1
|
Sun Y, Xing J, Hong SL, Bollen N, Xu S, Li Y, Zhong J, Gao X, Zhu D, Liu J, Gong L, Zhou L, An T, Shi M, Wang H, Baele G, Zhang G. Untangling lineage introductions, persistence and transmission drivers of HP-PRRSV sublineage 8.7. Nat Commun 2024; 15:8842. [PMID: 39397015 PMCID: PMC11471759 DOI: 10.1038/s41467-024-53076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
Despite a rapid expansion of Porcine reproductive and respiratory syndrome virus (PRRSV) sublineage 8.7 over recent years, very little is known about the patterns of virus evolution, dispersal, and the factors influencing this dispersal. Relying on a national PRRSV surveillance project established over 20 years ago, we expand the available genomic data of sublineage 8.7 from China. We perform independent interlineage and intralineage recombination analyses for the entire study period, which showed a heterogeneous recombination pattern. A series of Bayesian phylogeographic analyses uncover the role of Guangdong as an important infection hub within Asia. The spatial spread of PRRSV is highly linked with a composite of human activities and the heterogeneous provincial distribution of the swine industry, largely propelled by the smaller-scale Chinese rural farming systems in the past years. We sequence all four available modified live vaccines (MLVs) and perform genomic analyses with publicly available data, of which our results suggest a key "leaky" period spanning 2011-2017 with two concurrent amino acid mutations in ORF1a 957 and ORF2 250. Overall, our study provides an in-depth overview of the evolution, transmission dynamics, and potential leaky status of HP-PRRS MLVs, providing critical insights into new MLV development.
Collapse
Affiliation(s)
- Yankuo Sun
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Jiabao Xing
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Nena Bollen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sijia Xu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Li
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianhao Zhong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaopeng Gao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Dihua Zhu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Liu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lang Gong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mang Shi
- School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Heng Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
2
|
Holtz A, Van Weyenbergh J, Hong SL, Cuypers L, O'Toole Á, Dudas G, Gerdol M, Potter BI, Ntoumi F, Mapanguy CCM, Vanmechelen B, Wawina-Bokalanga T, Van Holm B, Menezes SM, Soubotko K, Van Pottelbergh G, Wollants E, Vermeersch P, Jacob AS, Maes B, Obbels D, Matheeussen V, Martens G, Gras J, Verhasselt B, Laffut W, Vael C, Goegebuer T, van der Kant R, Rousseau F, Schymkowitz J, Serrano L, Delgado J, Wenseleers T, Bours V, André E, Suchard MA, Rambaut A, Dellicour S, Maes P, Durkin K, Baele G. Emergence of the B.1.214.2 SARS-CoV-2 lineage with an Omicron-like spike insertion and a unique upper airway immune signature. BMC Infect Dis 2024; 24:1139. [PMID: 39390446 PMCID: PMC11468156 DOI: 10.1186/s12879-024-09967-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
We investigate the emergence, mutation profile, and dissemination of SARS-CoV-2 lineage B.1.214.2, first identified in Belgium in January 2021. This variant, featuring a 3-amino acid insertion in the spike protein similar to the Omicron variant, was speculated to enhance transmissibility or immune evasion. Initially detected in international travelers, it substantially transmitted in Central Africa, Belgium, Switzerland, and France, peaking in April 2021. Our travel-aware phylogeographic analysis, incorporating travel history, estimated the origin to the Republic of the Congo, with primary European entry through France and Belgium, and multiple smaller introductions during the epidemic. We correlate its spread with human travel patterns and air passenger data. Further, upon reviewing national reports of SARS-CoV-2 outbreaks in Belgian nursing homes, we found this strain caused moderately severe outcomes (8.7% case fatality ratio). A distinct nasopharyngeal immune response was observed in elderly patients, characterized by 80% unique signatures, higher B- and T-cell activation, increased type I IFN signaling, and reduced NK, Th17, and complement system activation, compared to similar outbreaks. This unique immune response may explain the variant's epidemiological behavior and underscores the need for nasal vaccine strategies against emerging variants.
Collapse
Affiliation(s)
- Andrew Holtz
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, Université Paris Cité, Paris, France.
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lize Cuypers
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, National Reference Centre for Respiratory Pathogens, Leuven, Belgium
| | - Áine O'Toole
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Gytis Dudas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Barney I Potter
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Francine Ntoumi
- Fondation Congolaise Pour La Recherche Médicale, Brazzaville, Republic of Congo
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Claujens Chastel Mfoutou Mapanguy
- Fondation Congolaise Pour La Recherche Médicale, Brazzaville, Republic of Congo
- Faculty of Sciences and Techniques, University Marien Ngouabi, Brazzaville, Republic of Congo
| | - Bert Vanmechelen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Tony Wawina-Bokalanga
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Bram Van Holm
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Soraya Maria Menezes
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | | | | | - Elke Wollants
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Pieter Vermeersch
- Department of Laboratory Medicine, University Hospitals Leuven, National Reference Centre for Respiratory Pathogens, Leuven, Belgium
| | - Ann-Sophie Jacob
- Department of Laboratory Medicine, University Hospitals Leuven, National Reference Centre for Respiratory Pathogens, Leuven, Belgium
| | - Brigitte Maes
- Laboratory for Molecular Diagnostics, Jessa Hospital, Hasselt, Belgium
- Hasselt University, Hasselt, Belgium
- Limburg Clinical Research Center, Hasselt, Belgium
| | | | - Veerle Matheeussen
- Department of Laboratory Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
- Laboratory of Medical Biochemistry and Laboratory of Medical Microbiology, University of Antwerp, Wilrijk, Belgium
| | - Geert Martens
- Department of Laboratory Medicine, AZ Delta General Hospital, Roeselare, Belgium
| | - Jérémie Gras
- Institut de Pathologie Et de Génétique, Gosselies, Belgium
| | - Bruno Verhasselt
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Wim Laffut
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Carl Vael
- Department of Laboratory Medicine, KLINA General Hospital, Brasschaat, AZ, Belgium
| | | | - Rob van der Kant
- Switch Laboratory, VIB Center for Brain and Disease Research and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Luis Serrano
- Center for Genomic Regulation, Barcelona Institute for Science and Technology, 08003, Barcelona, Spain
- Universitat Pompeu Fabra, 08002, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats, 08010, Barcelona, Spain
| | - Javier Delgado
- Center for Genomic Regulation, Barcelona Institute for Science and Technology, 08003, Barcelona, Spain
| | | | - Vincent Bours
- Department of Medical Genetics, CHU Liege, Liege, Belgium
| | - Emmanuel André
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Andrew Rambaut
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Keith Durkin
- Laboratory of Human Genetics, GIGA Research Institute, Liège, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Taylor-Salmon E, Hill V, Paul LM, Koch RT, Breban MI, Chaguza C, Sodeinde A, Warren JL, Bunch S, Cano N, Cone M, Eysoldt S, Garcia A, Gilles N, Hagy A, Heberlein L, Jaber R, Kassens E, Colarusso P, Davis A, Baudin S, Rico E, Mejía-Echeverri Á, Scott B, Stanek D, Zimler R, Muñoz-Jordán JL, Santiago GA, Adams LE, Paz-Bailey G, Spillane M, Katebi V, Paulino-Ramírez R, Mueses S, Peguero A, Sánchez N, Norman FF, Galán JC, Huits R, Hamer DH, Vogels CBF, Morrison A, Michael SF, Grubaugh ND. Travel surveillance uncovers dengue virus dynamics and introductions in the Caribbean. Nat Commun 2024; 15:3508. [PMID: 38664380 PMCID: PMC11045810 DOI: 10.1038/s41467-024-47774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Dengue is the most prevalent mosquito-borne viral disease in humans, and cases are continuing to rise globally. In particular, islands in the Caribbean have experienced more frequent outbreaks, and all four dengue virus (DENV) serotypes have been reported in the region, leading to hyperendemicity and increased rates of severe disease. However, there is significant variability regarding virus surveillance and reporting between islands, making it difficult to obtain an accurate understanding of the epidemiological patterns in the Caribbean. To investigate this, we used travel surveillance and genomic epidemiology to reconstruct outbreak dynamics, DENV serotype turnover, and patterns of spread within the region from 2009-2022. We uncovered two recent DENV-3 introductions from Asia, one of which resulted in a large outbreak in Cuba, which was previously under-reported. We also show that while outbreaks can be synchronized between islands, they are often caused by different serotypes. Our study highlights the importance of surveillance of infected travelers to provide a snapshot of local introductions and transmission in areas with limited local surveillance and suggests that the recent DENV-3 introductions may pose a major public health threat in the region.
Collapse
Affiliation(s)
- Emma Taylor-Salmon
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA.
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| | - Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Lauren M Paul
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Robert T Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Afeez Sodeinde
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Joshua L Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
| | - Sylvia Bunch
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Natalia Cano
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Marshall Cone
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Sarah Eysoldt
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Alezaundra Garcia
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Nicadia Gilles
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Andrew Hagy
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Lea Heberlein
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Rayah Jaber
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Elizabeth Kassens
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Pamela Colarusso
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, USA
| | - Amanda Davis
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, USA
| | - Samantha Baudin
- Florida Department of Health in Miami-Dade County, Miami, FL, USA
| | - Edhelene Rico
- Florida Department of Health in Miami-Dade County, Miami, FL, USA
| | | | - Blake Scott
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL, USA
| | - Danielle Stanek
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL, USA
| | - Rebecca Zimler
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL, USA
| | - Jorge L Muñoz-Jordán
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Gilberto A Santiago
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Laura E Adams
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Gabriela Paz-Bailey
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Melanie Spillane
- Office of Data, Analytics, and Technology, Division of Global Migration Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Bureau for Global Health, United States Agency for International Development, Arlington, VA, USA
| | - Volha Katebi
- Office of Data, Analytics, and Technology, Division of Global Migration Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Robert Paulino-Ramírez
- Instituto de Medicina Tropical & Salud Global, Universidad Iberoamericana, UNIBE Research Hub, Santo Domingo, Dominican Republic
| | - Sayira Mueses
- Instituto de Medicina Tropical & Salud Global, Universidad Iberoamericana, UNIBE Research Hub, Santo Domingo, Dominican Republic
| | - Armando Peguero
- Instituto de Medicina Tropical & Salud Global, Universidad Iberoamericana, UNIBE Research Hub, Santo Domingo, Dominican Republic
| | - Nelissa Sánchez
- Instituto de Medicina Tropical & Salud Global, Universidad Iberoamericana, UNIBE Research Hub, Santo Domingo, Dominican Republic
| | - Francesca F Norman
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, CIBER de Enfermedades Infecciosas, IRYCIS, Hospital Ramón y Cajal, Universidad de Alcalá, Madrid, Spain
| | - Juan-Carlos Galán
- Microbiology Department, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBER de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain
| | - Ralph Huits
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Davidson H Hamer
- Department of Global Health, Boston University School of Public Health, Section of Infectious Diseases, Boston University School of Medicine, Center for Emerging Infectious Disease Policy and Research, Boston University, and National Emerging Infectious Disease Laboratory, Boston, MA, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
| | - Andrea Morrison
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL, USA.
| | - Scott F Michael
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, FL, USA.
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA.
- Yale Institute for Global Health, Yale University, New Haven, CT, USA.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Shao Y, Magee AF, Vasylyeva TI, Suchard MA. Scalable gradients enable Hamiltonian Monte Carlo sampling for phylodynamic inference under episodic birth-death-sampling models. PLoS Comput Biol 2024; 20:e1011640. [PMID: 38551979 PMCID: PMC11006205 DOI: 10.1371/journal.pcbi.1011640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/10/2024] [Accepted: 03/10/2024] [Indexed: 04/09/2024] Open
Abstract
Birth-death models play a key role in phylodynamic analysis for their interpretation in terms of key epidemiological parameters. In particular, models with piecewise-constant rates varying at different epochs in time, to which we refer as episodic birth-death-sampling (EBDS) models, are valuable for their reflection of changing transmission dynamics over time. A challenge, however, that persists with current time-varying model inference procedures is their lack of computational efficiency. This limitation hinders the full utilization of these models in large-scale phylodynamic analyses, especially when dealing with high-dimensional parameter vectors that exhibit strong correlations. We present here a linear-time algorithm to compute the gradient of the birth-death model sampling density with respect to all time-varying parameters, and we implement this algorithm within a gradient-based Hamiltonian Monte Carlo (HMC) sampler to alleviate the computational burden of conducting inference under a wide variety of structures of, as well as priors for, EBDS processes. We assess this approach using three different real world data examples, including the HIV epidemic in Odesa, Ukraine, seasonal influenza A/H3N2 virus dynamics in New York state, America, and Ebola outbreak in West Africa. HMC sampling exhibits a substantial efficiency boost, delivering a 10- to 200-fold increase in minimum effective sample size per unit-time, in comparison to a Metropolis-Hastings-based approach. Additionally, we show the robustness of our implementation in both allowing for flexible prior choices and in modeling the transmission dynamics of various pathogens by accurately capturing the changing trend of viral effective reproductive number.
Collapse
Affiliation(s)
- Yucai Shao
- Department of Biostatistics, University of California, Los Angeles, California, United States of America
| | - Andrew F. Magee
- Department of Biomathematics, University of California, Los Angeles, California, United States of America
| | - Tetyana I. Vasylyeva
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Population Health and Disease Prevention, University of California Irvine, Irvine, California, United States of America
| | - Marc A. Suchard
- Department of Biostatistics, University of California, Los Angeles, California, United States of America
- Department of Biomathematics, University of California, Los Angeles, California, United States of America
- Department of Human Genetics, Universtiy of California, Los Angeles, California, United States of America
| |
Collapse
|
5
|
Gräf T, Martinez AA, Bello G, Dellicour S, Lemey P, Colizza V, Mazzoli M, Poletto C, Cardoso VLO, da Silva AF, Motta FC, Resende PC, Siqueira MM, Franco L, Gresh L, Gabastou JM, Rodriguez A, Vicari A, Aldighieri S, Mendez-Rico J, Leite JA. Dispersion patterns of SARS-CoV-2 variants Gamma, Lambda and Mu in Latin America and the Caribbean. Nat Commun 2024; 15:1837. [PMID: 38418815 PMCID: PMC10902334 DOI: 10.1038/s41467-024-46143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Latin America and Caribbean (LAC) regions were an important epicenter of the COVID-19 pandemic and SARS-CoV-2 evolution. Through the COVID-19 Genomic Surveillance Regional Network (COVIGEN), LAC countries produced an important number of genomic sequencing data that made possible an enhanced SARS-CoV-2 genomic surveillance capacity in the Americas, paving the way for characterization of emerging variants and helping to guide the public health response. In this study we analyzed approximately 300,000 SARS-CoV-2 sequences generated between February 2020 and March 2022 by multiple genomic surveillance efforts in LAC and reconstructed the diffusion patterns of the main variants of concern (VOCs) and of interest (VOIs) possibly originated in the Region. Our phylogenetic analysis revealed that the spread of variants Gamma, Lambda and Mu reflects human mobility patterns due to variations of international air passenger transportation and gradual lifting of social distance measures previously implemented in countries. Our results highlight the potential of genetic data to reconstruct viral spread and unveil preferential routes of viral migrations that are shaped by human mobility patterns.
Collapse
Affiliation(s)
- Tiago Gräf
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil.
| | - Alexander A Martinez
- Gorgas Memorial Institute for Health Studies, Panama City, Panama
- National Research System (SNI), National Secretary of Research, Technology and Innovation (SENACYT), Panama City, Panama
- Department of Microbiology and Immunology, University of Panama, Panama City, Panama
| | - Gonzalo Bello
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 av. FD Roosevelt, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Vittoria Colizza
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Paris, France
| | - Mattia Mazzoli
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Paris, France
| | - Chiara Poletto
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Vanessa Leiko Oikawa Cardoso
- Laboratório de Enfermidades Infecciosas Transmitidas por Vetores, Instituto Gonçalo Moniz, FIOCRUZ-Bahia, Salvador, Brazil
| | | | - Fernando Couto Motta
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paola Cristina Resende
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marilda M Siqueira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leticia Franco
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Lionel Gresh
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Jean-Marc Gabastou
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Angel Rodriguez
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Andrea Vicari
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Sylvain Aldighieri
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Jairo Mendez-Rico
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Juliana Almeida Leite
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA.
| |
Collapse
|
6
|
Taylor-Salmon E, Hill V, Paul LM, Koch RT, Breban MI, Chaguza C, Sodeinde A, Warren JL, Bunch S, Cano N, Cone M, Eysoldt S, Garcia A, Gilles N, Hagy A, Heberlein L, Jaber R, Kassens E, Colarusso P, Davis A, Baudin S, Rico E, Mejía-Echeverri Á, Scott B, Stanek D, Zimler R, Muñoz-Jordán JL, Santiago GA, Adams LE, Paz-Bailey G, Spillane M, Katebi V, Paulino-Ramírez R, Mueses S, Peguero A, Sánchez N, Norman FF, Galán JC, Huits R, Hamer DH, Vogels CB, Morrison A, Michael SF, Grubaugh ND. Travel surveillance uncovers dengue virus dynamics and introductions in the Caribbean. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.11.23298412. [PMID: 37986857 PMCID: PMC10659465 DOI: 10.1101/2023.11.11.23298412] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Dengue is the most prevalent mosquito-borne viral disease in humans, and cases are continuing to rise globally. In particular, islands in the Caribbean have experienced more frequent outbreaks, and all four dengue virus (DENV) serotypes have been reported in the region, leading to hyperendemicity and increased rates of severe disease. However, there is significant variability regarding virus surveillance and reporting between islands, making it difficult to obtain an accurate understanding of the epidemiological patterns in the Caribbean. To investigate this, we used travel surveillance and genomic epidemiology to reconstruct outbreak dynamics, DENV serotype turnover, and patterns of spread within the region from 2009-2022. We uncovered two recent DENV-3 introductions from Asia, one of which resulted in a large outbreak in Cuba, which was previously under-reported. We also show that while outbreaks can be synchronized between islands, they are often caused by different serotypes. Our study highlights the importance of surveillance of infected travelers to provide a snapshot of local introductions and transmission in areas with limited local surveillance and suggests that the recent DENV-3 introductions may pose a major public health threat in the region.
Collapse
Affiliation(s)
- Emma Taylor-Salmon
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Lauren M. Paul
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Robert T. Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Mallery I. Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Afeez Sodeinde
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Joshua L. Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Sylvia Bunch
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, Florida, United States of America
| | - Natalia Cano
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, Florida, United States of America
| | - Marshall Cone
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, Florida, United States of America
| | - Sarah Eysoldt
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, Florida, United States of America
| | - Alezaundra Garcia
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, Florida, United States of America
| | - Nicadia Gilles
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, Florida, United States of America
| | - Andrew Hagy
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, Florida, United States of America
| | - Lea Heberlein
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, Florida, United States of America
| | - Rayah Jaber
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, Florida, United States of America
| | - Elizabeth Kassens
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, Florida, United States of America
| | - Pamela Colarusso
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, Florida, United States of America
| | - Amanda Davis
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, Florida, United States of America
| | - Samantha Baudin
- Florida Department of Health in Miami-Dade County, Miami, Florida, United States of America
| | - Edhelene Rico
- Florida Department of Health in Miami-Dade County, Miami, Florida, United States of America
| | - Álvaro Mejía-Echeverri
- Florida Department of Health in Miami-Dade County, Miami, Florida, United States of America
| | - Blake Scott
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, Florida, United States of America
| | - Danielle Stanek
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, Florida, United States of America
| | - Rebecca Zimler
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, Florida, United States of America
| | - Jorge L. Muñoz-Jordán
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Gilberto A. Santiago
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Laura E. Adams
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Gabriela Paz-Bailey
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Melanie Spillane
- Office of Data, Analytics, and Technology, Division of Global Migration Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Bureau for Global Health, United States Agency for International Development, Arlington, Virginia, United States of America
| | - Volha Katebi
- Office of Data, Analytics, and Technology, Division of Global Migration Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Robert Paulino-Ramírez
- Instituto de Medicina Tropical & Salud Global, Universidad Iberoamericana, UNIBE Research Hub, Santo Domingo, Dominican Republic
| | - Sayira Mueses
- Instituto de Medicina Tropical & Salud Global, Universidad Iberoamericana, UNIBE Research Hub, Santo Domingo, Dominican Republic
| | - Armando Peguero
- Instituto de Medicina Tropical & Salud Global, Universidad Iberoamericana, UNIBE Research Hub, Santo Domingo, Dominican Republic
| | - Nelissa Sánchez
- Instituto de Medicina Tropical & Salud Global, Universidad Iberoamericana, UNIBE Research Hub, Santo Domingo, Dominican Republic
| | - Francesca F. Norman
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, CIBER de Enfermedades Infecciosas, IRYCIS, Hospital Ramón y Cajal, Universidad de Alcalá, Madrid, Spain
| | - Juan-Carlos Galán
- Microbiology Department, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBER de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain
| | - Ralph Huits
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Davidson H. Hamer
- Department of Global Health, Boston University School of Public Health, Section of Infectious Diseases, Boston University School of Medicine, Center for Emerging Infectious Disease Policy and Research, Boston University, and National Emerging Infectious Disease Laboratory, Boston, Massachusetts, United States of America
| | - Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, United States of America
| | - Andrea Morrison
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, Florida, United States of America
| | - Scott F. Michael
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
7
|
Shao Y, Magee AF, Vasylyeva TI, Suchard MA. Scalable gradients enable Hamiltonian Monte Carlo sampling for phylodynamic inference under episodic birth-death-sampling models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564882. [PMID: 37961423 PMCID: PMC10634968 DOI: 10.1101/2023.10.31.564882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Birth-death models play a key role in phylodynamic analysis for their interpretation in terms of key epidemiological parameters. In particular, models with piecewise-constant rates varying at different epochs in time, to which we refer as episodic birth-death-sampling (EBDS) models, are valuable for their reflection of changing transmission dynamics over time. A challenge, however, that persists with current time-varying model inference procedures is their lack of computational efficiency. This limitation hinders the full utilization of these models in large-scale phylodynamic analyses, especially when dealing with high-dimensional parameter vectors that exhibit strong correlations. We present here a linear-time algorithm to compute the gradient of the birth-death model sampling density with respect to all time-varying parameters, and we implement this algorithm within a gradient-based Hamiltonian Monte Carlo (HMC) sampler to alleviate the computational burden of conducting inference under a wide variety of structures of, as well as priors for, EBDS processes. We assess this approach using three different real world data examples, including the HIV epidemic in Odesa, Ukraine, seasonal influenza A/H3N2 virus dynamics in New York state, America, and Ebola outbreak in West Africa. HMC sampling exhibits a substantial efficiency boost, delivering a 10- to 200-fold increase in minimum effective sample size per unit-time, in comparison to a Metropolis-Hastings-based approach. Additionally, we show the robustness of our implementation in both allowing for flexible prior choices and in modeling the transmission dynamics of various pathogens by accurately capturing the changing trend of viral effective reproductive number.
Collapse
Affiliation(s)
- Yucai Shao
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, United States
| | - Andrew F. Magee
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, United States
| | - Tetyana I. Vasylyeva
- Department of Medicine, University of California San Diego, La Jolla, United States
- Department of Population Health and Disease Prevention, University of California Irvine, Irvine, United States
| | - Marc A. Suchard
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, United States
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, United States
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Universtiy of California, Los Angeles, United States
| |
Collapse
|
8
|
Ji X, Fisher AA, Su S, Thorne JL, Potter B, Lemey P, Baele G, Suchard MA. Scalable Bayesian Divergence Time Estimation With Ratio Transformations. Syst Biol 2023; 72:1136-1153. [PMID: 37458991 PMCID: PMC10636426 DOI: 10.1093/sysbio/syad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 11/08/2023] Open
Abstract
Divergence time estimation is crucial to provide temporal signals for dating biologically important events from species divergence to viral transmissions in space and time. With the advent of high-throughput sequencing, recent Bayesian phylogenetic studies have analyzed hundreds to thousands of sequences. Such large-scale analyses challenge divergence time reconstruction by requiring inference on highly correlated internal node heights that often become computationally infeasible. To overcome this limitation, we explore a ratio transformation that maps the original $N-1$ internal node heights into a space of one height parameter and $N-2$ ratio parameters. To make the analyses scalable, we develop a collection of linear-time algorithms to compute the gradient and Jacobian-associated terms of the log-likelihood with respect to these ratios. We then apply Hamiltonian Monte Carlo sampling with the ratio transform in a Bayesian framework to learn the divergence times in 4 pathogenic viruses (West Nile virus, rabies virus, Lassa virus, and Ebola virus) and the coralline red algae. Our method both resolves a mixing issue in the West Nile virus example and improves inference efficiency by at least 5-fold for the Lassa and rabies virus examples as well as for the algae example. Our method now also makes it computationally feasible to incorporate mixed-effects molecular clock models for the Ebola virus example, confirms the findings from the original study, and reveals clearer multimodal distributions of the divergence times of some clades of interest.
Collapse
Affiliation(s)
- Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118, USA
| | - Alexander A Fisher
- Department of Statistical Science, Duke University, 214 Old Chemistry, Durham, NC 27708, USA
| | - Shuo Su
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Xiaolingwei District, Nanjing, Jiangsu 210095, China
| | - Jeffrey L Thorne
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Ricks Hall, 1 Lampe Dr, Raleigh, NC 27607, USA
| | - Barney Potter
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Tsui JLH, McCrone JT, Lambert B, Bajaj S, Inward RP, Bosetti P, Tegally H, Hill V, Pena RE, Zarebski AE, Peacock TP, Liu L, Wu N, Davis M, Bogoch II, Khan K, Kall M, Abdul Aziz NIB, Colquhoun R, O’Toole Á, Jackson B, Dasgupta A, Wilkinson E, de Oliveira T, Connor TR, Loman NJ, Colizza V, Fraser C, Volz E, Ji X, Gutierrez B, Chand M, Dellicour S, Cauchemez S, Raghwani J, Suchard MA, Lemey P, Rambaut A, Pybus OG, Kraemer MU. Genomic assessment of invasion dynamics of SARS-CoV-2 Omicron BA.1. Science 2023; 381:336-343. [PMID: 37471538 PMCID: PMC10866301 DOI: 10.1126/science.adg6605] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) now arise in the context of heterogeneous human connectivity and population immunity. Through a large-scale phylodynamic analysis of 115,622 Omicron BA.1 genomes, we identified >6,000 introductions of the antigenically distinct VOC into England and analyzed their local transmission and dispersal history. We find that six of the eight largest English Omicron lineages were already transmitting when Omicron was first reported in southern Africa (22 November 2021). Multiple datasets show that importation of Omicron continued despite subsequent restrictions on travel from southern Africa as a result of export from well-connected secondary locations. Initiation and dispersal of Omicron transmission lineages in England was a two-stage process that can be explained by models of the country's human geography and hierarchical travel network. Our results enable a comparison of the processes that drive the invasion of Omicron and other VOCs across multiple spatial scales.
Collapse
Affiliation(s)
| | - John T. McCrone
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
- Helix, San Mateo, USA
| | - Ben Lambert
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Sumali Bajaj
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Paolo Bosetti
- Institut Pasteur, Université Paris Cité, CNRS, Paris, France
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Verity Hill
- Helix, San Mateo, USA
- Yale University, New Haven, USA
| | | | | | - Thomas P. Peacock
- Department of Infectious Disease, Imperial College London, London, UK
- UK Health Security Agency, London, UK
| | | | - Neo Wu
- Google Research, Mountain View, USA
| | | | - Isaac I. Bogoch
- Department of Medicine, Division of Infectious Diseases, University of Toronto, Toronto, Canada
| | - Kamran Khan
- BlueDot, Toronto, Canada
- Department of Medicine, Division of Infectious Diseases, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | - Eduan Wilkinson
- BlueDot, Toronto, Canada
- Department of Medicine, Division of Infectious Diseases, University of Toronto, Toronto, Canada
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | | | - Thomas R. Connor
- Pathogen Genomics Unit, Public Health Wales NHS Trust, Cardiff, UK
- School of Biosciences, The Sir Martin Evans Building, Cardiff University, UK
- Quadram Institute, Norwich, UK
| | - Nicholas J. Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Vittoria Colizza
- Sorbonne Université, INSERM, Institut Pierre Louis d’Épidémiologie et de Santé Publique (IPLESP), Paris, France
| | - Christophe Fraser
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, UK
- Pandemic Sciences Institute, University of Oxford, UK
| | - Erik Volz
- MRC Centre of Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College London, London, UK
| | - Xiang Ji
- Department of Mathematics, Tulane University, New Orleans, USA
| | | | | | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Simon Cauchemez
- Institut Pasteur, Université Paris Cité, CNRS, Paris, France
| | - Jayna Raghwani
- Department of Biology, University of Oxford, Oxford, UK
- Department of Pathobiology and Population Science, Royal Veterinary College, London, UK
| | - Marc A. Suchard
- Departments of Biostatistics, Biomathematics and Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Oliver G. Pybus
- Department of Biology, University of Oxford, Oxford, UK
- Pandemic Sciences Institute, University of Oxford, UK
- Department of Pathobiology and Population Science, Royal Veterinary College, London, UK
| | - Moritz U.G. Kraemer
- Department of Biology, University of Oxford, Oxford, UK
- Pandemic Sciences Institute, University of Oxford, UK
| |
Collapse
|
10
|
Hill V, Koch RT, Bialosuknia SM, Ngo K, Zink SD, Koetzner CA, Maffei JG, Dupuis AP, Backenson PB, Oliver J, Bransfield AB, Misencik MJ, Petruff TA, Shepard JJ, Warren JL, Gill MS, Baele G, Vogels CBF, Gallagher G, Burns P, Hentoff A, Smole S, Brown C, Osborne M, Kramer LD, Armstrong PM, Ciota AT, Grubaugh ND. Dynamics of eastern equine encephalitis virus during the 2019 outbreak in the Northeast United States. Curr Biol 2023; 33:2515-2527.e6. [PMID: 37295427 PMCID: PMC10316540 DOI: 10.1016/j.cub.2023.05.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, similar to previous years, cases were driven by multiple independent but short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019, although the ecology of EEEV is complex and further data is required to explore these in more detail. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA.
| | - Robert T Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Sean M Bialosuknia
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Kiet Ngo
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Steven D Zink
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Cheri A Koetzner
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Joseph G Maffei
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Alan P Dupuis
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - P Bryon Backenson
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY 12237, USA
| | - JoAnne Oliver
- New York State Department of Health, Bureau of Communicable Disease Control, Syracuse, NY 13202, USA; Division of Environmental and Renewable Resources, State University of New York at Morrisville - School of Agriculture, Business and Technology, Morrisville, NY 13408, USA
| | - Angela B Bransfield
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Michael J Misencik
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Tanya A Petruff
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - John J Shepard
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Joshua L Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA; Public Health Modeling Unit, Yale School of Public Health, New Haven, CT 06510, USA
| | - Mandev S Gill
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven BE-3000, Belgium
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Glen Gallagher
- Massachusetts Department of Public Health, Boston, MA 02108, USA; Rhode Island State Health Laboratory, Rhode Island Department of Health, Providence, RI 02904, USA
| | - Paul Burns
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Aaron Hentoff
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Sandra Smole
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Catherine Brown
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Matthew Osborne
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Laura D Kramer
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY 12237, USA
| | - Philip M Armstrong
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA; Division of Environmental and Renewable Resources, State University of New York at Morrisville - School of Agriculture, Business and Technology, Morrisville, NY 13408, USA.
| | - Alexander T Ciota
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY 12237, USA.
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA; Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
11
|
Hill V, Koch RT, Bialosuknia SM, Ngo K, Zink SD, Koetzner CA, Maffei JG, Dupuis AP, Backenson PB, Oliver J, Bransfield AB, Misencik MJ, Petruff TA, Shepard JJ, Warren JL, Gill MS, Baele G, Vogels CB, Gallagher G, Burns P, Hentoff A, Smole S, Brown C, Osborne M, Kramer LD, Armstrong PM, Ciota AT, Grubaugh ND. Dynamics of Eastern equine encephalitis virus during the 2019 outbreak in the Northeast United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.06.23286851. [PMID: 36945576 PMCID: PMC10029029 DOI: 10.1101/2023.03.06.23286851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans, and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, like previous years, cases were driven by frequent short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Robert T. Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Sean M. Bialosuknia
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Kiet Ngo
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Steven D. Zink
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Cheri A. Koetzner
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Joseph G. Maffei
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Alan P. Dupuis
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - P. Bryon Backenson
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
| | - JoAnne Oliver
- New York State Department of Health, Bureau of Communicable Disease Control, Syracuse, NY, USA
- Division of Environmental and Renewable Resources, State University of New York at Morrisville - School of Agriculture, Business and Technology, Morrisville, NY, USA
| | - Angela B. Bransfield
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Michael J. Misencik
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Tanya A. Petruff
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - John J. Shepard
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Joshua L. Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
| | - Mandev S. Gill
- Department of Statistics, University of Georgia, Athens, GA, USA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Glen Gallagher
- Massachusetts Department of Public Health, Boston, MA, USA
- Rhode Island State Health Laboratory, Rhode Island Department of Health, Providence, RI, USA
| | - Paul Burns
- Massachusetts Department of Public Health, Boston, MA, USA
| | - Aaron Hentoff
- Massachusetts Department of Public Health, Boston, MA, USA
| | - Sandra Smole
- Massachusetts Department of Public Health, Boston, MA, USA
| | | | | | - Laura D. Kramer
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA
| | - Philip M. Armstrong
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Division of Environmental and Renewable Resources, State University of New York at Morrisville - School of Agriculture, Business and Technology, Morrisville, NY, USA
| | - Alexander T. Ciota
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
12
|
Fonseca PLC, Moreira FRR, de Souza RM, Guimarães NR, Carvalho NO, Adelino TER, Alves HJ, Alvim LB, Candido DS, Coelho HP, Costa AVB, Costa WC, de Carvalho AF, de Faria BWF, de Lima AB, de Oliveira ES, de Souza CSA, de Souza FG, Dias RC, Geddes VEV, Godinho IP, Gonçalves AL, Lourenço KL, Magalhães RDM, Malta FSV, Medeiros ELA, Mendes FS, Mendes PHBDP, Mendonça CPTB, Menezes AL, Menezes D, Menezes MT, Miguita L, Moreira RG, Peixoto RB, Queiroz DC, Ribeiro AA, Ribeiro APDB, Saliba JW, Sato HI, Silva JDP, Silva NP, Faria NR, Teixeira SMR, da Fonseca FG, Fernandes APSM, Zauli DAG, Januario JN, de Oliveira JS, Iani FCDM, de Aguiar RS, de Souza RP. Tracking the turnover of SARS-CoV-2 VOCs Gamma to Delta in a Brazilian state (Minas Gerais) with a high-vaccination status. Virus Evol 2022; 8:veac064. [PMID: 35996592 PMCID: PMC9384558 DOI: 10.1093/ve/veac064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/24/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
The emergence and global dissemination of Severe Acute Respiratory Syndrome virus 2 (SARS-CoV-2) variants of concern (VOCs) have been described as the main factor driving the Coronavirus Disease 2019 pandemic. In Brazil, the Gamma variant dominated the epidemiological scenario during the first period of 2021. Many Brazilian regions detected the Delta variant after its first description and documented its spread. To monitor the introduction and spread of VOC Delta, we performed Polymerase Chain Reaction (PCR) genotyping and genome sequencing in ten regional sentinel units from June to October 2021 in the State of Minas Gerais (MG). We documented the introduction and spread of Delta, comprising 70 per cent of the cases 8 weeks later. Comparing the viral loads of the Gamma and Delta dominance periods, we provide additional evidence that the latter is more transmissible. The spread and dominance of Delta did not culminate in the increase in cases and deaths, suggesting that the vaccination may have restrained the epidemic growth. Analysis of 224 novel Delta genomes revealed that Rio de Janeiro state was the primary source for disseminating this variant in the state of MG. We present the establishment of Delta, providing evidence of its enhanced transmissibility and showing that this variant shift did not aggravate the epidemiological scenario in a high immunity setting.
Collapse
Affiliation(s)
- Paula L C Fonseca
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Filipe R R Moreira
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, Exhibition Rd, South Kensington, London SW7 2BX, UK
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Av. Carlos Chagas Filho 373, Cidade Universitaria, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Rafael M de Souza
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Natália R Guimarães
- Fundacao Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte 30510-010, Minas Gerais, Brazil
| | - Nara O Carvalho
- Núcleo de Ações e Pesquisa em Apoio Diagnóstico-Nupad/Faculdade de Medicina/Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Av. Prof. Alfredo Balena 189, Centro, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Talita E R Adelino
- Fundacao Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte 30510-010, Minas Gerais, Brazil
| | - Hugo J Alves
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Luige B Alvim
- Instituto Hermes Pardini, Av. das Nações 2448, Distrito Industrial, Vespasiano 33201003, Minas Gerais, Brazil
| | - Darlan S Candido
- Department of Zoology, University of Oxford, 11a Mansfield Rd, Oxford OX13SZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar 470, Jardim América, São Paulo 05403000, São Paulo, Brazil
| | - Helena P Coelho
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Engenho Nogueira, Belo Horizonte 31310260, Minas Gerais, Brazil
| | - Alana V B Costa
- Fundacao Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte 30510-010, Minas Gerais, Brazil
| | - Walyson C Costa
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Alex F de Carvalho
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Engenho Nogueira, Belo Horizonte 31310260, Minas Gerais, Brazil
| | - Bruna W F de Faria
- Secretaria Municipal de Saúde de Belo Horizonte, Av. Afonso Pena 2336, Funcionários, Belo Horizonte 30130-040, Minas Gerais, Brazil
| | - Aline B de Lima
- Instituto Hermes Pardini, Av. das Nações 2448, Distrito Industrial, Vespasiano 33201003, Minas Gerais, Brazil
| | - Eneida S de Oliveira
- Secretaria Municipal de Saúde de Belo Horizonte, Av. Afonso Pena 2336, Funcionários, Belo Horizonte 30130-040, Minas Gerais, Brazil
| | - Carolina S A de Souza
- Pan American Health Organization—PAHO, Av. Das Nações SEN, Asa Norte, Brasilia 70312970, Brazil
| | - Fernanda G de Souza
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Rillery C Dias
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Victor E V Geddes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Igor P Godinho
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Engenho Nogueira, Belo Horizonte 31310260, Minas Gerais, Brazil
| | - Alessandro L Gonçalves
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Karine L Lourenço
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Engenho Nogueira, Belo Horizonte 31310260, Minas Gerais, Brazil
| | - Rubens D M Magalhães
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Engenho Nogueira, Belo Horizonte 31310260, Minas Gerais, Brazil
| | - Frederico S V Malta
- Instituto Hermes Pardini, Av. das Nações 2448, Distrito Industrial, Vespasiano 33201003, Minas Gerais, Brazil
| | - Eva L A Medeiros
- Subsecretaria de Vigilância em Saúde, Secretaria de Estado de Saúde de Minas Gerais, Rodovia Papa João Paulo II 4143. Edifício Minas Gerais, Cidade Administrativa, Serra verde, Belo Horizonte 31630900, Minas Gerais, Brazil
| | - Fernanda S Mendes
- Núcleo de Ações e Pesquisa em Apoio Diagnóstico-Nupad/Faculdade de Medicina/Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Av. Prof. Alfredo Balena 189, Centro, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Pedro H B de P Mendes
- Fundacao Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte 30510-010, Minas Gerais, Brazil
| | - Cristiane P T B Mendonça
- Instituto Hermes Pardini, Av. das Nações 2448, Distrito Industrial, Vespasiano 33201003, Minas Gerais, Brazil
| | - Andre L Menezes
- Secretaria Municipal de Saúde de Belo Horizonte, Av. Afonso Pena 2336, Funcionários, Belo Horizonte 30130-040, Minas Gerais, Brazil
| | - Diego Menezes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Mariane T Menezes
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, Exhibition Rd, South Kensington, London SW7 2BX, UK
| | - Lucyene Miguita
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Rennan G Moreira
- Centro de Laboratórios Multiusuários, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Renata B Peixoto
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Daniel C Queiroz
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| | - Adriana A Ribeiro
- Fundacao Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte 30510-010, Minas Gerais, Brazil
| | - Ana Paula de B Ribeiro
- Fundacao Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte 30510-010, Minas Gerais, Brazil
| | - Juliana W Saliba
- Pan American Health Organization—PAHO, Av. Das Nações SEN, Asa Norte, Brasilia 70312970, Brazil
| | - Hugo I Sato
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Engenho Nogueira, Belo Horizonte 31310260, Minas Gerais, Brazil
| | - Joice do P Silva
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
- Instituto Hermes Pardini, Av. das Nações 2448, Distrito Industrial, Vespasiano 33201003, Minas Gerais, Brazil
| | - Natiely P Silva
- Núcleo de Ações e Pesquisa em Apoio Diagnóstico-Nupad/Faculdade de Medicina/Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Av. Prof. Alfredo Balena 189, Centro, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Nuno R Faria
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, Exhibition Rd, South Kensington, London SW7 2BX, UK
- Department of Zoology, University of Oxford, 11a Mansfield Rd, Oxford OX13SZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar 470, Jardim América, São Paulo 05403000, São Paulo, Brazil
| | - Santuza M R Teixeira
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Engenho Nogueira, Belo Horizonte 31310260, Minas Gerais, Brazil
| | - Flávio G da Fonseca
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Engenho Nogueira, Belo Horizonte 31310260, Minas Gerais, Brazil
| | - Ana Paula S M Fernandes
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Rua Professor José Vieira de Mendonça 770, Engenho Nogueira, Belo Horizonte 31310260, Minas Gerais, Brazil
| | - Danielle A G Zauli
- Instituto Hermes Pardini, Av. das Nações 2448, Distrito Industrial, Vespasiano 33201003, Minas Gerais, Brazil
| | - José Nélio Januario
- Núcleo de Ações e Pesquisa em Apoio Diagnóstico-Nupad/Faculdade de Medicina/Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Av. Prof. Alfredo Balena 189, Centro, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Jaqueline S de Oliveira
- Subsecretaria de Vigilância em Saúde, Secretaria de Estado de Saúde de Minas Gerais, Rodovia Papa João Paulo II 4143. Edifício Minas Gerais, Cidade Administrativa, Serra verde, Belo Horizonte 31630900, Minas Gerais, Brazil
| | - Felipe C de M Iani
- Fundacao Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte 30510-010, Minas Gerais, Brazil
| | - Renato S de Aguiar
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
- Instituto D’OR de Pesquisa e Ensino, Rio de Janeiro 22281100, Rio de Janeiro, Brazil
| | - Renan P de Souza
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte 31270901, Minas Gerais, Brazil
| |
Collapse
|
13
|
Vereecke N, Kvisgaard LK, Baele G, Boone C, Kunze M, Larsen LE, Theuns S, Nauwynck H. Molecular Epidemiology of Porcine Parvovirus Type 1 (PPV1) and the Reactivity of Vaccine-Induced Antisera Against Historical and Current PPV1 Strains. Virus Evol 2022; 8:veac053. [PMID: 35815310 PMCID: PMC9252332 DOI: 10.1093/ve/veac053] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/13/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
Porcine Parvovirus Type 1 (PPV1) contributes to important losses in the swine industry worldwide. During a PPV1 infection, embryos and fetuses are targeted, resulting in stillbirth, mummification, embryonic death, and infertility (SMEDI syndrome). Even though vaccination is common in gilts and sows, strains mainly belonging to the 27a-like group have been spreading in Europe since early 2000s, resulting in SMEDI problems and requiring in-depth studies into the molecular epidemiology and vaccination efficacy of commercial vaccines. Here, we show that PPV1 has evolved since 1855 [1737, 1933] at a rate of 4.71 × 10−5 nucleotide substitutions per site per year. Extensive sequencing allowed evaluating and reassessing the current PPV1 VP1-based classifications, providing evidence for the existence of four relevant phylogenetic groups. While most European strains belong to the PPV1a (G1) or PPV1b (G2 or 27a-like) group, most Asian and American G2 strains and some European strains were divided into virulent PPV1c (e.g. NADL-8) and attenuated PPV1d (e.g. NADL-2) groups. The increase in the swine population, vaccination degree, and health management (vaccination and biosafety) influenced the spread of PPV1. The reactivity of anti-PPV1 antibodies from sows vaccinated with Porcilis© Parvo, Eryseng© Parvo, or ReproCyc© ParvoFLEX against different PPV1 field strains was the highest upon vaccination with ReproCyc© ParvoFLEX, followed by Eryseng© Parvo, and Porcilis© Parvo. Our findings contribute to the evaluation of the immunogenicity of existing vaccines and support the development of new vaccine candidates. Finally, the potential roles of cluster-specific hallmark amino acids in elevated pathogenicity and viral entry are discussed.
Collapse
Affiliation(s)
- Nick Vereecke
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University , Merelbeke, Belgium
- PathoSense BV , Lier, Belgium
| | - Lise Kirstine Kvisgaard
- Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Carine Boone
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University , Merelbeke, Belgium
| | - Marius Kunze
- Boehringer Ingelheim Vetmedica GmbH , Binger Str. 173, 55216 Ingelheim am Rhein, Germany
| | - Lars Erik Larsen
- Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen , Copenhagen, Denmark
| | | | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University , Merelbeke, Belgium
| |
Collapse
|
14
|
Antibody escape and global spread of SARS-CoV-2 lineage A.27. Nat Commun 2022; 13:1152. [PMID: 35241661 PMCID: PMC8894356 DOI: 10.1038/s41467-022-28766-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/10/2022] [Indexed: 01/07/2023] Open
Abstract
In spring 2021, an increasing number of infections was observed caused by the hitherto rarely described SARS-CoV-2 variant A.27 in south-west Germany. From December 2020 to June 2021 this lineage has been detected in 31 countries. Phylogeographic analyses of A.27 sequences obtained from national and international databases reveal a global spread of this lineage through multiple introductions from its inferred origin in Western Africa. Variant A.27 is characterized by a mutational pattern in the spike gene that includes the L18F, L452R and N501Y spike amino acid substitutions found in various variants of concern but lacks the globally dominant D614G. Neutralization assays demonstrate an escape of A.27 from convalescent and vaccine-elicited antibody-mediated immunity. Moreover, the therapeutic monoclonal antibody Bamlanivimab and partially the REGN-COV2 cocktail fail to block infection by A.27. Our data emphasize the need for continued global monitoring of novel lineages because of the independent evolution of new escape mutations.
Collapse
|
15
|
He WT, Bollen N, Xu Y, Zhao J, Dellicour S, Yan Z, Gong W, Zhang C, Zhang L, Lu M, Lai A, Suchard MA, Ji X, Tu C, Lemey P, Baele G, Su S. Phylogeography reveals association between swine trade and the spread of porcine epidemic diarrhea virus in China and across the world. Mol Biol Evol 2021; 39:6482749. [PMID: 34951645 PMCID: PMC8826572 DOI: 10.1093/molbev/msab364] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ongoing SARS (severe acute respiratory syndrome)-CoV (coronavirus)-2 pandemic has exposed major gaps in our knowledge on the origin, ecology, evolution, and spread of animal coronaviruses. Porcine epidemic diarrhea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae that may have originated from bats and leads to significant hazards and widespread epidemics in the swine population. The role of local and global trade of live swine and swine-related products in disseminating PEDV remains unclear, especially in developing countries with complex swine production systems. Here, we undertake an in-depth phylogeographic analysis of PEDV sequence data (including 247 newly sequenced samples) and employ an extension of this inference framework that enables formally testing the contribution of a range of predictor variables to the geographic spread of PEDV. Within China, the provinces of Guangdong and Henan were identified as primary hubs for the spread of PEDV, for which we estimate live swine trade to play a very important role. On a global scale, the United States and China maintain the highest number of PEDV lineages. We estimate that, after an initial introduction out of China, the United States acted as an important source of PEDV introductions into Japan, Korea, China, and Mexico. Live swine trade also explains the dispersal of PEDV on a global scale. Given the increasingly global trade of live swine, our findings have important implications for designing prevention and containment measures to combat a wide range of livestock coronaviruses.
Collapse
Affiliation(s)
- Wan-Ting He
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Nena Bollen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Belgium Leuven
| | - Yi Xu
- China animal disease control center, Ministry of Agriculture, China Beijing
| | - Jin Zhao
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Belgium Leuven.,Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Belgium CP160/12 50, av. FD Roosevelt, 1050 Bruxelles
| | - Ziqing Yan
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Wenjie Gong
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, China Changchun, Jilin
| | - Cheng Zhang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Letian Zhang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Meng Lu
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Alexander Lai
- School of Science, Technology, Engineering, and Mathematics, Kentucky State University, United States Frankfort, Kentucky
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, and Departments of Biomathematics and Human Genetics, David Geffen School of Medicine, University of California Los Angeles Los Angeles, CA
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University New Orleans, LA
| | - Changchun Tu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, China Changchun, Jilin
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Belgium Leuven
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Belgium Leuven
| | - Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| |
Collapse
|
16
|
Dudas G, Hong SL, Potter BI, Calvignac-Spencer S, Niatou-Singa FS, Tombolomako TB, Fuh-Neba T, Vickos U, Ulrich M, Leendertz FH, Khan K, Huber C, Watts A, Olendraitė I, Snijder J, Wijnant KN, Bonvin AMJJ, Martres P, Behillil S, Ayouba A, Maidadi MF, Djomsi DM, Godwe C, Butel C, Šimaitis A, Gabrielaitė M, Katėnaitė M, Norvilas R, Raugaitė L, Koyaweda GW, Kandou JK, Jonikas R, Nasvytienė I, Žemeckienė Ž, Gečys D, Tamušauskaitė K, Norkienė M, Vasiliūnaitė E, Žiogienė D, Timinskas A, Šukys M, Šarauskas M, Alzbutas G, Aziza AA, Lusamaki EK, Cigolo JCM, Mawete FM, Lofiko EL, Kingebeni PM, Tamfum JJM, Belizaire MRD, Essomba RG, Assoumou MCO, Mboringong AB, Dieng AB, Juozapaitė D, Hosch S, Obama J, Ayekaba MO, Naumovas D, Pautienius A, Rafaï CD, Vitkauskienė A, Ugenskienė R, Gedvilaitė A, Čereškevičius D, Lesauskaitė V, Žemaitis L, Griškevičius L, Baele G. Emergence and spread of SARS-CoV-2 lineage B.1.620 with variant of concern-like mutations and deletions. Nat Commun 2021; 12:5769. [PMID: 34599175 PMCID: PMC8486757 DOI: 10.1038/s41467-021-26055-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Distinct SARS-CoV-2 lineages, discovered through various genomic surveillance initiatives, have emerged during the pandemic following unprecedented reductions in worldwide human mobility. We here describe a SARS-CoV-2 lineage - designated B.1.620 - discovered in Lithuania and carrying many mutations and deletions in the spike protein shared with widespread variants of concern (VOCs), including E484K, S477N and deletions HV69Δ, Y144Δ, and LLA241/243Δ. As well as documenting the suite of mutations this lineage carries, we also describe its potential to be resistant to neutralising antibodies, accompanying travel histories for a subset of European cases, evidence of local B.1.620 transmission in Europe with a focus on Lithuania, and significance of its prevalence in Central Africa owing to recent genome sequencing efforts there. We make a case for its likely Central African origin using advanced phylogeographic inference methodologies incorporating recorded travel histories of infected travellers.
Collapse
Affiliation(s)
- Gytis Dudas
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden.
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Barney I Potter
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sébastien Calvignac-Spencer
- Epidemiology of Highly Pathogenic Organisms, Robert Koch Institute, 13353, Berlin, Germany
- Viral Evolution, Robert Koch Institute, 13353, Berlin, Germany
| | - Frédéric S Niatou-Singa
- WWF Central African Republic Programme Office, Dzanga Sangha Protected Areas, BP 1053, Bangui, Central African Republic
| | - Thais B Tombolomako
- WWF Central African Republic Programme Office, Dzanga Sangha Protected Areas, BP 1053, Bangui, Central African Republic
| | - Terence Fuh-Neba
- WWF Central African Republic Programme Office, Dzanga Sangha Protected Areas, BP 1053, Bangui, Central African Republic
| | - Ulrich Vickos
- Infectious and Tropical Diseases Unit, Department of medicine, Amitié Hospital, Bangui, Central African Republic
- Academic Department of Pediatrics, Clinical immunology and vaccinology, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Markus Ulrich
- Epidemiology of Highly Pathogenic Organisms, Robert Koch Institute, 13353, Berlin, Germany
| | - Fabian H Leendertz
- Epidemiology of Highly Pathogenic Organisms, Robert Koch Institute, 13353, Berlin, Germany
| | - Kamran Khan
- BlueDot, Toronto, ON, M5J 1A7, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, M5B 1A6, Canada
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, M5S 3H2, Canada
| | | | | | - Ingrida Olendraitė
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Lab, CB2 2QQ, Cambridge, UK
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Kim N Wijnant
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Pascale Martres
- Microbiology, Centre Hospitalier René Dubos, Cergy Pontoise, France
| | - Sylvie Behillil
- Molecular Genetics of RNA viruses, CNRS UMR 3569, Université de Paris, Institut Pasteur, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Ahidjo Ayouba
- TransVIHMI, Université de Montpellier, IRD, INSERM, 911 Avenue Agropolis, 34394, Montpellier cedex, France
| | - Martin Foudi Maidadi
- Centre de Recherches sur les Maladies Émergentes, Ré-émergentes et la Médecine Nucléaire, Institut de Recherches Médicales et D'études des Plantes Médicinales, Yaoundé, Cameroon
| | - Dowbiss Meta Djomsi
- Centre de Recherches sur les Maladies Émergentes, Ré-émergentes et la Médecine Nucléaire, Institut de Recherches Médicales et D'études des Plantes Médicinales, Yaoundé, Cameroon
| | - Celestin Godwe
- Centre de Recherches sur les Maladies Émergentes, Ré-émergentes et la Médecine Nucléaire, Institut de Recherches Médicales et D'études des Plantes Médicinales, Yaoundé, Cameroon
| | - Christelle Butel
- TransVIHMI, Université de Montpellier, IRD, INSERM, 911 Avenue Agropolis, 34394, Montpellier cedex, France
| | - Aistis Šimaitis
- The Office of the Government of the Republic of Lithuania, Vilnius, Lithuania
| | | | - Monika Katėnaitė
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Rimvydas Norvilas
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Department of Experimental, Preventive and Clinical Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ligita Raugaitė
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Giscard Wilfried Koyaweda
- Le Laboratoire National de Biologie Clinique et de Santé Publique (LNBCSP), Bangui, Central African Republic
| | - Jephté Kaleb Kandou
- Le Laboratoire National de Biologie Clinique et de Santé Publique (LNBCSP), Bangui, Central African Republic
| | - Rimvydas Jonikas
- Department of Genetics and Molecular Medicine, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Kaunas, Lithuania
| | - Inga Nasvytienė
- Department of Genetics and Molecular Medicine, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Kaunas, Lithuania
| | - Živilė Žemeckienė
- Department of Genetics and Molecular Medicine, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Kaunas, Lithuania
| | - Dovydas Gečys
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kamilė Tamušauskaitė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Milda Norkienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Emilija Vasiliūnaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Danguolė Žiogienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Albertas Timinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Marius Šukys
- Department of Genetics and Molecular Medicine, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Kaunas, Lithuania
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mantas Šarauskas
- Department of Genetics and Molecular Medicine, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Kaunas, Lithuania
| | - Gediminas Alzbutas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Adrienne Amuri Aziza
- National Institute for Biomedical Research (INRB), Avenue De la Democratie (Ex Huileries), BP 1197, Kinshasa-Gombe, Democratic Republic of the Congo
- University of Kinshasa (UNIKIN), BP 127, Kinshasa XI, Democratic Republic of the Congo
| | - Eddy Kinganda Lusamaki
- National Institute for Biomedical Research (INRB), Avenue De la Democratie (Ex Huileries), BP 1197, Kinshasa-Gombe, Democratic Republic of the Congo
- University of Kinshasa (UNIKIN), BP 127, Kinshasa XI, Democratic Republic of the Congo
| | - Jean-Claude Makangara Cigolo
- National Institute for Biomedical Research (INRB), Avenue De la Democratie (Ex Huileries), BP 1197, Kinshasa-Gombe, Democratic Republic of the Congo
- University of Kinshasa (UNIKIN), BP 127, Kinshasa XI, Democratic Republic of the Congo
| | - Francisca Muyembe Mawete
- National Institute for Biomedical Research (INRB), Avenue De la Democratie (Ex Huileries), BP 1197, Kinshasa-Gombe, Democratic Republic of the Congo
- University of Kinshasa (UNIKIN), BP 127, Kinshasa XI, Democratic Republic of the Congo
| | - Emmanuel Lokilo Lofiko
- National Institute for Biomedical Research (INRB), Avenue De la Democratie (Ex Huileries), BP 1197, Kinshasa-Gombe, Democratic Republic of the Congo
| | - Placide Mbala Kingebeni
- National Institute for Biomedical Research (INRB), Avenue De la Democratie (Ex Huileries), BP 1197, Kinshasa-Gombe, Democratic Republic of the Congo
- University of Kinshasa (UNIKIN), BP 127, Kinshasa XI, Democratic Republic of the Congo
| | - Jean-Jacques Muyembe Tamfum
- National Institute for Biomedical Research (INRB), Avenue De la Democratie (Ex Huileries), BP 1197, Kinshasa-Gombe, Democratic Republic of the Congo
- University of Kinshasa (UNIKIN), BP 127, Kinshasa XI, Democratic Republic of the Congo
| | | | - René Ghislain Essomba
- National Public Health Laboratory, Ministry of Public Health, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Marie Claire Okomo Assoumou
- National Public Health Laboratory, Ministry of Public Health, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | | | - Alle Baba Dieng
- World Health Organization, Cameroon Office, Yaoundé, Cameroon
| | - Dovilė Juozapaitė
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Salome Hosch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Justino Obama
- Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | | | - Daniel Naumovas
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Arnoldas Pautienius
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Clotaire Donatien Rafaï
- Le Laboratoire National de Biologie Clinique et de Santé Publique (LNBCSP), Bangui, Central African Republic
| | - Astra Vitkauskienė
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Ugenskienė
- Department of Genetics and Molecular Medicine, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Kaunas, Lithuania
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alma Gedvilaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Darius Čereškevičius
- Department of Genetics and Molecular Medicine, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vaiva Lesauskaitė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Lukas Žemaitis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- National Public Health Surveillance Laboratory, Vilnius, Lithuania
| | - Laimonas Griškevičius
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Lemey P, Ruktanonchai N, Hong SL, Colizza V, Poletto C, Van den Broeck F, Gill MS, Ji X, Levasseur A, Oude Munnink BB, Koopmans M, Sadilek A, Lai S, Tatem AJ, Baele G, Suchard MA, Dellicour S. Untangling introductions and persistence in COVID-19 resurgence in Europe. Nature 2021; 595:713-717. [PMID: 34192736 PMCID: PMC8324533 DOI: 10.1038/s41586-021-03754-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/22/2021] [Indexed: 11/09/2022]
Abstract
After the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced a resurgence of the virus starting in late summer 2020 that was deadlier and more difficult to contain1. Relaxed intervention measures and summer travel have been implicated as drivers of the second wave2. Here we build a phylogeographical model to evaluate how newly introduced lineages, as opposed to the rekindling of persistent lineages, contributed to the resurgence of COVID-19 in Europe. We inform this model using genomic, mobility and epidemiological data from 10 European countries and estimate that in many countries more than half of the lineages circulating in late summer resulted from new introductions since 15 June 2020. The success in onward transmission of newly introduced lineages was negatively associated with the local incidence of COVID-19 during this period. The pervasive spread of variants in summer 2020 highlights the threat of viral dissemination when restrictions are lifted, and this needs to be carefully considered in strategies to control the current spread of variants that are more transmissible and/or evade immunity. Our findings indicate that more effective and coordinated measures are required to contain the spread through cross-border travel even as vaccination is reducing disease burden.
Collapse
Affiliation(s)
- Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
- Global Virus Network (GVN), Baltimore, MD, USA.
| | - Nick Ruktanonchai
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
- Population Health Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Vittoria Colizza
- INSERM, Sorbonne Université, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Paris, France
| | - Chiara Poletto
- INSERM, Sorbonne Université, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Paris, France
| | - Frederik Van den Broeck
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Mandev S Gill
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, New Orleans, LA, USA
| | - Anthony Levasseur
- UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), Aix-Marseille Université (AMU) and Institut Universitaire de France (IUF), Marseille, France
| | - Bas B Oude Munnink
- Department of Viroscience, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Erasmus MC, Rotterdam, The Netherlands
| | - Marion Koopmans
- Department of Viroscience, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Erasmus MC, Rotterdam, The Netherlands
| | | | - Shengjie Lai
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
| | - Andrew J Tatem
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium.
| |
Collapse
|
18
|
Lemey P, Ruktanonchai N, Hong SL, Colizza V, Poletto C, Van den Broeck F, Gill MS, Ji X, Levasseur A, Sadilek A, Lai S, Tatem AJ, Baele G, Suchard MA, Dellicour S. SARS-CoV-2 European resurgence foretold: interplay of introductions and persistence by leveraging genomic and mobility data. RESEARCH SQUARE 2021:rs.3.rs-208849. [PMID: 33594355 PMCID: PMC7885927 DOI: 10.21203/rs.3.rs-208849/v1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Following the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced a resurgence of the virus starting late summer that was deadlier and more difficult to contain. Relaxed intervention measures and summer travel have been implicated as drivers of the second wave. Here, we build a phylogeographic model to evaluate how newly introduced lineages, as opposed to the rekindling of persistent lineages, contributed to the COVID-19 resurgence in Europe. We inform this model using genomic, mobility and epidemiological data from 10 West European countries and estimate that in many countries more than 50% of the lineages circulating in late summer resulted from new introductions since June 15th. The success in onwards transmission of these lineages is predicted by SARS-CoV-2 incidence during this period. Relatively early introductions from Spain into the United Kingdom contributed to the successful spread of the 20A.EU1/B.1.177 variant. The pervasive spread of variants that have not been associated with an advantage in transmissibility highlights the threat of novel variants of concern that emerged more recently and have been disseminated by holiday travel. Our findings indicate that more effective and coordinated measures are required to contain spread through cross-border travel.
Collapse
Affiliation(s)
- Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD, USA
| | - Nick Ruktanonchai
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK
- Population Health Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Vittoria Colizza
- INSERM, Sorbonne Université, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, F75012 Paris, France
| | - Chiara Poletto
- INSERM, Sorbonne Université, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, F75012 Paris, France
| | - Frederik Van den Broeck
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Mandev S Gill
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, New Orleans, LA, USA
| | - Anthony Levasseur
- Microbes, Evolution, Phylogeny and Infection, Aix-Marseille Université and Marseille Institut Universitaire de France, Marseille, France
| | | | - Shengjie Lai
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK
| | - Andrew J Tatem
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 av. FD Roosevelt, 1050 Bruxelles, Belgium
| |
Collapse
|