1
|
Zhang L, Ke X, Liu S, You J, Wang X, Li N, Yin C, Zhang Y, Bai Y, Wang M, Zheng S. A longitudinal study on the effect of PM 2.5 components on blood pressure in the hypertensive patients from 2011 to 2019. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117054. [PMID: 39305771 DOI: 10.1016/j.ecoenv.2024.117054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/17/2024]
Abstract
Extensive research has established the link between PM2.5 exposure and blood pressure (BP) levels among normal individuals. However, the association between PM2.5 components and BP levels in hypertensive patients has not been fully explored. In this study, 12 971 hypertensive cases from Jinchang cohort (in Jinchang City, China) with nearly 9 years of follow-up were enrolled. Based on the linear mixed-effect model, the effects of fine particulate matter (PM2.5) and five major components [sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), black carbon (BC) and organic matter (OM)]on BP [systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP) and pulse pressure (PP)]were evaluated by single-component model, component-joint model and component-residual model, respectively. A positive correlation was found between PM2.5 as well as its components (SO42-, NO3-, NH4+, BC and OM) exposure and BP levels. The effects of SO42-, BC and OM on BP were observed to be the most robust among the three models. Based on the results of interaction effects and stratified analysis, the effect of BC exposure on SBP, and the effect of PM2.5 and its five components on PP were greater in female than in males. Compared with elderly hypertensive patients, OM had more significant effects on SBP, DBP and MAP in young and (or) middle-aged hypertensive patients. During the heating season, the effect of PM2.5 and its components on BP was grater compared to the non-heating season. Meanwhile, PM2.5 and its components have a greater influence on BP in patients with hypertension combined with diabetes. Therefore, the findings suggested that both PM2.5 exposure and its components had a significant effect on BP in patients with hypertension. Women and young and middle-aged hypertensive patient were the sensitive population. The implementation of source control and reduction of PM2.5 emission (mainly for SO42-, BC and OM) may be of great significance to control BP level and could reduce the risk of cardiovascular disease in patients with hypertension.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Ximeng Ke
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shaodong Liu
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jinlong You
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xue Wang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Na Li
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang 737102, China
| | - Chun Yin
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang 737102, China
| | - Yaqun Zhang
- Gansu Academy of Eco-environmental Sciences, Lanzhou 730020, China
| | - Yana Bai
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Minzhen Wang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Shan Zheng
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Zhao J, Mei Y, Li A, Zhou Q, Zhao M, Xu J, Li Y, Li K, Yang M, Xu Q. Association between PM 2.5 constituents and cardiometabolic risk factors: Exploring individual and combined effects, and mediating inflammation. CHEMOSPHERE 2024; 359:142251. [PMID: 38710413 DOI: 10.1016/j.chemosphere.2024.142251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The individual and combined effects of PM2.5 constituents on cardiometabolic risk factors are sparsely investigated. Besides, the key cardiometabolic risk factor that PM2.5 constituents targeted and the biological mechanisms remain unclear. METHOD A multistage, stratified cluster sampling survey was conducted in two typically air-polluted Chinese cities. The PM2.5 and its constituents including sulfate, nitrate, ammonium, organic matter, and black carbon were predicted using a machine learning model. Twenty biomarkers in three category were simultaneously adopted as cardiometabolic risk factors. We explored the individual and mixture association of long-term PM2.5 constituents with these markers using generalized additive model and quantile-based g-computation, respectively. To minimize potential confounding effects, we accounted for covariates including demographic, lifestyle, meteorological, temporal trends, and disease-related information. We further used ROC curve and mediation analysis to identify the key subclinical indicators and explore whether inflammatory mediators mediate such association, respectively. RESULT PM2.5 constituents was positively correlated with HOMA-B, TC, TG, LDL-C and LCI, and negatively correlated with PP and RC. Further, PM2.5 constituent mixture was positive associated with DBP, MAP, HbA1c, HOMA-B, AC, CRI-1 and CRI-2, and negative associated with PP and HDL-C. The ROC analysis further reveals that multiple cardiometabolic risk factors can collectively discriminate exposure to PM2.5 constituents (AUC>0.9), among which PP and CRI-2 as individual indicators exhibit better identifiable performance for nitrate and ammonium (AUC>0.75). We also found that multiple blood lipid indicators may be affected by PM2.5 and its constituents, possibly mediated through complement C3 or hsCRP. CONCLUSION Our study suggested associations of individual and combined PM2.5 constituents exposure with cardiometabolic risk factors. PP and CRI-2 were the targeted markers of long-term exposure to nitrate and ammonium. Inflammation may serve as a mediating factor between PM2.5 constituents and dyslipidemia, which enhance current understanding of potential pathways for PM2.5-induced preclinical cardiovascular responses.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China; Big Data Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
3
|
Karthikeyan S, Breznan D, Thomson EM, Blais E, Vincent R, Kumarathasan P. Concordance between In Vitro and In Vivo Relative Toxic Potencies of Diesel Exhaust Particles from Different Biodiesel Blends. TOXICS 2024; 12:290. [PMID: 38668513 PMCID: PMC11054440 DOI: 10.3390/toxics12040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
Diesel exhaust particles (DEPs) contribute to air pollution exposure-related adverse health impacts. Here, we examined in vitro, and in vivo toxicities of DEPs from a Caterpillar C11 heavy-duty diesel engine emissions using ultra-low-sulfur diesel (ULSD) and biodiesel blends (20% v/v) of canola (B20C), soy (B20S), or tallow-waste fry oil (B20T) in ULSD. The in vitro effects of DEPs (DEPULSD, DEPB20C, DEPB20S, and DEPB20T) in exposed mouse monocyte/macrophage cells (J774A.1) were examined by analyzing the cellular cytotoxicity endpoints (CTB, LDH, and ATP) and secreted proteins. The in vivo effects were assessed in BALB/c mice (n = 6/group) exposed to DEPs (250 µg), carbon black (CB), or saline via intratracheal instillation 24 h post-exposure. Bronchoalveolar lavage fluid (BALF) cell counts, cytokines, lung/heart mRNA, and plasma markers were examined. In vitro cytotoxic potencies (e.g., ATP) and secreted TNF-α were positively correlated (p < 0.05) with in vivo inflammatory potency (BALF cytokines, lung/heart mRNA, and plasma markers). Overall, DEPULSD and DEPB20C appeared to be more potent compared to DEPB20S and DEPB20T. These findings suggested that biodiesel blend-derived DEP potencies can be influenced by biodiesel sources, and inflammatory process- was one of the potential underlying toxicity mechanisms. These observations were consistent across in vitro and in vivo exposures, and this work adds value to the health risk analysis of cleaner fuel alternatives.
Collapse
Affiliation(s)
- Subramanian Karthikeyan
- Environmental Health Science and Research Bureau, Health Canada, 251, Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada; (D.B.); (E.M.T.); (E.B.)
| | - Dalibor Breznan
- Environmental Health Science and Research Bureau, Health Canada, 251, Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada; (D.B.); (E.M.T.); (E.B.)
| | - Errol M. Thomson
- Environmental Health Science and Research Bureau, Health Canada, 251, Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada; (D.B.); (E.M.T.); (E.B.)
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Erica Blais
- Environmental Health Science and Research Bureau, Health Canada, 251, Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada; (D.B.); (E.M.T.); (E.B.)
| | - Renaud Vincent
- Environmental Health Science and Research Bureau, Health Canada, 251, Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada; (D.B.); (E.M.T.); (E.B.)
| | - Premkumari Kumarathasan
- Environmental Health Science and Research Bureau, Health Canada, 251, Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada; (D.B.); (E.M.T.); (E.B.)
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
4
|
Cheng J, Wu Y, Wang X, Yu H. Objectively measured the impact of ambient air pollution on physical activity for older adults. BMC Public Health 2024; 24:821. [PMID: 38491436 PMCID: PMC10941607 DOI: 10.1186/s12889-024-18279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Air pollution poses a significant health risk to the human population, especially for vulnerable groups such as the elderly, potentially discouraging their engagement in physical activity. However, there is a lack of sufficient objective and longitudinal data in current research on how air pollution affects physical activity among older adults. With these gaps, we aimed to explore the relationship between air pollution and objective measurement-based physical activity among older adults by engaging in a longitudinal study design. METHODS A total of 184 older adults were recruited from three cities with varying levels of air quality. Mean daily minutes of physical activity were measured with 7 consecutive days of accelerometer monitoring (ActiGraph GT3X-BT). Corresponding air pollution data including daily PM2.5 (µg/m3), PM10 (µg/m3) and air quality index (AQI) were sourced from the China National Environmental Monitoring Centre at monitor locations close to older adults' addresses. Associations between air quality and physical activity were estimated using a fixed effect model, adjusting for average daytime temperature, rain, age and weight. RESULTS AQI and PM2.5 were observed to exhibit significant, inverse, and linear associations with mean daily walk steps, minutes of light physical activity (LPA), moderate physical activity (MPA) and moderate-to-vigorous physical activity (MVPA) in the single variable models. A one-level increase in AQI corresponded to a decline in 550.04 steps (95% [CI] = -858.97, -241.10; p < 0.001), 10.43 min (95% [CI] = -17.07, -3.79; p < 0.001), 4.03 min (95% [CI] = -7.48, -0.59; p < 0.001) and 4.16 min (95% [CI] = -7.77, -0.56; p < 0.001) in daily walking steps, LPA, MPA, and MVPA, respectively. A one-level increase in PM2.5 correlated with a decline in daily walk steps, LPA, MPA and MVPA by 361.85 steps (95% [CI] = -516.53, -207.16; p < 0.001), 8.97 min (95% [CI] = -12.28, -5.66; p < 0.001), 3.73 min (95% [CI] = -5.46, -2.01; p < 0.001,) and 3.79 min (95% [CI] = -5.59, -1.98; p < 0.001), respectively. However, PM10 displayed a significant negative association exclusively with LPA, with one-level increase in PM10 resulting in a 3.7-minute reduction in LPA (95% [CI] = -6.81, -0.59, p < 0.05). CONCLUSION Air pollution demonstrates an inverse association with physical activity levels among older adults, potentially discouraging their engagement in physical activity. Different air quality indicators may exert varying impacts on physical activity. Future studies are warranted to enhance policy interventions aimed at reducing air pollution and promoting physical activity.
Collapse
Affiliation(s)
- Jiali Cheng
- Faculty of Public Physical Education, Hebei Normal University, 050024, Shijiazhuang, China
| | - Yin Wu
- The Experimental High School Attached to Beijing Normal University, 100032, Beijing, China
| | - Xiaoxin Wang
- Department of Physical Education, Tsinghua University, Tsinghua Yuan Str, 100084, Beijing, China
| | - Hongjun Yu
- Department of Physical Education, Tsinghua University, Tsinghua Yuan Str, 100084, Beijing, China.
| |
Collapse
|
5
|
Fu L, Guo Y, Zhu Q, Chen Z, Yu S, Xu J, Tang W, Wu C, He G, Hu J, Zeng F, Dong X, Yang P, Lin Z, Wu F, Liu T, Ma W. Effects of long-term exposure to ambient fine particulate matter and its specific components on blood pressure and hypertension incidence. ENVIRONMENT INTERNATIONAL 2024; 184:108464. [PMID: 38324927 DOI: 10.1016/j.envint.2024.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Epidemiological evidence on the association of PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 μm) and its specific components with hypertension and blood pressure is limited. METHODS We applied information of participants from the World Health Organization's (WHO) Study on Global Ageing and Adult Health (SAGE) to estimate the associations of long-term PM2.5 mass and its chemical components exposure with blood pressure (BP) and hypertension incidence in Chinese adults ≥ 50 years during 2007-2018. Generalized linear mixed model and Cox proportional hazard model were applied to investigate the effects of PM2.5 mass and its chemical components on the incidence of hypertension and BP, respectively. RESULTS Each interquartile range (IQR = 16.80 μg/m3) increase in the one-year average of PM2.5 mass concentration was associated with a 17 % increase in the risk of hypertension (HR = 1.17, 95 % CI: 1.10, 1.24), and the population attributable fraction (PAF) was 23.44 % (95 % CI: 14.69 %, 31.55 %). Each IQR μg/m3 increase in PM2.5 exposure was also related to increases of systolic blood pressure (SBP) by 2.54 mmHg (95 % CI:1.99, 3.10), and of diastolic blood pressure (DBP) by 1.36 mmHg (95 % CI: 1.04, 1.68). Additionally, the chemical components of SO42-, NO3-, NH4+, OM, and BC were also positively associated with an increased risk of hypertension incidence and elevated blood pressure. CONCLUSIONS These results indicate that long-term exposure to PM2.5 mass and its specific components may be major drivers of escalation in hypertension diseases.
Collapse
Affiliation(s)
- Li Fu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Tianhe District Center for Disease Control and Prevention, Guangzhou 510655, China
| | - Yanfei Guo
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai 200336, China; General Practice/Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Qijiong Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhiqing Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Siwen Yu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jiahong Xu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Weiling Tang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Cuiling Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jianxiong Hu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Fangfang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ziqiang Lin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Fan Wu
- Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Bista S, Chatzidiakou L, Jones RL, Benmarhnia T, Postel-Vinay N, Chaix B. Associations of air pollution mixtures with ambulatory blood pressure: The MobiliSense sensor-based study. ENVIRONMENTAL RESEARCH 2023; 227:115720. [PMID: 36940820 DOI: 10.1016/j.envres.2023.115720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 05/08/2023]
Abstract
Air pollution is acknowledged as a determinant of blood pressure (BP), supporting the hypothesis that air pollution, via hypertension and other mechanisms, has detrimental effects on human health. Previous studies evaluating the associations between air pollution exposure and BP did not consider the effect that air pollutant mixtures may have on BP. We investigated the effect of exposure to single species or their synergistic effects as air pollution mixture on ambulatory BP. Using portable sensors, we measured personal concentrations of black carbon (BC), nitrogen dioxide (NO2), nitrogen monoxide (NO), carbon monoxide (CO), ozone (O3), and particles with aerodynamic diameters below 2.5 μm (PM2.5). We simultaneously collected ambulatory BP measurements (30-min intervals, N = 3319) of 221 participants over one day of their lives. Air pollution concentrations were averaged over 5 min to 1 h before each BP measurement, and inhaled doses were estimated across the same exposure windows using estimated ventilation rates. Fixed-effect linear models as well as quantile G-computation techniques were applied to associate air pollutants' individual and combined effects with BP, adjusting for potential confounders. In mixture models, a quartile increase in air pollutant concentrations (BC, NO2, NO, CO, and O3) in the previous 5 min was associated with a 1.92 mmHg (95% CI: 0.63, 3.20) higher systolic BP (SBP), while 30-min and 1-h exposures were not associated with SBP. However, the effects on diastolic BP (DBP) were inconsistent across exposure windows. Unlike concentration mixtures, inhalation mixtures in the previous 5 min to 1 h were associated with increased SBP. Out-of-home BC and O3 concentrations were more strongly associated with ambulatory BP outcomes than in-home concentrations. In contrast, only the in-home concentration of CO reduced DBP in stratified analyses. This study shows that exposure to a mixture of air pollutants (concentration and inhalation) was associated with elevated SBP.
Collapse
Affiliation(s)
- Sanjeev Bista
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Nemesis Team, Faculté de Médecine Saint-Antoine, 27 Rue Chaligny, 75012, Paris, France.
| | - Lia Chatzidiakou
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Roderic L Jones
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Tarik Benmarhnia
- Herbert Wertheim School of Public Health and Scripps Institution of Oceanography, University of California, 9500 Gilman Drive #0725, San Diego, CA, La Jolla, 92093, USA
| | | | - Basile Chaix
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Nemesis Team, Faculté de Médecine Saint-Antoine, 27 Rue Chaligny, 75012, Paris, France
| |
Collapse
|
7
|
Wang J, Du W, Lei Y, Duan W, Mao K, Wang Z, Pan B. Impacts of household PM 2.5 pollution on blood pressure of rural residents: Implication for clean energy transition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163749. [PMID: 37120026 DOI: 10.1016/j.scitotenv.2023.163749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/04/2023]
Abstract
High blood pressure associated with PM2.5 exposure is of great concern, especially for rural residents exposed to high PM2.5 levels. However, the impact of short-term exposure to high PM2.5 on blood pressure (BP) has not been well elucidated. Thus, this study aims to focus on the association between short-term PM2.5 exposure with BP of rural residents and its variation between summer and winter. Our results showed that the summertime PM2.5 exposure concentration was 49.3 ± 20.6 μg/m3, among which, mosquito coil users had 1.5-folds higher PM2.5 exposure than non-mosquito coil users (63.6 ± 21.7 vs 43.0 ± 16.7 μg/m3, p < 0.05). The mean systolic and diastolic BP (SBP and DBP, respectively) of rural participants were 122 ± 18.2 and 76.2 ± 11.2 mmHg in summer, respectively. The PM2.5 exposure, SBP, and DBP in summer were 70.7 μg/m3, 9.0 mmHg, and 2.8 mmHg lower than that in winter, respectively. Furthermore, the correlation between PM2.5 exposure and SBP was stronger in winter than that in summer, possibly due to higher PM2.5 exposure levels in winter. The transition of household energy from solid fuels in winter to clean fuels in summer would be benefit to the decline of PM2.5 exposure as well as BP. Results from this study suggested that the reduction of PM2.5 exposure would have positive effect on human health.
Collapse
Affiliation(s)
- Jinze Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China; Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| | - Yali Lei
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Wenyan Duan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| |
Collapse
|
8
|
Osborne MT, Abohashem S, Naddaf N, Abbasi T, Zureigat H, Mezue K, Ghoneem A, Dar T, Cardeiro AJ, Mehta NN, Rajagopalan S, Fayad ZA, Tawakol A. The combined effect of air and transportation noise pollution on atherosclerotic inflammation and risk of cardiovascular disease events. J Nucl Cardiol 2023; 30:665-679. [PMID: 35915324 PMCID: PMC9889575 DOI: 10.1007/s12350-022-03003-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/18/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Air pollution and noise exposures individually associate with major adverse cardiovascular events (MACE) via a mechanism involving arterial inflammation (ArtI); however, their combined impact on ArtI and MACE remains unknown. We tested whether dual (vs. one or neither) exposure associates with greater ArtI and MACE risk and whether MACE risk is mediated via ArtI. METHODS Individuals (N = 474) without active cancer or known cardiovascular disease with clinical 18F-FDG-PET/CT imaging were followed for 5 years for MACE. ArtI was measured. Average air pollution (particulate matter ≤ 2.5 μm, PM2.5) and transportation noise exposure were determined at individual residences. Higher exposures were defined as noise > 55 dBA (World Health Organization cutoff) and PM2.5 ≥ sample median. RESULTS At baseline, 46%, 46%, and 8% were exposed to high levels of neither, one, or both pollutants; 39 experienced MACE over a median 4.1 years. Exposure to an increasing number of pollutants associated with higher ArtI (standardized β [95% CI: .195 [.052, .339], P = .008) and MACE (HR [95% CI]: 2.897 [1.818-4.615], P < .001). In path analysis, ArtI partially mediated the relationship between pollutant exposures and MACE (P < .05). CONCLUSION Air pollution and transportation noise exposures contribute incrementally to ArtI and MACE. The mechanism linking dual exposure to MACE involves ArtI.
Collapse
Affiliation(s)
- Michael T Osborne
- Cardiac Imaging Research Center, 165 Cambridge St, Suite 400, Boston, MA, 02114, USA
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA, 02114-2750, USA
| | - Shady Abohashem
- Cardiac Imaging Research Center, 165 Cambridge St, Suite 400, Boston, MA, 02114, USA
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA, 02114-2750, USA
| | - Nicki Naddaf
- Cardiac Imaging Research Center, 165 Cambridge St, Suite 400, Boston, MA, 02114, USA
| | - Taimur Abbasi
- Cardiac Imaging Research Center, 165 Cambridge St, Suite 400, Boston, MA, 02114, USA
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA, 02114-2750, USA
| | - Hadil Zureigat
- Cardiac Imaging Research Center, 165 Cambridge St, Suite 400, Boston, MA, 02114, USA
| | - Kenechukwu Mezue
- Cardiac Imaging Research Center, 165 Cambridge St, Suite 400, Boston, MA, 02114, USA
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA, 02114-2750, USA
| | - Ahmed Ghoneem
- Cardiac Imaging Research Center, 165 Cambridge St, Suite 400, Boston, MA, 02114, USA
| | - Tawseef Dar
- Cardiac Imaging Research Center, 165 Cambridge St, Suite 400, Boston, MA, 02114, USA
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA, 02114-2750, USA
| | - Alexander J Cardeiro
- Cardiac Imaging Research Center, 165 Cambridge St, Suite 400, Boston, MA, 02114, USA
| | - Nehal N Mehta
- National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Dr, Bethesda, MD, 20814, USA
| | - Sanjay Rajagopalan
- Department of Cardiovascular Medicine, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA
| | - Ahmed Tawakol
- Cardiac Imaging Research Center, 165 Cambridge St, Suite 400, Boston, MA, 02114, USA.
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA, 02114-2750, USA.
| |
Collapse
|
9
|
Wen T, Liao D, Wellenius GA, Whitsel EA, Margolis HG, Tinker LF, Stewart JD, Kong L, Yanosky JD. Short-term Air Pollution Levels and Blood Pressure in Older Women. Epidemiology 2023; 34:271-281. [PMID: 36722810 PMCID: PMC9891284 DOI: 10.1097/ede.0000000000001577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/29/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Evidence of associations between daily variation in air pollution and blood pressure (BP) is varied and few prior longitudinal studies adjusted for calendar time. METHODS We studied 143,658 postmenopausal women 50 to 79 years of age from the Women's Health Initiative (1993-2005). We estimated daily atmospheric particulate matter (PM) (in three size fractions: PM2.5, PM2.5-10, and PM10) and nitrogen dioxide (NO2) concentrations at participants' residential addresses using validated lognormal kriging models. We used linear mixed-effects models to estimate the association between air pollution concentrations and repeated measures of systolic and diastolic BP (SBP, DBP) adjusting for confounders and calendar time. RESULTS Short-term PM2.5 and NO2 were each positively associated with DBP {0.10 mmHg [95% confidence interval (CI): 0.04, 0.15]; 0.13 mmHg (95% CI: 0.09, 0.18), respectively} for interquartile range changes in lag 3-5 day PM2.5 and NO2. Short-term NO2 was negatively associated with SBP [-0.21 mmHg (95%CI: -0.30, -0.13)]. In two-pollutant models, the NO2-DBP association was slightly stronger, but for PM2.5 was attenuated to null, compared with single-pollutant models. Associations between short-term NO2 and DBP were more pronounced among those with higher body mass index, lower neighborhood socioeconomic position, and diabetes. When long-term (annual) and lag 3-5 day PM2.5 were in the same model, associations with long-term PM2.5 were stronger than for lag 3-5 day. CONCLUSIONS We observed that short-term PM2.5 and NO2 levels were associated with increased DBP, although two-pollutant model results suggest NO2 was more likely responsible for observed associations. Long-term PM2.5 effects were larger than short-term.
Collapse
Affiliation(s)
- Tong Wen
- From the Division of Epidemiology, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA
| | - Duanping Liao
- From the Division of Epidemiology, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA
| | - Gregory A. Wellenius
- Department of Environmental Health, Boston University School of Public Health, Boston, MA
| | - Eric A. Whitsel
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Helene G. Margolis
- Department of Internal Medicine, University of California, Davis, Davis, CA
| | - Lesley F. Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - James D. Stewart
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC
| | - Lan Kong
- Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA
| | - Jeff D. Yanosky
- From the Division of Epidemiology, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
10
|
Bista S, Fancello G, Chaix B. Acute ambulatory blood pressure response to short-term black carbon exposure: The MobiliSense sensor-based study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157350. [PMID: 35870594 DOI: 10.1016/j.scitotenv.2022.157350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Documented relationships between black carbon (BC) exposure and blood pressure (BP) have been inconsistent. Very few studies measured both BC exposure and ambulatory BP across the multiple daily environments visited in the general population, and none adjusted for personal noise exposure, a major confounder. Our study addresses these gaps by considering 245 adults living in the Grand Paris region. Personal exposure to BC was monitored for 2 days using AE51 microaethalometers. Ambulatory BP was measured every 30 min after waking up using Arteriograph 24 monitors (n = 6772). Mixed effect models with a random intercept at the individual level and time-autocorrelation structure adjusted for personal noise exposure were used to evaluate the associations between BC exposure (averaged from 5 min to 1 h before each BP measurement) and BP. To increase the robustness of findings, we eliminated confounding by unmeasured time-invariant personal variables, by modelling the associations with fixed-effect models. All models were adjusted for potential confounders and short-term time trends. Results from mixed models show that a 1-μg/m3 increase in 5-minute averaged BC exposure was associated with an increase of 0.57 mmHg in ambulatory systolic blood pressure (SBP) (95 % CI: 0.30, 0.83) and with an increase of 0.36 mmHg in diastolic blood pressure (DBP) (95 % CI: 0.14, 0.58). The slope of the exposure-response relationship gradually decreased for both SBP and DBP with the increase in the averaging period of BC exposure from 5 min to 1 h preceding each BP measurement. Findings from the fixed-effect models were consistent with these results. There was no effect modification by noise in the associations, across all exposure windows. We found evidence of a relationship between BC exposure and acute increase in ambulatory SBP and DBP after adjustment for personal noise exposure, with potential implications for the development of adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Sanjeev Bista
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Nemesis team, Faculté de Médecine Saint-Antoine, 27 rue Chaligny, 75012 Paris, France.
| | - Giovanna Fancello
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Nemesis team, Faculté de Médecine Saint-Antoine, 27 rue Chaligny, 75012 Paris, France
| | - Basile Chaix
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Nemesis team, Faculté de Médecine Saint-Antoine, 27 rue Chaligny, 75012 Paris, France
| |
Collapse
|
11
|
Chaulin AM, Sergeev AK. The Role of Fine Particles (PM 2.5) in the Genesis of Atherosclerosis and Myocardial Damage: Emphasis on Clinical and Epidemiological Data, and Pathophysiological Mechanisms. Cardiol Res 2022; 13:268-282. [PMID: 36405225 PMCID: PMC9635774 DOI: 10.14740/cr1366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/05/2022] [Indexed: 09/26/2023] Open
Abstract
Due to the fact that atherosclerotic cardiovascular diseases (CVDs) dominate in the structure of morbidity, disability and mortality of the population, the study of the risk factors for the development of atherosclerotic CVDs, as well as the study of the underlying pathogenetic mechanisms thereof, is the most important area of scientific research in modern medicine. Understanding these aspects will allow to improve the set of treatment and preventive measures and activities. One of the important risk factors for the development of atherosclerosis, which has been actively studied recently, is air pollution with fine particulate matter (PM 2.5). According to clinical and epidemiological data, the level of air pollution with PM 2.5 exceeds the normative indicators in most regions of the world and is associated with subclinical markers of atherosclerosis and mortality from atherosclerotic CVDs. The aim of this article is to systematize and discuss in detail the role of PM 2.5 in the development of atherosclerosis and myocardial damage.
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, Samara 443099, Russia
- Department of Histology and Embryology, Samara State Medical University, Samara 443099, Russia
| | | |
Collapse
|
12
|
Mei Y, Zhao J, Zhou Q, Zhao M, Xu J, Li Y, Li K, Xu Q. Residential greenness attenuated association of long-term air pollution exposure with elevated blood pressure: Findings from polluted areas in Northern China. Front Public Health 2022; 10:1019965. [PMID: 36249254 PMCID: PMC9557125 DOI: 10.3389/fpubh.2022.1019965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 01/28/2023] Open
Abstract
Background Evidence on the hypertensive effects of long-term air pollutants exposure are mixed, and the joint hypertensive effects of air pollutants are also unclear. Sparse evidence exists regarding the modifying role of residential greenness in such effects. Methods A cross-sectional study was conducted in typically air-polluted areas in northern China. Particulate matter with diameter < 1 μm (PM1), particulate matter with diameter < 2.5 μm (PM2.5), particulate matter with diameter < 10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were predicted by space-time extremely randomized trees model. We used the Normalized Difference Vegetation Index (NDVI) to reflect residential green space. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were examined. We also calculated the pulse pressure (PP) and mean arterial pressure (MAP). Generalized additive model and quantile g-computation were, respectively, conducted to investigate individual and joint effects of air pollutants on blood pressure. Furthermore, beneficial effect of NDVI and its modification effect were explored. Results Long-term air pollutants exposure was associated with elevated DBP and MAP. Specifically, we found a 10-μg/m3 increase in PM2.5, PM10, and SO2 were associated with 2.36% (95% CI: 0.97, 3.76), 1.51% (95% CI: 0.70, 2.34), and 3.54% (95% CI: 1.55, 5.56) increase in DBP; a 10-μg/m3 increase in PM2.5, PM10, and SO2 were associated with 1.84% (95% CI: 0.74, 2.96), 1.17% (95% CI: 0.52, 1.83), and 2.43% (95% CI: 0.71, 4.18) increase in MAP. Air pollutants mixture (one quantile increase) was positively associated with increased values of DBP (8.22%, 95% CI: 5.49, 11.02) and MAP (4.15%, 95% CI: 2.05, 6.30), respectively. These identified harmful effect of air pollutants mainly occurred among these lived with low NDVI values. And participants aged ≥50 years were more susceptible to the harmful effect of PM2.5 and PM10 compared to younger adults. Conclusions Our study indicated the harmful effect of long-term exposure to air pollutants and these effects may be modified by living within higher green space place. These evidence suggest increasing residential greenness and air pollution control may have simultaneous effect on decreasing the risk of hypertension.
Collapse
Affiliation(s)
- Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,*Correspondence: Qun Xu
| |
Collapse
|
13
|
Chow HW, Chen KL. Development of an Air Pollution Risk Perception Questionnaire for Running Race Runners Based on the Health Belief Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11419. [PMID: 36141690 PMCID: PMC9517284 DOI: 10.3390/ijerph191811419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/12/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
An increasing number of individuals participate in running races worldwide; however, running in the presence of air pollution poses health risks to runners. Therefore, developing a valid and reliable instrument is imperative to assess runners' beliefs and perceptions regarding risks and health behaviors. This study developed a comprehensive questionnaire based on the health behavior model and relevant literature. The questionnaire was tested with 310 responses from individuals with running race experiences in Taiwan. Tests of the measurement model were conducted using reliability and confirmatory factor analysis. The results reveal that the questionnaire consists of eight constructs: perceived susceptibility, perceived severity, perceived benefits, perceived barriers, perceived self-efficacy, cues to action, health behavior intention, and awareness of air quality. The 31 items jointly accounted for 72.71% of the observed variance. All eight factors have good internal consistency, convergent, and discriminant validity with acceptable model fit indexes. Additionally, a valid translated English version of the questionnaire is provided for future research, sports agencies, or governments to explore factors that affect, or interact with, risk while running under air pollution conditions to develop management strategies.
Collapse
|
14
|
Lu T, Liu Y, Garcia A, Wang M, Li Y, Bravo-villasenor G, Campos K, Xu J, Han B. Leveraging Citizen Science and Low-Cost Sensors to Characterize Air Pollution Exposure of Disadvantaged Communities in Southern California. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8777. [PMID: 35886628 PMCID: PMC9322770 DOI: 10.3390/ijerph19148777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 12/02/2022]
Abstract
Assessing exposure to fine particulate matter (PM2.5) across disadvantaged communities is understudied, and the air monitoring network is inadequate. We leveraged emerging low-cost sensors (PurpleAir) and engaged community residents to develop a community-based monitoring program across disadvantaged communities (high proportions of low-income and minority populations) in Southern California. We recruited 22 households from 8 communities to measure residential outdoor PM2.5 concentrations from June 2021 to December 2021. We identified the spatial and temporal patterns of PM2.5 measurements as well as the relationship between the total PM2.5 measurements and diesel PM emissions. We found that communities with a higher percentage of Hispanic and African American population and higher rates of unemployment, poverty, and housing burden were exposed to higher PM2.5 concentrations. The average PM2.5 concentrations in winter (25.8 µg/m3) were much higher compared with the summer concentrations (12.4 µg/m3). We also identified valuable hour-of-day and day-of-week patterns among disadvantaged communities. Our results suggest that the built environment can be targeted to reduce the exposure disparity. Integrating low-cost sensors into a citizen-science-based air monitoring program has promising applications to resolve monitoring disparity and capture "hotspots" to inform emission control and urban planning policies, thus improving exposure assessment and promoting environmental justice.
Collapse
Affiliation(s)
- Tianjun Lu
- Department of Earth Science and Geography, California State University, Dominguez Hills, Carson, CA 90747, USA; (A.G.); (G.B.-v.); (K.C.)
| | - Yisi Liu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA;
| | - Armando Garcia
- Department of Earth Science and Geography, California State University, Dominguez Hills, Carson, CA 90747, USA; (A.G.); (G.B.-v.); (K.C.)
| | - Meng Wang
- Department of Epidemiology and Environmental Health, School of Public and Health Professions, University at Buffalo, Buffalo, NY 14214, USA;
| | - Yang Li
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA;
| | - German Bravo-villasenor
- Department of Earth Science and Geography, California State University, Dominguez Hills, Carson, CA 90747, USA; (A.G.); (G.B.-v.); (K.C.)
| | - Kimberly Campos
- Department of Earth Science and Geography, California State University, Dominguez Hills, Carson, CA 90747, USA; (A.G.); (G.B.-v.); (K.C.)
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.X.); (B.H.)
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.X.); (B.H.)
| |
Collapse
|
15
|
Pryor JT, Cowley LO, Simonds SE. The Physiological Effects of Air Pollution: Particulate Matter, Physiology and Disease. Front Public Health 2022; 10:882569. [PMID: 35910891 PMCID: PMC9329703 DOI: 10.3389/fpubh.2022.882569] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
Nine out of 10 people breathe air that does not meet World Health Organization pollution limits. Air pollutants include gasses and particulate matter and collectively are responsible for ~8 million annual deaths. Particulate matter is the most dangerous form of air pollution, causing inflammatory and oxidative tissue damage. A deeper understanding of the physiological effects of particulate matter is needed for effective disease prevention and treatment. This review will summarize the impact of particulate matter on physiological systems, and where possible will refer to apposite epidemiological and toxicological studies. By discussing a broad cross-section of available data, we hope this review appeals to a wide readership and provides some insight on the impacts of particulate matter on human health.
Collapse
Affiliation(s)
- Jack T. Pryor
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Woodrudge LTD, London, United Kingdom
| | - Lachlan O. Cowley
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephanie E. Simonds
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- *Correspondence: Stephanie E. Simonds
| |
Collapse
|
16
|
An R, Kang H, Cao L, Xiang X. Engagement in outdoor physical activity under ambient fine particulate matter pollution: A risk-benefit analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:537-544. [PMID: 33035708 PMCID: PMC7537654 DOI: 10.1016/j.jshs.2020.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Outdoor physical activity (PA) brings important health benefits, but exposure to polluted air increases health risks. This study aimed to quantify the tradeoff of PA under fine particulate matter (PM2.5) air pollution by estimating the optimal PA duration under various pollution levels. METHODS A risk-benefit analysis was performed to estimate the optimal outdoor moderate-intensity PA (MPA) duration under varying PM2.5 concentrations. RESULTS An inverse nonlinear relationship was identified between optimal MPA duration and background PM2.5 concentration levels. When background PM2.5 concentration increased to 186 µg/m3, the optimal outdoor MPA duration decreased to 2.5 h/week, the minimum level recommended by current PA guidelines. When background PM2.5 concentration further increased to 235 µg/m3, the optimal outdoor MPA duration decreased to 1 h/week. The relationship between optimal MPA duration and background PM2.5 concentration levels was stronger when exercising at a location closer to a source of air pollution. Compared to the general adult population, adults aged 60 years and older had substantially steeper curves-the optimal outdoor MPA duration decreased to 2.5 h/week when background PM2.5 concentration reached 45 µg/m3. CONCLUSION The health benefit of outdoor MPA by far outweighs the health risk of PM2.5 pollution for the global average urban background concentration (22 μg/m3). This modeling study examined a single type of air pollutant and suffered from measurement errors and estimation uncertainties. Future research should examine other air pollutants and indoor PA, incorporate short- and mid-term health effects of MPA and air pollution into the risk-benefit analysis, and provide estimates specific for high-risk subgroups.
Collapse
Affiliation(s)
- Ruopeng An
- Brown School, Washington University, St. Louis, MO 63130, USA
| | - Hyojung Kang
- Department of Kinesiology and Community Health, University of Illinois, Champaign, IL 61820, USA
| | - Lianzhong Cao
- School of Management and Journalism, Shenyang Sport University, Shenyang 110102, China.
| | - Xiaoling Xiang
- School of Social Work, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Chen W, Han Y, Wang Y, Chen X, Qiu X, Li W, Xu Y, Zhu T. Glucose Metabolic Disorders Enhance Vascular Dysfunction Triggered by Particulate Air Pollution: a Panel Study. Hypertension 2022; 79:1079-1090. [PMID: 35193365 DOI: 10.1161/hypertensionaha.121.18889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Vascular dysfunction is a biological pathway whereby particulate matter (PM) exerts deleterious cardiovascular effects. The effects of ambient PM on vascular function in prediabetic individuals are unclear. METHODS A panel study recruited 112 Beijing residents with and without prediabetes. Multiple vascular function indices were measured up to 7 times. The associations between vascular function indices and short-term exposure to ambient PM, including fine particulate matter (PM2.5), ultrafine particles, accumulation mode particles, and black carbon, and the modification of these associations by glucose metabolic status were examined using linear mixed-effects models. RESULTS Increases in brachial artery pulse pressure, central aortic pulse pressure, and ejection duration, and decreases in subendocardial viability ratio and reactive hyperemia index were significantly associated with at least one PM pollutant in all participants, indicating increased vascular dysfunction. For example, for an interquartile range increment in 5-day moving average ultrafine particles, brachial artery pulse pressure, and central aortic pulse pressure increased 5.4% (0.8%-10.4%) and 6.2% (1.2%-11.5%), respectively. Additionally, PM-associated changes in vascular function differed according to glucose metabolic status. Among participants with high fasting blood glucose levels (≥6.1 mmol/L), PM exposure was significantly associated with increased brachial artery systolic blood pressure, central aortic systolic blood pressure, brachial artery pulse pressure, central aortic pulse pressure, and augmentation pressure normalized to a heart rate of 75 bpm and decreased subendocardial viability ratio and reactive hyperemia index. Weaker or null associations were observed in the low-fasting blood glucose group. CONCLUSIONS Glucose metabolic disorders may exacerbate vascular dysfunction associated with short-term ambient PM exposure.
Collapse
Affiliation(s)
- Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China.,Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom (Y.H.)
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China.,National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China (Y.W.)
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China.,Hebei Technology Innovation Center of Human Settlement in Green Building (TCHS), Shenzhen Institute of Building Research Co, Ltd, Xiongan, China (X.C.)
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital (W.L.), Peking University, Beijing, China
| | - Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (W.C., Y.H., Y.W., X.C., X.Q., Y.X., T.Z.), Peking University, Beijing, China
| |
Collapse
|
18
|
Using dynamic time warping self-organizing maps to characterize diurnal patterns in environmental exposures. Sci Rep 2021; 11:24052. [PMID: 34912034 PMCID: PMC8674322 DOI: 10.1038/s41598-021-03515-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/25/2021] [Indexed: 11/09/2022] Open
Abstract
Advances in measurement technology are producing increasingly time-resolved environmental exposure data. We aim to gain new insights into exposures and their potential health impacts by moving beyond simple summary statistics (e.g., means, maxima) to characterize more detailed features of high-frequency time series data. This study proposes a novel variant of the Self-Organizing Map (SOM) algorithm called Dynamic Time Warping Self-Organizing Map (DTW-SOM) for unsupervised pattern discovery in time series. This algorithm uses DTW, a similarity measure that optimally aligns interior patterns of sequential data, both as the similarity measure and training guide of the neural network. We applied DTW-SOM to a panel study monitoring indoor and outdoor residential temperature and particulate matter air pollution (PM2.5) for 10 patients with asthma from 7 households near Salt Lake City, UT; the patients were followed for up to 373 days each. Compared to previous SOM algorithms using timestamp alignment on time series data, the DTW-SOM algorithm produced fewer quantization errors and more detailed diurnal patterns. DTW-SOM identified the expected typical diurnal patterns in outdoor temperature which varied by season, as well diurnal patterns in PM2.5 which may be related to daily asthma outcomes. In summary, DTW-SOM is an innovative feature engineering method that can be applied to highly time-resolved environmental exposures assessed by sensors to identify typical diurnal (or hourly or monthly) patterns and provide new insights into the health effects of environmental exposures.
Collapse
|
19
|
High blood pressure and exposure to dust from gold mine dumps among the elderly in South Africa: A cross-sectional study. PUBLIC HEALTH IN PRACTICE 2021; 2:100146. [PMID: 36101610 PMCID: PMC9461320 DOI: 10.1016/j.puhip.2021.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 12/02/2022] Open
Abstract
Objective To investigate whether high blood pressure was associated with living close to a mine dump among the elderly in South Africa. Study design This was a cross-sectional study conducted among the elderly in communities 1–2 km (exposed) and 5 km or more (unexposed), from five pre-selected mine dumps in Gauteng and North West provinces of South Africa. Methods Structured interviews were conducted with 2397 elderly, using a previously validated ATS-DLD-78 questionnaire from the British Medical Research Council. Results The prevalence of high blood pressure was 57.51% in the exposed and 46.66% in the unexposed communities, respectively. Results from the multiple logistic regression analysis showed that having high blood pressure was significantly associated with living in exposed communities (AOR = 3.04, 95% CI: 2.41–3.83, P < 0.001). Other significant risk factors were being an previous and current tobacco smoker, age group, tertiary level of educational attainment, and having a history of occupational exposure to dust and chemical fumes. Conclusion The findings of this study suggest that there are high levels of blood pressure among the elderly residing in communities located near mine dumps in South Africa. There was a high prevalence of high blood pressure among the elderly living close to gold mine dumps in South Africa. There was a statistically significant association between community proximity to gold mine dumps and high blood pressure. Unrehabilitated mine dumps are a public threat.
Collapse
|
20
|
Francis CE, Allee L, Nguyen H, Grindstaff RD, Miller CN, Rayalam S. Endocrine disrupting chemicals: Friend or foe to brown and beige adipose tissue? Toxicology 2021; 463:152972. [PMID: 34606950 DOI: 10.1016/j.tox.2021.152972] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
The effects of Endocrine Disrupting Chemicals (EDCs) on the current obesity epidemic is a growing field of interest. Numerous EDCs have shown the potential to alter energy metabolism, which may increase the risk of obesity, in part, through direct actions on adipose tissue. While white adipose tissue has historically been the primary focus of this work, evidence of the EDC-induced disruption of brown and beige adipose tissues continues to build. Both brown and beige fat are thermogenic adipose depots rich in mitochondria that dispense heat when activated. Due to these properties, brown and beige fat are implicated in metabolic diseases such as obesity, diabetes, and cachexia. This review delves into the current literature of different EDCs, including bisphenols, dioxins, air pollutants, phthalates, and phytochemicals. The possible implications that these EDCs have on thermogenic adipose tissues are covered. This review also introduces the possibility of using brown and beige fat as a therapeutic target organ by taking advantage of some of the properties of EDCs. Collectively, we provide a comprehensive discussion of the evidence of EDC disruption in white, brown, and beige fat and highlight gaps worthy of further exploration.
Collapse
Affiliation(s)
| | - Logan Allee
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Georgia Campus, Suwanee, GA, USA
| | - Helen Nguyen
- Oak Ridge Institute for Science and Education, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Rachel D Grindstaff
- Neuroendocrine Toxicology Brach, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Colette N Miller
- Cardiopulmonary Immunotoxicology Branch, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Georgia Campus, Suwanee, GA, USA.
| |
Collapse
|
21
|
Harmon AC, Noël A, Subramanian B, Perveen Z, Jennings MH, Chen YF, Penn AL, Legendre K, Paulsen DB, Varner KJ, Dugas TR. Inhalation of particulate matter containing free radicals leads to decreased vascular responsiveness associated with an altered pulmonary function. Am J Physiol Heart Circ Physiol 2021; 321:H667-H683. [PMID: 34415187 PMCID: PMC8794232 DOI: 10.1152/ajpheart.00725.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022]
Abstract
Airborne particulate matter (PM) is associated with an increased risk for cardiovascular diseases. Although the goal of thermal remediation is to eliminate organic wastes through combustion, when incomplete combustion occurs, organics chemisorb to transition metals to generate PM-containing environmentally persistent free radicals (EPFRs). Similar EPFR species have been detected in PM found in diesel and gasoline exhaust, woodsmoke, and urban air. Prior in vivo studies demonstrated that EPFRs reduce cardiac function secondary to elevations in pulmonary arterial pressures. In vitro studies showed that EPFRs increase ROS and cytokines in pulmonary epithelial cells. We thus hypothesized that EPFR inhalation would promote lung inflammation and oxidative stress, leading to systemic inflammation, vascular endothelial injury, and a decline in vascular function. Mice were exposed to EPFRs for either 4 h or for 4 h/day for 10 days and lung and vascular function were assessed. After a 4-h exposure, plasma nitric oxide (NO) was reduced while endothelin-1 (ET-1) was increased, however lung function was not altered. After 10 day, plasma NO and ET-1 levels were again altered and lung tidal volume was reduced. These time course studies suggested the vasculature may be an early target of injury. To test this hypothesis, an intermediate time point of 3 days was selected. Though the mice exhibited no marked inflammation in either the lung or the blood, we did note significantly reduced endothelial function concurrent with a reduction in lung tidal volume and an elevation in annexin V protein levels in the lung. Although vascular dysfunction was not dependent upon inflammation, it may be associated with an injury at the air-blood interface. Gene expression analysis suggested roles for oxidative stress and aryl hydrocarbon receptor (Ahr) signaling. Studies probing the relationship between pulmonary oxidative stress and AhR signaling at the air-blood interface with vascular dysfunction seem warranted.NEW & NOTEWORTHY Particulate matter (PM) resulting from the combustion of organic matter is known to contribute to cardiopulmonary disease. Despite hypotheses that cardiovascular dysfunction occurring after PM exposures is secondary to lung or systemic inflammation, these studies investigating exposures to PM-containing environmentally persistent free radicals (EPFRs) demonstrate that cardiovascular dysfunction precedes pulmonary inflammation. The cardiopulmonary health consequences of EPFRs have yet to be thoroughly evaluated, especially in healthy, adult mice. Our data suggest the vasculature as a direct target of PM exposure, and our studies aimed to elucidate the mechanisms contributing to EPFR-induced vascular dysfunction.
Collapse
Affiliation(s)
- Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | | | - Zakia Perveen
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Merilyn H Jennings
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Yi-Fan Chen
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Arthur L Penn
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Kelsey Legendre
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Daniel B Paulsen
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| |
Collapse
|
22
|
Chang SH, Merzkani M, Murad H, Wang M, Bowe B, Lentine KL, Al-Aly Z, Alhamad T. Association of Ambient Fine Particulate Matter Air Pollution With Kidney Transplant Outcomes. JAMA Netw Open 2021; 4:e2128190. [PMID: 34618038 PMCID: PMC8498852 DOI: 10.1001/jamanetworkopen.2021.28190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
IMPORTANCE Increased levels of ambient fine particulate matter (PM2.5) air pollution are associated with increased risks for detrimental health outcomes, but risks for patients with kidney transplants (KTs) remain unknown. OBJECTIVE To investigate the association of PM2.5 exposure with KT outcomes. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study was conducted using data on patients who received KTs from 2004 to 2016 who were identified in the national US transplant registry and followed up through March 2021. Multiple databases were linked to obtain data on PM2.5 concentration, KT outcomes, and patient clinical, transplant, and contextual factors. Data were analyzed from April 2020 through July 2021. EXPOSURES Exposures included post-KT time-dependent annual mean PM2.5 level (in 10 μg/m3) and mean PM2.5 level in the year before KT (ie, baseline levels) in quartiles, as well as baseline annual mean PM2.5 level (in 10 μg/m3). MAIN OUTCOMES AND MEASURES Acute kidney rejection (ie, rejection within 1 year after KT), time to death-censored graft failure, and time to all-cause death. Multivariable logistic regression for kidney rejection and Cox analyses with nonlinear assessment of exposure-response for death-censored graft failure and all-cause death were performed. The national burden of graft failure associated with PM2.5 levels greater than the Environmental Protection Agency recommended level of 12 μg/m3 was estimated. RESULTS Among 112 098 patients with KTs, 70 522 individuals (62.9%) were older than age 50 years at the time of KT, 68 117 (60.8%) were men, and the median (IQR) follow-up was 6.0 (3.9-8.9) years. There were 37 265 Black patients (33.2%), 17 047 Hispanic patients (15.2%), 48 581 White patients [43.3%]), and 9205 patients (8.2%) of other race or ethnicity. The median (IQR) baseline PM2.5 level was 9.8 (8.3-11.9) μg/m3. Increased baseline PM2.5 level, compared with quartile 1 baseline PM2.5 level, was not associated with higher odds of acute kidney rejection for quartile 2 (adjusted odds ratio [aOR], 0.99; 95% CI, 0.92-1.06) but was associated with increased odds for quartile 3 (aOR, 1.11; 95% CI, 1.04-1.20) and quartile 4 (aOR, 1.13; 95% CI, 1.05-1.23). Nonlinear assessment of exposure-response for graft failure and death showed no evidence for nonlinearity. Increased PM2.5 levels were associated with increased risk of death-censored graft failure (adjusted hazard ratio [aHR] per 10 μg/m3 increase, 1.17; 95% CI, 1.09-1.25) and all-cause death (aHR per 10 μg/m3 increase, 1.21; 95% CI, 1.14-1.28). The national burden of death-censored graft failure associated with PM2.5 above 12 μg/m3 was 57 failures (95% uncertainty interval, 48-67 failures) per year among patients with KTs. CONCLUSIONS AND RELEVANCE This cohort study found that PM2.5 level was an independent risk factor associated with acute rejection, graft failure, and death among patients with KTs. These findings suggest that efforts toward decreasing levels of PM2.5 concentration may be associated with improved outcomes after KT.
Collapse
Affiliation(s)
- Su-Hsin Chang
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine in St. Louis, Missouri
- Institute for Public Health, Washington University School of Medicine in St. Louis, Missouri
| | - Massini Merzkani
- Institute for Public Health, Washington University School of Medicine in St. Louis, Missouri
- Division of Nephrology, Washington University School of Medicine in St. Louis, Missouri
| | - Haris Murad
- Division of Nephrology, Washington University School of Medicine in St. Louis, Missouri
- Transplant Epidemiology Research Collaboration (TERC), Institute for Public Health, Washington University School of Medicine in St. Louis, Missouri
| | - Mei Wang
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine in St. Louis, Missouri
| | - Benjamin Bowe
- Clinical Epidemiology Center, Research and Education Service, VA St. Louis Health Care System, St. Louis, Missouri
| | - Krista L. Lentine
- Center for Abdominal Transplantation, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Ziyad Al-Aly
- Institute for Public Health, Washington University School of Medicine in St. Louis, Missouri
- Clinical Epidemiology Center, Research and Education Service, VA St. Louis Health Care System, St. Louis, Missouri
| | - Tarek Alhamad
- Institute for Public Health, Washington University School of Medicine in St. Louis, Missouri
- Division of Nephrology, Washington University School of Medicine in St. Louis, Missouri
- Transplant Epidemiology Research Collaboration (TERC), Institute for Public Health, Washington University School of Medicine in St. Louis, Missouri
| |
Collapse
|
23
|
Han C, Lim YH, Hong YC. Particulate respirator use and blood pressure: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117574. [PMID: 34438496 DOI: 10.1016/j.envpol.2021.117574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
People use a particulate respirator in order to reduce exposure to ambient fine particulate matter (PM2.5). Acute exposure to PM2.5 is known to increase blood pressure. However, systematic reviews or meta-analyses on blood pressure-related benefits of using a particulate respirator is lacking. Therefore, we reviewed randomized crossover intervention studies on blood pressure-related effects of particulate matter respirator use. We conducted a literature review of articles found on Embase, Medline, and Cochrane library on August 31, 2020. The study outcomes were systolic and diastolic blood pressure and mean arterial pressure. A random-effect model was used in the meta-analysis. Subgroup analyses, based on age (adult < 60 years, elderly ≥ 60 years), personal PM2.5 exposure levels (High: ≥ 25 μg/m3, Low: < 25 μg/m3), and types of monitoring methods (ambulatory and resting blood pressure) were conducted. We identified 297 references, and seven studies were included in our systematic review. None of the studies used a sham respirator as control and complete allocation concealment and blinding were impossible. The use of a particulate respirator was associated with a -1.23 mmHg (95% confidence interval (CI): -2.53, 0.07) change in systolic blood pressure and a -1.57 mmHg (95% CI: -3.85, 0.71) change in mean arterial pressure. There were significant heterogeneities and possibilities for publication bias. The subgroup analyses revealed that studies involving elderly individuals, those conducted in high PM2.5 personal exposure, and those in which resting blood pressure was monitored demonstrated a larger decrease in blood pressure resulting from respirator use. Further intervention studies with a large sample size and subjects with diverse characteristics and different personal PM2.5 levels may add the evidence to current literature.
Collapse
Affiliation(s)
- Changwoo Han
- Department of Preventive Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yun-Chul Hong
- Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Xia X, Chan KH, Lam KBH, Qiu H, Li Z, Yim SHL, Ho KF. Effectiveness of indoor air purification intervention in improving cardiovascular health: A systematic review and meta-analysis of randomized controlled trials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147882. [PMID: 34058577 PMCID: PMC7611692 DOI: 10.1016/j.scitotenv.2021.147882] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 04/13/2023]
Abstract
Indoor air purifiers are increasingly marketed for their health benefits, but their cardiovascular effects remain unclear. We systematically reviewed and meta-analysed randomized controlled trials (RCTs) on the cardiovascular effects of indoor air purification interventions in humans of all ages. We searched Embase, Medline, PubMed, and Web of Science from inception to 22 August 2020. Fourteen cross-over RCTs (18 publications) were included. Systolic blood pressure (SBP) was significantly reduced after intervention (-2.28 (95% CI: -3.92, -0.64) mmHg). There were tendencies of reductions in diastolic blood pressure (-0.35 [-1.52, 0.83] mmHg), pulse pressure (PP) (-0.86 [-2.07, 0.34] mmHg), C-reactive protein (-0.23 [-0.63, 0.18] mg/L), and improvement in reactive hyperaemia index (RHI) (0.10 [-0.04, 0.24]) after indoor air purification, although the effects were not statistically significant. However, when restricting the analyses to RCTs using physical-type purifiers only, significant improvements in PP (-1.56 [-2.98, -0.15] mmHg) and RHI (0.13 [0.01, 0.25]) were observed. This study found potential evidence on the short-term cardiovascular benefits of using indoor air purifiers, especially for SBP, PP and RHI. However, under the Grading of Recommendations Assessment, Development and Evaluation framework, the overall certainty of evidence was very low, which discourage unsubstantiated claims on the cardiovascular benefits of air purifiers. We have also identified several key methodological limitations, including small sample size, short duration of intervention, and the lack of wash-out period. Further RCTs with larger sample size and longer follow-up duration are needed to clarify the cardiovascular benefits of air purification interventions.
Collapse
Affiliation(s)
- Xi Xia
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Ka Hung Chan
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, UK; Oxford British Heart Foundation Centre of Research Excellence, University of Oxford, UK.
| | - Kin Bong Hubert Lam
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, UK.
| | - Hong Qiu
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Zhiyuan Li
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Steve Hung Lam Yim
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; The Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Asian School of the Environment, Nanyang Technological University, Singapore.
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
25
|
Cao H, Li B, Liu K, Pan L, Cui Z, Zhao W, Zhang H, Niu K, Tang N, Sun J, Han X, Wang Z, Xia J, He H, Cao Y, Xu Z, Meng G, Shan A, Guo C, Sun Y, Peng W, Liu X, Xie Y, Wen F, Zhang F, Shan G, Zhang L. Association of long-term exposure to ambient particulate pollution with stage 1 hypertension defined by the 2017 ACC/AHA Hypertension Guideline and cardiovascular disease: The CHCN-BTH cohort study. ENVIRONMENTAL RESEARCH 2021; 199:111356. [PMID: 34048743 DOI: 10.1016/j.envres.2021.111356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Evidence regarding the effects of ambient air pollution on new stage 1 hypertension defined by the 2017 ACC/AHA Hypertension Guideline remains sparse. OBJECTIVES To investigate the association of long-term exposure to ambient PM2.5 with stage 1 hypertension and to explore the mediating and modifying effects of PM2.5 on cardiovascular disease (CVD). METHODS A total of 32,135 participants aged 18-80 years were recruited in 2017. The three-year (2014-2016) average PM2.5 concentrations were assessed by a spatial statistical model. Blood pressure (BP) was divided into four categories according to the 2017 ACC/AHA Hypertension Guideline: normal BP (SBP<120 mmHg and DBP<80 mmHg), elevated BP (SBP 120-129 mmHg and DBP<80 mmHg), stage 1 hypertension (SBP 130-139 mmHg or DBP 80-89 mmHg), and stage 2 hypertension (SBP≥140 mmHg or DBP≥90 mmHg or taking antihypertensive medications). The associations of PM2.5 with BP categories were estimated by two-level generalized linear mixed models. Analyses stratified by age, mediation and interaction analyses of PM2.5 and stage 1 hypertension with CVD were performed. RESULTS We detected a positive significant association between long-term exposure to PM2.5 and stage 1 hypertension. Compared to normal BP, the OR was 1.05 (95% CI: 1.02, 1.08) per 10 μg/m3 increase in PM2.5. The association was stronger than that of elevated BP but weaker than that of stage 2 hypertension. Stage 1 hypertension only partially mediated the association between PM2.5 and CVD, and the mediation proportions ranged from 1.55% to 11.00%. However, it modified the association between PM2.5 and CVD, which was greater in participants with stage 1 hypertension (OR: 1.66; 95% CI: 1.43, 1.93) than in participants with normal BP (OR: 1.32; 95% CI: 1.11, 1.57), with Pinteraction<0.001. In the analysis stratified by age, the above associations were age-specific, and significant associations were only observed in the young and middle-aged (<60 years) groups. CONCLUSIONS Long-term exposure to ambient PM2.5 was significantly associated with stage 1 hypertension. This earlier stage of hypertension may be a trigger BP range for adverse effects of air pollution in the development of hypertension and CVD, especially in young and middle-aged individuals.
Collapse
Affiliation(s)
- Han Cao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Bingxiao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Li Pan
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, And School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ze Cui
- Department of Chronic and Noncommunicable Disease Prevention and Control, Hebei Provincial Center for Disease Prevention and Control, Shijiazhuang, Hebei, China
| | - Wei Zhao
- Department of Chronic and Noncommunicable Disease Prevention and Control, Chaoyang District Center for Disease Prevention and Control, Beijing, China
| | - Han Zhang
- Health Management Center, Beijing Aerospace General Hospital, Beijing, China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jixin Sun
- Department of Chronic and Noncommunicable Disease Prevention and Control, Hebei Provincial Center for Disease Prevention and Control, Shijiazhuang, Hebei, China
| | - Xiaoyan Han
- Department of Chronic and Noncommunicable Disease Prevention and Control, Chaoyang District Center for Disease Prevention and Control, Beijing, China
| | - Zhengfang Wang
- Health Management Center, Beijing Aerospace General Hospital, Beijing, China
| | - Juan Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Huijing He
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, And School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yajing Cao
- Department of Chronic and Noncommunicable Disease Prevention and Control, Hebei Provincial Center for Disease Prevention and Control, Shijiazhuang, Hebei, China
| | - Zhiyuan Xu
- Department of Chronic and Noncommunicable Disease Prevention and Control, Chaoyang District Center for Disease Prevention and Control, Beijing, China
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Anqi Shan
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Chunyue Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yanyan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Wenjuan Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xiaohui Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yunyi Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Fuyuan Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Fengxu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Guangliang Shan
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, And School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China.
| |
Collapse
|
26
|
Aryal A, Harmon AC, Dugas TR. Particulate matter air pollutants and cardiovascular disease: Strategies for intervention. Pharmacol Ther 2021; 223:107890. [PMID: 33992684 PMCID: PMC8216045 DOI: 10.1016/j.pharmthera.2021.107890] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Air pollution is consistently linked with elevations in cardiovascular disease (CVD) and CVD-related mortality. Particulate matter (PM) is a critical factor in air pollution-associated CVD. PM forms in the air during the combustion of fuels as solid particles and liquid droplets and the sources of airborne PM range from dust and dirt to soot and smoke. The health impacts of PM inhalation are well documented. In the US, where CVD is already the leading cause of death, it is estimated that PM2.5 (PM < 2.5 μm in size) is responsible for nearly 200,000 premature deaths annually. Despite the public health data, definitive mechanisms underlying PM-associated CVD are elusive. However, evidence to-date implicates mechanisms involving oxidative stress, inflammation, metabolic dysfunction and dyslipidemia, contributing to vascular dysfunction and atherosclerosis, along with autonomic dysfunction and hypertension. For the benefit of susceptible individuals and individuals who live in areas where PM levels exceed the National Ambient Air Quality Standard, interventional strategies for mitigating PM-associated CVD are necessary. This review will highlight current state of knowledge with respect to mechanisms for PM-dependent CVD. Based upon these mechanisms, strategies for intervention will be outlined. Citing data from animal models and human subjects, these highlighted strategies include: 1) antioxidants, such as vitamins E and C, carnosine, sulforaphane and resveratrol, to reduce oxidative stress and systemic inflammation; 2) omega-3 fatty acids, to inhibit inflammation and autonomic dysfunction; 3) statins, to decrease cholesterol accumulation and inflammation; 4) melatonin, to regulate the immune-pineal axis and 5) metformin, to address PM-associated metabolic dysfunction. Each of these will be discussed with respect to its potential role in limiting PM-associated CVD.
Collapse
Affiliation(s)
- Ankit Aryal
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America
| | - Ashlyn C Harmon
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America
| | - Tammy R Dugas
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America.
| |
Collapse
|
27
|
Li X, Cheng H, Fang Y, Chen Z, Qi G, Chen R, Kan H, Liu C, Cao J. Association between fine particulate matter and heart failure hospitalizations: a time-series analysis in Yancheng, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26906-26912. [PMID: 33501575 DOI: 10.1007/s11356-021-12428-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Heart failure (HF) is a global public health problem of increasing importance. The association between acute exposure to air pollution and HF has been well established in developed countries, but little evidence is available in developing countries where air pollution levels are much higher. OBJECTIVES To explore the associations between PM2.5 and HF hospitalizations in Yancheng, China. METHODS In this time-series study, daily HF hospitalizations admitted in three major hospitals in Yancheng from May 1, 2015 to Apr 30, 2020 were collected. We used a generalized additive model with quasi-Poisson regression to investigate the association between PM2.5 and HF hospitalizations. The robustness of the associations was tested using two-pollutant models, and we examined the potential effect modification by age, gender, and season via stratification analyses. Lastly, we pooled the concentration-response curves. RESULTS A total of 10,466 HF hospitalizations were recorded, with a daily average of 6 cases. We observed the most robust estimates on lag 0 day, and the associated increment in HF was 1.28% (95% CI 0.45%, 2.11%) for a 10-μg/m3 increase of PM2.5. The association remained after adjustment of O3, but not for NO2, CO, and SO2. The PM2.5-HF associations were positive in females, patients aged ≥ 65 years, and in cold season. The C-R relationship curve was generally increasing below 30 μg/m3. CONCLUSION This study provided evidence on the association of PM2.5 with acute exacerbation of chronic heart failure, which may benefit future prevention strategy and policymaking.
Collapse
Affiliation(s)
- Xu Li
- Department of Cardiology, Yancheng Hospital Affiliated to Xuzhou Medical University and the First Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224006, China
| | - Hongyi Cheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yan Fang
- Department of Cardiology, Yancheng Hospital Affiliated to Xuzhou Medical University and the First Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224006, China
| | - Zhichao Chen
- Department of Cardiology, Yancheng Hospital Affiliated to Xuzhou Medical University and the First Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224006, China
| | - Guangyu Qi
- Department of Hematology, Yancheng Hospital Affiliated to Xuzhou Medical University and the First Hospital of Yancheng, Yancheng, 224006, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, No.130 Dong-An Road, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, No.130 Dong-An Road, Shanghai, 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, No.130 Dong-An Road, Shanghai, 200032, China.
| | - Jingyan Cao
- Department of Cardiology, Yancheng Hospital Affiliated to Xuzhou Medical University and the First Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224006, China.
| |
Collapse
|
28
|
Guo P, He Z, Jalaludin B, Knibbs LD, Leskinen A, Roponen M, Komppula M, Jalava P, Hu L, Chen G, Zeng X, Yang B, Dong G. Short-Term Effects of Particle Size and Constituents on Blood Pressure in Healthy Young Adults in Guangzhou, China. J Am Heart Assoc 2021; 10:e019063. [PMID: 33942624 PMCID: PMC8200702 DOI: 10.1161/jaha.120.019063] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Background Although several studies have focused on the associations between particle size and constituents and blood pressure, results have been inconsistent. Methods and Results We conducted a panel study, between December 2017 and January 2018, in 88 healthy university students in Guangzhou, China. Weekly systolic blood pressure and diastolic blood pressure were measured for each participant for 5 consecutive weeks, resulting in a total of 440 visits. Mass concentrations of particles with an aerodynamic diameter of ≤2.5 µm (PM2.5), ≤1.0 µm (PM1.0), ≤0.5 µm (PM0.5), ≤0.2 µm (PM0.2), and number concentrations of airborne particulates of diameter ≤0.1 μm were measured. Linear mixed-effect models were used to estimate the associations between blood pressure and particles and PM2.5 constituents 0 to 48 hours before blood pressure measurement. PM of all the fractions in the 0.2- to 2.5-μm range were positively associated with systolic blood pressure in the first 24 hours, with the percent changes of effect estimates ranging from 3.5% to 8.8% for an interquartile range increment of PM. PM0.2 was also positively associated with diastolic blood pressure, with an increase of 5.9% (95% CI, 1.0%-11.0%) for an interquartile range increment (5.8 μg/m3) at lag 0 to 24 hours. For PM2.5 constituents, we found positive associations between chloride and diastolic blood pressure (1.7% [95% CI, 0.1%-3.3%]), and negative associations between vanadium and diastolic blood pressure (-1.6% [95% CI, -3.0% to -0.1%]). Conclusions Both particle size and constituent exposure are significantly associated with blood pressure in the first 24 hours following exposure in healthy Chinese adults.
Collapse
Affiliation(s)
- Peng‐Yue Guo
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk AssessmentDepartment of Occupational and Environmental HealthSchool of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Zhi‐Zhou He
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk AssessmentDepartment of Occupational and Environmental HealthSchool of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Bin Jalaludin
- Centre for Air Quality and Health Research and EvaluationGlebeAustralia
- Ingham Institute for Applied Medial ResearchUniversity of New South WalesSydneyAustralia
| | - Luke D. Knibbs
- School of Public HealthThe University of QueenslandHerstonQueenslandAustralia
| | - Ari Leskinen
- Finnish Meteorological InstituteKuopioFinland
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Marjut Roponen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | | | - Pasi Jalava
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Li‐Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk AssessmentDepartment of Occupational and Environmental HealthSchool of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk AssessmentDepartment of Occupational and Environmental HealthSchool of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Xiao‐Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk AssessmentDepartment of Occupational and Environmental HealthSchool of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Bo‐Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk AssessmentDepartment of Occupational and Environmental HealthSchool of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Guang‐Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk AssessmentDepartment of Occupational and Environmental HealthSchool of Public HealthSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
29
|
Xu H, Guo B, Qian W, Ciren Z, Guo W, Zeng Q, Mao D, Xiao X, Wu J, Wang X, Wei J, Chen G, Li S, Guo Y, Meng Q, Zhao X. Dietary Pattern and Long-Term Effects of Particulate Matter on Blood Pressure: A Large Cross-Sectional Study in Chinese Adults. Hypertension 2021; 78:184-194. [PMID: 33993725 DOI: 10.1161/hypertensionaha.121.17205] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Huan Xu
- West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China (H.X., B.G., X.X., J. Wu, X.W., X.Z.)
| | - Bing Guo
- West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China (H.X., B.G., X.X., J. Wu, X.W., X.Z.)
| | - Wen Qian
- Chengdu Center for Disease Control and Prevention, Sichuan, China (W.Q.)
| | - Zhuoga Ciren
- Tibet Center for Disease Control and Prevention, Lhasa, China (Z.C.)
| | - Wei Guo
- Tibet University, Lhasa, China (W.G.)
| | - Qibing Zeng
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China (Q.Z.)
| | - Deqiang Mao
- Chongqing Municipal Center for Disease Control and Prevention, China (D.M.)
| | - Xiong Xiao
- West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China (H.X., B.G., X.X., J. Wu, X.W., X.Z.)
| | - Jialong Wu
- West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China (H.X., B.G., X.X., J. Wu, X.W., X.Z.)
| | - Xing Wang
- West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China (H.X., B.G., X.X., J. Wu, X.W., X.Z.)
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park (J. Wei)
| | - Gongbo Chen
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China (G.C.)
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia (S.L., Y.G.)
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia (S.L., Y.G.)
| | - Qiong Meng
- Department of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Yunnan, China (Q.M.)
| | - Xing Zhao
- West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China (H.X., B.G., X.X., J. Wu, X.W., X.Z.)
| | | |
Collapse
|
30
|
deSouza P, Kinney PL. On the distribution of low-cost PM 2.5 sensors in the US: demographic and air quality associations. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:514-524. [PMID: 33958706 DOI: 10.1038/s41370-021-00328-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Low-cost sensors have the potential to democratize air pollution information and supplement regulatory networks. However, differentials in access to these sensors could exacerbate existing inequalities in the ability of different communities to respond to the threat of air pollution. OBJECTIVE Our goal was to analyze patterns of deployments of a commonly used low-cost sensor, as a function of demographics and pollutant concentrations. METHODS We used Wilcoxon rank sum tests to assess differences between socioeconomic characteristics and PM2.5 concentrations of locations with low-cost sensors and those with regulatory monitors. We used Kolomogorov-Smirnov tests to examine how representative census tracts with sensors were of the United States. We analyzed predictors of the presence, and number of, sensors in a tract using regressions. RESULTS Census tracts with low-cost sensors were higher income more White and more educated than the US as a whole and than tracts with regulatory monitors. For all states except for California they are in locations with lower annual-average PM2.5 concentrations than regulatory monitors. The existing presence of a regulatory monitor, the percentage of people living above the poverty line and PM2.5 concentrations were associated with the presence of low-cost sensors in a tract. SIGNIFICANCE Strategies to improve access to low-cost sensors in less-privileged communities are needed to democratize air pollution data.
Collapse
Affiliation(s)
- Priyanka deSouza
- Department of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge, MA, USA.
- World Health Organization, Geneva, Switzerland.
| | - Patrick L Kinney
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
31
|
Weaver AM, Wang Y, Wellenius GA, Bidulescu A, Sims M, Vaidyanathan A, Hickson DA, Shimbo D, Abdalla M, Diaz KM, Seals SR. Long-Term Air Pollution and Blood Pressure in an African American Cohort: the Jackson Heart Study. Am J Prev Med 2021; 60:397-405. [PMID: 33478866 PMCID: PMC10388406 DOI: 10.1016/j.amepre.2020.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/21/2020] [Accepted: 10/30/2020] [Indexed: 11/23/2022]
Abstract
INTRODUCTION African Americans are disproportionately affected by high blood pressure, which may be associated with exposure to air pollutants, such as fine particulate matter and ozone. METHODS Among African American Jackson Heart Study participants, this study examined associations between 1-year and 3-year mean fine particulate matter and ozone concentrations with prevalent and incident hypertension at Visits 1 (2000-2004, n=5,191) and 2 (2005-2008, n=4,105) using log binomial regression. Investigators examined associations with systolic blood pressure, diastolic blood pressure, pulse pressure, and mean arterial pressure using linear regression and hierarchical linear models, adjusting for sociodemographic, behavioral, and clinical characteristics. Analyses were conducted in 2017-2019. RESULTS No associations were observed between fine particulate matter or ozone concentration and prevalent or incident hypertension. In linear models, an IQR increase in 1-year ozone concentration was associated with 0.67 mmHg higher systolic blood pressure (95% CI=0.27, 1.06), 0.42 mmHg higher diastolic blood pressure (95% CI=0.20, 0.63), and 0.50 mmHg higher mean arterial pressure (95% CI=0.26, 0.74). In hierarchical models, fine particulate matter was inversely associated with systolic blood pressure (-0.72, 95% CI= -1.31, -0.13), diastolic blood pressure (-0.69, 95% CI= -1.02, -0.36), and mean arterial pressure (-0.71, 95% CI= -1.08, -0.33). Attenuated associations were observed with 1-year concentrations and at Visit 1. CONCLUSIONS Positive associations were observed between ozone and systolic blood pressure, diastolic blood pressure, and mean arterial pressure, and inverse associations between fine particulate matter and systolic blood pressure, diastolic blood pressure, and mean arterial pressure in an African American population with high (56%) prevalence of hypertension. Effect sizes were small and may not be clinically relevant.
Collapse
Affiliation(s)
- Anne M Weaver
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, North Carolina; Department of Environmental Health, Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana
| | - Yi Wang
- Department of Environmental Health, Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana.
| | - Gregory A Wellenius
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Aurelian Bidulescu
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, Indiana
| | - Mario Sims
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ambarish Vaidyanathan
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - DeMarc A Hickson
- Department of Epidemiology and Biostatistics, School of Public Health, Jackson State University, Jackson, Mississippi
| | - Daichi Shimbo
- Division of Cardiology, Columbia University Medical Center, New York, New York
| | - Marwah Abdalla
- Division of Cardiology, Columbia University Medical Center, New York, New York
| | - Keith M Diaz
- Division of Cardiology, Columbia University Medical Center, New York, New York
| | - Samantha R Seals
- Department of Mathematics and Statistics, University of West Florida, Pensacola, Florida
| |
Collapse
|
32
|
Yu M, Wu Y, Gordon SP, Cheng J, Chen P, Wang Y, Yu H. Objectively measured association between air pollution and physical activity, sedentary behavior in college students in Beijing. ENVIRONMENTAL RESEARCH 2021; 194:110492. [PMID: 33217438 DOI: 10.1016/j.envres.2020.110492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this study is to examine the association between hourly air pollution on hourly physical activity (PA) and sedentary behavior (SB) among college students in Beijing, China. The secondary aim was to examine such associations varied at specific time. A total of 340 participants were recruited from the Tsinghua University, in Beijing, China. Accelerometers provided PA measures, including moderate-to-vigorous physical activity (MVPA), walking steps, energy expenditure and sedentary time for 7 consecutive days. Corresponding air pollution data by the Beijing Municipal Ecological Environment Bureau in the closed site (Wan Liu site) in Tsinghua University were collected including average hourly air quality index (AQI) and PM2.5 (μg/m³). Associations were estimated using linear individual fixed-effect regressions. We also conducted an air pollution risk perception survey among 2307 freshmen (76.6% males) who were enrolled in Tsinghua in 2016, and the survey was done in May 22-26, 2017. A one level increase in hourly air quality index (AQI) was associated with a reduction in 1-h PA by 0.083 (95% confidence interval [CI] = -0.137, -0.029) minutes of MVPA, 8.8 (95% CI = -15.0, -2.6) walking steps, 0.65 (95% CI = -1.03, -0.27) kcals of energy expenditure. A 10 μg/m³ increase in air pollution concentration in hourly PM2.5 was associated with a reduction in 1-h PA by 0.021 (95% confidence interval [CI] = -0.033, -0.010) minutes of MVPA, 2.2 (95% CI = -3.5, -0.9) walking steps, 0.170 (95% CI = -0.250, -0.089) kcals of energy expenditure an increase in 1-h sedentary behavior 0.045 (0.005, 0.0845). At specific time, stronger negative associations of AQI and PM2.5 air pollution with PA at 8 a.m., 4 p.m., 5 p.m. and 7 p.m. Similarly, stronger positive associations of 1 h AQI and PM2.5 air pollution with SB at 8 a.m., 9 a.m., 11 a.m., and 7 p.m. A total of 94.9% participants (n = 2235) responded "yes" to air pollution change activities in the survey, which may partially explain PA change. Air pollution may discourage physical activity and increases sedentary behavior among freshman students living in Beijing, China. This is preliminary study. The impact of air pollution on physical activity and sedentary behavior at a specific time may be different.
Collapse
Affiliation(s)
- Miao Yu
- School of Information Rescource Management, Renmin University of China, Beijing, China.
| | - Yin Wu
- Department of Physical Education, Tsinghua University, Beijing, China.
| | | | - Jiali Cheng
- Department of Physical Education, Tsinghua University, Beijing, China.
| | - Panpan Chen
- Department of Physical Education, Tsinghua University, Beijing, China.
| | - Yangyang Wang
- Department of Sociology, Tsinghua University, China.
| | - Hongjun Yu
- Department of Physical Education, Tsinghua University, Beijing, China.
| |
Collapse
|
33
|
Riggs DW, Yeager R, Conklin DJ, DeJarnett N, Keith RJ, DeFilippis AP, Rai SN, Bhatnagar A. Residential proximity to greenness mitigates the hemodynamic effects of ambient air pollution. Am J Physiol Heart Circ Physiol 2021; 320:H1102-H1111. [PMID: 33416460 PMCID: PMC8294702 DOI: 10.1152/ajpheart.00689.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Residential proximity to greenness is associated with a lower risk of cardiovascular disease (CVD) and all-cause mortality. However, it is unclear whether the beneficial effects of greenness are linked to a reduction in the effects of ambient air pollutants. We measured arterial stiffness in 73 participants with moderate to high CVD risk. Average levels of ambient PM2.5 and ozone were calculated from local monitoring stations. Residential greenness was estimated using satellite-derived normalized difference vegetation index (NDVI) for a 200-m and 1-km radius around each participant's home. Participants were 51% female, average age of 52 yr, and 79% had diagnosed hypertension. In multiple linear regression models, residential NDVI was negatively associated with augmentation index (-3.8% per 0.1 NDVI). Ambient levels of PM2.5 [per interquartile range (IQR) of 6.9 μg/m3] were positively associated with augmentation pressure (3.1 mmHg), pulse pressure (5.9 mmHg), and aortic systolic pressure (8.1 mmHg). Ozone (per IQR of 0.03 ppm) was positively associated with augmentation index (5.5%), augmentation pressure (3.1 mmHg), and aortic systolic pressure (10 mmHg). In areas of low greenness, both PM2.5 and ozone were positively associated with pulse pressure. Additionally, ozone was positively associated with augmentation pressure and systolic blood pressure. However, in areas of high greenness, there was no significant association between indices of arterial stiffness with either PM2.5 or ozone. Residential proximity to greenness is associated with lower values of arterial stiffness. Residential greenness may mitigate the adverse effects of PM2.5 and ozone on arterial stiffness.NEW & NOTEWORTHY Previous studies have linked proximity to green spaces with lower cardiovascular disease risk. However, the mechanisms underlying the salutary effects of green areas are not known. In our study of participants at risk of cardiovascular disease, we found that arterial stiffness was positively associated with short-term exposure to PM2.5, PM10, and ozone and inversely associated with greenness. The association between pollution and arterial stiffness was attenuated in areas of high greenness, suggesting that living green neighborhoods can lessen the adverse cardiovascular effects of air pollution.
Collapse
Affiliation(s)
- Daniel W Riggs
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
- Department of Epidemiology and Population Health, University of Louisville, Louisville, Kentucky
| | - Ray Yeager
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
- Department of Environmental and Occupational Health Sciences, University of Louisville, Louisville, Kentucky
| | - Daniel J Conklin
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
| | - Natasha DeJarnett
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
| | - Rachel J Keith
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
| | - Andrew P DeFilippis
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Shesh N Rai
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky
| |
Collapse
|
34
|
Khosravi A, Rajabi HR, Vakhshoori M, Rabiei K, Hosseini SM, Mansouri A, Roghani-Dehkordi F, Najafian J, Rahimi M, Jafari-Koshki T, Sadeghian B, Shishehforoush M, Lahijanzadeh A, Taheri M, Sarrafzadegan N. Association between ambient fine particulate matter with blood pressure levels among Iranian individuals admitted for cardiac and respiratory diseases: Data from CAPACITY study. ARYA ATHEROSCLEROSIS 2021; 16:178-184. [PMID: 33598038 PMCID: PMC7867310 DOI: 10.22122/arya.v16i4.2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The relation between air pollution and cardiovascular diseases (CVDs) risk factors, especially blood pressure (BP) levels, has been less frequently assessed. The aim of this study was evaluating the association between air pollutants of less than 2.5 µm [particulate matter (PM2.5)] and BP indices among individuals admitted with CVDs and pulmonary diseases. METHODS This cross-sectional study was in context of air pollution associated with hospitalization and mortality of CVDs and respiratory diseases (CAPACITY) study. Data of 792 Iranian patients referring to two hospitals in Isfahan, Iran, for cardiovascular or respiratory problems from March 2011 to March 2012 were used for analysis. BP indices including systolic BP (SBP), diastolic BP (DBP), and mean arterial pressure (MAP) were obtained from patients’ medical forms and mean PM2.5 concentrations during 24 hours prior to admission of each patient were obtained from Isfahan Department of Environment (DOE). RESULTS Mean ± standard deviation (SD) of participants’ age were 62.5 ± 15.9 years. All BP indices on admission were significantly higher in women compared with men. Adjustment of all potential confounders including age, sex, temperature, wind speed, and dew point revealed that increasing one quartile in PM2.5 concentrations had been associated with 1.98 mmHg raising in SBP at the time of admission [95% confidence interval (CI) = 0.41-3.54, P = 0.010]. Women with cardiac diseases had higher all BP indices with increased PM2.5 concentration [SBP: β: 4.30, 95% CI = 0.90-7.70, P = 0.010; DBP: β: 1.89, 95% CI = 0.09-3.69, P = 0.040; MAP: β: 3.09, 95% CI = 0.68-5.51, P= 0.010, respectively). CONCLUSION Our findings suggest that increasing PM2.5 concentration has been positively associated with raising SBP in total population and all BP indices among women with cardiac problems at admission time. Several comprehensive studies are required for confirming these relations.
Collapse
Affiliation(s)
- Alireza Khosravi
- Professor, Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Reza Rajabi
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrbod Vakhshoori
- General Practitioner, Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Katayoun Rabiei
- General Practitioner, Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mohsen Hosseini
- Professor, Department of Biostatics and Epidemiology, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Asieh Mansouri
- Assistant Professor, Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshad Roghani-Dehkordi
- Professor, Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jamshid Najafian
- Associate Professor, Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Rahimi
- Associate Professor, Department of Anesthesiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tohid Jafari-Koshki
- Molecular Medicine Research Center, Department of Statistics and Epidemiology, School of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Sadeghian
- Central Laboratory and Air Pollution Monitoring, Isfahan Province Environmental Monitoring Center, Isfahan Department of Environment, Isfahan, Iran
| | | | | | - Marzieh Taheri
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nizal Sarrafzadegan
- Professor, Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
35
|
Tainio M, Jovanovic Andersen Z, Nieuwenhuijsen MJ, Hu L, de Nazelle A, An R, Garcia LMT, Goenka S, Zapata-Diomedi B, Bull F, Sá THD. Air pollution, physical activity and health: A mapping review of the evidence. ENVIRONMENT INTERNATIONAL 2021; 147:105954. [PMID: 33352412 PMCID: PMC7816214 DOI: 10.1016/j.envint.2020.105954] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Exposure to air pollution and physical inactivity are both significant risk factors for non-communicable diseases (NCDs). These risk factors are also linked so that the change in exposure in one will impact risks and benefits of the other. These links are well captured in the active transport (walking, cycling) health impact models, in which the increases in active transport leading to increased inhaled dose of air pollution. However, these links are more complex and go beyond the active transport research field. Hence, in this study, we aimed to summarize the empirical evidence on the links between air pollution and physical activity, and their combined effect on individual and population health. OBJECTIVES AND METHODS We conducted a non-systematic mapping review of empirical and modelling evidence of the possible links between exposure to air pollution and physical activity published until Autumn 2019. We reviewed empirical evidence for the (i) impact of exposure to air pollution on physical activity behaviour, (ii) exposure to air pollution while engaged in physical activity and (iii) the short-term and (iv) long-term health effects of air pollution exposure on people engaged in physical activity. In addition, we reviewed (v) public health modelling studies that have quantified the combined effect of air pollution and physical activity. These broad research areas were identified through expert discussions, including two public events performed in health-related conferences. RESULTS AND DISCUSSION The current literature suggests that air pollution may decrease physical activity levels during high air pollution episodes or may prevent people from engaging in physical activity overall in highly polluted environments. Several studies have estimated fine particulate matter (PM2.5) exposure in active transport environment in Europe and North-America, but the concentration in other regions, places for physical activity and for other air pollutants are poorly understood. Observational epidemiological studies provide some evidence for a possible interaction between air pollution and physical activity for acute health outcomes, while results for long-term effects are mixed with several studies suggesting small diminishing health gains from physical activity due to exposure to air pollution for long-term outcomes. Public health modelling studies have estimated that in most situations benefits of physical activity outweigh the risks of air pollution, at least in the active transport environment. However, overall evidence on all examined links is weak for low- and middle-income countries, for sensitive subpopulations (children, elderly, pregnant women, people with pre-existing conditions), and for indoor air pollution. CONCLUSIONS Physical activity and air pollution are linked through multiple mechanisms, and these relations could have important implications for public health, especially in locations with high air pollution concentrations. Overall, this review calls for international collaboration between air pollution and physical activity research fields to strengthen the evidence base on the links between both and on how policy options could potentially reduce risks and maximise health benefits.
Collapse
Affiliation(s)
- Marko Tainio
- Sustainable Urbanisation Programme, Finnish Environment Institute SYKE, Helsinki, Finland; Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | - Mark J Nieuwenhuijsen
- ISGlobal - Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Liang Hu
- Department of Sport Science, Zhejiang University, Hangzhou, China
| | - Audrey de Nazelle
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Ruopeng An
- Brown School, Washington University in St. Louis, St. Louis, US
| | | | - Shifalika Goenka
- Centre for Chronic Disease Control and Public Health Foundation of India, New Delhi, India
| | | | - Fiona Bull
- Department of Health Promotion, World Health Organization, Geneva, Switzerland
| | - Thiago Herick de Sá
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
36
|
Lederer AM, Fredriksen PM, Nkeh-Chungag BN, Everson F, Strijdom H, De Boever P, Goswami N. Cardiovascular effects of air pollution: current evidence from animal and human studies. Am J Physiol Heart Circ Physiol 2021; 320:H1417-H1439. [PMID: 33513082 DOI: 10.1152/ajpheart.00706.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Air pollution is a global health concern. Particulate matter (PM)2.5, a component of ambient air pollution, has been identified by the World Health Organization as one of the pollutants that poses the greatest threat to public health. Cardiovascular health effects have been extensively documented, and these effects are still being researched to provide an overview of recent literature regarding air pollution-associated cardiovascular morbidity and mortality in humans. Additionally, potential mechanisms through which air pollutants affect the cardiovascular system are discussed based on human and additional animal studies. We used the strategy of a narrative review to summarize the scientific literature of studies that were published in the past 7 yr. Searches were carried out on PubMed and Web of Science using predefined search queries. We obtained an initial set of 800 publications that were filtered to 78 publications that were relevant to include in this review. Analysis of the literature showed significant associations between air pollution, especially PM2.5, and the risk of elevated blood pressure (BP), acute coronary syndrome, myocardial infarction (MI), cardiac arrhythmia, and heart failure (HF). Prominent mechanisms that underlie the adverse effects of air pollution include oxidative stress, systemic inflammation, endothelial dysfunction, autonomic imbalance, and thrombogenicity. The current review underscores the relevance of air pollution as a global health concern that affects cardiovascular health. More rigorous standards are needed to reduce the cardiovascular disease burden imposed by air pollution. Continued research on the health impact of air pollution is needed to provide further insight.
Collapse
Affiliation(s)
- Agnes Maria Lederer
- Physiology Division, Otto Loewi Research Centre, Medical University of Graz, Graz, Austria
| | | | - Benedicta Ngwenchi Nkeh-Chungag
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Frans Everson
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Stellenbosch University, Stellenbosch, South Africa
| | - Hans Strijdom
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Stellenbosch University, Stellenbosch, South Africa
| | - Patrick De Boever
- Department of Biology, University of Antwerp, Wilrijk, Belgium.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nandu Goswami
- Physiology Division, Otto Loewi Research Centre, Medical University of Graz, Graz, Austria.,Department of Health Sciences, Alma Mater Europaea Maribor, Maribor, Slovenia
| |
Collapse
|
37
|
Heterogeneous Urban Exposures and Prevalent Hypertension in the Helsinki Capital Region, Finland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031196. [PMID: 33572804 PMCID: PMC7908151 DOI: 10.3390/ijerph18031196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022]
Abstract
Urban dwellers are simultaneously exposed to several environmental health risk factors. This study aimed to examine the relationship between long-term exposure to fine particulate matter (PM2.5, diameter < 2.5 µm) of residential-wood-burning and road-traffic origin, road-traffic noise, green space around participants’ homes, and hypertension. In 2015 and 2016, we conducted a survey of residents of the Helsinki Capital Region to determine their perceptions of environmental quality and safety, lifestyles, and health statuses. Recent antihypertensive medication was used as an indicator of current hypertensive illness. Individual-level exposure was estimated by linking residential coordinates with modelled outdoor levels of wood-smoke- and traffic-related PM2.5, road-traffic noise, and coverage of natural spaces. Relationships between exposure and hypertension were modelled using multi-exposure and single-exposure binary logistic regression while taking smooth functions into account. Twenty-eight percent of the participants were current users of antihypertensive medication. The odds ratios (95% confidence interval) for antihypertensive use were 1.12 (0.78–1.57); 0.97 (0.76–1.26); 0.98 (0.93–1.04) and 0.99 (0.94–1.04) for wood-smoke PM2.5, road-traffic PM2.5, road-traffic noise, and coverage of green space, respectively. We found no evidence of an effect of the investigated urban exposures on prevalent hypertension in the Helsinki Capital Region.
Collapse
|
38
|
Pacitto A, Stabile L, Morawska L, Nyarku M, Torkmahalleh MA, Akhmetvaliyeva Z, Andrade A, Dominski FH, Mantecca P, Shetaya WH, Mazaheri M, Jayaratne R, Marchetti S, Hassan SK, El-Mekawy A, Mohamed EF, Canale L, Frattolillo A, Buonanno G. Daily submicron particle doses received by populations living in different low- and middle-income countries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116229. [PMID: 33321310 DOI: 10.1016/j.envpol.2020.116229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/21/2020] [Accepted: 12/03/2020] [Indexed: 05/26/2023]
Abstract
In the present study, the daily dose in terms of particle surface area received by citizens living in different low- and middle-income countries, characterized by different lifestyles, habits, and climates, was evaluated. The level of exposure to submicron particles and the dose received by the populations of Accra (Ghana), Cairo (Egypt), Florianopolis (Brazil), and Nur-Sultan (Kazakhstan) were analyzed. A direct exposure assessment approach was adopted to measure the submicron particle concentration levels of volunteers at a personal scale during their daily activities. Non-smoking adult volunteers performing non-industrial jobs were considered. Exposure data were combined with time-activity pattern data (characteristic of each population) and the inhalation rates to estimate the daily dose in terms of particle surface area. The received dose of the populations under investigation varied from 450 mm2 (Florianopolis, Brazil) to 1300 mm2 (Cairo, Egypt). This work highlights the different contributions of the microenvironments to the daily dose with respect to high-income western populations. It was evident that the contribution of the Cooking & Eating microenvironment to the total exposure (which was previously proven to be one of the main exposure routes for western populations) was only 8%-14% for low- and middle-income populations. In contrast, significant contributions were estimated for Outdoor day and Transport microenvironments (up to 20% for Cairo, Egypt) and the Sleeping & Resting microenvironment (up to 28% for Accra, Ghana), highlighting the effects of different site-specific lifestyles (e.g. time-activity patterns), habits, socioeconomic conditions, climates, and outdoor air quality.
Collapse
Affiliation(s)
- Antonio Pacitto
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy.
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Mawutorli Nyarku
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Mehdi Amouei Torkmahalleh
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Zarina Akhmetvaliyeva
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Alexandro Andrade
- Center of Health and Sport Science, State University of Santa Catarina, Florianópolis, Brazil
| | - Fabio Hech Dominski
- Center of Health and Sport Science, State University of Santa Catarina, Florianópolis, Brazil
| | - Paride Mantecca
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano Bicocca, Milan, Italy
| | - Waleed H Shetaya
- Air Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Mandana Mazaheri
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Rohan Jayaratne
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Sara Marchetti
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano Bicocca, Milan, Italy
| | - Salwa K Hassan
- Air Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Asmaa El-Mekawy
- Air Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Elham F Mohamed
- Air Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Laura Canale
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - Andrea Frattolillo
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
39
|
Xu H, Guo B, Qian W, Ciren Z, Guo W, Zeng Q, Mao D, Xiao X, Wu J, Wang X, Wei J, Chen G, Li S, Guo Y, Meng Q, Zhao X, Cohort (CMEC) CME. Dietary Pattern and Long-Term Effects of Ambient Particulate Matter on Hypertension and Blood Pressure in Chinese Adults. SSRN ELECTRONIC JOURNAL 2021. [DOI: 10.2139/ssrn.3778003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
40
|
Gabdrashova R, Nurzhan S, Naseri M, Bekezhankyzy Z, Gimnkhan A, Malekipirbazari M, Tabesh M, Khanbabaie R, Crape B, Buonanno G, Hopke PK, Amouei Torkmahalleh A, Amouei Torkmahalleh M. The impact on heart rate and blood pressure following exposure to ultrafine particles from cooking using an electric stove. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141334. [PMID: 32846247 DOI: 10.1016/j.scitotenv.2020.141334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Cooking is a major source of indoor particulate matter (PM), especially ultrafine particles (UFPs). Long-term exposure to fine and ultrafine particles (UFPs) has been associated with adverse human health effects. Toxicological studies have demonstrated that exposure to PM2.5 (particles with aerodynamic diameter smaller than 2.5 μm) may result in increased blood pressure (BP). Some clinical studies have shown that acute exposure to PM2.5 causes changes in systolic (SBP) and diastolic blood pressure (DBP), depending on the source of particles. Studies assessing the effect of exposure to cooking PM on BP and heart rate (HR) using electric or gas stoves are not well represented in the literature. The aim of this investigation was to perform controlled studies to quantify the exposure of 50 healthy volunteer participants to fine and ultrafine particles emitted from a low-emissions recipe for frying ground beef on an electric stove. The BP and heart rate (HR) of the volunteers were monitored during exposure and after the exposure (2 h post-exposure). Maximum UFP and PM2.5 concentrations were 6.5 × 104 particles/cm3 and 0.017 mg/m3, respectively. Exposure to UFPs from frying was associated with statistically significant increases in the SBP. The lack of food and drink during the 2 h post-cooking period was also associated with a statistically significant reduction in SBP. No statistically significant changes in DBP were observed. Physiological factors, including heat stress over the stove, movements and anxiety, could be responsible for an elevation in HR at the early stages of the experiments with a subsequent drop in HR after 90 min post-cooking, when study participants were relaxed in a living room.
Collapse
Affiliation(s)
- Raikhangul Gabdrashova
- Department of Biology, School of Humanities and Social Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Sholpan Nurzhan
- Department of Biology, School of Humanities and Social Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Motahareh Naseri
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Zhibek Bekezhankyzy
- Department of Chemistry, School of Humanities and Social Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Aidana Gimnkhan
- Department of Chemistry, School of Humanities and Social Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Milad Malekipirbazari
- Department of Industrial Engineering, Bilkent University, Bilkent, 06800 Ankara, Turkey
| | - Mahsa Tabesh
- Department of Physics, Babol Noshirvani University of Technology, Shariati Ave., Babol 47148-71167, Iran
| | - Reza Khanbabaie
- Department of Physics, Babol Noshirvani University of Technology, Shariati Ave., Babol 47148-71167, Iran
| | - Byron Crape
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, Cassino 03043, Italy
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | - Mehdi Amouei Torkmahalleh
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan.
| |
Collapse
|
41
|
Shaffer RM, Li G, Adar SD, Dirk Keene C, Latimer CS, Crane PK, Larson EB, Kaufman JD, Carone M, Sheppard L. Fine Particulate Matter and Markers of Alzheimer's Disease Neuropathology at Autopsy in a Community-Based Cohort. J Alzheimers Dis 2021; 79:1761-1773. [PMID: 33459717 PMCID: PMC8061707 DOI: 10.3233/jad-201005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Evidence links fine particulate matter (PM2.5) to Alzheimer's disease (AD), but no community-based prospective cohort studies in older adults have evaluated the association between long-term exposure to PM2.5 and markers of AD neuropathology at autopsy. OBJECTIVE Using a well-established autopsy cohort and new spatiotemporal predictions of air pollution, we evaluated associations of 10-year PM2.5 exposure prior to death with Braak stage, Consortium to Establish a Registry for AD (CERAD) score, and combined AD neuropathologic change (ABC score). METHODS We used autopsy specimens (N = 832) from the Adult Changes in Thought (ACT) study, with enrollment ongoing since 1994. We assigned long-term exposure at residential address based on two-week average concentrations from a newly developed spatiotemporal model. To account for potential selection bias, we conducted inverse probability weighting. Adjusting for covariates with tiered models, we performed ordinal regression for Braak and CERAD and logistic regression for dichotomized ABC score. RESULTS 10-year average (SD) PM2.5 from death across the autopsy cohort was 8.2 (1.9) μg/m3. Average age (SD) at death was 89 (7) years. Each 1μg/m3 increase in 10-year average PM2.5 prior to death was associated with a suggestive increase in the odds of worse neuropathology as indicated by CERAD score (OR: 1.35 (0.90, 1.90)) but a suggestive decreased odds of neuropathology as defined by the ABC score (OR: 0.79 (0.49, 1.19)). There was no association with Braak stage (OR: 0.99 (0.64, 1.47)). CONCLUSION We report inconclusive associations between PM2.5 and AD neuropathology at autopsy among a cohort where 94% of individuals experienced 10-year exposures below the current EPA standard. Prior studies of AD risk factors and AD neuropathology are similarly inconclusive, suggesting alternative mechanistic pathways for disease or residual confounding.
Collapse
Affiliation(s)
- Rachel M. Shaffer
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA
| | - Ge Li
- VA Northwest Network Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Sara D. Adar
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - C. Dirk Keene
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Caitlin S. Latimer
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Paul K. Crane
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Eric B. Larson
- School of Medicine, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA
- Departments of Medicine and Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Marco Carone
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| |
Collapse
|
42
|
Lambrechtsen J, Mayntz SK, Engdam KB, Egstrup K, Nielsen J, Steffensen FH, Frohn LM, Brandt J, Ketzel M, Pyndt Diederichsen AC, Lindholt JS. Relation between Accumulated Air Pollution Exposure and Sub-Clinical Cardiovascular Disease in 33,723 Danish 60-74-Year-Old Males from the Background Population (AIR-CARD): A Method Article. Cardiology 2020; 146:19-26. [PMID: 33238279 DOI: 10.1159/000511128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/17/2020] [Indexed: 11/19/2022]
Abstract
Cardiovascular disease is one of the main causes of death and disability in the Western world, and there is increasing evidence that air pollution is a risk factor for developing sub-clinical cardiovascular diseases. Previous studies have shown a correlation between cardiovascular disease and short-term exposure to elevated air pollution levels. However, the literature on the impact of long-term effect of air pollution is limited. We have a unique opportunity to evaluate this correlation. The DEHM/UBM/AirGIS model system calculates air pollution in a high temporal and spatial resolution and traces air pollution retrospectively to year 1979. The model calculates accumulated exposure using annual exposure from PM2.5 in relation to home and work addresses and takes into account working hours and holidays. We link the results from this model system to a population-based cardiovascular screening cohort of 33,723 individuals in the age of 60-74 to assess the contribution of the specific accumulated air pollution to the presence of sub-clinical arteriosclerosis in the coronary vessels, abdominal aortic aneurysms, and peripheral arterial disease. This correlation will be further analyzed in relation to specific air pollutants. This study will introduce more precise data for a longer period of time and incorporate participant's home and work addresses.
Collapse
Affiliation(s)
- Jess Lambrechtsen
- Cardiovascular Research Unit, Odense University Hospital - Svendborg, Svendborg, Denmark,
| | - Stephan Krog Mayntz
- Cardiovascular Research Unit, Odense University Hospital - Svendborg, Svendborg, Denmark
| | | | - Kenneth Egstrup
- Cardiovascular Research Unit, Odense University Hospital - Svendborg, Svendborg, Denmark
| | - Jan Nielsen
- Department of Clinical Epidemiology, Odense University Hospital, Odense, Denmark
| | | | - Lise M Frohn
- Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark
| | | | - Jes Sanddal Lindholt
- Department of Cardiothoracic and Vascular Surgery T, Odense University Hospital, Odense, Denmark
| |
Collapse
|
43
|
Associations of household solid fuel for heating and cooking with hypertension in Chinese adults. J Hypertens 2020; 39:667-676. [PMID: 33186328 DOI: 10.1097/hjh.0000000000002689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The association between indoor air pollution resulting from household solid fuel use for heating and cooking with hypertension or blood pressure (BP) remains less clear. This study aims to rectify these knowledge gaps in a large Chinese population. METHODS During 2005-2009, 44 007 individuals aged 35-70 years with complete information on household solid fuel use for cooking and heating were recruited from 279 urban and rural communities of 12 centers. Solid fuel referred to charcoal, coal, wood, agriculture crop, animal dung or shrub. Annual concentration of ambient atmospheric particulate matter that have a diameter of less than 2.5 μm for all communities was collected. Generalized linear mixed models using community as the random effect were performed to estimate the association with hypertension prevalence or BP after considering ambient atmospheric particulate matter that have a diameter of less than 2.5 μm and a comprehensive set of potential confounding factors at the individual and household level. RESULTS A total of 47.6 and 61.2% of participants used household solid fuel for heating and cooking, respectively. Solid fuel use for heating was not associated with an increase in hypertension prevalence (adjusted odds ratio = 1.08, 95% confident interval: 0.98, 1.20) or elevated SBP (0.62 mmHg, 95% confident interval: -0.24, 1.48). No association was found between solid fuel for cooking and hypertension or BP, and no additional risk was observed among participants who had both exposures to solid fuel for heating and cooking compared with those used for heating only. CONCLUSION The current large Chinese study revealed a statistically insignificant increase in the association between solid fuel use for heating and hypertension prevalence or BP. As this cross-sectional study has its inherent limitation on causality, findings from this study would have to be confirmed by prospective cohort studies.
Collapse
|
44
|
Zhao W. Effect of air pollution on household insurance purchases. Evidence from China household finance survey data. PLoS One 2020; 15:e0242282. [PMID: 33180874 PMCID: PMC7660464 DOI: 10.1371/journal.pone.0242282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/29/2020] [Indexed: 11/26/2022] Open
Abstract
In recent years, the health and economic effects of air pollution have attracted considerable attention, and health and insurance services have been closely related to residents’ welfare. However, there are few studies on the influence of pollution on household purchases of insurance. Using data from the 2013 and 2015 China Household Finance Surveys, this study investigates the effect of air pollution on insurance purchases using Logit and Poisson regression models. It is found that air pollution significantly increases the probability of household insurance purchases and the level of premium expenditure, although the impact of air pollution on insurance purchases shows a degree of heterogeneity. Health insurance is more sensitive to air pollution than life insurance and other types of insurance. In areas where NO2 and O3 are the main types of pollutants, air pollution has a greater impact on household insurance purchases.
Collapse
Affiliation(s)
- Wenxia Zhao
- Institute of Resources, Environment and Ecology, Tianjin Academy of Social Sciences, Tianjin, China
- * E-mail:
| |
Collapse
|
45
|
Shaffer RM, Sheppard L, Peskind ER, Zhang J, Adar SD, Li G. Fine Particulate Matter Exposure and Cerebrospinal Fluid Markers of Vascular Injury. J Alzheimers Dis 2020; 71:1015-1025. [PMID: 31476158 DOI: 10.3233/jad-190563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cerebrovascular diseases play an important role in dementia. Air pollution is associated with cardiovascular disease, with growing links to neurodegeneration. Prior studies demonstrate associations between fine particulate matter (PM2.5) and biomarkers of endothelial injury in the blood; however, no studies have evaluated these biomarkers in cerebrospinal fluid (CSF). OBJECTIVE We evaluate associations between short-term and long-term PM2.5 exposure with CSF vascular cell adhesion molecule-1 (VCAM-1) and e-selectin in cognitively normal and mild cognitive impairment (MCI)/Alzheimer's disease (AD) individuals. METHODS We collected CSF from 133 community volunteers at VA Puget Sound between 2001-2012. We assigned short-term PM2.5 from central monitors and long-term PM2.5 based on annual average exposure predictions linked to participant addresses. We performed analyses stratified by cognitive status and adjusted for key covariates with tiered models. Our primary exposure windows for the short-term and long-term analyses were 7-day and 1-year averages, respectively. RESULTS Among cognitively normal individuals, a 5 μg/m3 increase in 7-day and 1-year average PM2.5 was associated with elevated VCAM-1 (7-day: 35.4 (9.7, 61.1) ng/ml; 1-year: 51.8 (6.5, 97.1) ng/ml). A 5 μg/m3 increase in 1-year average PM2.5, but not 7-day average, was associated with elevated e-selectin (53.3 (11.0, 95.5) pg/ml). We found no consistent associations among MCI/AD individuals. CONCLUSIONS We report associations between short-term and long term PM2.5 and CSF biomarkers of vascular damage in cognitively normal adults. These results are aligned with prior research linking PM2.5 to vascular damage in other biofluids as well as emerging evidence of the role of PM2.5 in neurodegeneration.
Collapse
Affiliation(s)
- Rachel M Shaffer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.,Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Elaine R Peskind
- VA Northwest Network Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Jing Zhang
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Sara D Adar
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, WA, USA
| | - Ge Li
- VA Northwest Network Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.,Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| |
Collapse
|
46
|
Yu H, Yin Y, Zhang J, Zhou R. The impact of particulate matter 2.5 on the risk of preeclampsia: an updated systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37527-37539. [PMID: 32740838 PMCID: PMC7496023 DOI: 10.1007/s11356-020-10112-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/10/2020] [Indexed: 05/07/2023]
Abstract
There is increasing and inconsistent evidence of a linkage between maternal exposure to particulate matter 2.5 (PM2.5) and preeclampsia. Therefore, this study was conducted to investigate this relationship. Electronic databases including PubMed, Embase, Web of Science, and Cochrane Library were searched to identify articles published from inception to March 23, 2020, which showed a correlation between PM2.5 and preeclampsia. Finally, 9 of 523 initial studies were deemed eligible for inclusion. A random effect model was adopted to calculate the standardized odds ratio (OR) and 95% confidence interval (CI). Based on potential effect modification, subgroup analyses were further performed. Meta-analysis showed that maternal exposure to PM2.5 (per 10 μg/m3 increment) elevated the risk of preeclampsia (OR = 1.32, 95% CI 1.10 to 1.58%). Compared with other pregnancy trimesters, the third trimester of pregnancy seems to be the period in which women are more susceptible to PM2.5. Significant effect modification of the correlation between PM2.5 exposure and preeclampsia according to multiple pregnancies, pregnancy stage, maternal-related disease history, and sample size was not observed. The results demonstrated that maternal exposure to PM2.5 may predispose pregnant women to develop preeclampsia, especially in the third trimester of pregnancy. Therefore, more efforts should be made to improve air quality to maintain the health of pregnant women.
Collapse
Affiliation(s)
- Hongbiao Yu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yangxue Yin
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jiashuo Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
47
|
Chen Y, Fei J, Sun Z, Shen G, Du W, Zang L, Yang L, Wang Y, Wu R, Chen A, Zhao M. Household air pollution from cooking and heating and its impacts on blood pressure in residents living in rural cave dwellings in Loess Plateau of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36677-36687. [PMID: 32562231 DOI: 10.1007/s11356-020-09677-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/09/2020] [Indexed: 05/03/2023]
Abstract
Cave dwelling is an ancient and unique type of residence in the Loess Plateau of Northern China, where the economics are less-developed. The majority of the local dwellers rely on traditional solid fuels for cooking and heating, which can emit large amounts of particles into both indoor and outdoor environments. In this study, we measured the real-time household concentrations of PM2.5 and explored the association between personal daily PM2.5 exposure and blood pressure (BP). Cooking and heating activities with different energies made a great variation in the household PM2.5 air pollution, and residents using biomass had the highest personal PM2.5 exposure. Temperature and relative humidity are both significantly linear correlated with household PM2.5 air pollution. Besides, systolic blood pressure (SBP) was demonstrated to be positively associated with personal PM2.5 exposure: with each 10-μg/m3 incremental PM2.5 concentration when controlling all the other factors, SBP will increase by 0.36 mmHg (95% confident interval (CI) 0.05-0.0.77 mmHg). If solid fuels could be replaced with clean energies, personal PM2.5 exposure and SBP would reduce by more than 21% and 3.7%, respectively, calling for efficient intervention programs to mitigate household air pollution of cave dwellings and protect health of those residents.
Collapse
Affiliation(s)
- Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Jie Fei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Zhe Sun
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Guofeng Shen
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Wei Du
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Lu Zang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liyang Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yonghui Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Ruxin Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - An Chen
- College of Information Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
48
|
Xu N, Lv X, Yu C, Guo Y, Zhang K, Wang Q. The association between short-term exposure to extremely high level of ambient fine particulate matter and blood pressure: a panel study in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28113-28122. [PMID: 32415440 DOI: 10.1007/s11356-020-09126-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 04/29/2020] [Indexed: 05/22/2023]
Abstract
High blood pressure (BP) is known as the main determinant of high cerebrovascular disease levels in China. Many studies discovered the associations between short-term exposure to PM2.5 and BP, while most of those focused on low or medium PM2.5 concentration. The aim of this study was to reveal the association between extremely high level ambient PM2.5 exposure and BP. We conducted a repeated-measures panel study in Beijing, China, during December 1, 2016 to December 28, 2016. BP was monitored daily for all 133 participants. Daily concentration of PM2.5 was obtained from local monitoring sites. A linear mixed-effect model combined with the distributed lag non-linear model was used to evaluate the associations between PM2.5 and daily variations in BP. This study showed short-term exposure to PM2.5 that was significantly associated with increased DBP (on lags of 0-8 days, Beta = 0.12, 95% confidence interval 0.04, 0.20). The single day effect of PM2.5 on DBP had a 2-day lag, and the cumulative effect lags 5 days. The effects of PM2.5 on SBP and DBP on hypertensive adults were significant. The cumulative effect of PM2.5 on SBP and DBP had 2 rapidly increasing periods in hypertensive adults: lags of 0-2 days and lags of 0-7 days to lags of 0-11 days. Our study revealed that short-term exposure in the extreme high level of ambient PM2.5 may increase BP among adults. Hypertensive adults may more sensitive than normotensive adults. The periodic high concentration of ambient PM2.5 might magnify the effect of PM2.5 on BP increase.
Collapse
Affiliation(s)
- Ning Xu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xifang Lv
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chuanchuan Yu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yafei Guo
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kexing Zhang
- Xinwu District Center for Disease Control and Prevention, Wuxi, Jiangsu, China
| | - Qiang Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
49
|
Alemayehu YA, Asfaw SL, Terfie TA. Exposure to urban particulate matter and its association with human health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27491-27506. [PMID: 32410189 DOI: 10.1007/s11356-020-09132-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Human health and environmental risks are increasing following air pollution associated with vehicular and industrial emissions in which particulate matter is a constituent. The purpose of this review was to assess studies on the health effects and mortality induced by particles published for the last 15 years. The literature survey indicated the existence of strong positive associations between fine and ultrafine particles' exposure and cardiovascular, hypertension, obesity and type 2 diabetes mellitus, cancer health risks, and mortality. Its exposure is also associated with increased odds of hypertensive and diabetes disorders of pregnancy and premature deaths. The ever increasing hospital admission and mortality due to heart failure, diabetes, hypertension, and cancer could be due to long-term exposure to particles in different countries. Therefore, its effect should be communicated for legal and scientific actions to minimize emissions mainly from traffic sources.
Collapse
Affiliation(s)
| | - Seyoum Leta Asfaw
- Center for Environmental Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tadesse Alemu Terfie
- Center for Environmental Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
50
|
Kim MG, Lee SJ, Park D, Kim CH, Lee KH, Hwang JM. Relationship between the actual fine dust concentration and media exposure that influenced the changes in outdoor activity behavior in South Korea. Sci Rep 2020; 10:12006. [PMID: 32686706 PMCID: PMC7371889 DOI: 10.1038/s41598-020-68580-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/29/2020] [Indexed: 11/09/2022] Open
Abstract
The one reason of the decrease of walking time for adults in South Korea among various factors is the sense of fear about fine dust sparked by media reports, which has created a negative perception of fine dust. This study aimed to assess the change in concentration of fine dust, as well as individuals' walking time and health status, in South Korea, and to investigate the relationship between the media reports on fine dust. Using the national government statistics data, we analyzed the relationship between walking time, concentration of fine dust, and amount of media reports on fine dust. From 2008 to 2017, the average walking time and PM10 levels decreased from 76.17 to 49.47 min and 52 to 45 μg/m3; whereas PM10 media frequency increased from 349 to 9,234. No positive correlation existed between walking time in South Korea and exposure to fine dust. However, media reports on fine dust increased steadily from 2012 and peaked in 2015. The decrease in average walking time in South Korea was due to the negative perception created by the increase in media reports on fine dust, rather than the increase in the actual concentration of fine dust.
Collapse
Affiliation(s)
- Myung-Gwan Kim
- Graduate School of Public Health, Kyungpook National University, Daegu, South Korea
| | - Su-Jin Lee
- Graduate School of Public Health, Kyungpook National University, Daegu, South Korea
| | - Donghwi Park
- Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, Ulsan, South Korea.,University of Ulsan College of Medicine, Dong-gu, Ulsan, South Korea
| | - Chul-Hyun Kim
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, 200 Dongduk-ro Jung-gu, Daegu, 700-721, South Korea.,Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, 200 Dongduk-ro Jung-gu, Daegu, 700-721, South Korea
| | - Ki- Hoon Lee
- Mompyeonhan Rehabilitation Clinic, Daegu, South Korea
| | - Jong-Moon Hwang
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, 200 Dongduk-ro Jung-gu, Daegu, 700-721, South Korea. .,Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, 200 Dongduk-ro Jung-gu, Daegu, 700-721, South Korea.
| |
Collapse
|