1
|
Zhu J, Wang JX, Jin ZY, Li D, Qi S, Han SZ, Chang SY, Yan J, Kang JD, Quan LH. Eicosatrienoic acid inhibits estradiol synthesis through the CD36/FOXO1/CYP19A1 signaling pathway to improve PCOS in mice. Biochem Pharmacol 2024; 229:116517. [PMID: 39236935 DOI: 10.1016/j.bcp.2024.116517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/11/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common metabolic and endocrine disorder characterized by abnormal elevation in hormone levels, with currently lacking effective treatment options. N-3 polyunsaturated fatty acids (PUFA) have broad pharmacological activity and play a beneficial role in the development of PCOS. In this study, we observed that n-3 PUFA-eicosatrienoic acid (ETA) improves the estrous cycle and ovarian morphology in dehydroepiandrosterone (DHEA)-induced PCOS mice, particularly serum hormone levels. Additionally, it suppresses the expression of CYP19A1 and E2 synthesis in human granulosa-like tumor cell line (KGN) cells. Further investigation revealed that ETA significantly upregulates the expression of CD36, cAMP, P-PKA, and FOXO1 in KGN cells and mouse ovaries to lower E2 levels. This conclusion was supported by inhibiting CD36 and FOXO1 at both the mouse and cellular levels. Additionally, ETA treatment decreased the expression of ESR1, Kiss1, Gnrh in the hypothalamus, and GnRHR, Lhβ, Egr1, Pitx1, Sf1 in the pituitary of PCOS mice. No differences were observed after ETA treatment in the CD36 and FOXO1 inhibitor groups, indicating that ETA improves PCOS mice by regulating the hypothalamic-pituitary axis through E2 synthesis inhibition. In summary, we have elucidated for the first time the mechanism by which CD36 regulates E2 synthesis in ovarian granulosa cells and demonstrated that ETA activates the CD36 receptor to inhibit E2 synthesis through the cAMP/PKA/FOXO1/CYP19A1 signaling pathway, thereby improving hormonal imbalance and treating PCOS. This provides a new strategy for the effective prevention and treatment of PCOS.
Collapse
Affiliation(s)
- Jun Zhu
- College of Integration Science, Yanbian University, Yanji 133002, China
| | - Jun-Xia Wang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Zheng-Yun Jin
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Dongxu Li
- College of Integration Science, Yanbian University, Yanji 133002, China
| | - Shaobo Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Sheng-Zhong Han
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Shuang-Yan Chang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Jin Yan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Jin-Dan Kang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China.
| | - Lin-Hu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
2
|
Wu H, Yang M, Yan C, Liu M, Wang H, Zhang W. Tenascin C activates the toll‑like receptor 4/NF‑κB signaling pathway to promote the development of polycystic ovary syndrome. Mol Med Rep 2024; 29:106. [PMID: 38666538 PMCID: PMC11082635 DOI: 10.3892/mmr.2024.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a globally prevalent gynecological disorder among women of childbearing age. The present study aimed to investigate the role of tenascin C (TNC) in PCOS and its potential mechanisms. Fasting blood glucose and serum insulin, the homeostasis model assessment of insulin resistance and the serum hormone levels were determined in PCOS rats. In addition, H&E staining was used for assessing pathology. In addition, the effects of TNC on oxidative stress and inflammation response in PCOS rat and cell models was assessed. Furthermore, the roles of TNC on KGN cell proliferation and apoptosis were determined employing EdU assay and flow cytometry. TLR4/NF‑κB pathway‑related proteins were measured using western blotting, immunofluorescence and immunohistochemistry. It was found that the mRNA and protein expression was upregulated in PCOS rats and in KGN cells induced by dihydrotestosterone (DHT). Knockdown of TNC relieved the pathological characteristics and the endocrine abnormalities of PCOS rats. Knockdown of TNC inhibited ovarian cell apoptosis, oxidative stress and inflammation in PCOS rats. Knockdown of TNC reversed the DHT‑induced reduction in cell proliferation and increase in apoptosis in KGN cells. Furthermore, knockdown of TNC alleviated oxidative stress and inflammatory responses induced by DHT in KGN cells. Additionally, knockdown of TNC inhibited the toll‑like receptor 4 (TLR4)/NF‑κB signaling pathway in PCOS rats and DHT‑treated KGN cells. In conclusion, knockdown of TNC could ameliorate PCOS in both rats and a cell model by inhibiting cell apoptosis, oxidative stress and inflammation via the suppression of the TLR4/NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Han Wu
- Center for Reproductive Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| | - Mo Yang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| | - Cuiping Yan
- Department of Women's Health Care, Taian Daiyue District Maternal and Child Health Care, Taian, Shandong 271021, P.R. China
| | - Mengchen Liu
- Center for Reproductive Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| | - Haoran Wang
- Center for Reproductive Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| | - Wenjuan Zhang
- Center for Reproductive Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| |
Collapse
|
3
|
Guan HR, Li B, Zhang ZH, Wu HS, He XL, Dong YJ, Su J, Lv GY, Chen SH. Integrated bioinformatics and network pharmacology to explore the therapeutic target and molecular mechanisms of Bailing capsule on polycystic ovary syndrome. BMC Complement Med Ther 2023; 23:458. [PMID: 38102584 PMCID: PMC10722827 DOI: 10.1186/s12906-023-04280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder that is common in women of reproductive age. The clinical features of PCOS include hyperandrogenemia and polycystic ovarian changes. Bailing capsule (BL), a proprietary Chinese medicine that contains fermented Cordyceps sinensis powder, has been applied to treat PCOS. However, the specific active ingredients of BL and its mechanisms of action are yet to be elucidated. METHODS Initially, the effectiveness of BL on PCOS model mice was evaluated. Subsequently, the active ingredients of BL were searched in the TCMSP and TCM Systems Pharmacology databases, and their targets were predicted using Swiss Target Prediction and SEA databases. Furthermore, the GEO gene database was used to screen for differentially expressed genes (DEGs) related to PCOS. Data from Gene Card, OMIM, DDT, and Drugbank databases were then combined to establish a PCOS disease gene library. Cross targets were imported into the STRING database to construct a protein-protein interaction network. In addition, GO and KEGG pathway enrichment analyses were performed using Metascape and DAVID databases and visualized using Cytoscape software and R 4.2.3. The core targets were docked with SYBYL-X software, and their expressions in PCOS mice were further verified using qPCR. RESULTS The core active ingredients of BL were identified to be linoleyl acetate, cholesteryl palmitate, arachidonic acid, among others. Microarray data sets from four groups containing disease and normal samples were obtained from the GEO database. A total of 491 DEGs and 106 drug-disease cross genes were selected. Estrous cycle and ovarian lesions were found to be improved in PCOS model mice following BL treatment. While the levels of testosterone, progesterone, and prolactin decreased, that of estradiol increased. qPCR findings indicated that the expressions of JAK2, PPARG, PI3K, and AKT1 were upregulated, whereas those of ESR1 and IRS1 were downregulated in PCOS model mice. After the administration of BL, the expressions of associated genes were regulated. This study demonstrated that BL exerted anti-PCOS effects via PIK3CA, ESR1, AKT, PPARG, and IRS1 targets affecting PI3K-Akt signaling pathways. DISCUSSION This research clarified the multicomponent, multitarget, and multichannel action of BL and provided a theoretical reference for further investigations on its pharmacological basis and molecular mechanisms against PCOS.
Collapse
Affiliation(s)
- Hao-Ru Guan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang Province, 313200, PR China
| | - Ze-Hua Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Han-Song Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xing-Lishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Ying-Jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China.
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang Province, 313200, PR China.
| |
Collapse
|
4
|
Biglari-Zadeh G, Sargazi S, Mohammadi M, Ghasemi M, Majidpour M, Saravani R, Mirinejad S. Relationship Between Genetic Polymorphisms in Cell Cycle Regulatory Gene TP53 and Polycystic Ovarian Syndrome: A Case-Control Study and In Silico Analyses. Biochem Genet 2023; 61:1827-1849. [PMID: 36856940 DOI: 10.1007/s10528-023-10349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is a complex endocrine and metabolic condition with several potential causes. Insulin resistance is a hallmark of PCOS that often coexists with hirsutism, hyperandrogenism, being overweight, and hormonal imbalances. The functioning of multiple replication and transcription factors is regulated by tumor suppressor genes (TSGs), which play a crucial role in maintaining genomic integrity and controlling the cell cycle of granulosa cells. In the present study, we examined how three single nucleotide polymorphisms (SNPs) in TP53, a cell cycle regulatory gene, affect the risk of developing PCOS in a sample of an Iranian population. Genomic DNA was extracted from 200 PCOS patients and 200 healthy women to analyze TP53 rs17880604, rs1625895, and rs1042522 SNPs using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Our findings revealed that the majority of PCOS cases were overweight [25 < body mass index (BMI) < 30]. A positive association was observed between the TP53 rs1042522 SNP and the risk of PCOS under codominant heterozygous and overdominant genetic patterns (odds ratio > 1). Meanwhile, a negative association was observed between TP53 SNPs (rs1625895, rs17880604) and susceptibility to PCOS under codominant heterozygous and dominant models of inheritance (odds ratio < 1). Moreover, different genotype and haplotype combinations of rs17880604/rs1625895/rs1042522 conferred a decreased risk of PCOS in our population. We found no statistical difference in the frequency of TP53 genotypes between PCOS cases and/or controls in terms of BMI, waist circumference, prolactin level, and markers of lipid and carbohydrate profile (P > 0.05). Molecular dynamic prediction showed that the missense substitution in the 17p13.1 position (rs1042522) could change the properties and secondary structure of the p53 protein. As inherited risk factors, TP53 variations may play a pivotal role in the pathogenesis of PCOS among Iranian women. Replicated population-based studies on other ethnicities are required to find the genetic contribution of variants of TP53, or SNPs located in other TSGs, to the etiology of this endocrine disease.
Collapse
Affiliation(s)
- Ghazaleh Biglari-Zadeh
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran.
| | - Malihe Mohammadi
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Marzieh Ghasemi
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
- Moloud Infertility Center, Ali Ibn Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahdi Majidpour
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| |
Collapse
|
5
|
Bai L, Gong J, Guo Y, Li Y, Huang H, Liu X. Construction of a ceRNA network in polycystic ovary syndrome (PCOS) driven by exosomal lncRNA. Front Genet 2022; 13:979924. [DOI: 10.3389/fgene.2022.979924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), a common and frustrating syndrome in women of reproductive age, is characterized by symptoms including hyperandrogenemia, ovulation dysfunction, and polycystic ovaries. The role of competitive endogenous RNA (ceRNA) networks is receiving increasing attention and has been reported in multiple complicated diseases, such as various carcinomas, endometriosis, and tubal factor infertility. However, the association of ceRNA networks with the pathogenesis of PCOS remains unclear. This study aimed to construct a ceRNA network orchestrated by exosomal lnRNA and circRNA in PCOS. We screened RNA data of 34 samples from the Gene Expression Omnibus (GEO) database for differentially expressed lncRNAs (DELs), miRNAs (DEMs), mRNAs (DEGs), and circRNA associated with the progression of PCOS (PCOS, n = 17 vs. normal, n = 17). A protein–protein interaction (PPI) network, gene set enrichment analysis (GSEA), and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted. Importantly, the function of the ceRNA network was explored using GO and KEGG enrichment analyses. We identified 46 DELs (25 upregulated and 21 downregulated), 31 DEMs (20 upregulated and 11 downregulated), 165 DEGs (52 upregulated and 113 downregulated), and 1 differentially expressed circRNA. The PPI network had 79 nodes and 112 edges. The GSEA results showed that these genes were mainly related to oxidative phosphorylation; TNF signaling pathways; and valine, leucine, and isoleucine degradation. GO and KEGG analyses revealed that the DEGs were significantly enriched in lipid metabolism, peroxisome proliferator-activated receptor (PPAR) signaling pathways, and fatty acid metabolism. Additionally, we constructed a novel PCOS-associated lncRNA–miRNA–mRNA ceRNA triple network and a circRNA-related network. Thereafter, we described the potential roles played by follicular fluid exosomes in PCOS. Our present study describes the molecular pathogenesis of PCOS in human ovarian granulosa cells at the post-transcriptional level, which provides new insights for the clinical diagnosis and treatment of PCOS and further scientific research.
Collapse
|
6
|
Identification of Bioactive Compounds and Potential Mechanisms of Kuntai Capsule in the Treatment of Polycystic Ovary Syndrome by Integrating Network Pharmacology and Bioinformatics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3145938. [PMID: 35528524 PMCID: PMC9073551 DOI: 10.1155/2022/3145938] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Objective This study elucidates the potential therapeutic targets and molecular mechanisms of KTC in the treatment of PCOS. Materials and Methods Using the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), the active ingredients and potential targets of KTC were obtained. The Gene Expression Omnibus (GEO) database was used to find differentially expressed genes (DEGs) related to PCOS. Search the CTD, DisGeNet, genecards, NCBI, OMIM, and PharmGKB databases for therapeutic targets related to PCOS. The intersection of potential targets, DEGs, and therapeutic targets was submitted to perform bioinformatics analysis by R language. Finally, the analyses' core targets and their corresponding active ingredients were molecularly docked. Results 88 potential therapeutic targets of KTC for PCOS were discovered by intersecting the potential targets, DEGs, and therapeutic targets. According to bioinformatics analysis, the mechanisms of KTC treatment for PCOS could be linked to IL-17 signaling route, p53 signaling pathway, HIF-1 signaling pathway, etc. The minimal binding energies of the 5 core targets and their corresponding ingredients were all less than -6.5. Further research found that quercetin may replace KTC in the treatment of PCOS. Discussion and Conclusions. We explored the active ingredients and molecular mechanisms of KTC in the treatment of PCOS and found that quercetin may be the core ingredient of KTC in the treatment of PCOS.
Collapse
|
7
|
Magnolia officinalis Ameliorates Dehydroepiandrosterone-Induced Polycystic Ovary Syndrome in Rats. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.106447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Polycystic ovary syndrome (PCOS) is a prevalent reproductive and metabolic disorder. Insulin resistance (IR) is highly associated with PCOS and aggravates its symptoms. Thiazolidinediones (TZDs), as insulin sensitizing agents, are PPARγ agonists that improve many of the symptoms of PCOS. The Magnolia officinalis extract (MOE) is a natural peroxisome proliferator activated receptor gamma (PPARγ) agonist that improves insulin sensitivity in experimental models. Objectives: Using a dehydroepiandrosterone (DHEA)-induced rat model of PCOS and IR, this study aimed to explore both the potential beneficial effects and the molecular mechanisms of action of MOE. Methods: Post-pubertal female Sprague Dawley rats were subcutaneously injected daily with DHEA (6 mg/100 g body weight) dissolved in sesame oil for 28 days (n = 30). Age- and weight-matched control rats received only sesame oil (n = 12). Afterward, 16 of the DHEA-injected rats, along with five control rats, were sacrificed for blood and tissue collection. The 14 remaining DHEA-injected rats received either treatment of 30 days of oral MOE (500 mg/kg) dissolved in dimethyl sulfoxide (DMSO) (n = 7), or oral DMSO only (n = 7). Meanwhile, the remaining control rats (n = 7) continued to receive daily oral DMSO for 30 days. At the end of the treatments, the rats were sacrificed for blood and tissue collection. Results: After 28 days, the DHEA-treated rats exhibited an increase in body weight as compared to controls (P < 0.05). DHEA injection induced a PCOS phenotype as evident by a statistically significant (P < 0.05) elevated serum luteinizing hormone (LH), and an increased number of cystically dilated follicles with thicker granulosa compared to controls. PCOS rats showed a statistically significant rise in fasting insulin with an increased homeostatic model assessment index of insulin resistance (HOMA-IR) as compared to controls (P < 0.05). Compared to the control group, PCOS rats had a statistically significant lower ovarian protein expression of PPARγ, insulin receptor substrate 1 (IRS1), and protein kinase B (Akt) by Western Blot (P < 0.05). Conversely, the PCOS group showed an increased mammalian target of rapamycin (mTOR) pathway activity as evident by an increase in the fraction of phosphorylated mTOR to total mTOR compared to the control group (P < 0.05). When treated for 30 days with oral MOE (500 mg/kg), the PCOS rats showed a statistically significant decrease in body weight and serum LH levels as compared to the non-treated PCOS rats (P < 0.05). The number of cystically dilated follicles in the MOE-treated PCOS rats was significantly reduced compared to the non-treated PCOS rats. In the MOE-treated PCOS rats, the ovarian protein expression of PPARγ, IRS1, and Akt was significantly increased, while the p-mTOR/mTOR expression was decreased compared to the non-treated PCOS group (P < 0.05). Conclusions: According to our results, the MOE ameliorated the DHEA-induced PCOS phenotype histologically, hormonally, and metabolically. Fundamentally, this explores the elusive pathophysiologic association between IR and PCOS by targeting pathways common to both disorders.
Collapse
|
8
|
Shen HR, Xu X, Li XL. Berberine exerts a protective effect on rats with polycystic ovary syndrome by inhibiting the inflammatory response and cell apoptosis. Reprod Biol Endocrinol 2021; 19:3. [PMID: 33407557 PMCID: PMC7789273 DOI: 10.1186/s12958-020-00684-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine disease of the female reproductive system that seriously affects women's health. Berberine (BBR) has many pharmacological properties and is used as an insulin sensitizer. This study aimed to investigate the effect of BBR on PCOS and explore its related mechanisms. METHODS Forty-two rats were randomly divided into the following six groups (n = 7 per group): control, control + BBR, PCOS-normal diet (ND), PCOS-ND + BBR, PCOS-high-fat diet (HFD), and PCOS-HFD + BBR. The PCOS rat models were established by injecting rats with dehydroepiandrosterone. Further, the rats were gavaged with BBR (150 mg/kg/d) for 6 weeks. Then, the body weight, HOMA-IR, and testosterone levels of all rats were determined. Cell apoptosis of ovary granulosa cells was determined by a TUNEL assay kit. Real-time quantification PCR (RT-qPCR) and western blotting were utilized to evaluate the expression of TLR4, LYN, PI3K, Akt, NF-kB, TNF-α, IL-1, IL-6, and caspase-3. RESULTS BBR reduced the levels of insulin resistance and testosterone in PCOS rats. Additionally, the cell apoptosis rate increased significantly in PCOS rats (P < 0.05) and decreased after BBR treatment (P < 0.05). The results of RT-qPCR and western blotting showed that the expression levels of TLR4, LYN, PI3K, Akt, NF-kB, TNF-α, IL-1, IL-6, and caspase-3 significantly increased in PCOS rats, while BBR suppressed their expression levels. CONCLUSIONS BBR may relieve PCOS pathology and IR values by inhibiting cell apoptosis and by regulating the expression levels of TLR4, LYN, PI3K, Akt, NF-kB, TNF-α, IL-1, IL-6, and caspase-3.
Collapse
Affiliation(s)
- Hao-Ran Shen
- Department of Gynecology, Obstetrics & Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Shanghai, 200011, P.R. China
| | - Xiao Xu
- Department of Gynecology, Obstetrics & Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Shanghai, 200011, P.R. China
| | - Xue-Lian Li
- Department of Gynecology, Obstetrics & Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Shanghai, 200011, P.R. China.
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, No. 419 Fangxie Road, Shanghai, 200011, P.R. China.
| |
Collapse
|
9
|
Peng Y, Yang X, Luo X, Liu C, Cao X, Wang H, Guo L. Novel mechanisms underlying anti-polycystic ovary like syndrome effects of electroacupuncture in rats: suppressing SREBP1 to mitigate insulin resistance, mitochondrial dysfunction and oxidative stress. Biol Res 2020; 53:50. [PMID: 33109277 PMCID: PMC7590702 DOI: 10.1186/s40659-020-00317-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/15/2020] [Indexed: 12/23/2022] Open
Abstract
Background Acupuncture, a therapy of traditional Chinese medicine, is confirmed to exert the therapeutic action on polycystic ovary syndrome (PCOS). However, the detailed therapeutic mechanisms of acupuncture in PCOS remain ambiguous. In this study, we further investigated whether electroacupuncture (EA) alleviated PCOS-like symptoms in rats via regulating a metabolic regulator, sterol regulatory element binding protein-1 (SREBP1). Methods The PCOS-like rat model was built by hypodermic injection with dehydroepiandrosterone (DHEA). The rats were subjected to EA intervention (ST29 and SP6 acupuncture points) for 5 weeks. Primary granulosa cells were isolated from control and PCOS-like rats for evaluating insulin resistance, mitochondrial dysfunction and oxidative stress in vitro. Results The expression of SREBP1 was increased in PCOS-like rats, which was suppressed by EA treatment. In addition, lentivirus-mediated overexpression of SREBP1 restrained EA treatment-induced improvement in pathological changes, serum hormone levels and insulin resistance in rats. In addition, overexpression of SREBP1 repressed insulin-stimulated phosphorylation of insulin receptor β (IR) and AKT in primary granulosa cells. Moreover, upregulation of SREBP1 further exacerbated mitochondrial dysfunction and oxidative stress in granulosa cells isolated from PCOS-like rats. Mechanically, EA treatment suppressed SREBP1 expression through inducing the activation of AMP-activated protein kinase (AMPK) signaling pathway in PCOS-like rats. Conclusion EA intervention alleviated PCOS-like symptoms in rats via improving IR, mitochondrial dysfunction and oxidative stress through regulating SREBP1, a lipid metabolism regulator. Our findings illuminate the novel protective mechanisms of EA in the treatment of PCOS.
Collapse
Affiliation(s)
- Yan Peng
- Disease Prevention Center, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Xinming Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Xi Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Chunhong Liu
- College of Basic Medicine Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Xia Cao
- Document Retrival Center, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Hongyan Wang
- Department of Gynecological Oncology, Cancer Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Liyuan Guo
- Department of Gynecological Oncology, Cancer Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
10
|
Abdul-Maksoud RS, Zidan HE, Saleh HS, Amer SA. Visfatin and SREBP-1c mRNA Expressions and Serum Levels Among Egyptian Women with Polycystic Ovary Syndrome. Genet Test Mol Biomarkers 2020; 24:409-419. [PMID: 32460545 DOI: 10.1089/gtmb.2019.0192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Obesity and insulin resistance are common features accompanying polycystic ovary syndrome (PCOS). Aim: To analyze the impact of obesity on the expression of the visfatin and sterol regulatory element-binding protein (SREBP)-1c genes among a group of Egyptian women with PCOS, and to assess their suitability as PCOS biomarkers. Subject and methods: Seventy healthy women (control group) (35 nonobese and 35 obese) and 140 women with PCOS (70 nonobese and 70 obese) were enrolled in this study. The visfatin and SREBP-1c genes' expression analyses were performed via real-time polymerase chain reaction. Serum visfatin and SREBP-1c protein levels were measured with ELISA kits. Results: Among PCOS patients, upregulation of visfatin and SREBP-1c expression was observed. We did not identify significant differences between the obese and nonobese PCOS patients nor between obese and non-obese controls. The mRNA expression levels of both genes were significantly positively correlated with their serum protein levels, as well as with fasting serum insulin levels, homeostatic model assessments of insulin resistance (HOMA-IR), luteinizing hormone (LH) ratios, LH/follicular stimulating hormone ratios, total testosterone, and free androgens. We observed significant negative correlations between visfatin and SREBP-1c expression levels and sex hormone binding globulin levels in all studied groups. Receiver operating characteristic curve analyses revealed that combining the visfatin and SREBP-1c expression data increased the sensitivity (95.92%) and specificity (93.2%) for PCOS diagnoses. Conclusion: Upregulation of visfatin and SREBP-1c was observed among PCOS patients. These genes may play a role in the pathogenesis of PCOS independent of obesity. Combined visfatin and SREBP-1c analyses could be used as a noninvasive biomarker for PCOS.
Collapse
Affiliation(s)
- Rehab S Abdul-Maksoud
- Medical Biochemistry Department and Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Haidy E Zidan
- Medical Biochemistry Department and Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hend S Saleh
- Obstetrics and Gynecology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samar A Amer
- Department of Community, Environmental and Occupational Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
11
|
Mason RP, Libby P, Bhatt DL. Emerging Mechanisms of Cardiovascular Protection for the Omega-3 Fatty Acid Eicosapentaenoic Acid. Arterioscler Thromb Vasc Biol 2020; 40:1135-1147. [PMID: 32212849 PMCID: PMC7176343 DOI: 10.1161/atvbaha.119.313286] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Patients with well-controlled LDL (low-density lipoprotein) levels still have residual cardiovascular risk associated with elevated triglycerides. Epidemiological studies have shown that elevated fasting triglyceride levels associate independently with incident cardiovascular events, and abundant recent human genetic data support the causality of TGRLs (triglyceride-rich lipoproteins) in atherothrombosis. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), lower blood triglyceride concentrations but likely exert additional atheroprotective properties at higher doses. Omega-3 fatty acids modulate T-cell differentiation and give rise to various prostaglandins and specialized proresolving lipid mediators that promote resolution of tissue injury and inflammation. The REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial) with an EPA-only formulation lowered a composite of cardiovascular events by 25% in patients with established cardiovascular disease or diabetes mellitus and other cardiovascular risk factors. This clinical benefit likely arises from multiple molecular mechanisms discussed in this review. Indeed, human plaques readily incorporate EPA, which may render them less likely to trigger clinical events. EPA and DHA differ in their effects on membrane structure, rates of lipid oxidation, inflammatory biomarkers, and endothelial function as well as tissue distributions. Trials that have evaluated DHA-containing high-dose omega-3 fatty acids have thus far not shown the benefits of EPA alone demonstrated in REDUCE-IT. This review will consider the mechanistic evidence that helps to understand the potential mechanisms of benefit of EPA.
Collapse
Affiliation(s)
- R. Preston Mason
- From the Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (R.P.M., P.L., D.L.B.)
- Elucida Research LLC, Beverly, MA (R.P.M.)
| | - Peter Libby
- From the Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (R.P.M., P.L., D.L.B.)
| | - Deepak L. Bhatt
- From the Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (R.P.M., P.L., D.L.B.)
| |
Collapse
|
12
|
Jiang B, Xue M, Xu D, Song Y, Zhu S. Upregulation of microRNA-204 improves insulin resistance of polycystic ovarian syndrome via inhibition of HMGB1 and the inactivation of the TLR4/NF-κB pathway. Cell Cycle 2020; 19:697-710. [PMID: 32089069 PMCID: PMC7145337 DOI: 10.1080/15384101.2020.1724601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/02/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
There is growing evidence of the position of microRNAs (miRs) in polycystic ovarian syndrome (PCOS), thus our objective was to discuss the impact of miR-204 on insulin resistance (IR) in PCOS by targeting highmobility group box protein 1(HMGB1)-mediated toll-like receptor 4(TLR4)/nuclear factor-kappa B (NF-κB) pathway.PCOS-IR patients and PCOS non-insulin resistance (PCOS-NIR) patients were included. The levels of serum sex hormones and related insulin were measured, the expression of miR-204, HMGB1, TLR4 and NF-κB p65 was detected, the diagnostic efficacy of miR-204 in PCOS-IR was analyzed, and the correlation between the expression of miR-204 in PCOS-IR and fasting blood glucose (FPG), fasting insulin (FINS), homeostasis model of assessment for insulin resistance index (HOMA-IR) was analyzed. Both in vitro and in vivo experiments were performed to elucidate the capabilities of miR-204 and HMGB1 in proliferation and apoptosis of PCOS-IR granulosa cells.MiR-204 was lowly expressed as well as HMGB1, TLR4 and NF-κB p65 were highly expressed in PCOS-IR patients. Follicule-stimulating hormone was downregulated, while luteinizing hormone, estrogen, progesterone, FPG, FINS and HOMA-IR were elevated in PCOS-IR. Upregulation of miR-204 and downregulation of HMGB1 could repress TLR4/NF-κB pathway activation, degraded insulin release and testosterone (T) leveland ascended ovarian coefficient, boosted cell proliferation and restrained apoptosis of granulosa cells. Overexpression of HMGB1 reverses the effect of upregulation of miR-204 on IR of PCOS.Our study presents that high expression of miR-204 or inhibition of HMGB1 can improve IR of PCOS via the inactivation of TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Gynaecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Xue
- Department of Gynaecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dabao Xu
- Department of Gynaecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yujia Song
- Department of Gynaecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shujuan Zhu
- Department of Gynaecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Martínez-García MÁ, Ojeda-Ojeda M, Rodríguez-Martín E, Insenser M, Moncayo S, Álvarez-Blasco F, Luque-Ramírez M, Escobar-Morreale HF. TLR2 and TLR4 Surface and Gene Expression in White Blood Cells after Fasting and Oral Glucose, Lipid and Protein Challenges: Influence of Obesity and Sex Hormones. Biomolecules 2020; 10:biom10010111. [PMID: 31936430 PMCID: PMC7023426 DOI: 10.3390/biom10010111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/20/2019] [Accepted: 01/04/2020] [Indexed: 12/19/2022] Open
Abstract
We studied if macronutrients of the diet have different effects on leukocyte activation, and if these effects are influenced by sex hormones or obesity. We analyzed leukocyte cell surface and gene expression of toll-like receptors 2 and 4 (TLR2 and TLR4) during fasting and after macronutrient loads in women with polycystic ovary syndrome and female and male controls. Fasting TLR2 surface expression in neutrophils was higher in men than in women. Obese subjects presented higher TLR2 gene expression than nonobese individuals, particularly in men. In contrast, surface TLR4 expression was lower in men and in obese individuals. Postprandial cell-surface expression decreased similarly after all macronutrient loads. Neutrophil TLR2 decreased only in obese subjects whereas TLR4 showed a greater decrease in nonobese individuals. However, TLR2 gene expression increased after glucose ingestion and decreased during the lipid load, while TLR4 was induced in response to lipids and mostly to glucose. Postprandial TLR gene expression was not influenced by group of subjects or obesity. Both cell-surface and gene postprandial expression inversely correlated with their fasting levels. These responses suggest a transient compensatory response aiming to prevent postprandial inflammation. However, obesity and sex hormones showed opposite influences on surface expression of TLR2 and TLR4, but not on their gene expression, pointing to regulatory posttranscriptional mechanisms.
Collapse
Affiliation(s)
- M. Ángeles Martínez-García
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal &Universidad de Alcalá &Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28034 Madrid, Spain; (M.Á.M.-G.); (M.O.-O.); (M.I.); (S.M.); (F.Á.-B.); (M.L.-R.)
| | - Miriam Ojeda-Ojeda
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal &Universidad de Alcalá &Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28034 Madrid, Spain; (M.Á.M.-G.); (M.O.-O.); (M.I.); (S.M.); (F.Á.-B.); (M.L.-R.)
| | | | - María Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal &Universidad de Alcalá &Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28034 Madrid, Spain; (M.Á.M.-G.); (M.O.-O.); (M.I.); (S.M.); (F.Á.-B.); (M.L.-R.)
| | - Samuel Moncayo
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal &Universidad de Alcalá &Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28034 Madrid, Spain; (M.Á.M.-G.); (M.O.-O.); (M.I.); (S.M.); (F.Á.-B.); (M.L.-R.)
| | - Francisco Álvarez-Blasco
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal &Universidad de Alcalá &Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28034 Madrid, Spain; (M.Á.M.-G.); (M.O.-O.); (M.I.); (S.M.); (F.Á.-B.); (M.L.-R.)
| | - Manuel Luque-Ramírez
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal &Universidad de Alcalá &Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28034 Madrid, Spain; (M.Á.M.-G.); (M.O.-O.); (M.I.); (S.M.); (F.Á.-B.); (M.L.-R.)
| | - Héctor F. Escobar-Morreale
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal &Universidad de Alcalá &Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28034 Madrid, Spain; (M.Á.M.-G.); (M.O.-O.); (M.I.); (S.M.); (F.Á.-B.); (M.L.-R.)
- Correspondence: ; Tel.: +34-91-3369164
| |
Collapse
|
14
|
Wang T, Sha L, Li Y, Zhu L, Wang Z, Li K, Lu H, Bao T, Guo L, Zhang X, Wang H. Dietary α-Linolenic Acid-Rich Flaxseed Oil Exerts Beneficial Effects on Polycystic Ovary Syndrome Through Sex Steroid Hormones-Microbiota-Inflammation Axis in Rats. Front Endocrinol (Lausanne) 2020; 11:284. [PMID: 32670195 PMCID: PMC7326049 DOI: 10.3389/fendo.2020.00284] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) represents a common endocrine-metabolic disorder disease with chronic low-grade inflammation and alteration of intestinal flora. Serving as functional food, flaxseed oil (FO), which is rich in plant-derived α-linolenic acid of omega-3 polyunsaturated fatty acids, has been proven to benefit for chronic metabolic diseases. However, the exact role of dietary FO on PCOS remains largely unclear. In the present study, 6-week-old female Sprague-Dawley rats were randomly divided into four groups (eight rats/group), including (a) pair-fed (PF) control (CON) group (PF/CON), (b) FO-fed CON group (FO/CON), (c) PF with letrozole-induced PCOS model (MOD) group (PF/MOD), and (d) FO-fed MOD group (FO/MOD). All rats were fed a standard diet. After 3 weeks of modeling and subsequent 8 weeks of treatment, the rats in diverse groups were euthanized and associated indications were investigated. The results showed that dietary FO ameliorated the disorder of estrous cycle and ovarian morphology. In parallel, dietary FO improved the sex steroid hormone disturbance (luteinizing hormone/follicle-stimulating hormone, estrogen, testosterone, and progesterone), body weights, dyslipidemia, and insulin resistance. Moreover, FO treatment improved plasma and ovary inflammatory interleukin (IL)-1β, IL-6, IL-10, and IL-17A, tumor necrosis factor-α, and monocyte chemoattractant protein-1. Additionally, FO intervention significantly modulated the composition of gut microbiota and vaginal microbiota by increasing the abundances of Allobaculum, Lactobacillus, Butyrivibrio, Desulfovibrio, Bifidobacterium, Faecalibacterium, Parabacteroides as well as decreasing the abundances of Actinobacteria, Bacteroides, Proteobacteria, and Streptococcus, the ratio of Firmicutes/Bacteroidetes. A decrease in plasma lipopolysaccharide level and an increase in short-chain fatty acids, including acetic acid, propionic acid, butyric acid and pentanoic acid, were determined after dietary FO supplementation. Correlation analysis revealed close relationships among sex steroid hormones, inflammation, and gut/vaginal microbiota. Collectively, this study demonstrated that dietary FO ameliorated PCOS through the sex steroid hormones-microbiota-inflammation axis in rats, which may contribute to the understanding of pathogenesis and potentially serve as an inexpensive intervention in the control of PCOS.
Collapse
Affiliation(s)
- Ting Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Liping Sha
- Endocrinology Department, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yiwei Li
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Lili Zhu
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Zhen Wang
- Endocrinology Department, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ke Li
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Haixia Lu
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Ting Bao
- Endocrinology Department, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Li Guo
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
- *Correspondence: Xiaoxia Zhang
| | - Hao Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Hao Wang
| |
Collapse
|
15
|
Roles of Oxidative Stress in Policystic Ovary Syndrome. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.2478/sjecr-2019-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Polycystic ovary syndrome (PCOS) represent a common endocrine disorder that affects nearly 4 to 12 percents of reproductive age women in general population studies (1). PCOS is caracterized by the oligoovulation or anovulation, hyperandrogenisam and multiple small ovarian cysts. The etiology of PCOS is steel unclear. Patophysiology of PCOS represents the complex mehanism. There is a wide spectar of signs and symptoms of the PCOS, which vary in severity over the time and within individuals. Major symptoms are: the amenhorhea, oligomenorhea combined with of episodes of menometrorhagia. Some signs of hiperandrogenism are: acne, hirsutism and alopecia. Other important symptoms of the PCOS are: the obesity, dyslpedemia, insuline resistance, metabolic syndrome, infertility, endometrial neoplasia, pregnancy loss. Diagnosis is achieved by exclusion of other factors that lead to anovulation, and laboratory assay of sex hormones and gonadotropines. One of the novel approaches in evaluation of etiology and pathogenesis of the PCOS recognizes oxidative stress as an important factor in genesis of this syndrome. For investigation of the oxidative stress role in the pathogenesis of diseases, some biochemical markers have been used including the MDA and NO also anti-oxidative biomarkers such as Total Antioxidative Capacity, Superoxide Dismutase, Glutation Peroxidase, and glutathione. Most of recent studies compared the oxidative stress biomarker level or antioxidative biomarkers levels in the PCOS patients and healthy controls. Patients with the PCOS in those studies were often subdivided in groups by the presence of insulin resistance (HOMA index) or infertility or not. One of the main problems in this field of research is inconsistency in precise definition of the PCOS, as well as different expression of various symptoms within individuals over the time. In that manner it is very difficult to follow up these patients and to establish criteria that could be compared in studies.
Collapse
|
16
|
Wang W, Zheng J, Cui N, Jiang L, Zhou H, Zhang D, Hao G. Baicalin ameliorates polycystic ovary syndrome through AMP-activated protein kinase. J Ovarian Res 2019; 12:109. [PMID: 31722718 PMCID: PMC6852906 DOI: 10.1186/s13048-019-0585-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine disorder and regarded as the leading cause of anovulatory infertility. PCOS is characterized by reproductive dysfunction and metabolic disorders. Baicalin (BAL) is one of the most potent bioactive flavonoids isolated from the radix of Scutellaria baicalensis. In the present study, we investigated the potential effects of BAL on PCOS in dehydroepiandrosterone-treated rats. We found that BAL notably reduced the serum levels of free testosterone, total testosterone, follicle-stimulating hormone, luteinizing hormone, progesterone, and estradiol in PCOS rats. The increase of serum insulin level and HOMA-IR was markedly inhibited by BAL. Moreover, BAL decreased body weights, increased the number of rats with the regular estrous cycle, and ameliorated ovarian histological changes and follicular development in the DHEA-treated PCOS rats. The increase of pro-inflammatory cytokines (TNFα, IL-1β, and IL-18) and decrease of anti-inflammatory cytokine (IL-10) in PCOS rats were suppressed by BAL. BAL induced a significant decrease in the mRNA expression of steroidogenic enzymes, including 3β-HSD, CYP11A1, CYP19A1, StAR, in ovarian tissues in PCOS rats. Furthermore, BAL inhibited the decrease of AMPK protein level and phosphorylation, the decrease of Akt phosphorylation and the increase of 5α-reductase enzyme 1 expression in ovarian tissues in PCOS rats. The effects of BAL were inhibited by an inhibitor of AMPK, dorsomorphin. The upregulation of AMPK contributed to the beneficial effects of BAL. The results highlight the potential role of BAL for the intervention of PCOS.
Collapse
Affiliation(s)
- Wei Wang
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jiahua Zheng
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Na Cui
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Lei Jiang
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Han Zhou
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Dan Zhang
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Guimin Hao
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
17
|
Zhuang Z, Pan X, Zhao K, Gao W, Liu J, Deng T, Qin W. The Effect of Interleukin-6 (IL-6), Interleukin-11 (IL-11), Signal Transducer and Activator of Transcription 3 (STAT3), and AKT Signaling on Adipocyte Proliferation in a Rat Model of Polycystic Ovary Syndrome. Med Sci Monit 2019; 25:7218-7227. [PMID: 31554782 PMCID: PMC6777385 DOI: 10.12659/msm.916385] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is associated with low-grade inflammation, adipocyte hypertrophy, hyperglycemia, increased serum testosterone levels, and reduced lipolysis. This study aimed to investigate the role of interleukin-6 (IL-6) and IL-11 in the pathophysiology of adipocyte hypertrophy in a rat model of PCOS. Material/Methods The rat model of PCOS was developed using a subcutaneous injection of dehydroepiandrosterone (DHEA). Histology of the rat ovaries was used to confirm the development of PCOS. Serum levels of testosterone and glucose were measured. Immunohistochemistry, immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to measure IL-6 and IL-11 in the rat model of PCOS. Cell proliferation was measured using the cell counting kit-8 (CCK-8) assay. Results Serum levels of testosterone and glucose and the expression of IL-6 and IL-11 were significantly increased in the rat model of PCOS via the activation of AKT/STAT3 signaling. Following IL-6 and IL-11 stimulation of mesenchymal adipocytes isolated from adipose tissue, IL-6 and IL-11 induced cell proliferation through the STAT3/AKT signaling pathway. Conclusions In a rat model of PCOS, increased expression of IL-6 and IL-11 was associated with the AKT/STAT3 pathway. Increased levels of IL-6 and IL-11 stimulated adipocytes from adipose tissue of the rat model, which promoted cell proliferation by activating AKT/STAT3 signaling.
Collapse
Affiliation(s)
- Zhaohui Zhuang
- Department of Reproduction, Suqian Maternity Hospital, Suqian, Jiangsu, China (mainland)
| | - Xiaohong Pan
- Department of Treating Potential Diseases, Xuzhou City Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China (mainland)
| | - Kai Zhao
- Department of Gynecology, Xuzhou City Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China (mainland)
| | - Wei Gao
- Department of Gynecology and Obstetrics, Suqian Maternity Hospital, Suqian, Jiangsu, China (mainland)
| | - Juan Liu
- Department of Gynecology and Obstetrics, Suqian Maternity Hospital, Suqian, Jiangsu, China (mainland)
| | - Tianqi Deng
- Department of Gynecology, Xuzhou City Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China (mainland)
| | - Wenmin Qin
- Department of Gynecology, Xuzhou City Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China (mainland)
| |
Collapse
|
18
|
Tang F, Yang X, Liu D, Zhang X, Huang X, He X, Shi J, Li Z, Wu Z. Co-expression of fat1 and fat2 in transgenic pigs promotes synthesis of polyunsaturated fatty acids. Transgenic Res 2019; 28:369-379. [PMID: 31037571 DOI: 10.1007/s11248-019-00127-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/04/2019] [Indexed: 12/30/2022]
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are essential for the development and health of mammals, such as humans and livestock. n-3 PUFAs must be supplied by diet due to the absence of a key gene, namely, delta-15 desaturase (fat1), which is responsible for synthesizing n-3 PUFAs from a major type of n-6 PUFAs, linoleic acid (LA). To increase the dietary intake of n-3 PUFAs for humans, fat1-expressing transgenic (TG) livestock have been produced to provide n-3 PUFA-rich meats for humans. However, these TG livestock synthesized n-3 PUFAs from diet-derived, instead of endogenously produced, n-6 PUFAs because they still lack the delta-12 desaturase (fat2) gene for catalyzing conversion of internal oleic acid (OA) to LA. To fill the gap in the de novo n-3 PUFA biosynthesis pathway and to increase n-3 PUFA content in livestock, TG pigs co-expressing fat1-fat2 were generated in the present work. The OA content decreased in fat1-fat2 TG pigs, suggesting that OA was converted to LA by fat2 transgene-encoded delta-12 desaturase. The n-3 PUFA level was elevated, and the n-6/n-3 PUFA ratio dropped in fat1-fat2 TG pigs, revealing that fat1 transgene promoted the synthesis of n-3 PUFAs from n-6 analogs. The expression levels of fatty acid elongase-5 (ELOVL5) and fatty acid elongase-2 (ELOVL2), which are two key enzyme genes for PUFA synthesis, as well as their transcription factor peroxisome proliferator-activated receptor α, increased in fat1-fat2 TG pigs. Thus, the fat1 transgene enhanced n-3 PUFA synthesis by upregulating the expression of enzyme genes involved in the PUFA synthesis pathways. Overall, this study provided a new strategy to produce n-3 PUFA-rich meat for human consumption. The generated fat1-fat2 TG pigs can also serve as a large animal model for studying the roles of n-3 PUFAs in human development and health.
Collapse
Affiliation(s)
- Fei Tang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofeng Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xianwei Zhang
- Guangdong Wen's Breeding Swine Company, Yunfu, 527400, Guangdong, China
| | - Xiaoling Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyan He
- Guangdong Wen's Breeding Swine Company, Yunfu, 527400, Guangdong, China
| | - Junsong Shi
- Guangdong Wen's Breeding Swine Company, Yunfu, 527400, Guangdong, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
19
|
Li Y, Chen C, Ma Y, Xiao J, Luo G, Li Y, Wu D. Multi-system reproductive metabolic disorder: significance for the pathogenesis and therapy of polycystic ovary syndrome (PCOS). Life Sci 2019; 228:167-175. [PMID: 31029778 DOI: 10.1016/j.lfs.2019.04.046] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/02/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022]
Abstract
Polycystic ovary syndrome (PCOS), a multisystem disease, is a major reason for female infertility around the world. It is no longer considered simply as a disease of ovary. Now researchers growing awareness of the multisystem features of this disease. PCOS has a higher relationship with metabolic disturbance and hypothalamic-pituitary-ovarian axis (HPOA) function disorders. This syndrome results in hyperandrogenemia (HA), hyperinsulinemia/insulin resistance (IR), increased estrone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) ratio imbalance, infertility, cardiovascular diseases, endometrial dysfunction, obesity, and including a litany of other health issues. Furthermore, PCOS has been garnered in recent times. Interventions like metformin, orlistat, hormonal contraceptives, GLP1 agonists, and VitD have been applied to ameliorate or reverse the pathological characterization of PCOS. Moreover, drug-combined therapy of PCOS is superior to single drug administration. This review will focus on the recent progress in pathogenesis and therapy of PCOS.
Collapse
Affiliation(s)
- Yan Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, PR China; Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, Hunan 410078, PR China
| | - Changye Chen
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang 421001, PR China
| | - Yan Ma
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang 421001, PR China
| | - Jiao Xiao
- Department of Endocrinology, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, PR China
| | - Guifang Luo
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang 421001, PR China
| | - Yukun Li
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan 421001, PR China.
| | - Daichao Wu
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan 421001, PR China; University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA.
| |
Collapse
|