1
|
Soe P, Sadarangani M, Naus M, Muller MP, Vanderkooi OG, Kellner JD, Top KA, Wong H, Isenor JE, Marty K, De Serres G, Valiquette L, McGeer A, Bettinger JA. Impact of recruitment strategies on individual participation practices in the Canadian National Vaccine Safety Network: prospective cohort study. Front Public Health 2024; 12:1385426. [PMID: 39188790 PMCID: PMC11345188 DOI: 10.3389/fpubh.2024.1385426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Background The Canadian National Vaccine Safety (CANVAS) network conducted a multi-center, prospective vaccine safety study to collect safety data after dose 1 and 2 of COVID-19 vaccines and follow up safety information 7 months after dose 1. Objective This study aimed to describe and evaluate the recruitment methods used by CANVAS and the retention of participants by each modality. Methods CANVAS deployed a multi-pronged recruitment approach to reach a larger sample, without in-person recruitment. Three primary recruitment strategies were used: passive recruitment, technology-assisted electronic invitation through the vaccine booking system (auto-invitation), or auto-registration through the vaccine registries (auto-enrollment). Results Between December 2020 and April 2022, approximately 1.3 million vaccinated adults either self-enrolled or were auto-enrolled in CANVAS, representing about 5% of the vaccinated adult Canadian population. Approximately 1 million participants were auto-enrolled, 300,000 were recruited by auto-invitation, and 5,000 via passive recruitment. Overall survey completion rates for dose 1, dose 2 and the 7-month follow-up surveys were 51.7% (681,198 of 1,318,838), 54.3% (369,552 of 681,198), and 66.4% (452,076 of 681,198), respectively. Completion rates were lower among auto-enrolled participants compared to passively recruited or auto-invited participants who self-enrolled. However, auto-enrolled samples were much larger, which offset the lower completion rates. Conclusion Our data suggest that auto-enrollment provided an opportunity to reach and retain a larger number of individuals in the study compared to other recruitment modalities.
Collapse
Affiliation(s)
- Phyumar Soe
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Monika Naus
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- BC Center for Disease Control, Vancouver, BC, Canada
| | | | - Otto G. Vanderkooi
- Department of Pediatrics and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - James D. Kellner
- Department of Pediatrics and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Karina A. Top
- Department of Pediatrics, Canadian Center for Vaccinology, IWK Health, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Hubert Wong
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer E. Isenor
- Department of Pediatrics, Canadian Center for Vaccinology, IWK Health, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Kimberly Marty
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | | | - Louis Valiquette
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Allison McGeer
- Department of Microbiology, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Julie A. Bettinger
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
2
|
Jamous YF, Alhomoud DA. The Safety and Effectiveness of mRNA Vaccines Against SARS-CoV-2. Cureus 2023; 15:e45602. [PMID: 37868494 PMCID: PMC10588549 DOI: 10.7759/cureus.45602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in numerous deaths worldwide, along with devastating economic disruptions, and has posed unprecedented challenges to healthcare systems around the world. In the wake of COVID-19's emergence in 2019, a variety of vaccine technologies were formulated and developed, including those that drew from the technology employed in messenger RNA (mRNA) vaccines, designed to curb the disease's transmission and manage the pandemic. mRNA vaccine has several advantages over traditional ones, and hence its development has received considerable attention recently. Researchers believe the mRNA vaccine technology will emerge as the leading technology because it is potent, inexpensive, rapidly developed, and safe. This article provides an overview of mRNA vaccines with a special focus on the efficacy and safety of the Moderna and Pfizer-BioNTech mRNA vaccines against the different variants of COVID-19 and compare them with the Oxford-AstraZeneca (viral vector) and Sinopharm (inactivated virus) vaccines. The clinical data reviewed in this article demonstrate that the currently authorized Moderna and Pfizer-BioNTech mRNA vaccines are highly safe and potent against different variants of COVID-19, especially in comparison with Oxford-AstraZeneca (viral vector) and Sinopharm (inactivated virus) vaccines.
Collapse
Affiliation(s)
- Yahya F Jamous
- National Center of Vaccine and Bioprocessing, King Abdulaziz City for Science and Technology, Riyadh, SAU
| | - Dalal A Alhomoud
- National Center of Vaccine and Bioprocessing, King Abdulaziz City for Science and Technology, Riyadh, SAU
| |
Collapse
|
3
|
Mambelli F, Marinho FV, Andrade JM, de Araujo ACVSC, Abuna RPF, Fabri VMR, Santos BPO, da Silva JS, de Magalhães MTQ, Homan EJ, Leite LCC, Dias GB, Heck N, Mendes DAGB, Mansur DS, Báfica A, Oliveira SC. Recombinant Bacillus Calmette-Guérin Expressing SARS-CoV-2 Chimeric Protein Protects K18-hACE2 Mice against Viral Challenge. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1925-1937. [PMID: 37098890 PMCID: PMC10247535 DOI: 10.4049/jimmunol.2200731] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/24/2023] [Indexed: 04/27/2023]
Abstract
COVID-19 has accounted for more than 6 million deaths worldwide. Bacillus Calmette-Guérin (BCG), the existing tuberculosis vaccine, is known to induce heterologous effects over other infections due to trained immunity and has been proposed to be a potential strategy against SARS-CoV-2 infection. In this report, we constructed a recombinant BCG (rBCG) expressing domains of the SARS-CoV-2 nucleocapsid and spike proteins (termed rBCG-ChD6), recognized as major candidates for vaccine development. We investigated whether rBCG-ChD6 immunization followed by a boost with the recombinant nucleocapsid and spike chimera (rChimera), together with alum, provided protection against SARS-CoV-2 infection in K18-hACE2 mice. A single dose of rBCG-ChD6 boosted with rChimera associated with alum elicited the highest anti-Chimera total IgG and IgG2c Ab titers with neutralizing activity against SARS-CoV-2 Wuhan strain when compared with control groups. Importantly, following SARS-CoV-2 challenge, this vaccination regimen induced IFN-γ and IL-6 production in spleen cells and reduced viral load in the lungs. In addition, no viable virus was detected in mice immunized with rBCG-ChD6 boosted with rChimera, which was associated with decreased lung pathology when compared with BCG WT-rChimera/alum or rChimera/alum control groups. Overall, our study demonstrates the potential of a prime-boost immunization system based on an rBCG expressing a chimeric protein derived from SARS-CoV-2 to protect mice against viral challenge.
Collapse
Affiliation(s)
- Fábio Mambelli
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fábio V. Marinho
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juvana M. Andrade
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana C. V. S. C. de Araujo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo P. F. Abuna
- Platform of Bi-Institutional Research in Translational Medicine, Oswaldo Cruz Foundation-Fiocruz, Ribeirão Preto, São Paulo, Brazil
| | - Victor M. R. Fabri
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno P. O. Santos
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João S. da Silva
- Platform of Bi-Institutional Research in Translational Medicine, Oswaldo Cruz Foundation-Fiocruz, Ribeirão Preto, São Paulo, Brazil
| | - Mariana T. Q. de Magalhães
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - E. Jane Homan
- ioGenetics LLC, Madison, Wisconsin, United States of America
| | | | - Greicy B.M. Dias
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Nicoli Heck
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel A. G. B. Mendes
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel S. Mansur
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - André Báfica
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Sergio C. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Waggoner LE, Miyasaki KF, Kwon EJ. Analysis of PEG-lipid anchor length on lipid nanoparticle pharmacokinetics and activity in a mouse model of traumatic brain injury. Biomater Sci 2023; 11:4238-4253. [PMID: 36987922 PMCID: PMC10262813 DOI: 10.1039/d2bm01846b] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023]
Abstract
Traumatic brain injury (TBI) affects millions of people worldwide, yet there are currently no therapeutics that address the long-term impairments that develop in a large portion of survivors. Lipid nanoparticles (LNPs) are a promising therapeutic strategy that may address the molecular basis of TBI pathophysiology. LNPs are the only non-viral gene delivery platform to achieve clinical success, but systemically administered formulations have only been established for targets in the liver. In this work, we evaluated the pharmacokinetics and activity of LNPs formulated with polyethylene glycol (PEG)-lipids of different anchor lengths when systemically administered to a mouse model of TBI. We observed an increase in LNP accumulation and activity in the injured brain hemisphere compared to the uninjured contralateral brain hemisphere. Interestingly, transgene expression mediated by LNPs was more durable in injured brain tissue compared to off-target organs when compared between 4 and 24 hours. The PEG-lipid is an important component of LNP formulation necessary for the stable formation and storage of LNPs, but the PEG-lipid structure and content also has an impact on LNP function. LNP formulations containing various ratios of PEG-lipid with C18 (DSPE-PEG) and C14 (DMG-PEG) anchors displayed similar physicochemical properties, independent of the PEG-lipid compositions. As the proportion of DSPE-PEG was increased in formulations, blood circulation times of LNPs increased and the duration of expression increased. We also evaluated diffusion of LNPs after convection enhanced delivery (CED) in healthy brains and found LNPs distributed >1 mm away from the injection site. Understanding LNP pharmacokinetics and activity in TBI models and the impact of PEG-lipid anchor length informs the design of LNP-based therapies for TBI after systemic administration.
Collapse
Affiliation(s)
- Lauren E Waggoner
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Katelyn F Miyasaki
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Ester J Kwon
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Ray M, Manjunath A, Halami PM. Effect of probiotics as an immune modulator for the management of COVID-19. Arch Microbiol 2023; 205:182. [PMID: 37031431 PMCID: PMC10098245 DOI: 10.1007/s00203-023-03504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/10/2023]
Abstract
COVID-19, an acute respiratory viral infection conveyed by pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected millions of individuals globally, and is a public health emergency of international concern. Till now, there are no highly effective therapies for this infection without vaccination. As they can evolve quickly and cross the strain level easily, these viruses are causing epidemics or pandemics that are allied with more severe clinical diseases. A new approach is needed to improve immunity to confirm the protection against emerging viral infections. Probiotics can modify gut microbial dysbiosis, improve the host immune system, and stimulate immune signaling, increasing systemic immunity. Several probiotic bacterial therapies have been proven to decrease the period of bacterial or viral infections. Superinduction of inflammation, termed cytokine storm, has been directly linked with pneumonia and severe complications of viral respiratory infections. In this case, probiotics as potential immunomodulatory agents can be an appropriate candidate to improve the host's response to respiratory viral infections. During this COVID-19 pandemic, any approach that can induce mucosal and systemic immunity could be helpful. Here, we summarize contexts regarding the effectiveness of various probiotics for preventing virus-induced respiratory infectious diseases, especially those that could be employed for COVID-19 patients. In addition, the effects of probiotics, their mechanisms on different aspects of immune responses against respiratory viral infection, and their antiviral properties in clinical findings have been described in detail.
Collapse
Affiliation(s)
- Mousumi Ray
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - Ashwini Manjunath
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Prakash M Halami
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India.
| |
Collapse
|
6
|
Mirtaleb MS, Falak R, Heshmatnia J, Bakhshandeh B, Taheri RA, Soleimanjahi H, Zolfaghari Emameh R. An insight overview on COVID-19 mRNA vaccines: Advantageous, pharmacology, mechanism of action, and prospective considerations. Int Immunopharmacol 2023; 117:109934. [PMID: 36867924 PMCID: PMC9968612 DOI: 10.1016/j.intimp.2023.109934] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
The worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has urged scientists to present some novel vaccine platforms during this pandemic to provide a rather prolonged immunity against this respiratory viral infection. In spite of many campaigns formed against the administration of mRNA-based vaccines, those platforms were the most novel types, which helped us meet the global demand by developing protection against COVID-19 and reducing the development of severe forms of this respiratory viral infection. Some societies are worry about the COVID-19 mRNA vaccine administration and the potential risk of genetic integration of inoculated mRNA into the human genome. Although the efficacy and long-term safety of mRNA vaccines have not yet been fully clarified, obviously their application has switched the mortality and morbidity of the COVID-19 pandemic. This study describes the structural features and technologies used in producing of COVID-19 mRNA-based vaccines as the most influential factor in controlling this pandemic and a successful pattern for planning to produce other kind of genetic vaccines against infections or cancers.
Collapse
Affiliation(s)
- Mona Sadat Mirtaleb
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran; Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran; Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Jalal Heshmatnia
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| |
Collapse
|
7
|
Gen S, Iwai T, Ohnari S, Nobe K, Ikeda N. ANCA-Associated Vasculitis after Moderna COVID-19 Vaccination. Case Rep Nephrol 2023; 2023:4906876. [PMID: 37101523 PMCID: PMC10125765 DOI: 10.1155/2023/4906876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
We experienced a case of myeloperoxidase antineutrophil cytoplasmic antibody (MPO-ANCA)-associated vasculitis after Moderna COVID-19 vaccination. An 82-year-old woman developed pyrexia and general malaise one month after her third booster vaccine, and the symptoms persisted. Blood testing revealed inflammation, a high level of MPO-ANCA, and microscopic hematuria. MPO-ANCA-associated vasculitis was diagnosed by renal biopsy. The symptoms improved with steroid therapy. Common adverse reactions to mRNA vaccines against COVID-19 include pyrexia and general malaise, but MPO-ANCA-associated vasculitis can also occur. If pyrexia, prolonged general malaise, urinary occult blood, or renal impairment is observed, the onset of MPO-ANCA-associated vasculitis should be considered.
Collapse
Affiliation(s)
- Shiko Gen
- Department of Nephrology, Saitama Sekishinkai Hospital, Sayama, Japan
| | - Takanori Iwai
- Department of Nephrology, Saitama Sekishinkai Hospital, Sayama, Japan
| | - Sayuri Ohnari
- Department of Nephrology, Saitama Sekishinkai Hospital, Sayama, Japan
| | - Kanako Nobe
- Department of Nephrology, Saitama Sekishinkai Hospital, Sayama, Japan
| | - Naofumi Ikeda
- Department of Nephrology, Saitama Sekishinkai Hospital, Sayama, Japan
| |
Collapse
|
8
|
Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022; 10:1052436. [PMID: 36507266 PMCID: PMC9732709 DOI: 10.3389/fbioe.2022.1052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the associated coronavirus disease 2019 (COVID-19), which severely affect the respiratory system and several organs and tissues, and may lead to death, have shown how science can respond when challenged by a global emergency, offering as a response a myriad of rapid technological developments. Development of vaccines at lightning speed is one of them. SARS-CoV-2 outbreaks have stressed healthcare systems, questioning patients care by using standard non-adapted therapies and diagnostic tools. In this scenario, nanotechnology has offered new tools, techniques and opportunities for prevention, for rapid, accurate and sensitive diagnosis and treatment of COVID-19. In this review, we focus on the nanotechnological applications and nano-based materials (i.e., personal protective equipment) to combat SARS-CoV-2 transmission, infection, organ damage and for the development of new tools for virosurveillance, diagnose and immune protection by mRNA and other nano-based vaccines. All the nano-based developed tools have allowed a historical, unprecedented, real time epidemiological surveillance and diagnosis of SARS-CoV-2 infection, at community and international levels. The nano-based technology has help to predict and detect how this Sarbecovirus is mutating and the severity of the associated COVID-19 disease, thereby assisting the administration and public health services to make decisions and measures for preparedness against the emerging variants of SARS-CoV-2 and severe or lethal COVID-19.
Collapse
Affiliation(s)
- Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Romina Cabrera-Rodriguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Silvia Perez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Judith Estevez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jonay Garcia-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
9
|
Ohmura SI, Ohkubo Y, Ishihara R, Otsuki Y, Miyamoto T. Medium-vessel Vasculitis Presenting with Myalgia Following COVID-19 Moderna Vaccination. Intern Med 2022; 61:3453-3457. [PMID: 36070946 PMCID: PMC9751726 DOI: 10.2169/internalmedicine.0293-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) vaccines have been delivered worldwide to prevent the spread of the disease, and almost all Japanese have received the mRNA vaccines "BNT162b2" (Pfizer-BioNTech) or "mRNA-1273" (Moderna). These vaccines have shown efficacy and safety with only minor adverse drug reactions. However, some patients develop severe adverse drug reactions, including autoimmune reactions. In addition, systemic vasculitis, mainly small-vessel vasculitis, following COVID-19 vaccination, has been reported. However, only a few investigators have reported medium-vessel vasculitis following vaccination. We herein report a case of medium-vessel vasculitis presenting with myalgia as the initial clinical manifestation following COVID-19 Moderna vaccination.
Collapse
Affiliation(s)
- Shin-Ichiro Ohmura
- Department of Rheumatology, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Yusuke Ohkubo
- Department of Rheumatology, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Ryuhei Ishihara
- Department of Rheumatology, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Yoshiro Otsuki
- Department of Pathology, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Toshiaki Miyamoto
- Department of Rheumatology, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| |
Collapse
|
10
|
Toranzos GA, Santiago-Rodriguez TM. MULTI-OMICS as Invaluable Tools for the Elucidation of Host-Microbe-Microbiota Interactions. Int J Mol Sci 2022; 23:13303. [PMID: 36362090 PMCID: PMC9656217 DOI: 10.3390/ijms232113303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 06/09/2024] Open
Abstract
"Omics" is becoming an increasingly recognizable term, even to the general public, as it is used more and more often in everyday scientific research [...].
Collapse
Affiliation(s)
- Gary A. Toranzos
- Environmental Microbiology Laboratory, Biology Department, University of Puerto Rico, Rio Piedras Campus, San Juan 00931, Puerto Rico
| | | |
Collapse
|
11
|
García-Machorro J, Ramírez-Salinas GL, Martinez-Archundia M, Correa-Basurto J. The Advantage of Using Immunoinformatic Tools on Vaccine Design and Development for Coronavirus. Vaccines (Basel) 2022; 10:1844. [PMID: 36366353 PMCID: PMC9693616 DOI: 10.3390/vaccines10111844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 10/28/2023] Open
Abstract
After the outbreak of SARS-CoV-2 by the end of 2019, the vaccine development strategies became a worldwide priority. Furthermore, the appearances of novel SARS-CoV-2 variants challenge researchers to develop new pharmacological or preventive strategies. However, vaccines still represent an efficient way to control the SARS-CoV-2 pandemic worldwide. This review describes the importance of bioinformatic and immunoinformatic tools (in silico) for guide vaccine design. In silico strategies permit the identification of epitopes (immunogenic peptides) which could be used as potential vaccines, as well as nonacarriers such as: vector viral based vaccines, RNA-based vaccines and dendrimers through immunoinformatics. Currently, nucleic acid and protein sequential as well structural analyses through bioinformatic tools allow us to get immunogenic epitopes which can induce immune response alone or in complex with nanocarriers. One of the advantages of in silico techniques is that they facilitate the identification of epitopes, while accelerating the process and helping to economize some stages of the development of safe vaccines.
Collapse
Affiliation(s)
- Jazmín García-Machorro
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Gema Lizbeth Ramírez-Salinas
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City 11340, Mexico
| | - Marlet Martinez-Archundia
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City 11340, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City 11340, Mexico
| |
Collapse
|
12
|
Development of Bivalent mRNA Vaccines against SARS-CoV-2 Variants. Vaccines (Basel) 2022; 10:vaccines10111807. [PMID: 36366316 PMCID: PMC9693459 DOI: 10.3390/vaccines10111807] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected billions of individuals and is the cause of the current global coronavirus disease 2019 (COVID-19) pandemic. We previously developed an mRNA vaccine (LVRNA009) based on the S protein of the Wuhan-Hu-1 strain; the phases I and II clinical trials showed that LVRNA009 has a promising safety and immunogenicity profile. In order to counteract the immune escape by SARS-CoV-2 variants of concern, a panel of mRNA vaccines was developed based on the S proteins of the Wuhan-Hu-1, Delta, Omicron BA.1, BA.2, and BA.5 strains, and each vaccine’s protective potency against the virus variants was evaluated. Furthermore, to achieve excellent neutralization against SARS-CoV-2 variants, bivalent vaccines were developed and tested against the variants. We found that the monovalent Wuhan-Hu-1 or the Delta vaccines could induce high level of neutralization antibody and protect animals from the infection of the SARS-CoV-2 Wuhan-Hu-1 or Delta strains, respectively. However, serum samples from mice immunized with monovalent Delta vaccine showed relatively low virus neutralization titers (VNTs) against the pseudotyped virus of the Omicron strains. Serum samples from mice immunized with bivalent Delta/BA.1 vaccine had high VNTs against the pseudotyped Wuhan-Hu-1, Delta, and BA.1 strains but low VNTs against BA.2 and BA.5 (p < 0.05). Serum samples from mice immunized with Delta/BA.2 vaccine had high VNTs against the pseudotyped Wuhan-Hu-1, Delta, BA.1 and BA.2 strains but low VNTs against BA.5. Finally, serum samples from mice immunized with Delta/BA.5 vaccine had high VNTs against all the tested pseudotyped SARS-CoV-2 strains including the Wuhan-Hu-1, Delta, and Omicron variants (p > 0.05). Therefore, a bivalent mRNA vaccine with Delta/BA.5 combination is promising to provide broad spectrum immunity against all VOCs.
Collapse
|
13
|
Ferrara F, Mancaniello C, Varriale A, Sorrentino S, Zovi A, Nava E, Trama U, Boccellino M, Vitiello A. COVID-19 mRNA Vaccines: A Retrospective Observational Pharmacovigilance Study. Clin Drug Investig 2022; 42:1065-1074. [PMID: 36274082 PMCID: PMC9589581 DOI: 10.1007/s40261-022-01216-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/30/2022]
Abstract
Background and Objective Coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has caused millions of deaths worldwide. The mRNA vaccines prevented the figure from being more severe. The objective of this retrospective study is to evaluate the safety of COVID-19 vaccines by analyzing the adverse events following immunization (AEFIs). Methods A retrospective observational pharmacovigilance study was conducted, based on the collection of reports of suspected AEFIs reported between 1 January 2021 and 31 December 2021 at the Naples 3 local health authority. AEFIs were stratified and described according to mRNA vaccine, demographics, clinical status, description of AEFI, and degree of severity. In 2021, local health authority Asl Naples 3 South received 1164 reports of suspected adverse events that occurred following the administration of mRNA vaccines. Results During the reporting period, 746 reports were related to the Comirnaty vaccine (64.1%), 281 to the Vaxzevria vaccine (24.1%), 107 to the Spikevax vaccine (9.2%), and 30 to the Jcovden vaccine (2.6%); 89.3% of the reports were classified as not serious (N = 1039 reports), the remaining 10.7% as serious (N = 125 reports). Conclusions This retrospective pharmacovigilance study demonstrates that COVID-19 mRNA vaccines are safe in all population groups. Pharmacovigilance is an activity that ensures the safety of health care treatments. The COVID-19 pandemic has accelerated the administration of vaccines whose efficacy and safety is to be evaluated. In the year 2021, an analysis of all reported adverse events following immunization (AEFIs) to the vaccine was conducted on a sample of about 1 million people with the aim of understanding efficacy and safety. All adverse events were divided by age, sex, type of reaction, and severity. Serious reactions were divided into subcategories to report the most common critical issues. At the conclusion of the work, it can be seen that COVID-19 mRNA vaccines are safe but can give serious cardiovascular (12% of the total number of serious reports) and neurological (one serious case that led to the development of Guillain Barré syndrome) side effects that need to be monitored by medical personnel.
Collapse
Affiliation(s)
- Francesco Ferrara
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell’amicizia street 22, Nola, 80035 Naples, Italy
| | - Carolina Mancaniello
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell’amicizia street 22, Nola, 80035 Naples, Italy
| | - Alessia Varriale
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell’amicizia street 22, Nola, 80035 Naples, Italy
| | - Sarah Sorrentino
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell’amicizia street 22, Nola, 80035 Naples, Italy
| | - Andrea Zovi
- Department of Pharmaceutical Sciences, University of Milan, G. Colombo street 71, 20133 Milan, Italy
| | - Eduardo Nava
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell’amicizia street 22, Nola, 80035 Naples, Italy
| | - Ugo Trama
- General Direction for Health Protection and Coordination of the Campania Regional Health System, Naples, Italy
| | - Mariarosaria Boccellino
- Department of Biochemistry, Biophysics and General Pathology, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonio Vitiello
- Pharmaceutical Department Usl Umbria 1, XIV Settembre street, 06121 Perugia, Italy
| |
Collapse
|
14
|
Tulimilli SV, Dallavalasa S, Basavaraju CG, Kumar Rao V, Chikkahonnaiah P, Madhunapantula SV, Veeranna RP. Variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Vaccine Effectiveness. Vaccines (Basel) 2022; 10:1751. [PMID: 36298616 PMCID: PMC9607623 DOI: 10.3390/vaccines10101751] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
The incidence and death toll due to SARS-CoV-2 infection varied time-to-time; and depended on several factors, including severity (viral load), immune status, age, gender, vaccination status, and presence of comorbidities. The RNA genome of SARS-CoV-2 has mutated and produced several variants, which were classified by the SARS-CoV-2 Interagency Group (SIG) into four major categories. The first category; “Variant Being Monitored (VBM)”, consists of Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Epsilon (B.1.427, B.1.429), Eta (B.1.525), Iota (B.1.526), Kappa (B.1.617.1), Mu (B.1.621), and Zeta (P.2); the second category; “Variants of Concern” consists of Omicron (B.1.1.529). The third and fourth categories include “Variants of Interest (VOI)”, and “Variants of High Consequence (VOHC)”, respectively, and contain no variants classified currently under these categories. The surge in VBM and VOC poses a significant threat to public health globally as they exhibit altered virulence, transmissibility, diagnostic or therapeutic escape, and the ability to evade the host immune response. Studies have shown that certain mutations increase the infectivity and pathogenicity of the virus as demonstrated in the case of SARS-CoV-2, the Omicron variant. It is reported that the Omicron variant has >60 mutations with at least 30 mutations in the Spike protein (“S” protein) and 15 mutations in the receptor-binding domain (RBD), resulting in rapid attachment to target cells and immune evasion. The spread of VBM and VOCs has affected the actual protective efficacy of the first-generation vaccines (ChAdOx1, Ad26.COV2.S, NVX-CoV2373, BNT162b2). Currently, the data on the effectiveness of existing vaccines against newer variants of SARS-CoV-2 are very scanty; hence additional studies are immediately warranted. To this end, recent studies have initiated investigations to elucidate the structural features of crucial proteins of SARS-CoV-2 variants and their involvement in pathogenesis. In addition, intense research is in progress to develop better preventive and therapeutic strategies to halt the spread of COVID-19 caused by variants. This review summarizes the structure and life cycle of SARS-CoV-2, provides background information on several variants of SARS-CoV-2 and mutations associated with these variants, and reviews recent studies on the safety and efficacy of major vaccines/vaccine candidates approved against SARS-CoV-2, and its variants.
Collapse
Affiliation(s)
- SubbaRao V. Tulimilli
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
| | - Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
| | - Chaithanya G. Basavaraju
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
| | - Vinay Kumar Rao
- Department of Medical Genetics, JSS Medical College & Hospital, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India
| | - Prashanth Chikkahonnaiah
- Department of Pulmonary Medicine, Mysore Medical College and Research Institute, Mysuru 570001, Karnataka, India
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
| | - Ravindra P. Veeranna
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, Karnataka, India
| |
Collapse
|
15
|
mRNA Vaccine Designing Using Chikungunya Virus E Glycoprotein through Immunoinformatics-Guided Approaches. Vaccines (Basel) 2022; 10:vaccines10091476. [PMID: 36146554 PMCID: PMC9500984 DOI: 10.3390/vaccines10091476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
Chikungunya virus is an alphavirus transmitted by mosquitos that develops into chikungunya fever and joint pain in humans. This virus’ name originated from a Makonde term used to describe an illness that changes the joints and refers to the posture of afflicted patients who are affected by excruciating joint pain. There is currently no commercially available drug or vaccine for chikungunya virus infection and the treatment is performed by symptom reduction. Herein, we have developed a computationally constructed mRNA vaccine construct featuring envelope glycoprotein as the target molecule to aid in the treatment process. We have utilized the reverse vaccinology approach to determine epitopes that would generate adaptive immune reactions. The resulting T and B lymphocytes epitopes were screened by various immunoinformatic tools and a peptide vaccine construct was designed. It was validated by proceeding to docking and MD simulation studies. The following design was then back-translated in nucleotide sequence and codons were optimized according to the expression host system (H. sapiens). Various sequences, including 3′ and 5′ UTR regions, Kozak sequence, poly (A) tail, etc., were introduced into the sequence for the construction of the final mRNA vaccine construct. The secondary structure was generated for validation of the mRNA vaccine construct sequence. Additionally, in silico cloning was also performed to design a vector for proceeding towards in vitro experimentation. The proposed designed vaccine construct may proceed with experimental testing for further efficacy verification and the final development of a vaccine against chikungunya virus infection.
Collapse
|
16
|
Boretti A, Banik BK. Potential Effects of Iodine Supplementation on Inflammatory Processes and Toxin Removal Following COVID-19 Vaccination. Biol Trace Elem Res 2022; 200:3941-3944. [PMID: 34709555 PMCID: PMC8552616 DOI: 10.1007/s12011-021-02996-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Alberto Boretti
- Deanship of Research, Prince Mohammad Bin Fahd University, Al-Khobar, 31952, Saudi Arabia.
| | - Bimal K Banik
- Deanship of Research, Prince Mohammad Bin Fahd University, Al-Khobar, 31952, Saudi Arabia
| |
Collapse
|
17
|
Li Y, Zheng P, Liu T, Shi C, Wang B, Xu Y, Jin T. Structural Requirements and Plasticity of Receptor-Binding Domain in Human Coronavirus Spike. Front Mol Biosci 2022; 9:930931. [PMID: 35903152 PMCID: PMC9315343 DOI: 10.3389/fmolb.2022.930931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
The most recent human coronaviruses including severe acute respiratory syndrome coronavirus-2 causing severe respiratory tract infection and high pathogenicity bring significant global public health concerns. Infections are initiated by recognizing host cell receptors by coronavirus spike protein S1 subunit, and then S2 mediates membrane fusion. However, human coronavirus spikes undergo frequent mutation, which may result in diverse pathogenesis and infectivity. In this review, we summarize some of these recent structural and mutational characteristics of RBD of human coronavirus spike protein and their interaction with specific human cell receptors and analyze the structural requirements and plasticity of RBD. Stability of spike protein, affinity toward receptor, virus fitness, and infectivity are the factors controlling the viral tropisms. Thus, understanding the molecular details of RBDs and their mutations is critical in deciphering virus evolution. Structural information of spike and receptors of human coronaviruses not only reveals the molecular mechanism of host–microbe interaction and pathogenesis but also helps develop effective drug to control these infectious pathogens and cope with the future emerging coronavirus outbreaks.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peiyi Zheng
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tingting Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cuixiao Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tengchuan Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
18
|
Naasani I. Establishing the Pharmacokinetics of Genetic Vaccines is Essential for Maximising their Safety and Efficacy. Clin Pharmacokinet 2022; 61:921-927. [PMID: 35821373 DOI: 10.1007/s40262-022-01149-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
In a typical course of drug development, thorough pharmacokinetic (PK) studies are essential for the determination of drug biodistribution, dosage and efficacy without toxicity. For vaccines, however, unless a new formulation component is used, most regulatory agencies rule out the need for studying the biodistribution of the vaccine antigenic material per se, and only dose-immunogenicity studies are performed. This is because traditional vaccines are meant to directly induce immunogenicity by locally recruiting immunocytes that will carry on with the pursuing immunogenic processes. Thus, the clinical outcome from traditional vaccines is determined mainly by an immunological response phase. Yet, the case is significantly different for the emergent genetic vaccines (vectorised DNA or mRNA vaccines), where the clinical outcome is dependent on a combination of two major response phases: a pharmacological phase that involves biodistribution, assimilation, gene translation and epitope(s) presentation, followed by an immunological phase, which is similar to that of traditional vaccines. From a mathematical perspective, processes involved in drug administration are typically subject to inter- and intra-patient statistical distributions like most physiological processes. Therefore, the clinical outcome after administering genetic vaccines obeys a statistical probability distribution combined of the sum of two major response probability distributions, pharmacological and immunological. This implies that the variance coefficient of the summed response probability distributions has a larger value than the variance of each underlying distribution. In other words, due to the multi-phased mode of action of genetic vaccines, their clinical outcome has more variability than that of traditional vaccines. This observation points toward the necessity for regulating genetic vaccines in a similar manner to bio-therapeutics to ensure better efficacy and safety. A structural PK model is provided to predict the sources of variability, biodistribution and dose optimisation.
Collapse
Affiliation(s)
- Imad Naasani
- Gennate, Ltd., 71-75 Shelton Street, London, WC2H9JQ, UK.
| |
Collapse
|
19
|
Ripoll M, Bernard MC, Vaure C, Bazin E, Commandeur S, Perkov V, Lemdani K, Nicolaï MC, Bonifassi P, Kichler A, Frisch B, Haensler J. An imidazole modified lipid confers enhanced mRNA-LNP stability and strong immunization properties in mice and non-human primates. Biomaterials 2022; 286:121570. [PMID: 35576809 PMCID: PMC9078044 DOI: 10.1016/j.biomaterials.2022.121570] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
The mRNA vaccine technology has promising applications to fight infectious diseases as demonstrated by the licensing of two mRNA-based vaccines, Comirnaty® (Pfizer/BioNtech) and Spikevax® (Moderna), in the context of the Covid-19 crisis. Safe and effective delivery systems are essential to the performance of these vaccines and lipid nanoparticles (LNPs) able to entrap, protect and deliver the mRNA in vivo are considered by many as the current "best in class". Nevertheless, current mRNA/LNP vaccine technology has still some limitations, one of them being thermostability, as evidenced by the ultracold distribution chain required for the licensed vaccines. We found that the thermostability of mRNA/LNP, could be improved by a novel imidazole modified lipid, DOG-IM4, in combination with standard helper lipids. DOG-IM4 comprises an ionizable head group consisting of imidazole, a dioleoyl lipid tail and a short flexible polyoxyethylene spacer between the head and tail. Here we describe the synthesis of DOG-IM4 and show that DOG-IM4 LNPs confer strong immunization properties to influenza HA mRNA in mice and macaques and a remarkable stability to the encapsulated mRNA when stored liquid in phosphate buffered saline at 4 °C. We speculate the increased stability to result from some specific attributes of the lipid's imidazole head group.
Collapse
Affiliation(s)
- Manon Ripoll
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France; Laboratoire de Conception et Application de Molécules Bioactives, Equipe 3Bio (Biovectorisation, Bioconjugaison, Biomatériaux), UMR 7199 - CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch Cedex, France.
| | | | - Céline Vaure
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Emilie Bazin
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Sylvie Commandeur
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Vladimir Perkov
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Katia Lemdani
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France; Neovacs, 3 impasse Reille, 75014 Paris, France.
| | - Marie-Claire Nicolaï
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Patrick Bonifassi
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Antoine Kichler
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe 3Bio (Biovectorisation, Bioconjugaison, Biomatériaux), UMR 7199 - CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch Cedex, France.
| | - Benoit Frisch
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe 3Bio (Biovectorisation, Bioconjugaison, Biomatériaux), UMR 7199 - CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch Cedex, France.
| | - Jean Haensler
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| |
Collapse
|
20
|
Das S, Kar SS, Samanta S, Banerjee J, Giri B, Dash SK. Immunogenic and reactogenic efficacy of Covaxin and Covishield: a comparative review. Immunol Res 2022; 70:289-315. [PMID: 35192185 PMCID: PMC8861611 DOI: 10.1007/s12026-022-09265-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 is an RNA virus that was identified for the first time in December 2019 in Wuhan, China. The World Health Organization (WHO) labeled the novel coronavirus (COVID-19) outbreak a worldwide pandemic on March 11, 2020, due to its widespread infectivity pattern. Because of the catastrophic COVID-19 outbreak, the development of safe and efficient vaccinations has become a key priority in every health sector throughout the globe. On the 13th of January 2021, the vaccination campaign against SARS-CoV-2 was launched in India and started the administration of two types of vaccines known as Covaxin and Covishield. Covishield is an adenovirus vector-based vaccine, and Covaxin was developed by a traditional method of vaccine formulation, which is composed of adjuvanted inactivated viral particles. Each vaccine's utility or efficiency is determined by its formulation, adjuvants, and mode of action. The efficacy of the vaccination depends on numeral properties like generation antibodies, memory cells, and cell-mediated immunity. According to the third-phase experiment, Covishield showed effectiveness of nearly 90%, whereas Covaxin has an effectiveness of about 80%. Both vaccination formulations in India have so far demonstrated satisfactory efficacy against numerous mutant variants of SARS-CoV-2. The efficacy of Covishield may be diminished if the structure of spike (S) protein changes dramatically in the future. In this situation, Covaxin might be still effective for such variants owing to its ability to produce multiple antibodies against various epitopes. This study reviews the comparative immunogenic and therapeutic efficacy of Covaxin and Covishield and also discussed the probable vaccination challenges in upcoming days.
Collapse
Affiliation(s)
- Swarnali Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Suvrendu Sankar Kar
- Department of Medicine, R.G.Kar Medical College, Kolkata, 700004, West Bengal, India
| | - Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India.
| |
Collapse
|
21
|
Autoimmune post-COVID vaccine syndromes: does the spectrum of autoimmune/inflammatory syndrome expand? Clin Rheumatol 2022. [PMID: 35378658 DOI: 10.1007/s10067-022-06149-4/tables/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
To date, around 60% of the world population has been protected by vaccines against SARS-CoV-2, significantly reducing the devastating effect of the pandemic and restoring social economic activity through mass vaccination. Multiple studies have demonstrated the effectiveness and safety of vaccines against COVID-19 in healthy populations, in people with risk factors, in people with or without SARS-CoV-2 infection, and in immunocompromised people. According to the criteria for post-vaccine adverse events established by the World Health Organization, a minority of individuals may develop adverse events, including autoimmune syndromes. The exact mechanisms for the development of these autoimmune syndromes are under study, and to date, a cause-effect relationship has not been established. Many of these autoimmune syndromes meet sufficient criteria for the diagnosis of Adjuvant-Induced Autoimmune Syndrome (ASIA syndrome). The descriptions of these autoimmune syndromes open new perspectives to the knowledge of the complex relationship between the host, its immune system, with the new vaccines and the development of new-onset autoimmune syndromes. Fortunately, most of these autoimmune syndromes are easily controlled with steroids and other immunomodulatory medications and are short-lived. Rheumatologists must be alert to the development of these autoimmune syndromes, and investigate the relationship between autoimmune/inflammatory symptoms and vaccination time, and assess their therapeutic response.
Collapse
|
22
|
Moeller ME, Engsig FN, Bade M, Fock J, Pah P, Soerensen AL, Bang D, Donolato M, Benfield T. Rapid Quantitative Point-Of-Care Diagnostic Test for Post COVID-19 Vaccination Antibody Monitoring. Microbiol Spectr 2022; 10:e0039622. [PMID: 35357223 PMCID: PMC9045215 DOI: 10.1128/spectrum.00396-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Point-of-care (POC) quantification of antibody responses against SARS-CoV-2 spike protein can enable decentralized monitoring of immune responses after infection or vaccination. We evaluated a novel POC microfluidic cartridge-based device (ViroTrack Sero COVID-19 Total Ab) for quantitative detection of total antibodies against SARS-CoV-2 spike trimeric spike protein compared to standard laboratory chemiluminescence (CLIA)-based tests. Antibody responses of 101 individuals were measured on capillary blood, venous whole blood, plasma, and diluted plasma samples directly on the POC. Results were available within 7 min. As the reference, plasma samples were analyzed on DiaSorin LIAISON XL CLIA analyzer using LIAISON SARS-CoV-2 IgM, LIAISON SARS-CoV-2 S1/S2 IgG, and LIAISON SARS-CoV-2 TrimericS IgG assays. The Spearman rank's correlation coefficient between ViroTrack Sero COVID-19 Total Ab and LIAISON SARS-CoV-2 S1/S2 IgG and LIAISON SARS-CoV-2 TrimericS IgG assays was found to be 0.83 and 0.89, respectively. ViroTrack Sero COVID-19 Total Ab showed high correlation between the different matrixes. Agreement for determination of samples of >230 binding antibody units (BAU)/mL on POC and CLIA methods is estimated to be around 90%. ViroTrack Sero Covid Total Ab is a rapid and simple-to-use POC test with high sensitivity and correlation of numerical results expressed in BAU/mL compared to those of a commercial CLIA assay. IMPORTANCE Serological testing is an important diagnostic support tool in the fight against COVID-19. So far, serological testing has been performed on either lateral flow assays, which perform only qualitatively and can be difficult for the individual to read, or standard laboratory assays, which are time- and resource-consuming. The purpose of the study was to evaluate the performance of a new POC microfluidic cartridge-based device based on immunomagnetic agglutination assay that can provide an accurate numerical quantification of the total antibodies within only 7 min from a single drop of capillary blood. We demonstrated a high level of correlation between the POC and the two CLIA laboratory-based immunoassays from Diasorin, thus allowing a potentially wider use of quantitative serology tests in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Maria E. Moeller
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Frederik N. Engsig
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | | | - Jeppe Fock
- BluSense Diagnostics ApS, Copenhagen, Denmark
| | - Pearlyn Pah
- BluSense Diagnostics ApS, Copenhagen, Denmark
| | - Anna Louise Soerensen
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Didi Bang
- Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | | | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Institute of Clinical Medicine, Faculty of Health and Human Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Martínez L, Malaina I, Salcines-Cuevas D, Terán-Navarro H, Zeoli A, Alonso S, M De la Fuente I, Gonzalez-Lopez E, Ocejo-Vinyals JG, Gozalo-Margüello M, Calvo-Montes J, Alvarez-Dominguez C. First computational design using lambda-superstrings and in vivo validation of SARS-CoV-2 vaccine. Sci Rep 2022; 12:6410. [PMID: 35440789 PMCID: PMC9016385 DOI: 10.1038/s41598-022-09615-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is the greatest threat to global health at the present time, and considerable public and private effort is being devoted to fighting this recently emerged disease. Despite the undoubted advances in the development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, uncertainty remains about their future efficacy and the duration of the immunity induced. It is therefore prudent to continue designing and testing vaccines against this pathogen. In this article we computationally designed two candidate vaccines, one monopeptide and one multipeptide, using a technique involving optimizing lambda-superstrings, which was introduced and developed by our research group. We tested the monopeptide vaccine, thus establishing a proof of concept for the validity of the technique. We synthesized a peptide of 22 amino acids in length, corresponding to one of the candidate vaccines, and prepared a dendritic cell (DC) vaccine vector loaded with the 22 amino acids SARS-CoV-2 peptide (positions 50-71) contained in the NTD domain (DC-CoVPSA) of the Spike protein. Next, we tested the immunogenicity, the type of immune response elicited, and the cytokine profile induced by the vaccine, using a non-related bacterial peptide as negative control. Our results indicated that the CoVPSA peptide of the Spike protein elicits noticeable immunogenicity in vivo using a DC vaccine vector and remarkable cellular and humoral immune responses. This DC vaccine vector loaded with the NTD peptide of the Spike protein elicited a predominant Th1-Th17 cytokine profile, indicative of an effective anti-viral response. Finally, we performed a proof of concept experiment in humans that included the following groups: asymptomatic non-active COVID-19 patients, vaccinated volunteers, and control donors that tested negative for SARS-CoV-2. The positive control was the current receptor binding domain epitope of COVID-19 RNA-vaccines. We successfully developed a vaccine candidate technique involving optimizing lambda-superstrings and provided proof of concept in human subjects. We conclude that it is a valid method to decipher the best epitopes of the Spike protein of SARS-CoV-2 to prepare peptide-based vaccines for different vector platforms, including DC vaccines.
Collapse
Affiliation(s)
- Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain. .,BCAM, Basque Center for Applied Mathematics, 48009, Bilbao, Spain.
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain.,BioCruces Health Research Institute, Cruces University Hospital, 48903, Barakaldo, Spain
| | | | - Héctor Terán-Navarro
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Andrea Zeoli
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain.,María Goyri Building. Animal Biotechnology Center, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain
| | - Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain.,Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, 30100, Murcia, Spain
| | - Elena Gonzalez-Lopez
- Servicio de Inmunología, Hospital Universitario Marqués de Valdecilla, 39008, Santander, Spain
| | - J Gonzalo Ocejo-Vinyals
- Servicio de Inmunología, Hospital Universitario Marqués de Valdecilla, 39008, Santander, Spain
| | - Mónica Gozalo-Margüello
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, 39008, Santander, Spain
| | - Jorge Calvo-Montes
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.,Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, 39008, Santander, Spain.,CIBER Enfermedades Infecciosas, ISCIII, Madrid, Spain
| | - Carmen Alvarez-Dominguez
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain. .,Universidad Internacional de La Rioja, 26006, Logroño, Spain.
| |
Collapse
|
24
|
Varillas-Delgado D, Del Coso J, Gutiérrez-Hellín J, Aguilar-Navarro M, Muñoz A, Maestro A, Morencos E. Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing. Eur J Appl Physiol 2022; 122:1811-1830. [PMID: 35428907 PMCID: PMC9012664 DOI: 10.1007/s00421-022-04945-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/29/2022] [Indexed: 12/19/2022]
Abstract
The impact of genetics on physiology and sports performance is one of the most debated research aspects in sports sciences. Nearly 200 genetic polymorphisms have been found to influence sports performance traits, and over 20 polymorphisms may condition the status of the elite athlete. However, with the current evidence, it is certainly too early a stage to determine how to use genotyping as a tool for predicting exercise/sports performance or improving current methods of training. Research on this topic presents methodological limitations such as the lack of measurement of valid exercise performance phenotypes that make the study results difficult to interpret. Additionally, many studies present an insufficient cohort of athletes, or their classification as elite is dubious, which may introduce expectancy effects. Finally, the assessment of a progressively higher number of polymorphisms in the studies and the introduction of new analysis tools, such as the total genotype score (TGS) and genome-wide association studies (GWAS), have produced a considerable advance in the power of the analyses and a change from the study of single variants to determine pathways and systems associated with performance. The purpose of the present study was to comprehensively review evidence on the impact of genetics on endurance- and power-based exercise performance to clearly determine the potential utility of genotyping for detecting sports talent, enhancing training, or preventing exercise-related injuries, and to present an overview of recent research that has attempted to correct the methodological issues found in previous investigations.
Collapse
Affiliation(s)
- David Varillas-Delgado
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain.
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, 28933, Madrid, Spain
| | - Jorge Gutiérrez-Hellín
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Millán Aguilar-Navarro
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Alejandro Muñoz
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | | | - Esther Morencos
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| |
Collapse
|
25
|
Autoimmune post-COVID vaccine syndromes: does the spectrum of autoimmune/inflammatory syndrome expand? Clin Rheumatol 2022; 41:1603-1609. [PMID: 35378658 PMCID: PMC8979721 DOI: 10.1007/s10067-022-06149-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022]
Abstract
To date, around 60% of the world population has been protected by vaccines against SARS-CoV-2, significantly reducing the devastating effect of the pandemic and restoring social economic activity through mass vaccination. Multiple studies have demonstrated the effectiveness and safety of vaccines against COVID-19 in healthy populations, in people with risk factors, in people with or without SARS-CoV-2 infection, and in immunocompromised people. According to the criteria for post-vaccine adverse events established by the World Health Organization, a minority of individuals may develop adverse events, including autoimmune syndromes. The exact mechanisms for the development of these autoimmune syndromes are under study, and to date, a cause-effect relationship has not been established. Many of these autoimmune syndromes meet sufficient criteria for the diagnosis of Adjuvant-Induced Autoimmune Syndrome (ASIA syndrome). The descriptions of these autoimmune syndromes open new perspectives to the knowledge of the complex relationship between the host, its immune system, with the new vaccines and the development of new-onset autoimmune syndromes. Fortunately, most of these autoimmune syndromes are easily controlled with steroids and other immunomodulatory medications and are short-lived. Rheumatologists must be alert to the development of these autoimmune syndromes, and investigate the relationship between autoimmune/inflammatory symptoms and vaccination time, and assess their therapeutic response.
Collapse
|
26
|
Prabhahar A, Naidu GSRSNK, Chauhan P, Sekar A, Sharma A, Sharma A, Kumar A, Nada R, Rathi M, Kohli HS, Ramachandran R. ANCA-associated vasculitis following ChAdOx1 nCoV19 vaccination: case-based review. Rheumatol Int 2022; 42:749-758. [PMID: 35124725 PMCID: PMC8817770 DOI: 10.1007/s00296-021-05069-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/11/2021] [Indexed: 02/06/2023]
Abstract
For the foreseeable future, vaccines are the cornerstone in the global campaign against the Coronavirus Disease-19 (COVID-19) pandemic. As the number and fatalities due to COVID-19 decline and the lockdown anywise rescinded, we recognize an increase in the incidence of autoimmune disease post-COVID-19 vaccination. However, the causality of the most vaccine-induced side effects is debatable and, at best, limited to a temporal correlation. We herein report a case of a 51-year-old gentleman who developed Anti-Neutrophil Cytoplasmic Antibody (ANCA)-associated vasculitis (AAV) 2 week post-COVID-19 vaccination. The patient responded favorably to oral steroids and rituximab. Additionally, we conducted a case-based review of vaccine-associated AAV describing their clinical manifestations and treatment response of this emerging entity.
Collapse
Affiliation(s)
- Arun Prabhahar
- Department of Nephology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - G S R S N K Naidu
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prabhat Chauhan
- Department of Nephology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aravind Sekar
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aman Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | - Ritambhra Nada
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manish Rathi
- Department of Nephology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harbir Singh Kohli
- Department of Nephology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Raja Ramachandran
- Department of Nephology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
27
|
Biotechnological Perspectives to Combat the COVID-19 Pandemic: Precise Diagnostics and Inevitable Vaccine Paradigms. Cells 2022; 11:cells11071182. [PMID: 35406746 PMCID: PMC8997755 DOI: 10.3390/cells11071182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
The outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause for the ongoing global public health emergency. It is more commonly known as coronavirus disease 2019 (COVID-19); the pandemic threat continues to spread aroundthe world with the fluctuating emergence of its new variants. The severity of COVID-19 ranges from asymptomatic to serious acute respiratory distress syndrome (ARDS), which has led to a high human mortality rate and disruption of socioeconomic well-being. For the restoration of pre-pandemic normalcy, the international scientific community has been conducting research on a war footing to limit extremely pathogenic COVID-19 through diagnosis, treatment, and immunization. Since the first report of COVID-19 viral infection, an array of laboratory-based and point-of-care (POC) approaches have emerged for diagnosing and understanding its status of outbreak. The RT-PCR-based viral nucleic acid test (NAT) is one of the rapidly developed and most used COVID-19 detection approaches. Notably, the current forbidding status of COVID-19 requires the development of safe, targeted vaccines/vaccine injections (shots) that can reduce its associated morbidity and mortality. Massive and accelerated vaccination campaigns would be the most effective and ultimate hope to end the COVID-19 pandemic. Since the SARS-CoV-2 virus outbreak, emerging biotechnologies and their multidisciplinary approaches have accelerated the understanding of molecular details as well as the development of a wide range of diagnostics and potential vaccine candidates, which are indispensable to combating the highly contagious COVID-19. Several vaccine candidates have completed phase III clinical studies and are reported to be effective in immunizing against COVID-19 after their rollout via emergency use authorization (EUA). However, optimizing the type of vaccine candidates and its route of delivery that works best to control viral spread is crucial to face the threatening variants expected to emerge over time. In conclusion, the insights of this review would facilitate the development of more likely diagnostics and ideal vaccines for the global control of COVID-19.
Collapse
|
28
|
Wambani J, Okoth P. Scope of SARS-CoV-2 variants, mutations, and vaccine technologies. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2022; 34:34. [PMID: 35368846 PMCID: PMC8962228 DOI: 10.1186/s43162-022-00121-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background The COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is disseminated by respiratory aerosols. The virus uses the spike protein to target epithelial cells by binding to the ACE2 receptor on the host cells. As a result, effective vaccines must target the viral spike glycoprotein. However, the appearance of an Omicron variant with 32 mutations in its spike protein raises questions about the vaccine's efficacy. Vaccines are critical in boosting immunity, lowering COVID-19-related illnesses, reducing the infectious burden on the healthcare system, and reducing economic loss, according to current data. An efficient vaccination campaign is projected to increase innate and adaptive immune responses, offering better protection against SARS-CoV-2 variants. Main body The presence of altered SARS-CoV-2 variants circulating around the world puts the effectiveness of vaccines already on the market at risk. The problem is made even worse by the Omicron variant, which has 32 mutations in its spike protein. Experts are currently examining the potential consequences of commercial vaccines on variants. However, there are worries about the vaccines' safety, the protection they provide, and whether future structural changes are required for these vaccines to be more effective. As a result of these concerns, new vaccines based on modern technology should be developed to guard against the growing SARS-CoV-2 variations. Conclusion The choice of a particular vaccine is influenced by several factors including mode of action, storage conditions, group of the vaccinee, immune response mounted, cost, dosage protocol, age, and side effects. Currently, seven SARS-CoV-2 vaccine platforms have been developed. This comprises of inactivated viruses, messenger RNA (mRNA), DNA vaccines, protein subunits, nonreplicating and replicating vector viral-like particles (VLP), and live attenuated vaccines. This review focuses on the SARS-CoV-2 mutations, variants of concern (VOCs), and advances in vaccine technologies.
Collapse
Affiliation(s)
- Josephine Wambani
- Kenya Medical Research Institute (KEMRI) HIV Laboratory-Alupe, P.O Box 3-50400, Busia, Kenya
- Department of Medical Laboratory Sciences, School of Public Health, Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100 Kenya
| | - Patrick Okoth
- Department of Biological Sciences, School of Natural Sciences, Masinde Muliro University of Science and Technology, P. O Box 190, Kakamega, 50100 Kenya
| |
Collapse
|
29
|
Peng H, Guo X, He J, Duan C, Yang M, Zhang X, Zhang L, Fu R, Wang B, Wang D, Chen H, Xie M, Feng P, Dai L, Tang X, Luo J. Intracranial delivery of synthetic mRNA to suppress glioblastoma. Mol Ther Oncolytics 2022; 24:160-170. [PMID: 35024442 PMCID: PMC8724946 DOI: 10.1016/j.omto.2021.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022] Open
Abstract
Owing to messenger RNA's unique biological advantages, it has received increasing attention to be used as a therapeutic, known as mRNA-based gene therapy. It is critical to have an ideal strategy of mRNA gene therapy for glioma, which grows in a special environment. In the present study, we screened out a safe and efficient transfection reagent for intracranial delivery of synthetic mRNA in mouse brain. First, in order to analyze the effect of different transfection reagents on the intracranial delivery of mRNA, the synthetic luciferase mRNA was wrapped with two different transfection reagents and microinjected into the brain at the fixed point. The expression status of delivered mRNA was monitored by a small animal imaging system. The possible reagent-induced biological toxicity was evaluated by behavioral and blood biochemical measurements. Then, to test the therapeutic effect of our intracranial delivery mRNA model on glioma, synthetic modified tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA was used as an example of therapeutic application. This model demonstrated that synthetic mRNA could be successfully delivered into the brain using commercially available transfection reagents, and TransIT-mRNA showed better results than in vivo-jetPEI kit. This model can be applied in precise targeting and personalized gene therapy of glioma.
Collapse
Affiliation(s)
- Hao Peng
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Jinjuan He
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Chao Duan
- Brain Research Institute, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Minghuan Yang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Xianghua Zhang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Li Zhang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Rui Fu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Bin Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Dekang Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Hu Chen
- Medical Imaging Center, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Mengying Xie
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Ping Feng
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Longjun Dai
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Xiangjun Tang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China
| |
Collapse
|
30
|
Abusalah MAH, Khalifa M, Al-Hatamleh MAI, Jarrar M, Mohamud R, Chan YY. Nucleic Acid-Based COVID-19 Therapy Targeting Cytokine Storms: Strategies to Quell the Storm. J Pers Med 2022; 12:386. [PMID: 35330388 PMCID: PMC8948998 DOI: 10.3390/jpm12030386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has shaken the world and triggered drastic changes in our lifestyle to control it. Despite the non-typical efforts, COVID-19 still thrives and plagues humanity worldwide. The unparalleled degree of infection has been met with an exceptional degree of research to counteract it. Many drugs and therapeutic technologies have been repurposed and discovered, but no groundbreaking antiviral agent has been introduced yet to eradicate COVID-19 and restore normalcy. As lethality is directly correlated with the severity of disease, hospitalized severe cases are of the greatest importance to reduce, especially the cytokine storm phenomenon. This severe inflammatory phenomenon characterized by elevated levels of inflammatory mediators can be targeted to relieve symptoms and save the infected patients. One of the promising therapeutic strategies to combat COVID-19 is nucleic acid-based therapeutic approaches, including microRNAs (miRNAs). This work is an up-to-date review aimed to comprehensively discuss the current nucleic acid-based therapeutics against COVID-19 and their mechanisms of action, taking into consideration the emerging SARS-CoV-2 variants of concern, as well as providing potential future directions. miRNAs can be used to run interference with the expression of viral proteins, while endogenous miRNAs can be targeted as well, offering a versatile platform to control SARS-CoV-2 infection. By targeting these miRNAs, the COVID-19-induced cytokine storm can be suppressed. Therefore, nucleic acid-based therapeutics (miRNAs included) have a latent ability to break the COVID-19 infection in general and quell the cytokine storm in particular.
Collapse
Affiliation(s)
- Mai Abdel Haleem Abusalah
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| | - Moad Khalifa
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Mu’taman Jarrar
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
- Medical Education Department, King Fahd Hospital of the University, Al-Khobar 34445, Saudi Arabia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Yean Yean Chan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| |
Collapse
|
31
|
Smith RG. Clinical data to be used as a foundation to combat Covid-19 vaccine hesitancy. JOURNAL OF INTERPROFESSIONAL EDUCATION & PRACTICE 2022; 26:100483. [PMID: 34926837 PMCID: PMC8664723 DOI: 10.1016/j.xjep.2021.100483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 04/30/2023]
Abstract
The coronavirus has become the paramount subject in peoples' lives, affecting and disrupting virtually every aspect of society, as the pandemic casts a shadow over the world. The facts, myths, and conspiracy theories centered on the Covid-19 pandemic have dominated social media accounts, local and national newspapers, as well as television programs. Strategies need to be evolved to counter Covid-19 vaccine hesitancy and mitigate health disparities in at-risk populations. Overcoming misinformation and distrust will require an interdisciplinary approach to deal with Covid-19. The purpose of this review is to offer a factual basis to all healthcare providers to assist in framing strategies to mitigate vaccine hesitancy and achieve herd immunity to combat the deadly Covid-19 pandemic. First an overview of the discovery of the viruses and their molecular structures will be presented. Secondly, a historical perspective is offered, comparing the differences between the 1918 flu pandemic and the current covid-19 pandemic. Lastly, an overview for proposed techniques and methods to counter and or mitigate covid-19 vaccine misinformation that may be used by an interdisciplinary team will be offered narratively and graphically.
Collapse
Affiliation(s)
- Robert G Smith
- Studying Opioid Harm 501.3(c), 723 Lucerne Circle, Ormond Beach, Florida, 32174, USA
| |
Collapse
|
32
|
Souri M, Chiani M, Farhangi A, Mehrabi MR, Nourouzian D, Raahemifar K, Soltani M. Anti-COVID-19 Nanomaterials: Directions to Improve Prevention, Diagnosis, and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:783. [PMID: 35269270 PMCID: PMC8912597 DOI: 10.3390/nano12050783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Following the announcement of the outbreak of COVID-19 by the World Health Organization, unprecedented efforts were made by researchers around the world to combat the disease. So far, various methods have been developed to combat this "virus" nano enemy, in close collaboration with the clinical and scientific communities. Nanotechnology based on modifiable engineering materials and useful physicochemical properties has demonstrated several methods in the fight against SARS-CoV-2. Here, based on what has been clarified so far from the life cycle of SARS-CoV-2, through an interdisciplinary perspective based on computational science, engineering, pharmacology, medicine, biology, and virology, the role of nano-tools in the trio of prevention, diagnosis, and treatment is highlighted. The special properties of different nanomaterials have led to their widespread use in the development of personal protective equipment, anti-viral nano-coats, and disinfectants in the fight against SARS-CoV-2 out-body. The development of nano-based vaccines acts as a strong shield in-body. In addition, fast detection with high efficiency of SARS-CoV-2 by nanomaterial-based point-of-care devices is another nanotechnology capability. Finally, nanotechnology can play an effective role as an agents carrier, such as agents for blocking angiotensin-converting enzyme 2 (ACE2) receptors, gene editing agents, and therapeutic agents. As a general conclusion, it can be said that nanoparticles can be widely used in disinfection applications outside in vivo. However, in in vivo applications, although it has provided promising results, it still needs to be evaluated for possible unintended immunotoxicity. Reviews like these can be important documents for future unwanted pandemics.
Collapse
Affiliation(s)
- Mohammad Souri
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
| | - Mohsen Chiani
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Ali Farhangi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Mohammad Reza Mehrabi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Dariush Nourouzian
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA 16801, USA;
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
| |
Collapse
|
33
|
Toll-Like Receptors (TLRs) as Therapeutic Targets for Treating SARS-CoV-2: An Immunobiological Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1352:87-109. [PMID: 35132596 DOI: 10.1007/978-3-030-85109-5_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Coronavirus disease-19 (COVID-19) caused by SARS-CoV-2 is presently the biggest threat to mankind throughout the globe. Increasing reports on deaths, cases of new infection, and socioeconomic losses are continuously coming from all parts of the world. Developing an efficacious drug and/or vaccine is currently the major goal to the scientific communities. In this context, toll-like receptors (TLRs) could be the useful targets in adopting effective therapeutic approaches. METHODS This chapter has been written by incorporating the findings on TLR-based therapies against SARS-CoV-2 demonstrated in the recently published research papers/reviews. RESULTS TLRs are the essential components of host immunity and play critical roles in deciding the fate of SARS-CoV-2 by influencing the immunoregulatory circuits governing human immune response to this pathogen. Hitherto, a number of multi-subunit peptide-based vaccines and pharmacological agents developed against SARS-CoV-2 have been found to manipulate TLR function. Therefore, circumventing overt immunopathology of COVID-19 applying TLR-antagonists can effectively reduce the morality caused from "cytokine storm"-induced multiorgan failure. Similarly, pre-administration of TLR- agonists may be used as a prophylaxis to sensitize the immune system of the individuals having risk of infection. A lot of collaborative efforts are required for bench-to-bench transformation of these knowledges. CONCLUSION This chapter enlightens the potentials and promises of TLR-guided therapeutic strategies against COVID-19 by reviewing the major findings and achievements depicted in the literatures published till date.
Collapse
|
34
|
Flachner B, Dobi K, Benedek A, Cseh S, Lőrincz Z, Hajdú I. Robust Recombinant Expression of Human Placental Ribonuclease Inhibitor in Insect Cells. Biomolecules 2022; 12:biom12020273. [PMID: 35204774 PMCID: PMC8961516 DOI: 10.3390/biom12020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Ribonuclease inhibitors (RIs) are an indispensable biotechnological tool for the detection and manipulation of RNA. Nowadays, due to the outbreak of COVID-19, highly sensitive detection of RNA has become more important than ever. Although the recombinant expression of RNase inhibitors is possible in E. coli, the robust expression is complicated by maintaining the redox potential and solubility by various expression tags. In the present paper we describe the expression of RI in baculovirus-infected High Five cells in large scale utilizing a modified transfer vector combining the beneficial properties of Profinity Exact Tag and pONE system. The recombinant RI is expressed at a high level in a fusion form, which is readily cleaved during on-column chromatography. A subsequent anion exchange chromatography was used as a polishing step to yield 12 mg native RI per liter of culture. RI expressed in insect cells shows higher thermal stability than the commercially available RI products (mainly produced in E. coli) based on temperature-dependent RNase inhibition studies. The endotoxin-free RI variant may also be applied in future therapeutics as a safe additive to increase mRNA stability in mRNA-based vaccines.
Collapse
|
35
|
Dhanda S, Osborne V, Lynn E, Shakir S. Postmarketing studies: can they provide a safety net for COVID-19 vaccines in the UK? BMJ Evid Based Med 2022; 27:1-6. [PMID: 33087452 PMCID: PMC8785063 DOI: 10.1136/bmjebm-2020-111507] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/22/2022]
Abstract
In the current era of the COVID-19 pandemic, the world has never been more interested in the process of vaccine development. While researchers across the globe race to find an effective yet safe vaccine to protect populations from the newly emergent SARS-CoV-2 virus, more than one-third of the world has been subjected to either full or partial lockdown measures. With communities having felt the burden of prolonged isolation, finding a safe and efficacious vaccine will yield direct beneficial effects on protecting against COVID-19 morbidity and mortality and help relieve the psychological and economic load on communities living with COVID-19. There is hope that with the extraordinary efforts of scientists a vaccine will become available. However, given the global public health crisis, development of a COVID-19 vaccine will need to be fast tracked through the usual prelicensing development stages and introduced with limited clinical trial data compared with those vaccines that are developed conventionally over more than a decade. In this scenario, surveillance of the vaccine in the real world becomes even more paramount. This responsibility falls to observational researchers who can provide an essential safety net by continuing to monitor the effectiveness and safety of a COVID-19 vaccine after licensing. Postauthorisation observational studies for safety and effectiveness are complementary to prelaunch clinical trials and not a replacement. In this paper, we highlight the importance of postmarketing studies for future newly licensed COVID-19 vaccines and the key epidemiological considerations.
Collapse
Affiliation(s)
- Sandeep Dhanda
- Drug Safety Research Unit, Southampton, Hampshire, UK
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire, UK
| | - Vicki Osborne
- Drug Safety Research Unit, Southampton, Hampshire, UK
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire, UK
| | - Elizabeth Lynn
- Drug Safety Research Unit, Southampton, Hampshire, UK
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire, UK
| | - Saad Shakir
- Drug Safety Research Unit, Southampton, Hampshire, UK
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire, UK
| |
Collapse
|
36
|
Jin Y, Hou C, Li Y, Zheng K, Wang C. mRNA Vaccine: How to Meet the Challenge of SARS-CoV-2. Front Immunol 2022; 12:821538. [PMID: 35126377 PMCID: PMC8813741 DOI: 10.3389/fimmu.2021.821538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high infectivity, pathogenicity, and variability, is a global pandemic that severely affected public health and the world economy. The development of safe and effective vaccines is crucial to the prevention and control of an epidemic. As an emerging technology, mRNA vaccine is widely used for infectious disease prevention and control and has significant safety, efficacy, and high production. It has received support and funding from many pharmaceutical enterprises and becomes one of the main technologies for preventing COVID-19. This review introduces the current status of SARS-CoV-2 vaccines, specifically mRNA vaccines, focusing on the challenges of developing mRNA vaccines against SARS-CoV-2, and discusses the relevant strategies.
Collapse
Affiliation(s)
- Yingqi Jin
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Chen Hou
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Yonghao Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Kang Zheng
- Department of Clinical Laboratory, Hengyang Central Hospital, Hengyang, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
37
|
Naz SS, Munir I. An Outline of Contributing Vaccine Technologies for SARS CoV2 Advancing in Clinical and Preclinical Phase-Trials. Recent Pat Biotechnol 2022; 16:122-143. [PMID: 35040422 DOI: 10.2174/1872208316666220118094344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/11/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV2) is an RNA virus involving 4 structural and 16 non-structural proteins, and exhibiting high transmission potential and fatality. The emergence of this newly encountered beta coronavirus-SARS CoV2 has brought over 2 million people to death, and more than 10 billion people got infected across the globe as yet. Consequently, the global scientific community has contributed to the synthesis and design of effective immunization technologies to combat this virus. OBJECTIVES This literature review was intended to gather an update on published reports of the vaccines advancing in the clinical trial phases or preclinical trials, to summarize the foundations and implications of contributing vaccine candidates inferring their impact in the pandemic repression. In addition, this literature review distinctly facilitates an outline of the overall vaccine effectiveness at current doses. METHODS The reported data in this review was extracted from research articles, review articles and patents published from January 2020 to July 2021, available on Google Scholar, Pubmed, Pubmed Central, Research Gate, Science direct, and Free Patent Online Database by using combination of keywords. Moreover, some information is retrieved from native web pages of vaccine manufacturing companies' due to progressing research and unavailability of published research papers. CONCLUSION Contributing vaccine technologies include: RNA (Ribonucleic acid) vaccines, DNA (Deoxyribonucleic acid) vaccines, viral vector vaccines, protein-based vaccines, inactivated vaccines, viruses-like particles, protein superglue, and live-attenuated vaccines. Some vaccines are prepared by establishing bacterial and yeast cell lines and as self-assembling adenovirus- derived multimeric protein-based self-assembling nanoparticle (ADDOmer). On May 19, WHO has issued an emergency use sanction of Moderna, Pfizer, Sinopharm, AstraZeneca, and Covishield vaccine candidates on account of clinical credibility from experimental data.
Collapse
Affiliation(s)
- Sheikh Saba Naz
- Department of Microbiology, Jinnah University for Women, Pakistan
| | - Iqra Munir
- Department of Microbiology, Jinnah University for Women, Pakistan
- National Nanotechnology Research Center-UNAM, Bilkent University, Turkey
| |
Collapse
|
38
|
Hashemi B, Akram FA, Amirazad H, Dadashpour M, Sheervalilou M, Nasrabadi D, Ahmadi M, Sheervalilou R, Ameri Shah Reza M, Ghazi F, Roshangar L. Emerging importance of nanotechnology-based approaches to control the COVID-19 pandemic; focus on nanomedicine iterance in diagnosis and treatment of COVID-19 patients. J Drug Deliv Sci Technol 2022; 67:102967. [PMID: 34777586 PMCID: PMC8576597 DOI: 10.1016/j.jddst.2021.102967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023]
Abstract
The ongoing outbreak of the newly emerged coronavirus disease 2019, which has tremendously concerned global health safety, is the result of infection with severe acute respiratory syndrome of coronavirus 2 with high morbidity and mortality. Because of the coronavirus has no specific treatment, so it is necessary to early detection and produce antiviral agents and efficacious vaccines in order to prevent the contagion of coronavirus. Due to the unique properties of nanomaterials, nanotechnology appears to be a highly relevant discipline in this global emergency, providing expansive chemical functionalization to develop advanced biomedical tools. Fascinatingly, nanomedicine as a hopeful approach for the treatment and diagnosis of diseases, could efficiently help success the fight among coronavirus and host cells. In this review, we will critically discuss how nanomedicine can play an indispensable role in creating useful treatments and diagnostics for coronavirus.
Collapse
Affiliation(s)
- Behnam Hashemi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Firouzi-Amandi Akram
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Amirazad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Milad Sheervalilou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Nasrabadi
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Abdel-Mageed HM, Abd El Aziz AE, Mohamed SA, AbuelEzz NZ. The Tiny Big World of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: An Updated Review. J Microencapsul 2021; 39:72-94. [PMID: 34958628 DOI: 10.1080/02652048.2021.2021307] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanotechnology is currently a field of endeavor that has reached a maturation phase beyond the initial hypotheses with an undercurrent challenge to optimize the safety, and scalability for production and clinical trials. Lipid-based nanoparticles (LNP), namely solid lipid nanoparticles (SLN) and nanostructured lipid (NLC), carriers are presently among the most attractive and fast-growing areas of research. SLN and NLC are safe, biocompatible nanotechnology-enabled platforms with ubiquitous applications. This review presents a modern vision that starts with a brief description of characteristics, preparation strategies, and composition ingredients, benefits, and limitations. Next, a discussion of applications and functionalization approaches for the delivery of therapeutics via different routes of delivery. Additionally, the review presents a concise perspective into limitations and future advances. A brief recap on the prospects of molecular dynamics simulations in better understanding NP bio-interface interactions is provided. Finally, the alliance between 3D printing and nanomaterials is presented here as well.
Collapse
Affiliation(s)
| | - Amira E Abd El Aziz
- Centre of Excellence, Arab Academy for Science and Technology and Maritime Transport, Alexandria, Egypt
| | - Saleh A Mohamed
- Molecular Biology Department, National Research Centre, Cairo, Dokki, Egypt
| | - Nermeen Z AbuelEzz
- Biochemistry Department, College of Pharmaceutical Sciences & Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
40
|
Peng XL, Cheng JSY, Gong HL, Yuan MD, Zhao XH, Li Z, Wei DX. Advances in the design and development of SARS-CoV-2 vaccines. Mil Med Res 2021; 8:67. [PMID: 34911569 PMCID: PMC8674100 DOI: 10.1186/s40779-021-00360-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
Since the end of 2019, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide. The RNA genome of SARS-CoV-2, which is highly infectious and prone to rapid mutation, encodes both structural and nonstructural proteins. Vaccination is currently the only effective method to prevent COVID-19, and structural proteins are critical targets for vaccine development. Currently, many vaccines are in clinical trials or are already on the market. This review highlights ongoing advances in the design of prophylactic or therapeutic vaccines against COVID-19, including viral vector vaccines, DNA vaccines, RNA vaccines, live-attenuated vaccines, inactivated virus vaccines, recombinant protein vaccines and bionic nanoparticle vaccines. In addition to traditional inactivated virus vaccines, some novel vaccines based on viral vectors, nanoscience and synthetic biology also play important roles in combating COVID-19. However, many challenges persist in ongoing clinical trials.
Collapse
Affiliation(s)
- Xue-Liang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Ji-Si-Yu Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Hai-Lun Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Meng-Di Yuan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Xiao-Hong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634 Singapore
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| |
Collapse
|
41
|
Vitiello A, Ferrara F. Commentary of the mRNA vaccines COVID-19. Asian J Pharm Sci 2021; 16:531-532. [PMID: 34849160 PMCID: PMC8609436 DOI: 10.1016/j.ajps.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/05/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022] Open
|
42
|
Duan Y, Wang S, Zhang Q, Gao W, Zhang L. Nanoparticle approaches against SARS-CoV-2 infection. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2021; 25:100964. [PMID: 34729031 PMCID: PMC8542438 DOI: 10.1016/j.cossms.2021.100964] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 05/25/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become the worst pandemic disease of the current millennium. To address this crisis, therapeutic nanoparticles, including inorganic nanoparticles, lipid nanoparticles, polymeric nanoparticles, virus-like nanoparticles, and cell membrane-coated nanoparticles, have all offered compelling antiviral strategies. This article reviews these strategies in three categories: (1) nanoparticle-enabled detection of SARS-CoV-2, (2) nanoparticle-based treatment for COVID-19, and (3) nanoparticle vaccines against SARS-CoV-2. We discuss how nanoparticles are tailor-made to biointerface with the host and the virus in each category. For each nanoparticle design, we highlight its structure-function relationship that enables effective antiviral activity. Overall, nanoparticles bring numerous new opportunities to improve our response to the current COVID-19 pandemic and enhance our preparedness for future viral outbreaks.
Collapse
Affiliation(s)
- Yaou Duan
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Shuyan Wang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Qiangzhe Zhang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
43
|
Kandi V, Suvvari TK, Vadakedath S, Godishala V. Microbes, Clinical trials, Drug Discovery, and Vaccine Development: The Current Perspectives. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i4.2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Because of the frequent emergence of novel microbial species and the re-emergence of genetic variants of hitherto known microbes, the global healthcare system, and human health has been thrown into jeopardy. Also, certain microbes that possess the ability to develop multi-drug resistance (MDR) have limited the treatment options in cases of serious infections, and increased hospital and treatment costs, and associated morbidity and mortality. The recent discovery of the novel Coronavirus (n-CoV), the Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2) that is causing the CoV Disease-19 (COVID-19) has resulted in severe morbidity and mortality throughout the world affecting normal human lives. The major concern with the current pandemic is the non-availability of specific drugs and an incomplete understanding of the pathobiology of the virus. It is therefore important for pharmaceutical establishments to envisage the discovery of therapeutic interventions and potential vaccines against the novel and MDR microbes. Therefore, this review is attempted to update and explore the current perspectives in microbes, clinical research, drug discovery, and vaccine development to effectively combat the emerging novel and re-emerging genetic variants of microbes.
Collapse
|
44
|
Banga Ndzouboukou JL, Zhang YD, Lei Q, Lin XS, Yao ZJ, Fu H, Yuan LY, Fan XL. Human IgM and IgG Responses to an Inactivated SARS-CoV-2 Vaccine. Curr Med Sci 2021; 41:1081-1086. [PMID: 34741251 PMCID: PMC8571008 DOI: 10.1007/s11596-021-2461-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/13/2021] [Indexed: 12/28/2022]
Abstract
Objective The ongoing COVID-19 pandemic warrants accelerated efforts to test vaccine candidates. To explore the influencing factors on vaccine-induced effects, antibody responses to an inactivated SARS-CoV-2 vaccine in healthy individuals who were not previously infected by COVID-19 were assessed. Methods All subjects aged 18–60 years who did not have SARS-CoV-2 infection at the time of screening from June 19, 2021, to July 02, 2021, were approached for inclusion. All participants received two doses of inactivated SARS-CoV-2 vaccine. Serum IgM and IgG antibodies were detected using a commercial kit after the second dose of vaccination. A positive result was defined as 10 AU/mL or more and a negative result as less than 10 AU/mL. This retrospective study included 97 infection-naïve individuals (mean age 35.6 years; 37.1% male, 62.9% female). Results The seropositive rates of IgM and IgG antibody responses elicited after the second dose of inactivated SARS-CoV-2 vaccine were 3.1% and 74.2%, respectively. IgG antibody levels were significantly higher than IgM levels (P<0.0001). Sex had no effect on IgM and IgG antibody response after the second dose. The mean anti-IgG level in older persons (⩾42 years) was significantly lower than that of younger recipients. There was a significantly lower antibody level at > 42 days compared to that at 0–20 days (P<0.05) and 21–31 days (P<0.05) after the second dose. Conclusion IgG antibody response could be induced by inactivated SARS-CoV-2 vaccine in healthy individuals (>18 years), which can be influenced by age and detection time after the second dose of vaccination.
Collapse
Affiliation(s)
- Jo-Lewis Banga Ndzouboukou
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yan-di Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qing Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiao-song Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Zong-jie Yao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Hui Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Le-yong Yuan
- Department of Clinical Laboratory, Southern University of Science and Technology Hospital, Shenzhen, 518055 China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000 China
| | - Xiong-lin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
45
|
Al-Jighefee HT, Najjar H, Ahmed MN, Qush A, Awwad S, Kamareddine L. COVID-19 Vaccine Platforms: Challenges and Safety Contemplations. Vaccines (Basel) 2021; 9:1196. [PMID: 34696306 PMCID: PMC8537163 DOI: 10.3390/vaccines9101196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 01/15/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic as of March 2020, creating a global crisis and claiming millions of lives. To halt the pandemic and alleviate its impact on society, economy, and public health, the development of vaccines and antiviral agents against SARS-CoV-2 was a dire need. To date, various platforms have been utilized for SARS-CoV-2 vaccine development, and over 200 vaccine candidates have been produced, many of which have obtained the United States Food and Drug Administration (FDA) approval for emergency use. Despite this successful development and licensure, concerns regarding the safety and efficacy of these vaccines have arisen, given the unprecedented speed of vaccine development and the newly emerging SARS-CoV-2 strains and variants. In this review, we summarize the different platforms used for Coronavirus Disease 2019 (COVID-19) vaccine development, discuss their strengths and limitations, and highlight the major safety concerns and potential risks associated with each vaccine type.
Collapse
Affiliation(s)
- Hadeel T. Al-Jighefee
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hoda Najjar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
| | - Muna Nizar Ahmed
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
| | - Abeer Qush
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
| | - Sara Awwad
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
| | - Layla Kamareddine
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
46
|
Abdurrahman L, Fang X, Zhang Y. Molecular Insights of SARS-CoV-2 Infection and Molecular Treatments. Curr Mol Med 2021; 22:621-639. [PMID: 34645374 DOI: 10.2174/1566524021666211013121831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/15/2021] [Accepted: 07/23/2021] [Indexed: 01/18/2023]
Abstract
The coronavirus disease emerged in December 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome-related coronavirus 2 (SARS-CoV-2) and its rapid global spread has brought an international health emergency and urgent responses for seeking efficient prevention and therapeutic treatment. This has led to imperative needs for illustration of the molecular pathogenesis of SARS-CoV-2, identification of molecular targets or receptors, and development of antiviral drugs, antibodies, and vaccines. In this study, we investigated the current research progress in combating SARS-CoV-2 infection. Based on the published research findings, we first elucidated, at the molecular level, SARS-CoV-2 viral structures, potential viral host-cell-invasion and pathogenic mechanisms, main virus-induced immune responses, and emerging SARS-CoV-2 variants. We then focused on the main virus- and host-based potential targets, summarized and categorized effective inhibitory molecules based on drug development strategies for COVID-19, that can guide efforts for the identification of new drugs and treatment for this problematic disease. Current research and development of antibodies and vaccines were also introduced and discussed. We concluded that the main virus entry route- SARS-CoV-2 spike protein interaction with ACE2 receptors has played a key role in guiding the development of therapeutic treatments against COVID-19, four main therapeutic strategies may be considered in developing molecular therapeutics, and drug repurposing is likely to be an easy, fast and low-cost approach in such a short period of time with urgent need of antiviral drugs. Additionally, the quick development of antibody and vaccine candidates has yielded promising results, but the wide-scale deployment of safe and effective COVID-19 vaccines remains paramount in solving the pandemic crisis. As new variants of the virus begun to emerge, the efficacy of these vaccines and treatments must be closely evaluated. Finally, we discussed the possible challenges of developing molecular therapeutics for COVID-19 and suggested some potential future efforts. Despite the limited availability of literatures, our attempt in this work to provide a relatively comprehensive overview of current SARS-CoV-2 studies can be helpful for quickly acquiring the key information of COVID-19 and further promoting this important research to control and diminish the pandemic.
Collapse
Affiliation(s)
- Lama Abdurrahman
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas 78539. United States
| | - Xiaoqian Fang
- Department of Molecular Science, School of Medicine, The University of Texas Rio Grande Valley, Edinburg, Texas 78539. United States
| | - Yonghong Zhang
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas 78539. United States
| |
Collapse
|
47
|
Chu C, Baxamusa S, Witherel C. Impact of COVID-19 on materials science research innovation and related pandemic response. MRS BULLETIN 2021; 46:807-812. [PMID: 34658504 PMCID: PMC8508403 DOI: 10.1557/s43577-021-00186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
ABSTRACT The scope of impact that the coronavirus SARS-CoV-2 has had and continues to have on life, society, and the world as we know it will be debated for years to come. One thing is for certain, scientists, engineers, clinicians, and researchers around the globe rallied to heed the call for innovation, particularly in the field of materials science. In this special issue of MRS Bulletin, we feature six articles, two of which showcase primary consumable materials research and development, along with four review articles highlighting materials innovation over the last 18 months in diagnostics, prevention, and treatment of SARS-CoV-2 infection. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Crystal Chu
- Department of Chemistry, Lehigh University, Bethlehem, USA
| | | | - Claire Witherel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
48
|
Computer simulation in the development of vaccines against covid-19 based on the hla-system antigens. КЛИНИЧЕСКАЯ ПРАКТИКА 2021. [DOI: 10.17816/clinpract76291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The genetic variability of population may explain different individual immune responses to the SARS-CoV-2 virus. The use of genome- and peptidome-based technologies makes it possible to develop vaccines by optimizing the target antigens. The computer modeling methodology provides the scientific community with a more complete list of immunogenic peptides, including a number of new and cross-reactive candidates. Studies conducted independently of each other with different approaches provide a high degree of confidence in the reproducibility of results. Most of the effort in developing vaccines and drugs against SARS-CoV-2 is directed towards the thorn glycoprotein (protein S), a major inducer of neutralizing antibodies. Several vaccines have been shown to be effective in the preclinical studies and have been tested in the clinical trials to combat the COVID-19 infection. This review presents the profile of in silico predicted immunogenic peptides of the SARS-CoV-2 virus for the subsequent functional validation and vaccine development, and highlights the current advances in the development of subunit vaccines to combat COVID-19, taking into account the experience that has been previously achieved with SARS-CoV and MERS-CoV. The immunoinformatics techniques reduce the time and cost of developing vaccines that together can stop this new viral infection.
Collapse
|
49
|
Muhammed Y, Yusuf Nadabo A, Pius M, Sani B, Usman J, Anka Garba N, Mohammed Sani J, Opeyemi Olayanju B, Zeal Bala S, Garba Abdullahi M, Sambo M. SARS-CoV-2 spike protein and RNA dependent RNA polymerase as targets for drug and vaccine development: A review. BIOSAFETY AND HEALTH 2021; 3:249-263. [PMID: 34396086 PMCID: PMC8346354 DOI: 10.1016/j.bsheal.2021.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/04/2021] [Accepted: 07/18/2021] [Indexed: 01/18/2023] Open
Abstract
The present pandemic has posed a crisis to the economy of the world and the health sector. Therefore, the race to expand research to understand some good molecular targets for vaccine and therapeutic development for SARS-CoV-2 is inevitable. The newly discovered coronavirus 2019 (COVID-19) is a positive sense, single-stranded RNA, and enveloped virus, assigned to the beta CoV genus. The virus (SARS-CoV-2) is more infectious than the previously detected coronaviruses (MERS and SARS). Findings from many studies have revealed that S protein and RdRp are good targets for drug repositioning, novel therapeutic development (antibodies and small molecule drugs), and vaccine discovery. Therapeutics such as chloroquine, convalescent plasma, monoclonal antibodies, spike binding peptides, and small molecules could alter the ability of S protein to bind to the ACE-2 receptor, and drugs such as remdesivir (targeting SARS-CoV-2 RdRp), favipir, and emetine could prevent SASR-CoV-2 RNA synthesis. The novel vaccines such as mRNA1273 (Moderna), 3LNP-mRNAs (Pfizer/BioNTech), and ChAdOx1-S (University of Oxford/Astra Zeneca) targeting S protein have proven to be effective in combating the present pandemic. Further exploration of the potential of S protein and RdRp is crucial in fighting the present pandemic.
Collapse
Affiliation(s)
- Yusuf Muhammed
- Department of Biochemistry, Federal University, Gusau, Nigeria,Corresponding author: Department of Biochemistry, Federal University, Gusau, Nigeria
| | | | - Mkpouto Pius
- Department of Medical Genetics, University of Cambridge, CB2 1TN, United Kingdom
| | - Bashiru Sani
- Department of Microbiology, Federal University of Lafia, Nigeria
| | - Jafar Usman
- Department of Biochemistry, Federal University, Gusau, Nigeria
| | | | | | - Basit Opeyemi Olayanju
- Department of Chemistry and Biochemistry, Florida International University, FL 33199, USA
| | | | | | - Misbahu Sambo
- Department of Biochemistry, Abubakar Tafawa Balewa University Bauchi, Nigeria
| |
Collapse
|
50
|
Panchal D, Kataria J, Patel K, Crowe K, Pai V, Azizogli A, Kadian N, Sanyal S, Roy A, Dodd‐o J, Acevedo‐Jake AM, Kumar VA. Peptide-Based Inhibitors for SARS-CoV-2 and SARS-CoV. ADVANCED THERAPEUTICS 2021; 4:2100104. [PMID: 34514085 PMCID: PMC8420164 DOI: 10.1002/adtp.202100104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Indexed: 12/20/2022]
Abstract
The COVID-19 (coronavirus disease) global pandemic, caused by the spread of the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus, currently has limited treatment options which include vaccines, anti-virals, and repurposed therapeutics. With their high specificity, tunability, and biocompatibility, small molecules like peptides are positioned to act as key players in combating SARS-CoV-2, and can be readily modified to match viral mutation rate. A recent expansion of the understanding of the viral structure and entry mechanisms has led to the proliferation of therapeutic viral entry inhibitors. In this comprehensive review, inhibitors of SARS and SARS-CoV-2 are investigated and discussed based on therapeutic design, inhibitory mechanistic approaches, and common targets. Peptide therapeutics are highlighted, which have demonstrated in vitro or in vivo efficacy, discuss advantages of peptide therapeutics, and common strategies in identifying targets for viral inhibition.
Collapse
Affiliation(s)
- Disha Panchal
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Jeena Kataria
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Kamiya Patel
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Kaytlyn Crowe
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Varun Pai
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Abdul‐Rahman Azizogli
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Neil Kadian
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Sreya Sanyal
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Abhishek Roy
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Joseph Dodd‐o
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | | | - Vivek A. Kumar
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
- Department of Biomedical EngineeringDepartment of ChemicalBiological and Pharmaceutical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| |
Collapse
|