, no alterations were found in dendritic complexity at this developmental stage. Our data indicate that the loss of FMRP causes NMDAR deficits and reduced dendritic complexity in granule neurons with multiple primary dendrites which are thought to be more mature in the GCL.
Collapse
Affiliation(s)
- Suk-Yu Yau
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, BC, Canada
| | - Luis Bettio
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, BC, Canada
| | - Jason Chiu
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, BC, Canada
| | - Christine Chiu
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, BC, Canada
| | - Brian R Christie
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
13
|
Guo Y, Chen X, Xing R, Wang M, Zhu X, Guo W. Interplay between FMRP and lncRNA TUG1 regulates axonal development through mediating SnoN-Ccd1 pathway. Hum Mol Genet 2019; 27:475-485. [PMID: 29211876 DOI: 10.1093/hmg/ddx417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
LncRNAs have recently emerged to influence the pathogenesis of fragile X syndrome (FXS), which is caused by the functional loss of fragile X mental retardation protein (FMRP). However, the interaction between FMRP and lncRNAs on regulating neuronal development remains elusive. Here, we reported that FMRP directly interacted with lncRNA TUG1, and decreased its stability. Furthermore, TUG1 bond to transcriptional regulator, SnoN, and negatively modulated SnoN-Ccd1 pathway to specifically control axonal development. These observations suggested interplay between FMRP and lncRNAs might contribute to the pathogenesis of FXS.
Collapse
Affiliation(s)
- Ye Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Xu Chen
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100093, China
| | - Ruxiao Xing
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100093, China
| | - Min Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Maurin T, Bardoni B. Fragile X Mental Retardation Protein: To Be or Not to Be a Translational Enhancer. Front Mol Biosci 2018; 5:113. [PMID: 30619879 PMCID: PMC6297276 DOI: 10.3389/fmolb.2018.00113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Thomas Maurin
- Université Côte d'Azur, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, Valbonne, France.,CNRS LIA "Neogenex", Valbonne, France
| | - Barbara Bardoni
- CNRS LIA "Neogenex", Valbonne, France.,Université Côte d'Azur, INSERM, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, Valbonne, France
| |
Collapse
|
15
|
Ramírez-Cheyne JA, Duque GA, Ayala-Zapata S, Saldarriaga-Gil W, Hagerman P, Hagerman R, Payán-Gómez C. Fragile X syndrome and connective tissue dysregulation. Clin Genet 2018; 95:262-267. [DOI: 10.1111/cge.13469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/03/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | - Paul Hagerman
- UC Davis MIND Institute, University of California; Davis California
| | - Randi Hagerman
- UC Davis MIND Institute, University of California; Davis California
| | - César Payán-Gómez
- Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario; Bogotá Colombia
| |
Collapse
|
16
|
Castagnola S, Delhaye S, Folci A, Paquet A, Brau F, Duprat F, Jarjat M, Grossi M, Béal M, Martin S, Mantegazza M, Bardoni B, Maurin T. New Insights Into the Role of Ca v2 Protein Family in Calcium Flux Deregulation in Fmr1-KO Neurons. Front Mol Neurosci 2018; 11:342. [PMID: 30319351 PMCID: PMC6170614 DOI: 10.3389/fnmol.2018.00342] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
Fragile X syndrome (FXS), the most common form of inherited intellectual disability (ID) and a leading cause of autism, results from the loss of expression of the Fmr1 gene which encodes the RNA-binding protein Fragile X Mental Retardation Protein (FMRP). Among the thousands mRNA targets of FMRP, numerous encode regulators of ion homeostasis. It has also been described that FMRP directly interacts with Ca2+ channels modulating their activity. Collectively these findings suggest that FMRP plays critical roles in Ca2+ homeostasis during nervous system development. We carried out a functional analysis of Ca2+ regulation using a calcium imaging approach in Fmr1-KO cultured neurons and we show that these cells display impaired steady state Ca2+ concentration and an altered entry of Ca2+ after KCl-triggered depolarization. Consistent with these data, we show that the protein product of the Cacna1a gene, the pore-forming subunit of the Cav2.1 channel, is less expressed at the plasma membrane of Fmr1-KO neurons compared to wild-type (WT). Thus, our findings point out the critical role that Cav2.1 plays in the altered Ca2+ flux in Fmr1-KO neurons, impacting Ca2+ homeostasis of these cells. Remarkably, we highlight a new phenotype of cultured Fmr1-KO neurons that can be considered a novel cellular biomarker and is amenable to small molecule screening and identification of new drugs to treat FXS.
Collapse
Affiliation(s)
- Sara Castagnola
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France.,CNRS LIA "Neogenex", Valbonne, France
| | - Sébastien Delhaye
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France.,CNRS LIA "Neogenex", Valbonne, France
| | | | - Agnès Paquet
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | - Frédéric Brau
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | - Fabrice Duprat
- Université Côte d'Azur, INSERM, CNRS UMR7275, IPMC, Valbonne, France
| | - Marielle Jarjat
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France.,CNRS LIA "Neogenex", Valbonne, France
| | - Mauro Grossi
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France.,CNRS LIA "Neogenex", Valbonne, France
| | - Méline Béal
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France.,CNRS LIA "Neogenex", Valbonne, France
| | - Stéphane Martin
- Université Côte d'Azur, INSERM, CNRS UMR7275, IPMC, Valbonne, France
| | | | - Barbara Bardoni
- CNRS LIA "Neogenex", Valbonne, France.,Université Côte d'Azur, INSERM, CNRS UMR7275, IPMC, Valbonne, France
| | - Thomas Maurin
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France.,CNRS LIA "Neogenex", Valbonne, France
| |
Collapse
|
17
|
Zhao H, Zhang D, Yang L, Wang E. p0071 interacts with E-cadherin in the cytoplasm so as to promote the invasion and metastasis of non-small cell lung cancer. Mol Carcinog 2017; 57:89-96. [PMID: 28898462 DOI: 10.1002/mc.22734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Huanyu Zhao
- Department of Pathology; First Affiliated Hospital and College of Basic Medical Sciences of China Medical University; Shenyang China
| | - Di Zhang
- Department of Pathology; First Affiliated Hospital and College of Basic Medical Sciences of China Medical University; Shenyang China
| | - Lianhe Yang
- Department of Pathology; First Affiliated Hospital and College of Basic Medical Sciences of China Medical University; Shenyang China
| | - Enhua Wang
- Department of Pathology; First Affiliated Hospital and College of Basic Medical Sciences of China Medical University; Shenyang China
| |
Collapse
|
18
|
Becher A, Eiseler T, Porzner M, Walther P, Keil R, Bobrovich S, Hatzfeld M, Seufferlein T. The armadillo protein p0071 controls KIF3 motor transport. J Cell Sci 2017; 130:3374-3387. [PMID: 28808088 DOI: 10.1242/jcs.200170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/02/2017] [Indexed: 01/17/2023] Open
Abstract
We here report a novel function of the armadillo protein p0071 (also known as PKP4) during transport mediated by the KIF3 transport complex. Secretion of chromogranin A and matrix metallopeptidase 9 from pancreatic neuroendocrine tumor cells or pancreatic cancer cells, respectively, was substantially reduced following knockdown of p0071. Vesicle tracking indicated that there was impaired directional persistence of vesicle movement upon p0071 depletion. This suggests a disturbed balance between plus- and minus-end directed microtubule transport in cells lacking p0071. p0071 directly interacts with the KIF3 motor subunit KIF3B. Our data indicate that p0071 also interacts with the kinesin cargo adaptor protein KAP3 (also known as KIFAP3) acting as a stabilizing linker between KIF3B and its KAP3 cargo-binding entity. Thus, p0071 is required for directional vesicle movement and secretion of different KIF3-transported carriers, thereby regulating the transport of intracellular membrane vesicles along microtubules.
Collapse
Affiliation(s)
- Alexander Becher
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Marc Porzner
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - René Keil
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University of Halle-Wittenberg, D-06114 Halle, Germany
| | - Susanne Bobrovich
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Mechthild Hatzfeld
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University of Halle-Wittenberg, D-06114 Halle, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
19
|
Yuan L, Arikkath J. Functional roles of p120ctn family of proteins in central neurons. Semin Cell Dev Biol 2017; 69:70-82. [PMID: 28603076 DOI: 10.1016/j.semcdb.2017.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
The cadherin-catenin complex in central neurons is associated with a variety of cytosolic partners, collectively called catenins. The p120ctn members are a family of catenins that are distinct from the more ubiquitously expressed α- and β-catenins. It is becoming increasingly clear that the functional roles of the p120ctn family of catenins in central neurons extend well beyond their functional roles in non-neuronal cells in partnering with cadherin to regulate adhesion. In this review, we will provide an overview of the p120ctn family in neurons and their varied functional roles in central neurons. Finally, we will examine the emerging roles of this family of proteins in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Li Yuan
- Department of Pharmacology and Experimental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States; Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| | - Jyothi Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| |
Collapse
|
20
|
Navarro G, Martínez-Pinilla E, Sánchez-Melgar A, Ortiz R, Noé V, Martín M, Ciudad C, Franco R. A genomics approach identifies selective effects of trans-resveratrol in cerebral cortex neuron and glia gene expression. PLoS One 2017; 12:e0176067. [PMID: 28441400 PMCID: PMC5404873 DOI: 10.1371/journal.pone.0176067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/05/2017] [Indexed: 01/28/2023] Open
Abstract
The mode of action of trans-resveratrol, a promising lead compound for the development of neuroprotective drugs, is unknown. Data from a functional genomics study were retrieved with the aim to find differentially expressed genes that may be involved in the benefits provided by trans-resveratrol. Genes that showed a significantly different expression (p<0.05, cut-off of a two-fold change) in mice fed with a control diet or a control diet containing trans-resveratrol were different in cortex, heart and skeletal muscle. In neocortex, we identified 4 up-regulated (Strap, Pkp4, Rab2a, Cpne3) and 22 down-regulated (Actn1, Arf3, Atp6v01, Atp1a3, Atp1b2, Cacng7, Crtc1, Dbn1, Dnm1, Epn1, Gfap, Hap, Mark41, Rab5b, Nrxn2, Ogt, Palm, Ptprn2, Ptprs, Syn2, Timp2, Vamp2) genes upon trans-resveratrol consumption. Network analysis of gene products provided evidence of plakophilin 4 up-regulation as a triggering factor for down-regulation of events related to synaptic vesicle transport and neurotransmitter release via underexpression of dynamin1 and Vamp2 (synaptobrevin 2) as node-gene drivers. Analysis by RT-qPCR of some of the selected genes in a glioma cell line showed that dynamin 1 mRNA was down-regulated even in acute trans-resveratrol treatments. Taken all together, these results give insight on the glial-neuronal networks involved in the neuroprotective role of trans-resveratrol.
Collapse
Affiliation(s)
- Gemma Navarro
- CIBERNED. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas. Instituto de Salud Carlos III, Madrid, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eva Martínez-Pinilla
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
- * E-mail:
| | - Alejandro Sánchez-Melgar
- Facultad de Ciencias y Tecnologías Químicas & Facultad de Medicina. Departamento de Química Inorgánica, Orgánica y Bioquímica, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Raquel Ortiz
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
- Institute of Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | - Mairena Martín
- Facultad de Ciencias y Tecnologías Químicas & Facultad de Medicina. Departamento de Química Inorgánica, Orgánica y Bioquímica, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Carlos Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
- Institute of Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | - Rafael Franco
- CIBERNED. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas. Instituto de Salud Carlos III, Madrid, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Song G, Napoli E, Wong S, Hagerman R, Liu S, Tassone F, Giulivi C. Altered redox mitochondrial biology in the neurodegenerative disorder fragile X-tremor/ataxia syndrome: use of antioxidants in precision medicine. Mol Med 2016; 22:548-559. [PMID: 27385396 DOI: 10.2119/molmed.2016.00122] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/23/2016] [Indexed: 11/06/2022] Open
Abstract
A 55-200 expansion of the CGG nucleotide repeat in the 5'-UTR of the fragile X mental retardation 1 gene (FMR1) is the hallmark of the triplet nucleotide disease known as the "premutation" as opposed to those with >200 repeats, known as the full mutation or fragile X syndrome. Originally, premutation carriers were thought to be free of phenotypic traits; however, some are diagnosed with emotional and neurocognitive issues and, later in life, with the neurodegenerative disease fragile X-associated tremor/ataxia syndrome (FXTAS). Considering that mitochondrial dysfunction has been observed in fibroblasts and post-mortem brain samples from carriers of the premutation, we hypothesized that mitochondrial dysfunction-derived ROS may result in cumulative oxidative-nitrative damage. Fibroblasts from premutation carriers (n=31, all FXTAS-free except 8), compared to age- and sex-matched controls (n=25), showed increased mitochondrial ROS production, impaired Complex I activity, lower expression of MIA40 (rate-limiting step of the redox-regulated mitochondrial-disulfide-relay-system), increased mtDNA deletions, and increased biomarkers of lipid and protein oxidative-nitrative damage. Most of the outcomes were more pronounced in FXTAS-affected individuals. Significant recovery of mitochondrial mass and/or function was obtained with superoxide or hydroxyl radicals' scavengers, a glutathione peroxidase analog, or by overexpressing MIA40. The effects of ethanol (a hydroxyl radical scavenger) were deleterious, while others (by N-acetyl-cysteine, quercetin and epigallocatechin-3-gallate) were outcome- and/or carrier-specifics. The use of antioxidants in the context of precision medicine is discussed with the goal of improving mitochondrial function in carriers with the potential of decreasing the morbidity and/or delaying FXTAS onset.
Collapse
Affiliation(s)
- Gyu Song
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616
| | - Sarah Wong
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616
| | - Randi Hagerman
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, CA 95817.,Department of Pediatrics, University of California Davis Medical Center, Sacramento CA 95817
| | - Siming Liu
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616
| | - Flora Tassone
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, CA 95817.,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616.,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, CA 95817
| |
Collapse
|
22
|
Napoli E, Ross-Inta C, Song G, Wong S, Hagerman R, Gane LW, Smilowitz JT, Tassone F, Giulivi C. Premutation in the Fragile X Mental Retardation 1 (FMR1) Gene Affects Maternal Zn-milk and Perinatal Brain Bioenergetics and Scaffolding. Front Neurosci 2016; 10:159. [PMID: 27147951 PMCID: PMC4835505 DOI: 10.3389/fnins.2016.00159] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
Abstract
Fragile X premutation alleles have 55–200 CGG repeats in the 5′ UTR of the FMR1 gene. Altered zinc (Zn) homeostasis has been reported in fibroblasts from >60 years old premutation carriers, in which Zn supplementation significantly restored Zn-dependent mitochondrial protein import/processing and function. Given that mitochondria play a critical role in synaptic transmission, brain function, and cognition, we tested FMRP protein expression, brain bioenergetics, and expression of the Zn-dependent synaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (Shank3) in a knock-in (KI) premutation mouse model with 180 CGG repeats. Mitochondrial outcomes correlated with FMRP protein expression (but not FMR1 gene expression) in KI mice and human fibroblasts from carriers of the pre- and full-mutation. Significant deficits in brain bioenergetics, Zn levels, and Shank3 protein expression were observed in the Zn-rich regions KI hippocampus and cerebellum at PND21, with some of these effects lasting into adulthood (PND210). A strong genotype × age interaction was observed for most of the outcomes tested in hippocampus and cerebellum, whereas in cortex, age played a major role. Given that the most significant effects were observed at the end of the lactation period, we hypothesized that KI milk might have a role at compounding the deleterious effects on the FMR1 genetic background. A higher gene expression of ZnT4 and ZnT6, Zn transporters abundant in brain and lactating mammary glands, was observed in the latter tissue of KI dams. A cross-fostering experiment allowed improving cortex bioenergetics in KI pups nursing on WT milk. Conversely, WT pups nursing on KI milk showed deficits in hippocampus and cerebellum bioenergetics. A highly significant milk type × genotype interaction was observed for all three-brain regions, being cortex the most influenced. Finally, lower milk-Zn levels were recorded in milk from lactating women carrying the premutation as well as other Zn-related outcomes (Zn-dependent alkaline phosphatase activity and lactose biosynthesis—whose limiting step is the Zn-dependent β-1,4-galactosyltransferase). In premutation carriers, altered Zn homeostasis, brain bioenergetics and Shank3 levels could be compounded by Zn-deficient milk, increasing the risk of developing emotional and neurological/cognitive problems and/or FXTAS later in life.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine Davis, CA, USA
| | - Catherine Ross-Inta
- Department of Molecular Biosciences, School of Veterinary Medicine Davis, CA, USA
| | - Gyu Song
- Department of Molecular Biosciences, School of Veterinary Medicine Davis, CA, USA
| | - Sarah Wong
- Department of Molecular Biosciences, School of Veterinary Medicine Davis, CA, USA
| | - Randi Hagerman
- Medical Investigations of Neurodevelopmental Disorders Institute, University of California, DavisDavis, CA, USA; Department of Pediatrics, University of California Davis Medical CenterSacramento, CA, USA
| | - Louise W Gane
- Medical Investigations of Neurodevelopmental Disorders Institute, University of California, Davis Davis, CA, USA
| | - Jennifer T Smilowitz
- Department of Food Science and Technology and Foods for Health Institute, University of California, Davis Davis, CA, USA
| | - Flora Tassone
- Medical Investigations of Neurodevelopmental Disorders Institute, University of California, DavisDavis, CA, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, DavisDavis, CA, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary MedicineDavis, CA, USA; Medical Investigations of Neurodevelopmental Disorders Institute, University of California, DavisDavis, CA, USA
| |
Collapse
|
23
|
Matic K, Eninger T, Bardoni B, Davidovic L, Macek B. Quantitative phosphoproteomics of murine Fmr1-KO cell lines provides new insights into FMRP-dependent signal transduction mechanisms. J Proteome Res 2014; 13:4388-97. [PMID: 25168779 DOI: 10.1021/pr5006372] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fragile X mental retardation protein (FMRP) is an RNA-binding protein that has a major effect on neuronal protein synthesis. Transcriptional silencing of the FMR1 gene leads to loss of FMRP and development of Fragile X syndrome (FXS), the most common known hereditary cause of intellectual impairment and autism. Here we utilize SILAC-based quantitative phosphoproteomics to analyze murine FMR1(-) and FMR1(+) fibroblastic cell lines derived from FMR1-KO embryos to identify proteins and phosphorylation sites dysregulated as a consequence of FMRP loss. We quantify FMRP-related changes in the levels of 5,023 proteins and 6,133 phosphorylation events and map them onto major signal transduction pathways. Our study confirms global downregulation of the MAPK/ERK pathway and decrease in phosphorylation level of ERK1/2 in the absence of FMRP, which is connected to attenuation of long-term potentiation. We detect differential expression of several key proteins from the p53 pathway, pointing to the involvement of p53 signaling in dysregulated cell cycle control in FXS. Finally, we detect differential expression and phosphorylation of proteins involved in pre-mRNA processing and nuclear transport, as well as Wnt and calcium signaling, such as PLC, PKC, NFAT, and cPLA2. We postulate that calcium homeostasis is likely affected in molecular pathogenesis of FXS.
Collapse
Affiliation(s)
- Katarina Matic
- Proteome Center Tübingen and ‡Graduate School of Cellular and Molecular Neuroscience, University of Tübingen , Österbergstrasse 3, 72074 Tübingen, Germany
| | | | | | | | | |
Collapse
|
24
|
Abekhoukh S, Bardoni B. CYFIP family proteins between autism and intellectual disability: links with Fragile X syndrome. Front Cell Neurosci 2014; 8:81. [PMID: 24733999 PMCID: PMC3973919 DOI: 10.3389/fncel.2014.00081] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 02/27/2014] [Indexed: 12/14/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorders (ASDs) have in common alterations in some brain circuits and brain abnormalities, such as synaptic transmission and dendritic spines morphology. Recent studies have indicated a differential expression for specific categories of genes as a cause for both types of disease, while an increasing number of genes is recognized to produce both disorders. An example is the Fragile X mental retardation gene 1 (FMR1), whose silencing causes the Fragile X syndrome, the most common form of ID and autism, also characterized by physical hallmarks. Fragile X mental retardation protein (FMRP), the protein encoded by FMR1, is an RNA-binding protein with an important role in translational control. Among the interactors of FMRP, CYFIP1/2 (cytoplasmic FMRP interacting protein) proteins are good candidates for ID and autism, on the bases of their genetic implication and functional properties, even if the precise functional significance of the CYFIP/FMRP interaction is not understood yet. CYFIP1 and CYFIP2 represent a link between Rac1, the WAVE (WAS protein family member) complex and FMRP, favoring the cross talk between actin polymerization and translational control.
Collapse
Affiliation(s)
- Sabiha Abekhoukh
- CNRS, Institute of Molecular and Cellular Pharmacology, UMR 7275 Valbonne, France ; University of Nice Sophia-Antipolis Nice, France ; CNRS, International Associated Laboratories-NEOGENEX Valbonne, France
| | - Barbara Bardoni
- CNRS, Institute of Molecular and Cellular Pharmacology, UMR 7275 Valbonne, France ; University of Nice Sophia-Antipolis Nice, France ; CNRS, International Associated Laboratories-NEOGENEX Valbonne, France
| |
Collapse
|
25
|
Maurin T, Zongaro S, Bardoni B. Fragile X Syndrome: from molecular pathology to therapy. Neurosci Biobehav Rev 2014; 46 Pt 2:242-55. [PMID: 24462888 DOI: 10.1016/j.neubiorev.2014.01.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/12/2014] [Accepted: 01/14/2014] [Indexed: 02/09/2023]
Abstract
Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability due to the silencing of the FMR1 gene encoding FMRP (Fragile X Mental Retardation Protein), an RNA-binding protein involved in different steps of RNA metabolism. Of particular interest is the key role of FMRP in translational regulation. Since the first functional characterizations of FMRP, its role has been underlined by its association with actively translating polyribosomes. Furthermore, a plethora of mRNA targets of FMRP have been identified. In the absence of FMRP the deregulation of translation/transport/stability of these mRNAs has a cascade effect on many pathways, resulting into the final phenotype. We review here a set of targets of FMRP (mRNAs and proteins) that may have an impact on the FXS phenotype by deregulating some key cellular processes, such as translation, cytoskeleton remodeling and oxidative stress. The manipulation of these abnormal pathways by specific drugs may represent new therapeutic opportunities for FXS patients.
Collapse
Affiliation(s)
- Thomas Maurin
- Institute of Molecular and Cellular Pharmacology, CNRS UMR7275, University of Nice Sophia Antipolis, Route des Lucioles, 06560 Valbonne, France
| | - Samantha Zongaro
- Institute of Molecular and Cellular Pharmacology, CNRS UMR7275, University of Nice Sophia Antipolis, Route des Lucioles, 06560 Valbonne, France
| | - Barbara Bardoni
- Institute of Molecular and Cellular Pharmacology, CNRS UMR7275, University of Nice Sophia Antipolis, Route des Lucioles, 06560 Valbonne, France.
| |
Collapse
|