1
|
Zhou F, Ma R, Xu D, Jiang A. Ascorbic acid treatment inhibits early wound healing in the fresh-cut potato by relegating jasmonic acid biosynthesis and signal transduction. Food Chem 2025; 464:141885. [PMID: 39515156 DOI: 10.1016/j.foodchem.2024.141885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Jasmonic acid (JA) is a wound hormone involved in plant defence responses. Ascorbic acid (AsA) treatment could inhibit early wound healing in fresh-cut potatoes (FCPs), but its regulation of JA pathway during this process remains unclear. We investigated the effects of AsA on JA biosynthesis and signal transduction in FCPs during wound healing. Results showed that AsA treatment decreased JA biosynthesis pathway-related enzyme activities and gene expression (StLOX3.1, StAOS1, StOPR1, StADH1, StKAT2, and StACOT13) at the wound site during healing. The JA content increased from 0.443 to 1.205 μg g-1 within 10 h but only increased to 0.535 μg g-1 with AsA. AsA treatment reduced jasmonic acid carboxyl methyltransferase and jasmonic acid-amido synthetase activities, StJMT and StJAR1 expressions, and methyl jasmonate and jasmonoyl-isoleucine contents. Moreover, AsA treatment upregulated StJAZ1 and downregulated StMYC2 expression. These findings suggested that AsA regulates wound healing in FCPs by suppressing JA biosynthesis and signal transduction.
Collapse
Affiliation(s)
- Fuhui Zhou
- College of Life Sciences, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China
| | - Rui Ma
- College of Life Sciences, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China
| | - Dongying Xu
- College of Life Sciences, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China
| | - Aili Jiang
- College of Life Sciences, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China.
| |
Collapse
|
2
|
Hirota S, Ito Y, Inoue S, Kitaoka N, Taniguchi T, Monde K, Takahashi K, Matsuura H. Isolation and Structure Determination of cis-OPDA-α-Monoglyceride from Arabidopsis thaliana. JOURNAL OF NATURAL PRODUCTS 2024; 87:1358-1367. [PMID: 38656153 DOI: 10.1021/acs.jnatprod.3c01237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
cis-12-oxo-Phytodieneoic acid-α-monoglyceride (1) was isolated from Arabidopsis thaliana. The chemical structure of 1 was elucidated based on exhaustive 1D and 2D NMR spectroscopic measurements and supported by FDMS and HRFDMS data. The absolute configuration of the cis-OPDA moiety in 1 was determined by comparison of 1H NMR spectra and ECD measurements. With respect to the absolute configuration of the β-position of the glycerol backbone, the 2:3 ratio of (S) to (R) was determined by making ester-bonded derivatives with (R)-(+)-α-methoxy-α-trifluoromethylphenylacetyl chloride and comparing 1H NMR spectra. Wounding stress did not increase endogenous levels of 1, and it was revealed 1 had an inhibitory effect of A. thaliana post germination growth. Notably, the endogenous amount of 1 was higher than the amounts of (+)-7-iso-jasmonic acid and (+)-cis-OPDA in intact plants. 1 also showed antimicrobial activity against Gram-positive bacteria, but jasmonic acid did not. It was also found that α-linolenic acid-α-monoglyceride was converted into 1 in the A. thaliana plant, which implied α-linolenic acid-α-monoglyceride was a biosynthetic intermediate of 1.
Collapse
Affiliation(s)
- Shotaro Hirota
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Sapporo 060-8589, Japan
| | - Yusuke Ito
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Sapporo 060-8589, Japan
| | - Shiro Inoue
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Sapporo 060-8589, Japan
| | - Naoki Kitaoka
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Sapporo 060-8589, Japan
| | - Tohru Taniguchi
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
| | - Kenji Monde
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan
| | - Kosaku Takahashi
- Department of Nutritional Science, Faculty of Applied BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Hideyuki Matsuura
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Sapporo 060-8589, Japan
| |
Collapse
|
3
|
Deng H, Ma L, Gong D, Xue S, Ackah S, Prusky D, Bi Y. BTH-induced joint regulation of wound healing at the wounds of apple fruit by JA and its downstream transcription factors. Food Chem 2023; 410:135184. [PMID: 36623456 DOI: 10.1016/j.foodchem.2022.135184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/23/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Jasmonic acids (JAs) are important injury signaling molecules, which participate in the process of wound healing in plants. However, how JA and its downstream transcription factors involve in wound healing in apple fruit mediated by BTH has not been reported yet. In the present study, BTH treatment up-regulated gene expression of MdLOX3.1, MdAOS1, MdAOC, and MdOPR3, promoting JA synthesis at fruit wounds. Moreover, BTH up-regulated the gene expression of MdMYC2, MdGAIPB, and MdMYB108 transcription factors and increased MdPAL1, Md4CL2, MdCOMT1, and MdCAD6 expression. In addition, BTH facilitated the synthesis of phenylpropanoid metabolism products and accelerated suberin polyphenolics deposition at the wounds, which effectively reduced fruit weight loss and lesion diameter of apple fruit inoculated with Penicillium expansum during healing. It is suggested that BTH induced wound healing in apple fruit by the stimulating JA and its downstream transcription factors, and phenylpropanoid metabolism.
Collapse
Affiliation(s)
- Huiwen Deng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Di Gong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Sulin Xue
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Sabina Ackah
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Integration of Electrical Signals and Phytohormones in the Control of Systemic Response. Int J Mol Sci 2023; 24:ijms24010847. [PMID: 36614284 PMCID: PMC9821543 DOI: 10.3390/ijms24010847] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Plants are constantly exposed to environmental stresses. Local stimuli sensed by one part of a plant are translated into long-distance signals that can influence the activities in distant tissues. Changes in levels of phytohormones in distant parts of the plant occur in response to various local stimuli. The regulation of hormone levels can be mediated by long-distance electrical signals, which are also induced by local stimulation. We consider the crosstalk between electrical signals and phytohormones and identify interaction points, as well as provide insights into the integration nodes that involve changes in pH, Ca2+ and ROS levels. This review also provides an overview of our current knowledge of how electrical signals and hormones work together to induce a systemic response.
Collapse
|
5
|
Liu X, Cheng L, Li R, Cai Y, Wang X, Fu X, Dong X, Qi M, Jiang CZ, Xu T, Li T. The HD-Zip transcription factor SlHB15A regulates abscission by modulating jasmonoyl-isoleucine biosynthesis. PLANT PHYSIOLOGY 2022; 189:2396-2412. [PMID: 35522030 PMCID: PMC9342995 DOI: 10.1093/plphys/kiac212] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
Plant organ abscission, a process that is important for development and reproductive success, is inhibited by the phytohormone auxin and promoted by another phytohormone, jasmonic acid (JA). However, the molecular mechanisms underlying the antagonistic effects of auxin and JA in organ abscission are unknown. We identified a tomato (Solanum lycopersicum) class III homeodomain-leucine zipper transcription factor, HOMEOBOX15A (SlHB15A), which was highly expressed in the flower pedicel abscission zone and induced by auxin. Knocking out SlHB15A using clustered regularly interspaced short palindromic repeats-associated protein 9 technology significantly accelerated abscission. In contrast, overexpression of microRNA166-resistant SlHB15A (mSlHB15A) delayed abscission. RNA sequencing and reverse transcription-quantitative PCR analyses showed that knocking out SlHB15A altered the expression of genes related to JA biosynthesis and signaling. Furthermore, functional analysis indicated that SlHB15A regulates abscission by depressing JA-isoleucine (JA-Ile) levels through inhabiting the expression of JASMONATE-RESISTANT1 (SlJAR1), a gene involved in JA-Ile biosynthesis, which could induce abscission-dependent and abscission-independent ethylene signaling. SlHB15A bound directly to the SlJAR1 promoter to silence SlJAR1, thus delaying abscission. We also found that flower removal enhanced JA-Ile content and that application of JA-Ile severely impaired the inhibitory effects of auxin on abscission. These results indicated that SlHB15A mediates the antagonistic effect of auxin and JA-Ile during tomato pedicel abscission, while auxin inhibits abscission through the SlHB15A-SlJAR1 module.
Collapse
Affiliation(s)
- Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Yue Cai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Xiaoyang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Xin Fu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Xiufen Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California at Davis, Davis, California 95616, USA
- Crops Pathology and Genetic Research Unit, USDA-ARS, Davis, California 95616, USA
| | - Tao Xu
- Author for correspondence: (T.L.), (T.X.)
| | - Tianlai Li
- Author for correspondence: (T.L.), (T.X.)
| |
Collapse
|
6
|
Li M, Yu G, Ma J, Liu P. Interactions of importers in long-distance transmission of wound-induced jasmonate. PLANT SIGNALING & BEHAVIOR 2021; 16:1886490. [PMID: 33576701 PMCID: PMC7971279 DOI: 10.1080/15592324.2021.1886490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mobile wound signals transmitted from local damaged to distal undamaged sites induce upsurge of jasmonic acid (JA) and activation of core JA signaling, priming the whole plant for broad-spectrum resistance/immunity against future challenges. We recently characterized two jasmonate importers AtJAT3 and AtJAT4 in Arabidopsis thaliana jasmonate transporter (JAT) family that cooperatively regulate the transmission of JA from leaf-to-leaf in this wound-induced systemic response/resistance (WSR). As half-molecule ATP-binding cassette transporters, AtJAT3 and AtJAT4 need to form homodimers or/and heterodimer to function. Here we show interactions in AtJAT3-AtJAT3, AtJAT3-AtJAT4, and AtJAT4-AtJAT4 pairs by both yeast two-hybrid and bimolecular fluorescent complementation assays. Furthermore, we propose a model in which the homo-/hetero-dimers of AtJAT3/AtJAT4 mediated cell-cell transport of JA drives long-distance transmission of JA signal in a self-propagation mode and give perspectives on future works to reinforce this model.
Collapse
Affiliation(s)
- Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, P. R. China
| | - Guanghui Yu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, P. R. China
| | - Jing Ma
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, P. R. China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, P. R. China
- CONTACT Pei Liu Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing100193, P. R. China
| |
Collapse
|
7
|
Ye M, Liu M, Erb M, Glauser G, Zhang J, Li X, Sun X. Indole primes defence signalling and increases herbivore resistance in tea plants. PLANT, CELL & ENVIRONMENT 2021; 44:1165-1177. [PMID: 32996129 DOI: 10.1111/pce.13897] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 05/12/2023]
Abstract
Upon herbivore attack, plants emit herbivore-induced plant volatiles (HIPVs). HIPVs can prime defences and resistance of intact plants. However, how HIPVs are decoded and translated into functional defence responses is not well understood, especially in long-lived woody plants. Here, we investigated the impact of the aromatic HIPV indole on defence-related early signalling, phytohormone accumulation, secondary metabolite biosynthesis and herbivore resistance in tea plants. We find that tea plants infested with tea geometrid caterpillars release indole at concentrations >450 ng*hr-1 . Exposure to corresponding doses of synthetic indole primes the expression of early defence genes involved in calcium (Ca2+ ) signalling, MPK signalling and jasmonate biosynthesis. Indole exposure also primes the production of jasmonates and defence-related secondary metabolites. These changes are associated with higher herbivore resistance of indole-exposed tea plants. Chemical inhibition of Ca2+ and jasmonate signalling provides evidence that both are required for indole-mediated defence priming and herbivore resistance. Our systematic assessment of the impact of indole on defence signalling and deployment shows that indole acts by boosting Ca2+ signalling, resulting in enhanced jasmonate-dependent defence and resistance in a woody plant. Our work extends the molecular basis of HIPV-induced defence priming from annual plants to an economically important tree species.
Collapse
Affiliation(s)
- Meng Ye
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Miaomiao Liu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jin Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xiwang Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoling Sun
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
8
|
Spatial and Temporal Dynamics of Electrical and Photosynthetic Activity and the Content of Phytohormones Induced by Local Stimulation of Pea Plants. PLANTS 2020; 9:plants9101364. [PMID: 33076246 PMCID: PMC7602463 DOI: 10.3390/plants9101364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/27/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023]
Abstract
A local leaf burning causes variation potential (VP) propagation, a decrease in photosynthesis activity, and changes in the content of phytohormones in unstimulated leaves in pea plants. The VP-induced photosynthesis response develops in two phases: fast inactivation and long-term inactivation. Along with a decrease in photosynthetic activity, there is a transpiration suppression in unstimulated pea leaves, which corresponds to the long-term phase of photosynthesis response. Phytohormone level analysis showed an increase in the concentration of jasmonic acid (JA) preceding a transpiration suppression and a long-term phase of the photosynthesis response. Analysis of the spatial and temporal dynamics of electrical signals, phytohormone levels, photosynthesis, and transpiration activity showed the most pronounced changes in the more distant leaf from the area of local stimulation. The established features are related to the architecture of the vascular bundles in the pea stem.
Collapse
|
9
|
Li M, Wang F, Li S, Yu G, Wang L, Li Q, Zhu X, Li Z, Yuan L, Liu P. Importers Drive Leaf-to-Leaf Jasmonic Acid Transmission in Wound-Induced Systemic Immunity. MOLECULAR PLANT 2020; 13:1485-1498. [PMID: 32889174 DOI: 10.1016/j.molp.2020.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/06/2020] [Accepted: 08/29/2020] [Indexed: 05/22/2023]
Abstract
The transmission of mobile wound signals along the phloem pathway is essential to the activation of wound-induced systemic response/resistance, which requires an upsurge of jasmonic acid (JA) in the distal undamaged leaves. Among these mobile signals, the electrical signal mediated by the glutamate-dependent activation of several clade three GLUTAMATE RECEPTOR-LIKE (GLR3) proteins is involved in the stimulation of JA production in distal leaves. However, whether JA acts as a mobile wound signal and, if so, how it is transmitted and interacts with the electrical signal remain unclear. Here, we show that JA was translocated from the local to distal leaves in Arabidopsis, and this process was predominantly regulated by two phloem-expressed and plasma membrane-localized jasmonate transporters, AtJAT3 and AtJAT4. In addition to the cooperation between AtJAT3/4 and GLR3.3 in the regulation of long-distance JA translocation, our findings indicate that importer-mediated cell-cell JA transport is important for driving the loading and translocation of JA in the phloem pathway in a self-propagating manner.
Collapse
Affiliation(s)
- Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Feifei Wang
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Shuangzhang Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Guanghui Yu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Lijian Wang
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Qingqing Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Xiangyu Zhu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Lixing Yuan
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
10
|
Matsui R, Takiguchi K, Kuwata N, Oki K, Takahashi K, Matsuda K, Matsuura H. Jasmonic acid is not a biosynthetic intermediate to produce the pyrethrolone moiety in pyrethrin II. Sci Rep 2020; 10:6366. [PMID: 32286354 PMCID: PMC7156398 DOI: 10.1038/s41598-020-63026-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/13/2020] [Indexed: 12/05/2022] Open
Abstract
Pyrethrum (Tanacetumcinerariifolium) produces insecticidal compounds known as pyrethrins. Pyrethrins are esters; the acid moiety is either trans-chrysanthemic acid or pyrethric acid and the alcohol moiety of pyrethrins is either pyrethrolone, cinerolone, or jasmolone. It was generally accepted that cis-jasmone was biosynthetic intermediate to produce the alcohol moieties of pyrethrin, and the biosynthetic origin of the cis-jasmone was postulated to be jasmonic acid. However, there was no direct evidence to prove this hypothesis. In order to uncover the origin of pyrethrolone moiety in pyrethrin II, feeding experiments were performed employing deuterium- and 13C-labeled compounds as substrates, and the expected labeled compounds were analyzed using UPLC MS/MS system. It was found that the pyrethrolone moiety in pyrethrin II was derived from 12-oxo-phytodienoic acid (OPDA), iso-OPDA and cis-jasmone but not from methyl jasmonate and 3-oxo-2-(2′-[Z]-pentenyl)-cyclopentane-1-hexanoic acid. The results supported that the biosynthesis of the pyrethrolone moiety in pyrethrin II partially used part of the jasmonic acid biosynthetic pathway, but not whole.
Collapse
Affiliation(s)
- Ryo Matsui
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kisumi Takiguchi
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Naoshige Kuwata
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Katsunari Oki
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kosaku Takahashi
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.,Department of Nutritional Science, Faculty of Applied BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Kazuhiko Matsuda
- Graduate School of Agriculture, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505, Japan
| | - Hideyuki Matsuura
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
11
|
Luo W, Komatsu S, Abe T, Matsuura H, Takahashi K. Comparative Proteomic Analysis of Wild-Type Physcomitrella Patens and an OPDA-Deficient Physcomitrella Patens Mutant with Disrupted PpAOS1 and PpAOS2 Genes after Wounding. Int J Mol Sci 2020; 21:ijms21041417. [PMID: 32093080 PMCID: PMC7073133 DOI: 10.3390/ijms21041417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022] Open
Abstract
Wounding is a serious environmental stress in plants. Oxylipins such as jasmonic acid play an important role in defense against wounding. Mechanisms to adapt to wounding have been investigated in vascular plants; however, those mechanisms in nonvascular plants remain elusive. To examine the response to wounding in Physcomitrella patens, a model moss, a proteomic analysis of wounded P. patens was conducted. Proteomic analysis showed that wounding increased the abundance of proteins related to protein synthesis, amino acid metabolism, protein folding, photosystem, glycolysis, and energy synthesis. 12-Oxo-phytodienoic acid (OPDA) was induced by wounding and inhibited growth. Therefore, OPDA is considered a signaling molecule in this plant. Proteomic analysis of a P. patens mutant in which the PpAOS1 and PpAOS2 genes, which are involved in OPDA biosynthesis, are disrupted showed accumulation of proteins involved in protein synthesis in response to wounding in a similar way to the wild-type plant. In contrast, the fold-changes of the proteins in the wild-type plant were significantly different from those in the aos mutant. This study suggests that PpAOS gene expression enhances photosynthesis and effective energy utilization in response to wounding in P. patens.
Collapse
Affiliation(s)
- Weifeng Luo
- Division of Fundamental Agroscience Research, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (W.L.); (T.A.); (H.M.)
| | - Setsuko Komatsu
- Department of Environmental and Food Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui 910-8505, Japan;
| | - Tatsuya Abe
- Division of Fundamental Agroscience Research, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (W.L.); (T.A.); (H.M.)
| | - Hideyuki Matsuura
- Division of Fundamental Agroscience Research, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (W.L.); (T.A.); (H.M.)
| | - Kosaku Takahashi
- Division of Fundamental Agroscience Research, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (W.L.); (T.A.); (H.M.)
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 165-8502, Japan
- Correspondence:
| |
Collapse
|
12
|
Kojima T, Asakura N, Hasegawa S, Hirasawa T, Mizuno Y, Takemoto D, Katou S. Transcriptional induction of capsidiol synthesis genes by wounding can promote pathogen signal-induced capsidiol synthesis. BMC PLANT BIOLOGY 2019; 19:576. [PMID: 31864296 PMCID: PMC6925906 DOI: 10.1186/s12870-019-2204-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Plants are exposed to various forms of environmental stress. Penetration by pathogens is one of the most serious environmental insults. Wounding caused by tissue damage or herbivory also affects the growth and reproduction of plants. Moreover, wounding disrupts physical barriers present at the plant surface and increases the risk of pathogen invasion. Plants cope with environmental stress by inducing a variety of responses. These stress responses must be tightly controlled, because their unnecessary induction is detrimental to plant growth. In tobacco, WIPK and SIPK, two wound-responsive mitogen-activated protein kinases, have been shown to play important roles in regulating wound responses. However, their contribution to downstream wound responses such as gene expression is not well understood. RESULTS To identify genes regulated by WIPK and SIPK, the transcriptome of wounded WIPK/SIPK-suppressed plants was analyzed. Among the genes down-regulated in WIPK/SIPK-suppressed plants, the largest group consisted of those involved in the production of antimicrobial phytoalexins. Almost all genes involved in the biosynthesis of capsidiol, a major phytoalexin in tobacco, were transcriptionally induced by wounding in WIPK/SIPK-dependent and -independent manners. 5-epi-aristolochene synthase (EAS) is the committing enzyme for capsidiol synthesis, and the promoter of EAS4, a member of the EAS family, was analyzed. Reporter gene analysis revealed that at least two regions each 40-50 bp length were involved in activation of the EAS4 promoter by wounding, as well as by artificial activation of WIPK and SIPK. Unlike transcripts of the capsidiol synthesis genes, accumulation of EAS protein and capsidiol itself were not induced by wounding; however, wounding significantly enhanced their subsequent induction by a pathogen-derived elicitor. CONCLUSIONS Our results suggest a so-called priming phenomenon since the induction of EAS by wounding is only visible at the transcript level. By inducing transcripts, not the proteins, of EAS and possibly other capsidiol synthesis genes at wound sites, plants can produce large quantities of capsidiol quickly if pathogens invade the wound site, whereas plants can minimize energy loss and avoid the cytotoxic effects of capsidiol where pathogens do not gain entry during wound healing.
Collapse
Affiliation(s)
- Tomoya Kojima
- Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
| | - Nobuhide Asakura
- Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
| | - Shiori Hasegawa
- Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
| | - Taishi Hirasawa
- Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
| | - Yuri Mizuno
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Shinpei Katou
- Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.
| |
Collapse
|
13
|
Ono K, Kimura M, Matsuura H, Tanaka A, Ito H. Jasmonate production through chlorophyll a degradation by Stay-Green in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2019; 238:53-62. [PMID: 31136906 DOI: 10.1016/j.jplph.2019.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/11/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Leaf color change through chlorophyll degradation is a characteristic symptom of senescence. Magnesium removal from chlorophyll a is the initial step in chlorophyll a degradation, in a reaction catalyzed by Stay-Green (SGR). Arabidopsis thaliana has three SGR homologs, SGR1, SGR2, and SGR-like. When SGR1 is overexpressed, both chlorophyll a and b are degraded and leaves turn yellow. This process is visually identical to senescence, suggesting that SGR1 overexpression affects various physiological processes in plants. To examine this possibility, gene expression associated with chlorophyll metabolism and senescence was analyzed following dexamethasone-inducible SGR1 introduction into Arabidopsis. When SGR1 was overexpressed following 18 h of dexamethasone treatment, genes involved in chlorophyll degradation were upregulated, as were senescence-associated genes. These observations suggested that chlorophyll a degradation promotes senescence. As jasmonate is the plant hormone responsible for senescence and was expected to be involved in the regulation of gene expression after dexamethasone treatment, the level of jasmonoyl-isoleucine, the active form of jasmonate, was measured. The jasmonoyl-isoleucine level increased slightly after 10 h of SGR1 overexpression, and this increase became significant after 18 h. These observations suggest that jasmonate is produced through chlorophyll a degradation and affects the promotion of senescence.
Collapse
Affiliation(s)
- Kouhei Ono
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Madoka Kimura
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Hideyuki Matsuura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan.
| |
Collapse
|
14
|
Vázquez-Chimalhua E, Ruíz-Herrera LF, Barrera-Ortiz S, Valencia-Cantero E, López-Bucio J. The bacterial volatile dimethyl-hexa-decylamine reveals an antagonistic interaction between jasmonic acid and cytokinin in controlling primary root growth of Arabidopsis seedlings. PROTOPLASMA 2019; 256:643-654. [PMID: 30382422 DOI: 10.1007/s00709-018-1327-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/23/2018] [Indexed: 05/19/2023]
Abstract
Chemical communication underlies major adaptive traits in plants and shapes the root microbiome. An increasing number of diffusible and/or volatile organic compounds released by bacteria have been identified, which play phytostimulant or protective functions, including dimethyl-hexa-decylamine (DMHDA), a volatile biosynthesized by Arthrobacter agilis UMCV2 that induces jasmonic acid (JA) signaling in Arabidopsis. Here, he found that the growth repressing effects of both DMHDA and JA are antagonized by kinetin and correlated with an inhibition of cytokinin-related ARR5::GUS and TCS::GFP expression in Arabidopsis primary roots. Moreover, we demonstrate that shoot supplementation of JA triggers JAZ1 expression both locally and systemically and represses cytokinin-dependent promoter activity in roots. A similar effect was observed after cotyledon wounding, in which an increase of JA-inducible LOX2:GUS expression represses root growth, which correlates with the loss of TCS::GFP detection at the very root tip. Our data demonstrate that the bacterial volatile DMHDA crosstalks with cytokinin signaling and reveals the downstream antagonistic interaction between JA and cytokinin in controlling root growth.
Collapse
Affiliation(s)
- Ernesto Vázquez-Chimalhua
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio A1', Ciudad Universitaria, C. P, 58030, Morelia, Michoacán, México
| | - León Francisco Ruíz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio A1', Ciudad Universitaria, C. P, 58030, Morelia, Michoacán, México
| | - Salvador Barrera-Ortiz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio A1', Ciudad Universitaria, C. P, 58030, Morelia, Michoacán, México
| | - Eduardo Valencia-Cantero
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio A1', Ciudad Universitaria, C. P, 58030, Morelia, Michoacán, México.
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio A1', Ciudad Universitaria, C. P, 58030, Morelia, Michoacán, México.
| |
Collapse
|
15
|
Zhao L, Hu Z, Li S, Zhou X, Li J, Su X, Zhang L, Zhang Z, Dong J. Diterpenoid compounds from Wedelia trilobata induce resistance to Tomato spotted wilt virus via the JA signal pathway in tobacco plants. Sci Rep 2019; 9:2763. [PMID: 30808959 PMCID: PMC6391457 DOI: 10.1038/s41598-019-39247-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/08/2019] [Indexed: 01/24/2023] Open
Abstract
Tomato spotted wilt virus (TSWV) causes major losses of many crops worldwide. Several strategies have been attempted to control disease caused by TSWV. However, many challenges for the effective control of this disease remain. A promising approach is the use of abiotic or biotic inducers to enhance plant resistance to pathogens. We screened a diterpenoid compound from Wedelia trilobata, 3α-Angeloyloxy-9β-hydroxy-ent-kaur-16-en-19-oic acid (AHK), which had higher curative and protective effects against TSWV than the ningnanmycin control. The rapid initiation of the expression of all the TSWV genes was delayed by more than 1d in the curative assay, and the expression of the NSs, NSm and RdRp genes was inhibited. In addition, the replication of all TSWV genes in systemic leaves was inhibited in the protective assay, with an inhibition rate of more than 90%. The concentrations of jasmonic acid (JA) and jasmonic acid isoleucine (JA-ILE) in the AHK-treated and systemic leaves of the treated plants were significantly higher than those observed in the control. The results suggested that AHK can induce systemic resistance in treated plants. The transcription of the NtCOI1 gene, a key gene in the JA pathway, was significantly higher in both the inoculated and systemic leaves of the AHK-treated plants compared to the control. The AHK-induced resistance to TSWV in Nicotiana benthamiana could be eliminated by VIGS-mediated silencing of the NtCOI1 gene. These results indicated that AHK can activate the JA pathway and induce systemic resistance to TSWV infection.
Collapse
Affiliation(s)
- Lihua Zhao
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, 650204, Kunming, China
| | - Zhonghui Hu
- Kunming Institute of Botany, Chinese Academy of Science, 650201, Kunming, China
| | - Shunlin Li
- Kunming Institute of Botany, Chinese Academy of Science, 650201, Kunming, China
| | - Xueping Zhou
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, 650204, Kunming, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jing Li
- Life Science College, Southwest Forestry University, 650224, Kunming, China
| | - Xiaoxia Su
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, 650204, Kunming, China
| | - Lizhen Zhang
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, 650204, Kunming, China
| | - Zhongkai Zhang
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, 650204, Kunming, China.
| | - Jiahong Dong
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, 650204, Kunming, China.
| |
Collapse
|
16
|
Wang F, Yu G, Liu P. Transporter-Mediated Subcellular Distribution in the Metabolism and Signaling of Jasmonates. FRONTIERS IN PLANT SCIENCE 2019; 10:390. [PMID: 31001304 PMCID: PMC6454866 DOI: 10.3389/fpls.2019.00390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/14/2019] [Indexed: 05/18/2023]
Abstract
Jasmonates (jasmonic acid and its relatives) are a group of oxylipin phytohormones that are implicated in the regulation of a range of developmental processes and responses to environmental stimuli in plants. The biosynthesis of JAs occur sequentially in various subcellular compartments including the chloroplasts, peroxisomes and the cytoplasm. The biologically active jasmonoyl-isoleucine (JA-Ile) activates the core JA signaling in the nucleus by binding with its coreceptor, SCFCOI1-JAZ. Five members of a clade of ATP-binding cassette G (ABCG) transporters of Arabidopsis thaliana were identified as the candidates of jasmonate transporters (JATs) in yeast cells. Among these JATs, AtJAT1/AtABCG16, has a dual localization in the plasma membrane and nuclear envelop and mediates the efflux of jasmonic acid (JA) across the plasma membrane and influx of JA-Ile into the nucleus. Genetic, cellular and biochemical analyses have demonstrated that AtJAT1/AtABCG16 is crucial for modulating JA-Ile concentration in the nucleus to orchestrate JA signaling. AtJAT1 could also be involved in modulating the biosynthesis of JA-Ile by regulating the distribution of JA and JA-Ile in the cytoplasm and nucleus, which would contribute to the highly dynamic JA signaling. Furthermore, other JAT members are localized in the plasma membrane and possibly in peroxisomes. Characterization of these JATs will provide further insights into a crucial role of transporter-mediated subcellular distribution in the metabolism and signaling of plant hormones, an emerging theme supported by the identification of increasing number of endomembrane-localized transporters.
Collapse
|
17
|
Heyer M, Reichelt M, Mithöfer A. A Holistic Approach to Analyze Systemic Jasmonate Accumulation in Individual Leaves of Arabidopsis Rosettes Upon Wounding. FRONTIERS IN PLANT SCIENCE 2018; 9:1569. [PMID: 30425725 PMCID: PMC6218591 DOI: 10.3389/fpls.2018.01569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/08/2018] [Indexed: 05/08/2023]
Abstract
Phytohormones, especially jasmonates, are known to be mediators of the plant responses to wounding and herbivore feeding. Their role in such stress responses has been largely studied locally in treated leaves. However, less is known about the induced systemic distribution of phytohormone signals upon these kinds of stresses. Here, a holistic approach was performed in order to investigate the systemic phytohormone pattern in the rosette of Arabidopsis thaliana after herbivore-related wounding. Levels of different stress-related phytohormones such as jasmonates, abscisic acid, and salicylic acid were analyzed in individual leaves. We demonstrate that the typically used sampling method, where leaves are first cut and immediately frozen, causes false-positive results since cutting already induces systemic jasmonate elevations within less than 1.6 min. Therefore, this approach is not suitable to study systemic phytohormone changes in the whole plant. By developing a new method where leaves are frozen first and subsequently cut, sampling-induced phytohormone elevations could be reduced. Using this new method, we show that jasmonic acid and its active isoleucine conjugate (jasmonoyl-isoleucine) are involved in the fast systemic wound response of Arabidopsis. A systemic induction of the jasmonates' precursor, 12-oxo-phytodienoic acid, was not observed throughout our treatments. The systemic phytohormone distribution pattern is strongly linked to the vascular connections between the leaves, providing further evidence that the vascular system is used for long distance-signaling in Arabidopsis. Besides already known vascular connections, we also demonstrate that the systemic distribution of jasmonate signals can be extended to distant leaves, which are systemically but indirectly connected via another vascularly connected leaf. This holistic approach covering almost the whole Arabidopsis rosette introduces a method to overcome false-positive results in systemic phytohormone determinations and demonstrates that wounding-induced long-distance signaling includes fast changes in jasmonate levels in systemic, non-treated leaves.
Collapse
Affiliation(s)
- Monika Heyer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Axel Mithöfer,
| |
Collapse
|
18
|
Ogihara T, Amano N, Mitsui Y, Fujino K, Ohta H, Takahashi K, Matsuura H. Determination of the Absolute Configuration of a Monoglyceride Antibolting Compound and Isolation of Related Compounds from Radish Leaves (Raphanus sativus). JOURNAL OF NATURAL PRODUCTS 2017; 80:872-878. [PMID: 28333463 DOI: 10.1021/acs.jnatprod.6b00746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A monoglyceride (1) has been reported to possess an antibolting effect in radish (Raphanus sativus), but its absolute configuration at the C-2 position was not determined earlier. In this work, the absolute configuration of 1 was determined to be (2S), and it was also accompanied by one new (2) and two known monoglycerides (3 and 4). The chemical structure of 2 was determined as β-(7'Z,10'Z,13'Z)-hexadecatrienoic acid monoglyceride (β-16:3 monoglyceride). Qualitative and quantitative analytical methods for compounds 1-4 were developed, using two deuterium-labeled compounds (8 and 9) as internal standards. The results revealed a broader range of distribution of 1-4 in several annual winter crops. It was also found that these isolated compounds have an inhibitory effect on the root elongation of Arabidopsis thaliana seedlings at concentrations of 25 and 50 μM in the medium. However, the inhibitory effect of 1 was not dependent on coronatin-insensitive 1 (COI1) protein, which may suggest the involvement of an unidentified signaling system other than jasmonic acid signaling.
Collapse
Affiliation(s)
- Tsuyoshi Ogihara
- Research Faculty of Agriculture, Hokkaido University , Sapporo 060-8589, Japan
| | - Naruki Amano
- Research Faculty of Agriculture, Hokkaido University , Sapporo 060-8589, Japan
| | - Yuki Mitsui
- Tokyo University of Agriculture , 1-1-1, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kaien Fujino
- Research Faculty of Agriculture, Hokkaido University , Sapporo 060-8589, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology , 4259-B65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kosaku Takahashi
- Research Faculty of Agriculture, Hokkaido University , Sapporo 060-8589, Japan
| | - Hideyuki Matsuura
- Research Faculty of Agriculture, Hokkaido University , Sapporo 060-8589, Japan
| |
Collapse
|
19
|
Pratiwi P, Tanaka G, Takahashi T, Xie X, Yoneyama K, Matsuura H, Takahashi K. Identification of Jasmonic Acid and Jasmonoyl-Isoleucine, and Characterization of AOS, AOC, OPR and JAR1 in the Model Lycophyte Selaginella moellendorffii. PLANT & CELL PHYSIOLOGY 2017; 58:789-801. [PMID: 28340155 DOI: 10.1093/pcp/pcx031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/16/2017] [Indexed: 05/24/2023]
Abstract
Jasmonic acid (JA) is involved in a variety of physiological responses in seed plants. However, the detection and role of JA in lycophytes, a group of seedless vascular plants, have remained elusive until recently. This study provides the first evidence of 12-oxo-phytodienoic acid (OPDA), JA and jasmonoyl-isoleucine (JA-Ile) in the model lycophyte Selaginella moellendorffii. Mechanical wounding stimulated the accumulation of OPDA, JA and JA-Ile. These data were corroborated by the detection of enzymatically active allene oxide synthase (AOS), allene oxide cyclase (AOC), 12-oxo-phytodienoic acid reductase 3 (OPR3) and JA-Ile synthase (JAR1) in S. moellendorffii. SmAOS2 is involved in the first committed step of JA biosynthesis. SmAOC1 is a crucial enzyme for generating the basic structure of jasmonates and is actively involved in the formation of OPDA. SmOPR5, a functionally active OPR3-like enzyme, is also vital for the reduction of (+)-cis-OPDA, the only isomer of the JA precursor. The conjugation of JA to Ile by SmJAR1 demonstrates that S. moellendorffii produces JA-Ile. Thus, the four active enzymes have characteristics similar to those in seed plants. Wounding and JA treatment induced the expression of SmAOC1 and SmOPR5. Furthermore, JA inhibited the growth of shoots in S. moellendorffii, which suggests that JA functions as a signaling molecule in S. moellendorffii. This study proposes that JA evolved as a plant hormone for stress adaptation, beginning with the emergence of vascular plants.
Collapse
Affiliation(s)
- Putri Pratiwi
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Genta Tanaka
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tomohiro Takahashi
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Koichi Yoneyama
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Hideyuki Matsuura
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kosaku Takahashi
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
Chiangga S, Pornkaveerat W, Frank TD. Reaction kinetics of the jasmonate-isoleucine complex formation during wound-induced plant defense responses: A model-based re-analysis of published data. JOURNAL OF PLANT PHYSIOLOGY 2016; 206:103-113. [PMID: 27769013 DOI: 10.1016/j.jplph.2016.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/17/2016] [Accepted: 09/17/2016] [Indexed: 06/06/2023]
Abstract
Three studies were considered in which jasmonate-isoleucine levels were observed for several hours after plant wounding. The data from these studies were fitted to a first order kinetical model describing jasmonate-isoleucine complex formation and dissociation. It was found that the model could explain up to 97 percent of the variations in the data sets. In general, the data re-analysis confirmed that the protein-protein interactions involved in the biosynthesis and dissociation of the jasmonate-isoleucine complex are fast relative to the dynamics of the jasmonate levels themselves. Moreover, the data re-analysis supported the notion that transgenic plant manipulations affecting the defense-responses in plants not only affect the jasmonate-isoleucine levels indirectly by affecting jasmonate levels during plant responses. Rather, it seems that transgenic plant manipulations affect kinetic rate parameters of the jasmonate-isoleucine complex formation and dissociation reactions. In addition to these general findings, several specific conclusions for the three experimental studies were obtained.
Collapse
Affiliation(s)
- S Chiangga
- Department of Physics, Kasetsart University, Bangkok 10900, Thailand
| | - W Pornkaveerat
- Department of Physics, Kasetsart University, Bangkok 10900, Thailand
| | - T D Frank
- Center for the Ecological Study of Perception and Action, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269, USA; Department of Physics, University of Connecticut, 2152 Hillside Road, Storrs, CT 06269, USA.
| |
Collapse
|
21
|
Ishimaru Y, Oikawa T, Suzuki T, Takeishi S, Matsuura H, Takahashi K, Hamamoto S, Uozumi N, Shimizu T, Seo M, Ohta H, Ueda M. GTR1 is a jasmonic acid and jasmonoyl-l-isoleucine transporter in Arabidopsis thaliana. Biosci Biotechnol Biochem 2016; 81:249-255. [PMID: 27760496 DOI: 10.1080/09168451.2016.1246174] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Jasmonates are major plant hormones involved in wounding responses. Systemic wounding responses are induced by an electrical signal derived from damaged leaves. After the signaling, jasmonic acid (JA) and jasmonoyl-l-isoleucine (JA-Ile) are translocated from wounded to undamaged leaves, but the molecular mechanism of the transport remains unclear. Here, we found that a JA-Ile transporter, GTR1, contributed to these translocations in Arabidopsis thaliana. GTR1 was expressed in and surrounding the leaf veins both of wounded and undamaged leaves. Less accumulations and translocation of JA and JA-Ile were observed in undamaged leaves of gtr1 at 30 min after wounding. Expressions of some genes related to wound responses were induced systemically in undamaged leaves of gtr1. These results suggested that GTR1 would be involved in the translocation of JA and JA-Ile in plant and may be contributed to correct positioning of JA and JA-Ile to attenuate an excessive wound response in undamaged leaves.
Collapse
Affiliation(s)
| | - Takaya Oikawa
- a Department of Chemistry , Tohoku University , Sendai , Japan
| | - Takeshi Suzuki
- a Department of Chemistry , Tohoku University , Sendai , Japan
| | - Syohei Takeishi
- b Research Faculty of Agriculture, Division of Applied Bioscience , Hokkaido University , Sapporo , Japan
| | - Hideyuki Matsuura
- b Research Faculty of Agriculture, Division of Applied Bioscience , Hokkaido University , Sapporo , Japan
| | - Kosaku Takahashi
- b Research Faculty of Agriculture, Division of Applied Bioscience , Hokkaido University , Sapporo , Japan
| | - Shin Hamamoto
- c Graduate School of Engineering, Tohoku University , Sendai , Japan
| | - Nobuyuki Uozumi
- c Graduate School of Engineering, Tohoku University , Sendai , Japan
| | - Takafumi Shimizu
- d RIKEN Center for Sustainable Resource Science , Yokohama , Japan
| | - Mitsunori Seo
- d RIKEN Center for Sustainable Resource Science , Yokohama , Japan
| | - Hiroyuki Ohta
- e Graduate School of Bioscience and Biotechnology , Tokyo Institute of Technology , Kanagawa , Japan
| | - Minoru Ueda
- a Department of Chemistry , Tohoku University , Sendai , Japan
| |
Collapse
|
22
|
Kobayashi T, Itai RN, Senoura T, Oikawa T, Ishimaru Y, Ueda M, Nakanishi H, Nishizawa NK. Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots. PLANT MOLECULAR BIOLOGY 2016; 91:533-47. [PMID: 27143046 PMCID: PMC4914535 DOI: 10.1007/s11103-016-0486-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/23/2016] [Indexed: 05/03/2023]
Abstract
Under low iron availability, plants induce the expression of various genes involved in iron uptake and translocation at the transcriptional level. This iron deficiency response is affected by various plant hormones, but the roles of jasmonates in this response are not well-known. We investigated the involvement of jasmonates in rice iron deficiency responses. High rates of jasmonate-inducible genes were induced during the very early stages of iron deficiency treatment in rice roots. Many jasmonate-inducible genes were also negatively regulated by the ubiquitin ligases OsHRZ1 and OsHRZ2 and positively regulated by the transcription factor IDEF1. Ten out of 35 genes involved in jasmonate biosynthesis and signaling were rapidly induced at 3 h of iron deficiency treatment, and this induction preceded that of known iron deficiency-inducible genes involved in iron uptake and translocation. Twelve genes involved in jasmonate biosynthesis and signaling were also upregulated in HRZ-knockdown roots. Endogenous concentrations of jasmonic acid and jasmonoyl isoleucine tended to be rapidly increased in roots in response to iron deficiency treatment, whereas these concentrations were higher in HRZ-knockdown roots under iron-sufficient conditions. Analysis of the jasmonate-deficient cpm2 mutant revealed that jasmonates repress the expression of many iron deficiency-inducible genes involved in iron uptake and translocation under iron sufficiency, but this repression is partly canceled under an early stage of iron deficiency. These results indicate that jasmonate signaling is activated during the very early stages of iron deficiency, which is partly regulated by IDEF1 and OsHRZs.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Reiko Nakanishi Itai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takeshi Senoura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Takaya Oikawa
- Graduate School of Science, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Yasuhiro Ishimaru
- Graduate School of Science, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Minoru Ueda
- Graduate School of Science, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Hiromi Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| |
Collapse
|
23
|
Aoi A, Yamashita Y, Gao X, Uematsu M, Ota M, Takahashi K, Yoshihara T, Matsuura H. 3- O-β-D-Glucopyranosyltheobroxide from Aerial Parts of Cowpea ( Vigna unguiculata). Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Theobroxide has been isolated from culture filtrates of Lasiodiplodia theobromae as a potato tuber-inducing compound. In this study, the metabolism of theobroxide was investigated using cowpea as an experimental model and [2H3-7]theobroxide as a substrate for analyzing a metabolite, which revealed that theobroxide applied exogenously to the roots was converted into 3- O-β-D-glucopyranosyltheobroxide.
Collapse
Affiliation(s)
- Arata Aoi
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yudai Yamashita
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Xiquan Gao
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China 210095
| | - Makoto Uematsu
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Maremichi Ota
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kosaku Takahashi
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Teruhiko Yoshihara
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Hideyuki Matsuura
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| |
Collapse
|
24
|
Yamashita Y, Ota M, Inoue Y, Hasebe Y, Okamoto M, Inukai T, Masuta C, Sakihama Y, Hashidoko Y, Kojima M, Sakakibara H, Inage Y, Takahashi K, Yoshihara T, Matsuura H. Chemical Promotion of Endogenous Amounts of ABA in Arabidopsis thaliana by a Natural Product, Theobroxide. PLANT & CELL PHYSIOLOGY 2016; 57:986-99. [PMID: 26917631 DOI: 10.1093/pcp/pcw037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/14/2016] [Indexed: 05/21/2023]
Abstract
Plant hormones are a group of structurally diverse small compounds that orchestrate the cellular processes governing proper plant growth and environmental adaptation. To understand the details of hormonal activity, we must study not only their inherent activities but also the cross-talk among plant hormones. In addition to their use in agriculture, plant chemical activators, such as probenazole and uniconazole, have made great contributions to understand hormonal cross-talk. However, the use of plant chemical activators is limited due to the lack of activators for certain hormones. For example, to the best of our knowledge, there are only a few chemical activators previously known to stimulate the accumulation of ABA in plants, such as absinazoles and proanthocyanidins. In many cases, antagonistic effects have been examined in experiments using exogenously applied ABA, although these studies did not account for biologically relevant concentrations. In this report, it was found that a natural product, theobroxide, had potential as a plant chemical activator for stimulating the accumulation of ABA. Using theobroxide, the antagonistic effect of ABA against GAs was proved without exogenously applying ABA or using mutant plants. Our results suggest that ABA levels could be chemically controlled to elicit ABA-dependent biological phenomena.
Collapse
Affiliation(s)
- Yudai Yamashita
- Laboratory of Natural Product Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Maremichi Ota
- Laboratory of Natural Product Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Yutaka Inoue
- Laboratory of Natural Product Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Youko Hasebe
- Laboratory of Cell Biology and Manipulation, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Masanori Okamoto
- Arid Land Research Center, Tottori University, Tottori, Japan PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Tsuyoshi Inukai
- Laboratory of Cell Biology and Manipulation, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Chikra Masuta
- Laboratory of Cell Biology and Manipulation, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Yasuko Sakihama
- Laboratory of Ecological Biochemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Yasuyuki Hashidoko
- Laboratory of Ecological Biochemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Yasuyuki Inage
- Japan Agricultural Cooperatives Minami Sorachi, Kuriyama, Yubari-gun, Hokkaido, 069-1511 Japan
| | - Kosaku Takahashi
- Laboratory of Natural Product Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Teruhiko Yoshihara
- Laboratory of Natural Product Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Hideyuki Matsuura
- Laboratory of Natural Product Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| |
Collapse
|
25
|
Shahzad R, Waqas M, Khan AL, Hamayun M, Kang SM, Lee IJ. Foliar application of methyl jasmonate induced physio-hormonal changes in Pisum sativum under diverse temperature regimes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:406-16. [PMID: 26379199 DOI: 10.1016/j.plaphy.2015.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/15/2015] [Accepted: 08/25/2015] [Indexed: 05/26/2023]
Abstract
Global climate change brings with it unwarranted shifts in both abiotic (heat stress, cold stress, wind, precipitation) and biotic (pathogens, pests) environmental factors, thus posing a threat to agricultural productivity across the world. In plants, lodging due to storms or herbivory causes wounding stress and consequently enhances endogenous jasmonates. In response, the plant growth is arrested as plant defense is prioritized. We pre-treated pea plants with elevated methyl jasmonate (MeJA) levels i.e. 50 μM, 100 μM and 200 μM under controlled growth chamber conditions. The pre-treated plants were then kept at 40 °C (heat stress--HS), 4 °C (cold stress--CS) and 20 °C (optimum/control temperature--OT) for 72 h. The effect of such treatments on plant growth attributes, photosynthesis, stomatal conductance, cell death rate, and regulation of endogenous hormones were observed. Elevated MeJA application hindered plant growth attributes under HS, CS and OT conditions. Moreover, elevated MeJA levels lowered the rate of photosynthesis and stomatal conductance, induced stomatal closure, caused higher cells mortality in leaves under HS, CS, and OT conditions. Endogenous ABA contents significantly declined in all MeJA treatments under HS and OT, but increased under CS conditions. Exogenous MeJA enhanced endogenous jasmonic acid contents of pea plants, but altered endogenous salicylic acid contents under varying temperatures. Current study shows that higher concentrations of exogenous MeJA strengthen plant defense mechanism by hindering plant growth under stress conditions.
Collapse
Affiliation(s)
- Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Waqas
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea; Department of Agriculture Extension, Buner 19290, Pakistan
| | - Abdul Latif Khan
- UoN Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, 616 Nizwa, Oman
| | - Muhammad Hamayun
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea; Department of Botany, Abdul Wali Khan University Mardan, Pakistan
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
26
|
Scholz SS, Reichelt M, Boland W, Mithöfer A. Additional evidence against jasmonate-induced jasmonate induction hypothesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:9-14. [PMID: 26398786 DOI: 10.1016/j.plantsci.2015.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/20/2015] [Accepted: 06/27/2015] [Indexed: 06/05/2023]
Abstract
Jasmonates are phytohormones involved in development and stress reactions. The most prominent jasmonate is jasmonic acid, however, the bioactive jasmonate is (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile). Biosynthesis of jasmonates is long time known; compartmentalization, enzymes and corresponding genes are well studied. Because all genes encoding these biosynthetic enzymes are jasmonate inducible, a hypothesis of jasmonate-induced-jasmonate-biosynthesis is widely accepted. Here, this hypothesis was revisited by employing the synthetic JA-Ile mimic coronalon to intact and wounded leaves, which excludes structural cross-contamination with endogenous jasmonates. At an effective concentration that induced various jasmonate-responsive genes in Arabidopsis, neither accumulation of endogenous jasmonic acid, JA-Ile, nor of their hydroxylated metabolites was detected. Results indicate that in spite of jasmonate-induced biosynthetic gene expression, no jasmonate biosynthesis/accumulation takes place supporting a post-translational regulation.
Collapse
Affiliation(s)
- Sandra S Scholz
- Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Michael Reichelt
- Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Wilhelm Boland
- Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Axel Mithöfer
- Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany.
| |
Collapse
|
27
|
Synthesis, metabolism and systemic transport of a fluorinated mimic of the endogenous jasmonate precursor OPC-8:0. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1545-53. [PMID: 26361871 DOI: 10.1016/j.bbalip.2015.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/20/2015] [Accepted: 09/06/2015] [Indexed: 01/04/2023]
Abstract
Jasmonates (JAs) are fatty acid derivatives that mediate many developmental processes and stress responses in plants. Synthetic jasmonate derivatives (commonly isotopically labeled), which mimic the action of the endogenous compounds are often employed as internal standards or probes to study metabolic processes. However, stable-isotope labeling of jasmonates does not allow the study of spatial and temporal distribution of these compounds in real time by positron emission tomography (PET). In this study, we explore whether a fluorinated jasmonate could mimic the action of the endogenous compound and therefore, be later employed as a tracer to study metabolic processes by PET. We describe the synthesis and the metabolism of (Z)-7-fluoro-8-(3-oxo-2-(pent-2-en-1-yl)cyclopentyl)octanoic acid (7F-OPC-8:0), a fluorinated analog of the JA precursor OPC-8:0. Like endogenous jasmonates, 7F-OPC-8:0 induces the transcription of marker jasmonate responsive genes (JRG) and the accumulation of jasmonates after its application to Arabidopsis thaliana plants. By using UHPLC-MS/MS, we could show that 7F-OPC-8:0 is metabolized in vivo similarly to the endogenous OPC-8:0. Furthermore, the fluorinated analog was successfully employed as a probe to show its translocation to undamaged systemic leaves when it was applied to wounded leaves. This result suggests that OPC-8:0 - and maybe other oxylipins - may contribute to the mobile signal which triggers systemic defense responses in plants. We highlight the potential of fluorinated oxylipins to study the mode of action of lipid-derived molecules in planta, either by conventional analytical methods or fluorine-based detection techniques.
Collapse
|
28
|
Yamamoto Y, Ohshika J, Takahashi T, Ishizaki K, Kohchi T, Matusuura H, Takahashi K. Functional analysis of allene oxide cyclase, MpAOC, in the liverwort Marchantia polymorpha. PHYTOCHEMISTRY 2015; 116:48-56. [PMID: 25892411 DOI: 10.1016/j.phytochem.2015.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 02/25/2015] [Accepted: 03/25/2015] [Indexed: 05/21/2023]
Abstract
12-Oxo-phytodienoic acid (OPDA) is an intermediate in jasmonic acid (JA) biosynthesis. OPDA exerts JA-dependent and JA-independent biological effects; therefore, it is considered a signaling molecule in flowering plants. OPDA is induced by bacterial infection and wounding and inhibits growth in the moss Physcomitrella patens. The functions of OPDA and allene oxide cyclase (AOC) in the liverwort Marchantia polymorpha were explored, which represents the most basal lineage of extant land plants. The analysis of OPDA showed that it is present in M. polymorpha and is increased by wounding. OPDA has been suggested to be involved in the response to environmental stresses. Moreover, OPDA showed growth inhibitory activity in M. polymorpha. Nonetheless JA in M. polymorpha was not found in this study. AOC synthesizes OPDA from an unstable allene oxide. A database search of the M. polymorpha genome identified only a putative gene encoding allene oxide cyclase (MpAOC). Recombinant MpAOC showed AOC activity similar to that in flowering plants. MpAOC was localized to chloroplasts, as in flowering plants. Expression of MpAOC was induced by wounding and OPDA treatment, and positive feedback regulation of OPDA was demonstrated in M. polymorpha. Overexpression of MpAOC increased the endogenous OPDA level and suppressed growth in M. polymorpha. These results indicate the role of OPDA as a signaling molecule regulating growth and the response to wounding in the liverwort M. polymorpha.
Collapse
Affiliation(s)
- Yusuke Yamamoto
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Jun Ohshika
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Tomohiro Takahashi
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hideyuki Matusuura
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kosaku Takahashi
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| |
Collapse
|
29
|
Ku KM, Jeffery EH, Juvik JA. Exogenous methyl jasmonate treatment increases glucosinolate biosynthesis and quinone reductase activity in kale leaf tissue. PLoS One 2014; 9:e103407. [PMID: 25084454 PMCID: PMC4118879 DOI: 10.1371/journal.pone.0103407] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/01/2014] [Indexed: 02/04/2023] Open
Abstract
Methyl jasmonate (MeJA) spray treatments were applied to the kale varieties ‘Dwarf Blue Curled Vates’ and ‘Red Winter’ in replicated field plantings in 2010 and 2011 to investigate alteration of glucosinolate (GS) composition in harvested leaf tissue. Aqueous solutions of 250 µM MeJA were sprayed to saturation on aerial plant tissues four days prior to harvest at commercial maturity. The MeJA treatment significantly increased gluconasturtiin (56%), glucobrassicin (98%), and neoglucobrassicin (150%) concentrations in the apical leaf tissue of these genotypes over two seasons. Induction of quinone reductase (QR) activity, a biomarker for anti-carcinogenesis, was significantly increased by the extracts from the leaf tissue of these two cultivars. Extracts of apical leaf tissues had greater MeJA mediated increases in phenolics, glucosinolate concentrations, GS hydrolysis products, and QR activity than extracts from basal leaf tissue samples. The concentration of the hydrolysis product of glucoraphanin, sulforphane was significantly increased in apical leaf tissue of the cultivar ‘Red Winter’ in both 2010 and 2011. There was interaction between exogenous MeJA treatment and environmental conditions to induce endogenous JA. Correlation analysis revealed that indole-3-carbanol (I3C) generated from the hydrolysis of glucobrassicin significantly correlated with QR activity (r = 0.800, P<0.001). Concentrations required to double the specific QR activity (CD values) of I3C was calculated at 230 µM, which is considerably weaker at induction than other isothiocyanates like sulforphane. To confirm relationships between GS hydrolysis products and QR activity, a range of concentrations of MeJA sprays were applied to kale leaf tissues of both cultivars in 2011. Correlation analysis of these results indicated that sulforaphane, NI3C, neoascorbigen, I3C, and diindolylmethane were all significantly correlated with QR activity. Thus, increased QR activity may be due to combined increases in phenolics (quercetin and kaempferol) and GS hydrolysis product concentrations rather than by individual products alone.
Collapse
Affiliation(s)
- Kang-Mo Ku
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Elizabeth H. Jeffery
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - John A. Juvik
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
30
|
Ito T, Sato A, Ono T, Goto K, Maeda T, Takanari J, Nishioka H, Komatsu K, Matsuura H. Isolation, structural elucidation, and biological evaluation of a 5-hydroxymethyl-2-furfural derivative, asfural, from enzyme-treated asparagus extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9155-9159. [PMID: 24000899 DOI: 10.1021/jf402010c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A novel 5-hydroxymethyl-2-furfural (HMF; 1) derivative, which is named asfural (compound 2), was isolated from enzyme-treated asparagus extract (ETAS) along with HMF (1) as a heat shock protein 70 (HSP70) inducible compound. The structure of compound 2 was elucidated on the basis of its spectroscopic data from HREIMS and NMR, whereas the absolute configuration was determined using chiral HPLC analysis, compared to two synthesized compounds, (S)- and (R)-asfural. As a result, compound 2 derived from ETAS was assigned as (S)-(2-formylfuran-5-yl)methyl 5-oxopyrrolidine-2-carboxylate. When compound 2, synthesized (S)- and (R)-asfural, and HMF (1) were evaluated in terms of HSP70 mRNA expression-enhancing activity in HL-60 cells, compound 2 and (S)-asfural significantly increased the expression level in a concentration-dependent manner. HMF (1) also showed significant activity at 0.25 mg/mL.
Collapse
Affiliation(s)
- Tomohiro Ito
- Research and Development Division, Amino Up Chemical Company, Ltd. , 363-32 Shin-ei, Kiyota, Sapporo 004-0839, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Delano-Frier JP, Pearce G, Huffaker A, Stratmann JW. Systemic Wound Signaling in Plants. LONG-DISTANCE SYSTEMIC SIGNALING AND COMMUNICATION IN PLANTS 2013. [DOI: 10.1007/978-3-642-36470-9_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Matsuura H, Takeishi S, Kiatoka N, Sato C, Sueda K, Masuta C, Nabeta K. Transportation of de novo synthesized jasmonoyl isoleucine in tomato. PHYTOCHEMISTRY 2012; 83:25-33. [PMID: 22898385 DOI: 10.1016/j.phytochem.2012.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/22/2012] [Accepted: 06/18/2012] [Indexed: 05/08/2023]
Abstract
In plants, jasmonic acid (JA) and its derivatives are thought to be involved in mobile forms of defense against biotic and abiotic stresses. In this study, the distal transport of JA-isoleucine (JA-Ile) that is synthesized de novo in response to leaf wounding in tomato (Solanum lycopersicum) plants was investigated. JA-[¹³C₆]Ile was recovered in distal untreated leaves after wounded leaves were treated with [¹³C₆]Ile. However, as [¹³C₆]Ile was also recovered in the distal untreated leaves, whether JA-Ile was synthesized in the wounded or in the untreated leaves was unclear. Hence, stem exudates were analyzed to obtain more detailed information. When [¹³C₆]Ile and [²H₆]JA were applied separately into the wounds on two different leaves, JA-[¹³C₆]Ile and [²H₆]JA-Ile were detected in the stem exudates but [²H₆]JA-[¹³C₆]Ile was not, indicating that JA was conjugated with Ile in the wounded leaf and that the resulting JA-Ile was then transported into systemic tissues. The [²H₃]JA-Ile that was applied exogenously to the wounded tissues reached distal untreated leaves within 10 min. Additionally, applying [²H₃]JA-Ile to the wounded leaves at concentrations of 10 and 60 nmol/two leaves induced the accumulation of PIN II, LAP A, and JAZ3 mRNA in the distal untreated leaves of the spr2 mutant S. lycopersicum plants. These results demonstrate the transportation of de novo synthesized JA-Ile and suggest that JA-Ile may be a mobile signal.
Collapse
Affiliation(s)
- Hideyuki Matsuura
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Seto Y, Hamada S, Ito H, Masuta C, Matsui H, Nabeta K, Matsuura H. Tobacco salicylic acid glucosyltransferase is active toward tuberonic acid (12-hydroxyjasmonic acid) and is induced by mechanical wounding stress. Biosci Biotechnol Biochem 2011; 75:2316-20. [PMID: 22146717 DOI: 10.1271/bbb.110454] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recently we reported that rice salicylic acid (SA) glucosyltransferase (OsSGT) is active toward 12-hydroxyjasmonic acid (tuberonic acid, TA) and that OsSGT gene expression is induced by wounding stress. Here we report that tobacco SA glucosyltransferase (NtSGT), which is thought to be an ortholog of OsSGT, is also active toward TA. Although NtSGT expression is known to be induced by biotrophic stress, it was also induced by wounding stress in the same manner as OsSGT. These results indicate that this glucosyltransferase is important not only in biotrophic stress but also for wounding stress. It was found that this enzyme is dually functional, with activity both toward TA and SA.
Collapse
Affiliation(s)
- Yoshiya Seto
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty for Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Kitaoka N, Matsubara T, Sato M, Takahashi K, Wakuta S, Kawaide H, Matsui H, Nabeta K, Matsuura H. Arabidopsis CYP94B3 encodes jasmonyl-L-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate. PLANT & CELL PHYSIOLOGY 2011; 52:1757-65. [PMID: 21849397 DOI: 10.1093/pcp/pcr110] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The hormonal action of jasmonate in plants is controlled by the precise balance between its biosynthesis and catabolism. It has been shown that jasmonyl-L-isoleucine (JA-Ile) is the bioactive form involved in the jasmonate-mediated signaling pathway. However, the catabolism of JA-Ile is poorly understood. Although a metabolite, 12-hydroxyJA-Ile, has been characterized, detailed functional studies of the compound and the enzyme that produces it have not been conducted. In this report, the kinetics of wound-induced accumulation of 12-hydroxyJA-Ile in plants were examined, and its involvement in the plant wound response is described. Candidate genes for the catabolic enzyme were narrowed down from 272 Arabidopsis Cyt P450 genes using Arabidopsis mutants. The candidate gene was functionally expressed in Pichia pastoris to reveal that CYP94B3 encodes JA-Ile 12-hydroxylase. Expression analyses demonstrate that expression of CYP94B3 is induced by wounding and shows specific activity toward JA-Ile. Plants grown in medium containing JA-Ile show higher sensitivity to JA-Ile in cyp94b3 mutants than in wild-type plants. These results demonstrate that CYP94B3 plays a major regulatory role in controlling the level of JA-Ile in plants.
Collapse
Affiliation(s)
- Naoki Kitaoka
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wakuta S, Suzuki E, Saburi W, Matsuura H, Nabeta K, Imai R, Matsui H. OsJAR1 and OsJAR2 are jasmonyl-l-isoleucine synthases involved in wound- and pathogen-induced jasmonic acid signalling. Biochem Biophys Res Commun 2011; 409:634-9. [DOI: 10.1016/j.bbrc.2011.05.055] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 11/16/2022]
|
36
|
Sato C, Aikawa K, Sugiyama S, Nabeta K, Masuta C, Matsuura H. Distal transport of exogenously applied jasmonoyl-isoleucine with wounding stress. PLANT & CELL PHYSIOLOGY 2011; 52:509-17. [PMID: 21266461 DOI: 10.1093/pcp/pcr011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Determining the mobile signal used by plants to defend against biotic and abiotic stresses has proved elusive, but jasmonic acid (JA) and its derivatives appear to be involved. Using deuterium-labeled analogs, we investigated the distal transport of JA and jasmonoyl-isoleucine (JA-Ile) in response to leaf wounding in tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum) plants. We recovered [(2)H(2)-2]JA ([(2)H(2)]JA) and [(2)H(3)-12]JA-Ile ([(2)H(3)]JA-Ile) in distal leaves of N. tabacum and S. lycopersicum after treating wounded leaves with [(2)H(2)]JA or [(2)H(3)]JA-Ile. We found that JA-Ile had a greater mobility than JA, despite its lower polarity, and that application of exogenous JA-Ile to wounded leaves of N. tabacum led to a higher accumulation of JA and JA-Ile in distal leaves compared with wounded control plants. We also found that exudates from the stem of S. lycopersicum plants with damaged leaflets contained JA and JA-Ile at higher levels than in an undamaged plant, and a significant difference in the levels of JA-Ile was observed 30 min after wounding. Based on these results, it was found that JA-Ile is a transportable compound, which suggests that JA-Ile is a signaling cue involved in the resistance to biotic and abiotic stresses in plants.
Collapse
Affiliation(s)
- Chizuru Sato
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | | | | | | | | | | |
Collapse
|
37
|
Kobayashi Y, Nabeta K, Matsuura H. Chemical inhibitors of viviparous germination in the fruit of watermelon. PLANT & CELL PHYSIOLOGY 2010; 51:1594-1598. [PMID: 20630986 DOI: 10.1093/pcp/pcq103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
It is well known that the seeds of watermelon [Citrullus lanatus (Thunb.) Matsum and Nakai] have a high potential to germinate when the fruit has ripened. When removed from the mature fruit, the seeds can germinate under appropriate conditions. However, it is unclear why they cannot germinate in the flesh of the fruit. Here, we show that cis-ABA and its β-D-glucopyranosyl ester (ABA-β-GE) accumulate in the flesh of the fruit at levels high enough to inhibit seed germination. This result indicates the existence of chemical factors that inhibit viviparous seed germination of watermelon.
Collapse
Affiliation(s)
- Yoshiki Kobayashi
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | |
Collapse
|
38
|
Erb M, Glauser G. Family Business: Multiple Members of Major Phytohormone Classes Orchestrate Plant Stress Responses. Chemistry 2010; 16:10280-9. [DOI: 10.1002/chem.201001219] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Cloning and functional analysis of an allene oxide synthase in Physcomitrella patens. Biosci Biotechnol Biochem 2010; 73:2356-9. [PMID: 19851025 DOI: 10.1271/bbb.90457] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Jasmonic acid (JA) is a plant hormone that plays important roles in a large number of processes in stress adaptation and development in flowering plants. A search of genome database indicated the existence of allene oxide synthase (AOS), an enzyme of JA biosynthesis, in Physcomitrella patens, a model plant among mosses. In this study, the presence of JA was detected in P. patens. The recombinant AOS of P. patens, which was overexpressed in Escherichia coli, showed AOS activity. These data suggest that the octadecanoid pathway also exists in P. patens.
Collapse
|