1
|
Yuan A, Halabicky O, Liu J. Association between air pollution exposure and brain cortical thickness throughout the lifespan: A systematic review. Neuroscience 2024; 559:209-219. [PMID: 39236801 DOI: 10.1016/j.neuroscience.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Increasing research has focused on the impact of air pollution on brain health. As the prevalence of air pollution is increasing alongside other environmental harms, the importance of studying the effects of these changes on human health has become more significant. Additionally, gaining insight into how air pollution exposure, measured at different points in the lifespan, can affect brain structure is critical, as this could be a precursor to cognitive decline later in life. The purpose of this review was to synthesize the literature on the association between air pollutant exposure and cortical thickness, a structural change with known associations with later cognition and neurodegenerative disease. After screening, twelve studies were included in this systematic review. Across a majority of studies, results suggest significant associations between increasing air pollution exposure and decreases in cortical thickness, primarily in areas such as prefrontal cortex, precuneus, and temporal regions of the brain. These results did differ somewhat between age groups and different air pollutants, with the most prominent results being found with exposure to PM2.5, the smallest particulate matter size included in the review. In the future, it is important to continue studying cortical thickness as it is essential to brain functioning and can be influential in disease progression. Furthermore, conducting more longitudinal studies in which air pollution is measured as a cumulation throughout the lifespan would help elucidate when exposure is most impactful and when brain structural changes become observable.
Collapse
Affiliation(s)
- Aurora Yuan
- University of Pennsylvania, College of Arts & Sciences, 249 S 36th St, Philadelphia, PA 19104, United States
| | - Olivia Halabicky
- University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Jianghong Liu
- University of Pennsylvania, School of Nursing, 418 Curie Blvd, Philadelphia, PA 19104, United States.
| |
Collapse
|
2
|
Lin X, Cai M, Pan J, Liu E, Wang X, Song C, Lin H, Pan J. PM 2.5 chemical components are associated with in-hospital case fatality among acute myocardial infarction patients in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116898. [PMID: 39181075 DOI: 10.1016/j.ecoenv.2024.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Recent studies have linked the cardiovascular events with the exposure to ambient fine particulate matter (PM2.5); however, the impact of PM2.5 chemical components on acute myocardial infarction (AMI) case fatality remains poorly understood. To address this gap, we included 178,340 hospitalised patients with AMI utilising the inpatient discharge database from Sichuan, Shanxi, Guangxi, and Guangdong, China spanning 2014-2019. We evaluated exposure to PM2.5 and its components (black carbon (BC), organic matter (OM), sulphate (SO42-), nitrate (NO3-), and ammonium (NH4+)) using bilinear interpolation based on the patient's residential address. We used mixed-effects logistic regression models to investigate the associations of PM2.5 and its five components with in-hospital AMI case fatality. Per interquartile range (IQR) increment in short-term exposure (7-day average) to overall PM2.5 (odds ratio (OR): 1.086, 95 % confidence interval (CI): 1.045-1.128), SO42-(1.063, 1.024-1.104), BC (1.055, 1.023-1.089), OM (1.052, 1.019-1.086, and NO3- (1.045, 1.003-1.089) were significantly associated with high risk of in-hospital AMI case fatality. The ORs per IQR increment in long-term exposure (annual average) were 1.323 (95 % CI: 1.255-1.394) for PM2.5, followed by BC (1.271, 1.210-1.335), OM (1.243, 1.188-1.300), SO42- (1.212, 1.157-1.270), NO3- (1.116, 1.075-1.159), and NH4+ (1.068, 1.031-1.106). Our study suggests that PM2.5 chemical components might be important risk factors for in-hospital AMI case fatality, highlighting the importance of targeted reduction of PM2.5 emissions, particularly BC, OM, and SO42-.
Collapse
Affiliation(s)
- Xiaojun Lin
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, Zhongshan 2nd road, Yuexiu District, Guangzhou, Guangdong 510080, China
| | - Jingping Pan
- Health Information Center of Sichuan Province, No. 39, Wangjiaguai Street, Chengdu, Sichuan 610041, China
| | - Echu Liu
- Department of Health Management and Policy, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63103, USA
| | - Xiuli Wang
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China
| | - Chao Song
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, Zhongshan 2nd road, Yuexiu District, Guangzhou, Guangdong 510080, China.
| | - Jay Pan
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; School of Public Administration, Sichuan University, No.24 South Section I, Yihuan Road, Chengdu, Sichuan 610065, China.
| |
Collapse
|
3
|
Choi YY, Lee KH. Short- and medium-term exposure to ambient air pollution and periodontal status. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-11. [PMID: 39165084 DOI: 10.1080/09603123.2024.2393431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/10/2024] [Indexed: 08/22/2024]
Abstract
We investigated the association between ambient air pollutant exposure and periodontal health using data from 17,271 adults in the Korea National Health and Nutrition Examination Survey (2012-2015). Participants' periodontal status was categorized based on their community periodontal index (CPI) scores. Using multiple logistic regression models, we examined the relationship between air pollutant levels and poor periodontal status at various lag periods. After adjusting for potential confounders, PM10 exposure was associated with a poor periodontal status (short-term: 0-1 and 0-2 lag days; medium-term: 0-1 and 0-2 lag months). SO2 exposure showed similar associations (short-term, 0-2 to 0-7 lag days; medium-term, 0-4 to 0-6 lag months). Only increased medium-term O3 exposure (0-2 to 0-6 lag months) was associated with a poor periodontal status. NO2 exposure was inversely associated with poor periodontal status for both short- and medium-term durations.
Collapse
Affiliation(s)
- Yoon Young Choi
- Department of Dental Hygiene, College of Health, Shinhan University, Uijeongbu, Republic of Korea
| | - Kyeong Hee Lee
- Department of Dental Hygiene, College of Health, Shinhan University, Uijeongbu, Republic of Korea
| |
Collapse
|
4
|
Qiao JC, Sun LJ, Zhang MY, Gui SY, Wang XC, Hu CY. Association between ambient particulate matter exposure and mitochondrial DNA copy number: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171423. [PMID: 38442762 DOI: 10.1016/j.scitotenv.2024.171423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Ambient particulate matter (PM) has been recognized as inducing oxidative stress, which could contribute to mitochondrial damage and dysfunction. However, studies investigating the association between ambient PM and mitochondria, particularly mitochondrial DNA copy number (mtDNA-CN), have yielded inconsistent results. METHODS We conducted comprehensive literature searches to identify observational studies published before July 17, 2023, examining the association between ambient PM exposure and mtDNA-CN. Meta-analysis using random effects model was employed to calculate the pooled effect estimates for general individual exposures, as well as for prenatal exposure with specific trimester. Additionally, the quality and level of evidence for each exposure-outcome pair was evaluated. RESULTS A total of 10 studies were included in the systematic review and meta-analysis. The results indicated that general individual exposure to PM2.5 (β = -0.084, 95 % CI: -0.521, 0.353; I2 = 93 %) and PM10 (β = 0.035, 95 % CI: -0.129, 0.199; I2 = 95 %) did not significantly affect mtDNA-CN. Prenatal exposure to PM2.5 (β = 0.023, 95 % CI: -0.087, 0.133; I2 = 0 %) and PM10 (β = 0.006, 95 % CI: -0.135; 0.147; I2 = 51 %) were also not significantly associated with mtDNA-CN in offspring. The level of evidence for each tested exposure-outcome pair was assessed as "inadequate." CONCLUSIONS The findings of this systematic review and meta-analysis indicate that there is an "inadequate" strength of evidence for the association between general individual or prenatal exposure to ambient PM and mtDNA-CN. Future research necessitates studies with more rigorous design, enhanced control of confounding factors, and improved measures of exposure to substantiate our findings.
Collapse
Affiliation(s)
- Jian-Chao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Liang-Jie Sun
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Meng-Yue Zhang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Si-Yu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, China
| | - Xin-Chen Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, China
| | - Cheng-Yang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
5
|
Danesh Yazdi M, Amini H, Wei Y, Castro E, Shi L, Schwartz JD. Long-term exposure to PM2.5 species and all-cause mortality among Medicare patients using mixtures analyses. ENVIRONMENTAL RESEARCH 2024; 246:118175. [PMID: 38215924 DOI: 10.1016/j.envres.2024.118175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND The relationship between long-term exposure to PM2.5 and mortality is well-established; however, the role of individual species is less understood. OBJECTIVES In this study, we assess the overall effect of long-term exposure to PM2.5 as a mixture of species and identify the most harmful of those species while controlling for the others. METHODS We looked at changes in mortality among Medicare participants 65 years of age or older from 2000 to 2018 in response to changes in annual levels of 15 PM2.5 components, namely: organic carbon, elemental carbon, nickel, lead, zinc, sulfate, potassium, vanadium, nitrate, silicon, copper, iron, ammonium, calcium, and bromine. Data on exposure were derived from high-resolution, spatio-temporal models which were then aggregated to ZIP code. We used the rate of deaths in each ZIP code per year as the outcome of interest. Covariates included demographic, temperature, socioeconomic, and access-to-care variables. We used a mixtures approach, a weighted quantile sum, to analyze the joint effects of PM2.5 species on mortality. We further looked at the effects of the components when PM2.5 mass levels were at concentrations below 8 μg/m3, and effect modification by sex, race, Medicaid status, and Census division. RESULTS We found that for each decile increase in the levels of the PM2.5 mixture, the rate of all-cause mortality increased by 1.4% (95% CI: 1.3%-1.4%), the rate of cardiovascular mortality increased by 2.1% (95% CI: 2.0%-2.2%), and the rate of respiratory mortality increased by 1.7% (95% CI: 1.5%-1.9%). These effects estimates remained significant and slightly higher when we restricted to lower concentrations. The highest weights for harmful effects were due to organic carbon, nickel, zinc, sulfate, and vanadium. CONCLUSIONS Long-term exposure to PM2.5 species, as a mixture, increased the risk of all-cause, cardiovascular, and respiratory mortality.
Collapse
Affiliation(s)
- Mahdieh Danesh Yazdi
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA; Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Heresh Amini
- Department of Environmental Medicine and Public Health, Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine, New York, NY, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Edgar Castro
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
6
|
Yu W, Xu R, Ye T, Abramson MJ, Morawska L, Jalaludin B, Johnston FH, Henderson SB, Knibbs LD, Morgan GG, Lavigne E, Heyworth J, Hales S, Marks GB, Woodward A, Bell ML, Samet JM, Song J, Li S, Guo Y. Estimates of global mortality burden associated with short-term exposure to fine particulate matter (PM 2·5). Lancet Planet Health 2024; 8:e146-e155. [PMID: 38453380 DOI: 10.1016/s2542-5196(24)00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND The acute health effects of short-term (hours to days) exposure to fine particulate matter (PM2·5) have been well documented; however, the global mortality burden attributable to this exposure has not been estimated. We aimed to estimate the global, regional, and urban mortality burden associated with short-term exposure to PM2·5 and the spatiotemporal variations in this burden from 2000 to 2019. METHODS We combined estimated global daily PM2·5 concentrations, annual population counts, country-level mortality rates, and epidemiologically derived exposure-response functions to estimate the mortality attributable to short-term PM2·5 exposure from 2000 to 2019, in the continental regions and in 13 189 urban centres worldwide at a spatial resolution of 0·1° × 0·1°. We tested the robustness of our mortality estimates with different theoretical minimum risk exposure levels, lag effects, and exposure-response functions. FINDINGS Approximately 1 million (95% CI 690 000-1·3 million) premature deaths per year from 2000 to 2019 were attributable to short-term PM2·5 exposure, representing 2·08% (1·41-2·75) of total global deaths or 17 (11-22) premature deaths per 100 000 population. Annually, 0·23 million (0·15 million-0·30 million) deaths attributable to short-term PM2·5 exposure were in urban areas, constituting 22·74% of the total global deaths attributable to this cause and accounting for 2·30% (1·56-3·05) of total global deaths in urban areas. The sensitivity analyses showed that our worldwide estimates of mortality attributed to short-term PM2·5 exposure were robust. INTERPRETATION Short-term exposure to PM2·5 contributes a substantial global mortality burden, particularly in Asia and Africa, as well as in global urban areas. Our results highlight the importance of mitigation strategies to reduce short-term exposure to air pollution and its adverse effects on human health. FUNDING Australian Research Council and the Australian National Health and Medical Research Council.
Collapse
Affiliation(s)
- Wenhua Yu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Rongbin Xu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Tingting Ye
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Michael J Abramson
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Bin Jalaludin
- School of Population Health, University of New South Wales, Sydney, NSW, Australia
| | - Fay H Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Sarah B Henderson
- Environmental Health Services, BC Centre for Disease Control, Vancouver, BC, Canada
| | - Luke D Knibbs
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Public Health Unit, Sydney Local Health District, Sydney, NSW, Australia
| | - Geoffrey G Morgan
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; University Centre for Rural Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Eric Lavigne
- Air Health Science Division, Health Canada, Ottawa, ON, Canada
| | - Jane Heyworth
- School of Population and Global Health, The University of Western Australia, Crawley, WA, Australia
| | - Simon Hales
- Department of Public Health, University of Otago, Wellington South, New Zealand
| | - Guy B Marks
- Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Alistair Woodward
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Michelle L Bell
- School of the Environment, Yale University, New Haven, CT, USA
| | | | - Jiangning Song
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Xie T, Zhang Y, Kong H, Guan L, Zhang L, Yu J, Zhu P, Ma S, Zhu DM. Association between ambient particulate matters and anhedonia among patients with depression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4539-4546. [PMID: 38102428 PMCID: PMC10794277 DOI: 10.1007/s11356-023-31474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Recent studies have linked ambient air pollution to depression. Anhedonia is a core symptom of depression which severely impacts on prognosis. The present study aims to investigate the association of PM2.5 and PM10 exposure with anhedonia in depressed patients. A total of 538 patients with depression who were hospitalized at the Fourth People's Hospital of Hefei between June 2017 and December 2021 were included. We estimated ambient particulate matters exposure, including PM2.5 and PM10, using a satellite-based spatiotemporal model at a resolution of 1 km2. The revised Physical Anhedonia Scale (RPAS) and the revised Social Anhedonia Scale (RSAS) were evaluated. The association of ambient particulate matters and anhedonia was examined using multiple linear regression models, adjusted for potential confounders. We observed that exposure to PM2.5 were significantly associated with increased RSAS score and RPAS score, with the major effect in the 12-month exposure window (β = 1.238; 95%CI, 0.353, 2.123) and 18-month exposure window (β = 1.888; 95%CI, 0.699, 3.078), respectively. Meanwhile, PM10 levels were also significantly associated with increased RSAS score and RPAS score, with the major effect in the 18-month exposure window (β = 1.220; 95%CI, 0.439, 2) and 3-month exposure window (β = 1.602; 95%CI, 0.062, 3.143), respectively. Subgroup analysis showed that both PM2.5 and PM10 were significantly associated with anhedonia in females, patients < 40 years old, low family income group, and those who had a higher educational level. Our study suggests that long-term PM2.5 and PM10 exposure are associated with more severe anhedonia in patients with depression. These associations were different in subgroup by age, gender, family income, and educational level.
Collapse
Affiliation(s)
- Tianqin Xie
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Hefei Fourth People's Hospital, Hefei, 230022, China
| | - Yu Zhang
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Hefei Fourth People's Hospital, Hefei, 230022, China
| | - Hui Kong
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Hefei Fourth People's Hospital, Hefei, 230022, China
| | - Lianzi Guan
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Hefei Fourth People's Hospital, Hefei, 230022, China
| | - Lei Zhang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jiakuai Yu
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Hefei Fourth People's Hospital, Hefei, 230022, China
| | - Peng Zhu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Shuangshuang Ma
- School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Dao-Min Zhu
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China.
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China.
- Hefei Fourth People's Hospital, Hefei, 230022, China.
| |
Collapse
|
8
|
Abed Al Ahad M, Demšar U, Sullivan F, Kulu H. Long-term exposure to air pollution and mortality in Scotland: A register-based individual-level longitudinal study. ENVIRONMENTAL RESEARCH 2023; 238:117223. [PMID: 37793592 DOI: 10.1016/j.envres.2023.117223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Air pollution is associated with several adverse health outcomes. However, heterogeneity in the size of effect estimates between cohort studies for long-term exposures exist and pollutants like SO2 and mental/behavioural health outcomes are little studied. This study examines the association between long-term exposure to multiple ambient air pollutants and all-cause and cause-specific mortality from both physical and mental illnesses. METHODS We used individual-level administrative data from the Scottish-Longitudinal-Study (SLS) on 202,237 individuals aged 17 and older, followed between 2002 and 2017. The SLS dataset was linked to annual concentrations of NO2, SO2, and particulate-matter (PM10, PM2.5) pollution at 1 km2 spatial resolution using the individuals' residential postcode. We applied survival analysis to assess the association between air pollution and all-cause, cardiovascular, respiratory, cancer, mental/behavioural disorders/suicides, and other-causes mortality. RESULTS Higher all-cause mortality was associated with increasing concentrations of PM2.5, PM10, NO2, and SO2 pollutants. NO2, PM10, and PM2.5 were also associated with cardiovascular, respiratory, cancer and other-causes mortality. For example, the mortality hazard from respiratory diseases was 1.062 (95%CI = 1.028-1.096), 1.025 (95%CI = 1.005-1.045), and 1.013 (95%CI = 1.007-1.020) per 1 μg/m3 increase in PM2.5, PM10 and NO2 pollutants, respectively. In contrast, mortality from mental and behavioural disorders was associated with 1 μg/m3 higher exposure to SO2 pollutant (HR = 1.042; 95%CI = 1.015-1.069). CONCLUSION This study revealed an association between long-term (16-years) exposure to ambient air pollution and all-cause and cause-specific mortality. The results suggest that policies and interventions to enhance air quality would reduce the mortality hazard from cardio-respiratory, cancer, and mental/behavioural disorders in the long-term.
Collapse
Affiliation(s)
- Mary Abed Al Ahad
- School of Geography and Sustainable Development, University of St Andrews, Scotland, United Kingdom.
| | - Urška Demšar
- School of Geography and Sustainable Development, University of St Andrews, Scotland, United Kingdom
| | - Frank Sullivan
- School of Medicine, University of St Andrews, Scotland, United Kingdom
| | - Hill Kulu
- School of Geography and Sustainable Development, University of St Andrews, Scotland, United Kingdom
| |
Collapse
|
9
|
Weismann D, Möckel M, Paeth H, Slagman A. Modelling variations of emergency attendances using data on community mobility, climate and air pollution. Sci Rep 2023; 13:20595. [PMID: 37996460 PMCID: PMC10667222 DOI: 10.1038/s41598-023-47857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023] Open
Abstract
Air pollution is associated with morbidity and mortality worldwide. We investigated the impact of improved air quality during the economic lockdown during the SARS-Cov2 pandemic on emergency room (ER) admissions in Germany. Weekly aggregated clinical data from 33 hospitals were collected in 2019 and 2020. Hourly concentrations of nitrogen and sulfur dioxide (NO2, SO2), carbon and nitrogen monoxide (CO, NO), ozone (O3) and particulate matter (PM10, PM2.5) measured by ground stations and meteorological data (ERA5) were selected from a 30 km radius around the corresponding ED. Mobility was assessed using aggregated cell phone data. A linear stepwise multiple regression model was used to predict ER admissions. The average weekly emergency numbers vary from 200 to over 1600 cases (total n = 2,216,217). The mean maximum decrease in caseload was 5 standard deviations. With the enforcement of the shutdown in March, the mobility index dropped by almost 40%. Of all air pollutants, NO2 has the strongest correlation with ER visits when averaged across all departments. Using a linear stepwise multiple regression model, 63% of the variation in ER visits is explained by the mobility index, but still 6% of the variation is explained by air quality and climate change.
Collapse
Affiliation(s)
- Dirk Weismann
- Intensive Care Unit, Department of Internal Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany.
| | - Martin Möckel
- Departments of Emergency and Acute Medicine, Campus Mitte and Virchow-Klinikum, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Paeth
- Geographical Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Anna Slagman
- Departments of Emergency and Acute Medicine, Campus Mitte and Virchow-Klinikum, Charite-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Abed Al Ahad M. The association of long-term exposure to outdoor air pollution with all-cause GP visits and hospital admissions by ethnicity and country of birth in the United Kingdom. PLoS One 2023; 18:e0275414. [PMID: 37819897 PMCID: PMC10566689 DOI: 10.1371/journal.pone.0275414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Air pollution is associated with poor health. Yet, more research is needed to reveal the association of long-term exposure to outdoor air pollution with less studied health outcomes like hospital admissions and general-practitioner (GP) visits and whether this association is stronger for ethnic minorities compared to the rest of population. This study investigates the association between air pollution and all-cause GP visits and hospital admissions by ethnicity in the United-Kingdom (UK). METHODS We used individual-level longitudinal data from the "UK Household Longitudinal Study" including 46,442 adult individuals who provided 140,466 responses across five years (2015-2019). This data was linked to yearly concentrations of NO2, SO2, and particulate-matter (PM10, PM2.5) outdoor pollution using the Lower Super Output Area (LSOA) of residence for each individual. Multilevel mixed-effects ordered logistic models were used to assess the association between air pollution and all-cause GP visits and hospital admissions. RESULTS We found higher odds of hospital admissions per 1 μg/m3 increase in annual concentrations of NO2 (OR = 1.008; 95%CI = 1.004-1.012), SO2 (OR = 1.048; 95%CI = 1.014-1.083), PM10 (OR = 1.011; 95%CI = 1.003-1.018), and PM2.5 (OR = 1.018; 95%CI = 1.007-1.029) pollutants. Higher odds of GP visits were also observed with increased exposure to NO2 (OR = 1.010; 95%CI = 1.006-1.014) and SO2 (OR = 1.114; 95%CI = 1.077-1.152) pollutants. The observed associations did not differ across ethnic groups, but by country of birth, they were more pronounced in individuals born outside UK than those born in UK. CONCLUSION This study supports an association between higher exposure to outdoor air pollution and increased all-cause hospital admissions and GP visits. Further longitudinal studies with longer follow-up time periods may be able to reveal more definite conclusions on the influence of ethnicity on the association between long-term outdoor air pollution and both hospital admissions and GP visits.
Collapse
Affiliation(s)
- Mary Abed Al Ahad
- School of Geography and Sustainable Development, University of St Andrews, Scotland, United Kingdom
| |
Collapse
|
11
|
Motairek I, Makhlouf MHE, Rajagopalan S, Al-Kindi S. The Exposome and Cardiovascular Health. Can J Cardiol 2023; 39:1191-1203. [PMID: 37290538 PMCID: PMC10526979 DOI: 10.1016/j.cjca.2023.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
The study of the interplay between social factors, environmental hazards, and health has garnered much attention in recent years. The term "exposome" was coined to describe the total impact of environmental exposures on an individual's health and well-being, serving as a complementary concept to the genome. Studies have shown a strong correlation between the exposome and cardiovascular health, with various components of the exposome having been implicated in the development and progression of cardiovascular disease. These components include the natural and built environment, air pollution, diet, physical activity, and psychosocial stress, among others. This review provides an overview of the relationship between the exposome and cardiovascular health, highlighting the epidemiologic and mechanistic evidence of environmental exposures on cardiovascular disease. The interplay between various environmental components is discussed, and potential avenues for mitigation are identified.
Collapse
Affiliation(s)
- Issam Motairek
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Mohamed H E Makhlouf
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sadeer Al-Kindi
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
12
|
Ru M, Shindell D, Spadaro JV, Lamarque JF, Challapalli A, Wagner F, Kiesewetter G. New concentration-response functions for seven morbidity endpoints associated with short-term PM 2.5 exposure and their implications for health impact assessment. ENVIRONMENT INTERNATIONAL 2023; 179:108122. [PMID: 37659174 DOI: 10.1016/j.envint.2023.108122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Morbidity burdens from ambient air pollution are associated with market and non-market costs and are therefore important for policymaking. The estimation of morbidity burdens is based on concentration-response functions (CRFs). Most existing CRFs for short-term exposures to PM2.5 assume a fixed risk estimate as a log-linear function over an extrapolated exposure range, based on evidence primarily from Europe and North America. OBJECTIVES We revisit these CRFs by performing a systematic review for seven morbidity endpoints previously assessed by the World Health Organization, including data from all available regions. These endpoints include all cardiovascular hospital admission, all respiratory hospital admission, asthma hospital admission and emergency room visit, along with the outcomes that stem from morbidity, such as lost work days, respiratory restricted activity days, and child bronchitis symptom days. METHODS We estimate CRFs for each endpoint, using both a log-linear model and a nonlinear model that includes additional parameters to better fit evidence from high-exposure regions. We quantify uncertainties associated with these CRFs through randomization and Monte Carlo simulations. RESULTS The CRFs in this study show reduced model uncertainty compared with previous CRFs in all endpoints. The nonlinear CRFs produce more than doubled global estimates on average, depending on the endpoint. Overall, we assess that our CRFs can be used to provide policy analysis of air pollution impacts at the global scale. It is however important to note that improvement of CRFs requires observations over a wide range of conditions, and current available literature is still limited. DISCUSSION The higher estimates produced by the nonlinear CRFs indicates the possibility of a large underestimation in current assessments of the morbidity impacts attributable to air pollution. Further studies should be pursued to better constrain the CRFs studied here, and to better characterize the causal relationship between exposures to PM2.5 and morbidity outcomes.
Collapse
Affiliation(s)
- Muye Ru
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Now at The Earth Institute, Columbia University, New York, NY, USA.
| | - Drew Shindell
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Joseph V Spadaro
- Spadaro Environmental Research Consultants, Philadelphia, PA, USA
| | | | | | - Fabian Wagner
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Gregor Kiesewetter
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| |
Collapse
|
13
|
Ma Y, Su B, Li D, Cui F, Tang L, Wang J, Tian Y, Zheng X. Air pollution, genetic susceptibility, and the risk of atrial fibrillation: A large prospective cohort study. Proc Natl Acad Sci U S A 2023; 120:e2302708120. [PMID: 37523535 PMCID: PMC10410743 DOI: 10.1073/pnas.2302708120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/21/2023] [Indexed: 08/02/2023] Open
Abstract
To date, no study has explored the extent to which genetic susceptibility modifies the effects of air pollutants on the risk of atrial fibrillation (AF). This study was designed to investigate the separate and joint effects of long-term exposure to air pollutants and genetic susceptibility on the risk of AF events. This study included 401,251 participants without AF at baseline from UK Biobank. We constructed a polygenic risk score and categorized it into three categories. Cox proportional hazards models were fitted to assess the separate and joint effects of long-term exposure to air pollutants and genetics on the risk of AF. Additionally, we further evaluated the effect modification of genetic susceptibility. The hazard ratios and corresponding 95% confidence intervals of incident AF for per interquartile range increase in particulate matter with an aerodynamic diameter smaller than 2.5 µm (PM2.5) or 10 µm (PM10), nitrogen dioxide (NO2), and nitrogen oxide (NOx) were 1.044 (1.025, 1.063), 1.063 (1.044, 1.083), 1.061 (1.042, 1.081), and 1.039 (1.023, 1.055), respectively. For the combined effects, participants exposed to high air pollutants levels and high genetic risk had approximately 149.2% (PM2.5), 181.7% (PM10), 170.2% (NO2), and 157.2% (NOx) higher risk of AF compared to those with low air pollutants levels and low genetic risk, respectively. Moreover, the significant additive interactions between PM10 and NO2 and genetic risk on AF risk were observed, with around 16.4% and 35.1% of AF risk could be attributable to the interactive effects. In conclusion, long-term exposure to air pollutants increases the risk of AF, particularly among individuals with high genetic susceptibility.
Collapse
Affiliation(s)
- Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Dongcheng District, Beijing100730, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Feipeng Cui
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xiaoying Zheng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Dongcheng District, Beijing100730, China
| |
Collapse
|
14
|
Chen Z, Li W, Bai Y, Chen Y, Alif SM, Wang D. Editorial: Occupational and environmental health in middle-aged and older adults. Front Public Health 2023; 11:1196186. [PMID: 37250087 PMCID: PMC10211500 DOI: 10.3389/fpubh.2023.1196186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Affiliation(s)
- Zhaomin Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Yansen Bai
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yufeng Chen
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Sheikh M. Alif
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Naved MM, Wathore R, Kumbhare H, Gupta A, Labhasetwar N. Community kitchen tandoors (CKT)-a potential candidate for air pollution mitigation strategies? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56317-56329. [PMID: 36917380 DOI: 10.1007/s11356-023-26176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Community kitchen tandoor (CKT) is a clay-based hollow cylindrical device commonly used in South Asian and Middle Eastern countries for baking flatbreads and cooking meat. These CKTs, generally fuelled by charcoal or wood, contribute significantly to the pollution loads in ambient air along with occupational exposure hazards. CKTs, being a part of the informal sector, lack emissions and safety guidelines. This study surveys 139 restaurants in CKT hotspots of New Delhi, India, to understand tandoor design and operational parameters and to assess PM2.5 and CO exposure concentrations at representative field restaurants. PM2.5 and CO exposure concentrations from traditional CKT was found to be several-folds higher than safe indoor air quality levels. Further, the traditional CKT was evaluated for different improved fuels (like briquettes and pellets) in the laboratory for PM2.5 and CO microenvironment concentrations. It was found that the fuel improvements in traditional CKT could not improve microenvironment concentrations to the desired levels; hence, an automated pellet-fed forced-draft improved tandoor with an improved combustion chamber design is demonstrated. The results of the laboratory trial of improved tandoor were compared with traditional tandoor (using pellets) and have shown 84% and 94% reductions in PM2.5 and CO concentrations, respectively, indicating significant benefits to the environment and health. We recommend implementing such improved CKT, on a large scale, combined with other identified control options, as a potential candidate under air pollution mitigation strategies in cities' action plans under National Clean Air Programme (NCAP).
Collapse
Affiliation(s)
- Mohd Mubashshir Naved
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Roshan Wathore
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Himanshu Kumbhare
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Ankit Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
- CSIR-National Environmental Engineering Research Institute, Delhi Zonal Centre, Naraina, New Delhi, 110028, India.
| | - Nitin Labhasetwar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
16
|
Déméautis T, Bouyssi A, Geloen A, George C, Menotti J, Glehen O, Devouassoux G, Bentaher A. Weight loss and abnormal lung inflammation in mice chronically exposed to secondary organic aerosols. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:382-388. [PMID: 36789908 DOI: 10.1039/d2em00423b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Secondary organic aerosols (SOAs) have emerged recently as a major component of fine particulate matter. Cell culture studies revealed a role for SOAs in cell oxidative stress, toxicity and inflammation and only a few studies investigated short-term SOA exposure in animal models. Here, mice were chronically exposed to naphthalene-derived SOAs for one and two months. Weight monitoring indicated a marked mass loss, especially in females, following chronic exposure to SOAs. Significantly, a cytokine antibody microarray approach revealed SOA-induced abnormal lung inflammation similar to that seen in cigarette smoke-induced chronic obstructive pulmonary disease (COPD). This in vivo study testifies to the pathogenic role of sub-chronic SOA exposure on human health.
Collapse
Affiliation(s)
- Tanguy Déméautis
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69395 Pierre-Bénite, France
| | - Alexandra Bouyssi
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69395 Pierre-Bénite, France
| | - Alain Geloen
- University of Lyon, UMR Ecologie Microbienne Lyon (LEM), CNRS 5557, INRAE 1418, Université Claude Bernard Lyon 1, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69622 Villeurbanne, France
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Jean Menotti
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69395 Pierre-Bénite, France
| | - Olivier Glehen
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69395 Pierre-Bénite, France
- Service de chirurgie digestive et endocrinienne, CHU de Lyon HCL - GH Sud, 165 Chemin du Grand Revoyet, 69495 Pierre-Benite, France
| | - Gilles Devouassoux
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69395 Pierre-Bénite, France
- Service de Pneumologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, UCB Lyon 1, 103 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Abderrazzak Bentaher
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69395 Pierre-Bénite, France
| |
Collapse
|
17
|
A Review of the GSTM1 Null Genotype Modifies the Association between Air Pollutant Exposure and Health Problems. Int J Genomics 2023; 2023:4961487. [PMID: 36793931 PMCID: PMC9925255 DOI: 10.1155/2023/4961487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Air pollution is one of the significant environmental risks known as the cause of premature deaths. It has deleterious effects on human health, including deteriorating respiratory, cardiovascular, nervous, and endocrine functions. Exposure to air pollution stimulates reactive oxygen species (ROS) production in the body, which can further cause oxidative stress. Antioxidant enzymes, such as glutathione S-transferase mu 1 (GSTM1), are essential to prevent oxidative stress development by neutralizing excess oxidants. When the antioxidant enzyme function is lacking, ROS can accumulate and, thus, cause oxidative stress. Genetic variation studies from different countries show that GSTM1 null genotype dominates the GSTM1 genotype in the population. However, the impact of the GSTM1 null genotype in modifying the association between air pollution and health problem is not yet clear. This study will elaborate on GSTM1's null genotype role in modifying the relationship between air pollution and health problems.
Collapse
|
18
|
Pozzer A, Anenberg SC, Dey S, Haines A, Lelieveld J, Chowdhury S. Mortality Attributable to Ambient Air Pollution: A Review of Global Estimates. GEOHEALTH 2023; 7:e2022GH000711. [PMID: 36636746 PMCID: PMC9828848 DOI: 10.1029/2022gh000711] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 12/14/2022] [Indexed: 05/31/2023]
Abstract
Since the publication of the first epidemiological study to establish the connection between long-term exposure to atmospheric pollution and effects on human health, major efforts have been dedicated to estimate the attributable mortality burden, especially in the context of the Global Burden of Disease (GBD). In this work, we review the estimates of excess mortality attributable to outdoor air pollution at the global scale, by comparing studies available in the literature. We find large differences between the estimates, which are related to the exposure response functions as well as the number of health outcomes included in the calculations, aspects where further improvements are necessary. Furthermore, we show that despite the considerable advancements in our understanding of health impacts of air pollution and the consequent improvement in the accuracy of the global estimates, their precision has not increased in the last decades. We offer recommendations for future measurements and research directions, which will help to improve our understanding and quantification of air pollution-health relationships.
Collapse
Affiliation(s)
- A. Pozzer
- Max Planck Institute for ChemistryMainzGermany
- The Cyprus InstituteNicosiaCyprus
| | - S. C. Anenberg
- Milken Institute School of Public HealthWashington UniversityWashingtonDCUSA
| | - S. Dey
- Indian Institute of Technology DelhiDelhiIndia
| | - A. Haines
- London School of Hygiene and Tropical MedicineLondonUK
| | - J. Lelieveld
- Max Planck Institute for ChemistryMainzGermany
- The Cyprus InstituteNicosiaCyprus
| | - S. Chowdhury
- Max Planck Institute for ChemistryMainzGermany
- CICERO Center for International Climate ResearchOsloNorway
| |
Collapse
|
19
|
Hwang SE, Kwon H, Yun JM, Min K, Kim HJ, Park JH. Association between long-term air pollution exposure and insulin resistance independent of abdominal adiposity in Korean adults. Sci Rep 2022; 12:19147. [PMID: 36351977 PMCID: PMC9646867 DOI: 10.1038/s41598-022-23324-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/29/2022] [Indexed: 11/10/2022] Open
Abstract
Significant associations between air pollution (AP) and insulin resistance (IR) have been reported in limited populations or certain patient groups, but few studies have addressed this association in the general population, especially in Asians. Although abdominal fat is a major contributor to IR, previous studies have not fully controlled for its effect in the association between AP and IR. We investigated the association between exposure to AP and IR in Korean adults in the general population and whether this association is maintained even after controlling for the effects of abdominal fat, particularly visceral fat. This was a cross-sectional study. Data were obtained for Korean adults who participated in screening health checkups at Seoul National University Health Examination Center from 2006 to 2014. A total of 4251 men and women aged 22-84 years were included. IR was represented by the homeostasis model assessment of insulin resistance (HOMA-IR). Adiposity traits such as visceral adipose tissue (VAT) and subcutaneous adipose tissue areas were measured by computed tomography. We assessed the annual mean concentrations of air pollutants, including particulate matter with an aerodynamic diameter of 10 µm or less (PM10), nitrogen dioxide, sulfur dioxide, and carbon monoxide. HOMA-IR was significantly associated with increased annual mean exposure to PM10 in both men (β = 0.15; 95% CI 0.09, 0.22) and women (β = 0.16; 95% CI 0.09, 0.23), and these associations were maintained even after controlling for VAT area (both p < 0.05). The adjusted mean HOMA-IR increased gradually with the level of long-term PM10 exposure (low, intermediate, and high exposure) (all p for trend < 0.001) in the subgroup analysis. After adjusting for possible confounding factors, including VAT area, the annual mean exposure to PM10 was significantly associated with the presence of IR in both men (OR 1.18; 95% CI 1.03, 1.35) and women (OR 1.44; 95% CI 1.18, 1.76). Other air pollutants, such as NO2, SO2 and CO, did not show any significant associations with HOMA-IR or the presence of IR. Persistent exposure to PM10 is the main independent risk factor for IR and exhibits a dose-dependent association regardless of visceral fatness in both men and women.
Collapse
Affiliation(s)
- Seo Eun Hwang
- grid.31501.360000 0004 0470 5905Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehakro, Yeongun-Dong, Jongno-Gu, Seoul, 03080 South Korea ,grid.31501.360000 0004 0470 5905Department of Family Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyuktae Kwon
- grid.31501.360000 0004 0470 5905Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehakro, Yeongun-Dong, Jongno-Gu, Seoul, 03080 South Korea ,grid.31501.360000 0004 0470 5905Department of Family Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jae Moon Yun
- grid.31501.360000 0004 0470 5905Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehakro, Yeongun-Dong, Jongno-Gu, Seoul, 03080 South Korea ,grid.31501.360000 0004 0470 5905Department of Family Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyungha Min
- grid.31501.360000 0004 0470 5905Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehakro, Yeongun-Dong, Jongno-Gu, Seoul, 03080 South Korea ,grid.31501.360000 0004 0470 5905Department of Family Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyun-Jin Kim
- grid.410914.90000 0004 0628 9810Big Data Center, National Cancer Control Institute, National Cancer Center, 323 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do 10408 South Korea
| | - Jin-Ho Park
- grid.31501.360000 0004 0470 5905Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehakro, Yeongun-Dong, Jongno-Gu, Seoul, 03080 South Korea ,grid.31501.360000 0004 0470 5905Department of Family Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Bhat TH, Farzaneh H. Quantifying the multiple environmental, health, and economic benefits from the electrification of the Delhi public transport bus fleet, estimating a district-wise near roadway avoided PM 2.5 exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:116027. [PMID: 36104892 DOI: 10.1016/j.jenvman.2022.116027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/02/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
This study investigates the co-benefits from the utilization of the battery-electric bus (BEB) fleet in the Delhi public transportation system as a part of the Delhi electric vehicles policy 2020. To this aim, an integrated quantitative assessment framework is developed to estimate the expected environmental, health, and economic co-benefits from replacing the currently existing public bus fleet with the new BEBs in Delhi. First, the model estimates the avoided emissions from deploying the BEB fleet, using a detailed battery energy simulation model, considering the impact of the battery capacity loss on the annual operational time (hours of service) of the BEB. The annual operational time of the BEB is greatly affected by its battery degradation, which results in time lost due to charging the battery. This indicates that the annual passenger-kilometer (PKM) delivered by the BEB is less than the regular bus, under the same traveling condition. Second, considering fine particles (PM2.5) as the most health-harming pollutant, the model calculates the near roadway avoided PM2.5 exposure in the selected traffic zones of 11 major districts of Delhi, using a Gaussian dispersion model. Third, the near roadway avoided PM2.5 exposure is further used in a health impact assessment model, which considers concentration-response functions for several diseases to evaluate the public health benefits from introducing the BEB fleet in Delhi. The research findings indicate that, the utilization of the new BEB fleet leads to a 74.67% reduction in the total pollutant emissions from the existing bus fleet in Delhi. The results of the integrated co-benefits assessment reveal a significant reduction in PM2.5 emissions (44 t/y), leading to avoidance of mortality (1370 cases) and respiratory diseases related hospital admissions (2808 cases), respectively, and an annual savings of about USD 383 million from the avoided mortality and morbidity cases in Delhi.
Collapse
Affiliation(s)
- Tavoos Hassan Bhat
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, 816-8580, Japan.
| | - Hooman Farzaneh
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, 816-8580, Japan; Transdisciplinary Research and Education Center for Green Technologies, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
21
|
Isaac NA, Pikaar I, Biskos G. Metal oxide semiconducting nanomaterials for air quality gas sensors: operating principles, performance, and synthesis techniques. Mikrochim Acta 2022; 189:196. [PMID: 35445855 PMCID: PMC9023411 DOI: 10.1007/s00604-022-05254-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/26/2022] [Indexed: 11/30/2022]
Abstract
To meet requirements in air quality monitoring, sensors are required that can measure the concentration of gaseous pollutants at concentrations down to the ppb and ppt levels, while at the same time they exhibiting high sensitivity, selectivity, and short response/recovery times. Among the different sensor types, those employing metal oxide semiconductors (MOSs) offer great promises as they can be manufactured in easy/inexpensive ways, and designed to measure the concentration of a wide range of target gases. MOS sensors rely on the adsorption of target gas molecules on the surface of the sensing material and the consequent capturing of electrons from the conduction band that in turn affects their conductivity. Despite their simplicity and ease of manufacturing, MOS gas sensors are restricted by high limits of detection (LOD; which are typically in the ppm range) as well as poor sensitivity and selectivity. LOD and sensitivity can in principle be addressed by nanostructuring the MOSs, thereby increasing their porosity and surface-to-volume ratio, whereas selectivity can be tailored through their chemical composition. In this paper we provide a critical review of the available techniques for nanostructuring MOSs using chemiresistive materials, and discuss how these can be used to attribute desired properties to the end gas sensors. We start by describing the operating principles of chemiresistive sensors, and key material properties that define their performance. The main part of the paper focuses on the available methods for synthesizing nanostructured MOSs for use in gas sensors. We close by addressing the current needs and provide perspectives for improving sensor performance in ways that can fulfill requirements for air quality monitoring.
Collapse
Affiliation(s)
- N A Isaac
- Fachgebiet Nanotechnologie, Technische Universität Ilmenau, 98693, Ilmenau, Germany.
| | - I Pikaar
- School of Civil Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - G Biskos
- Climate and Atmosphere Research Center, The Cyprus Institute, 2121, Nicosia, Cyprus.
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, 2628 CN, The Netherlands.
| |
Collapse
|
22
|
Borroni E, Pesatori AC, Bollati V, Buoli M, Carugno M. Air pollution exposure and depression: A comprehensive updated systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118245. [PMID: 34600062 DOI: 10.1016/j.envpol.2021.118245] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
We provide a comprehensive and updated systematic review and meta-analysis of the association between air pollution exposure and depression, searching PubMed, Embase, and Web of Sciences for relevant articles published up to May 2021, and eventually including 39 studies. Meta-analyses were performed separately according to pollutant type [particulate matter with diameter ≤10 μm (PM10) and ≤2.5 μm (PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO)] and exposure duration [short- (<30 days) and long-term (≥30 days)]. Test for homogeneity based on Cochran's Q and I2 statistics were calculated and the restricted maximum likelihood (REML) random effect model was applied. We assessed overall quality of pooled estimates, influence of single studies on the meta-analytic estimates, sources of between-study heterogeneity, and publication bias. We observed an increased risk of depression associated with long-term exposure to PM2.5 (relative risk: 1.074, 95% confidence interval: 1.021-1.129) and NO2 (1.037, 1.011-1.064), and with short-term exposure to PM10 (1.009, 1.006-1.012), PM2.5 (1.009, 1.007-1.011), NO2 (1.022, 1.012-1.033), SO2 (1.024, 1.010-1.037), O3 (1.011, 0.997-1.026), and CO (1.062, 1.020-1.105). The publication bias affecting half of the investigated associations and the high heterogeneity characterizing most of the meta-analytic estimates partly prevent to draw very firm conclusions. On the other hand, the coherence of all the estimates after excluding single studies in the sensitivity analysis supports the soundness of our results. This especially applies to the association between PM2.5 and depression, strengthened by the absence of heterogeneity and of relevant publication bias in both long- and short-term exposure studies. Should further investigations be designed, they should involve large sample sizes, well-defined diagnostic criteria for depression, and thorough control of potential confounding factors. Finally, studies dedicated to the comprehension of the mechanisms underlying the association between air pollution and depression remain necessary.
Collapse
Affiliation(s)
- Elisa Borroni
- Department of Clinical Sciences and Community Health, University of Milan, via san Barnaba 8, 20122, Milan, Italy
| | - Angela Cecilia Pesatori
- Department of Clinical Sciences and Community Health, University of Milan, via san Barnaba 8, 20122, Milan, Italy; Epidemiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via san Barnaba 8, 20122, Milan, Italy.
| | - Valentina Bollati
- Department of Clinical Sciences and Community Health, University of Milan, via san Barnaba 8, 20122, Milan, Italy
| | - Massimiliano Buoli
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Michele Carugno
- Department of Clinical Sciences and Community Health, University of Milan, via san Barnaba 8, 20122, Milan, Italy; Epidemiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via san Barnaba 8, 20122, Milan, Italy
| |
Collapse
|
23
|
Short- and medium-term impacts of strict anti-contagion policies on non-COVID-19 mortality in China. Nat Hum Behav 2021; 6:55-63. [PMID: 34845358 DOI: 10.1038/s41562-021-01189-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/23/2021] [Indexed: 11/09/2022]
Abstract
The effects of coronavirus disease-19 (COVID-19) public health policies on non-COVID-19-related mortality are unclear. Here, using death registries based on 300 million Chinese people and a difference-in-differences design, we find that China's strict anti-contagion policies during the COVID-19 pandemic significantly reduced non-COVID-19 mortality outside Wuhan (by 4.6%). The health benefits persisted and became even greater after the measures were loosened: mortality was reduced by 12.5% in the medium term. Significant changes in people's behaviours (for example, wearing masks and practising social distancing) and reductions in air pollution and traffic accidents could have driven these results. We estimate that 54,000 lives could have been saved from non-COVID-19 causes during the 50 days of strict policies and 293,000 in the subsequent 115 days. The results suggest that virus countermeasures not only effectively controlled COVID-19 in China but also brought about unintended and substantial public health benefits.
Collapse
|
24
|
Sun B, Song J, Wang Y, Jiang J, An Z, Li J, Zhang Y, Wang G, Li H, Alexis NE, Jaspers I, Wu W. Associations of short-term PM 2.5 exposures with nasal oxidative stress, inflammation and lung function impairment and modification by GSTT1-null genotype: A panel study of the retired adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117215. [PMID: 33932759 DOI: 10.1016/j.envpol.2021.117215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
PM2.5 (particulate matter ≤2.5 μm in aerodynamic diameter) is a major urban air pollutant worldwide. Its effects on the respiratory system of the susceptible population have been less characterized. This study aimed to estimate the association of short-term PM2.5 exposure with respiratory outcomes of the retired adults, and to examine whether these associations were stronger among the subjects with GSTT-null genotype. 32 healthy subjects (55-77 years) were recruited for five follow-up examinations. Ambient concentrations of PM2.5 were monitored consecutively for 7 days prior to physical examination. Pulmonary outcomes including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), peak expiratory flow (PEF), and fractional exhaled nitric oxide (FeNO), and nasal fluid concentrations of 8-epi-prostaglandin F2 alpha (8-epi-PGF2α), tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8) and IL-1β were measured. A linear mixed-effect model was introduced to evaluate the associations of PM2.5 concentrations with respiratory outcomes. Additionally, GSTT1 genotype-based stratification was performed to characterize modification on PM2.5-related respiratory outcomes. We found that a 10 μg/m3 increase in PM2.5 was associated with decreases of 0.52 L (95% confidence interval [CI]: -1.04, -0.002), 0.64 L (95% CI: -1.13, -0.16), 0.1 (95% CI: -0.23, 0.04) and 2.87 L/s (95% CI: -5.09, -0.64) in FVC, FEV1, FEV1/FVC ratio and PEF at lag 2, respectively. Meanwhile, marked increases of 80.82% (95% CI: 5.13%, 156.50%) in IL-8, 77.14% (95% CI: 1.88%, 152.40%) in IL-1β and 67.87% (95% CI: 14.85%, 120.88%) in 8-epi-PGF2α were observed as PM2.5 concentration increased by 10 μg/m3 at lag 2. Notably, PM2.5-associated decreases in FVC and PEF and increase in FeNO were stronger among the subjects with GSTT1-null genotype. In summary, short-term exposure to PM2.5 is associated with nasal inflammation, oxidative stress and lung function reduction in the retired subjects. Lung function reduction and inflammation are stronger among the subjects with GSTT1-null genotype.
Collapse
Affiliation(s)
- Beibei Sun
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Ya Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Jing Jiang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Yange Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Gui Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Huijun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, NC, 27599, United States
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, NC, 27599, United States
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China.
| |
Collapse
|
25
|
Kouis P, Psistaki K, Giallouros G, Michanikou A, Kakkoura MG, Stylianou KS, Papatheodorou SI, Paschalidou AΚ. Heat-related mortality under climate change and the impact of adaptation through air conditioning: A case study from Thessaloniki, Greece. ENVIRONMENTAL RESEARCH 2021; 199:111285. [PMID: 34015294 DOI: 10.1016/j.envres.2021.111285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Climate change is expected to increase heat-related mortality across the world. Health Impact Assessment (HIA) studies are used to quantify the impact of higher temperatures, taking into account the effect of population adaptation. Although air-conditioning (AC) is one of the main drivers of technological adaptation to heat, the health impacts associated with AC-induced air pollution have not been examined in detail. This study uses the city of Thessaloniki, Greece as a case study and aims to estimate the future heat-related mortality, the residential cooling demand, and the adaptation trade-off between averted heat-related and increased air pollution cardiorespiratory mortality. Using temperature and population projections under different Coupled Model Intercomparison Project Phase 6 (CIMP6) Shared Socioeconomic Pathways scenarios (SSPs), a HIA model was developed for the future heat and air pollution cardiorespiratory mortality. Counterfactual scenarios of either black carbon (BC) or natural gas (NG) being the fuel source for electricity generation were included in the HIA. The results indicate that the heat-related cardiorespiratory mortality in Thessaloniki will increase and the excess of annual heat-related deaths in 2080-2099 will range from 2.4 (95% CI: 0.0-20.9) under SSP1-2.6 to 433.7 (95% CI: 66.9-1070) under SSP5-8.5. Population adaptation will attenuate the heat-related mortality, although the latter may be counterbalanced by the higher air pollution-related mortality due to increased AC, especially under moderate SSP scenarios and coal-fired power plants. Future studies examining the health effects of warmer temperatures need to account for the impact of both adaptation and increased penetration and use of AC.
Collapse
Affiliation(s)
| | - Kyriaki Psistaki
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, Orestiada, Greece.
| | - George Giallouros
- Department of Public and Business Administration, University of Cyprus, Nicosia, Cyprus.
| | | | - Maria G Kakkoura
- Medical School, University of Cyprus, Nicosia, Cyprus; Clinical Trial Service Unit and Epidemiological Studies Unit CTSU, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Katerina S Stylianou
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | | | - Anastasia Κ Paschalidou
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, Orestiada, Greece.
| |
Collapse
|
26
|
Danesh Yazdi M, Wang Y, Di Q, Wei Y, Requia WJ, Shi L, Sabath MB, Dominici F, Coull BA, Evans JS, Koutrakis P, Schwartz JD. Long-Term Association of Air Pollution and Hospital Admissions Among Medicare Participants Using a Doubly Robust Additive Model. Circulation 2021; 143:1584-1596. [PMID: 33611922 PMCID: PMC8055197 DOI: 10.1161/circulationaha.120.050252] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Studies examining the nonfatal health outcomes of exposure to air pollution have been limited by the number of pollutants studied and focus on short-term exposures. METHODS We examined the relationship between long-term exposure to fine particulate matter with an aerodynamic diameter <2.5 micrometers (PM2.5), NO2, and tropospheric ozone and hospital admissions for 4 cardiovascular and respiratory outcomes (myocardial infarction, ischemic stroke, atrial fibrillation and flutter, and pneumonia) among the Medicare population of the United States. We used a doubly robust method for our statistical analysis, which relies on both inverse probability weighting and adjustment in the outcome model to account for confounding. The results from this regression are on an additive scale. We further looked at this relationship at lower pollutant concentrations, which are consistent with typical exposure levels in the United States, and among potentially susceptible subgroups. RESULTS Long-term exposure to fine PM2.5 was associated with an increased risk of all outcomes with the highest effect seen for stroke with a 0.0091% (95% CI, 0.0086-0.0097) increase in the risk of stroke for each 1-µg/m3 increase in annual levels. This translated to 2536 (95% CI, 2383-2691) cases of hospital admissions with ischemic stroke per year, which can be attributed to each 1-unit increase in fine particulate matter levels among the study population. NO2 was associated with an increase in the risk of admission with stroke by 0.00059% (95% CI, 0.00039-0.00075) and atrial fibrillation by 0.00129% (95% CI, 0.00114-0.00148) per ppb and tropospheric ozone was associated with an increase in the risk of admission with pneumonia by 0.00413% (95% CI, 0.00376-0.00447) per parts per billion. At lower concentrations, all pollutants were consistently associated with an increased risk for all our studied outcomes. CONCLUSIONS Long-term exposure to air pollutants poses a significant risk to cardiovascular and respiratory health among the elderly population in the United States, with the greatest increase in the association per unit of exposure occurring at lower concentrations.
Collapse
Affiliation(s)
- Mahdieh Danesh Yazdi
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA (M.D.Y., Y.W., Q.D., Y.W., W.J.R., L.S., J.S.E., P.K., J.D.S.)
| | - Yan Wang
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA (M.D.Y., Y.W., Q.D., Y.W., W.J.R., L.S., J.S.E., P.K., J.D.S.).,Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA (Y.W., M.B.S., F.D., B.A.C.)
| | - Qian Di
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA (M.D.Y., Y.W., Q.D., Y.W., W.J.R., L.S., J.S.E., P.K., J.D.S.).,Vanke School of Public Health, Tsinghua University, Beijing, China (Q.D.).,Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA (Q.D., J.D.S.)
| | - Yaguang Wei
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA (M.D.Y., Y.W., Q.D., Y.W., W.J.R., L.S., J.S.E., P.K., J.D.S.)
| | - Weeberb J. Requia
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA (M.D.Y., Y.W., Q.D., Y.W., W.J.R., L.S., J.S.E., P.K., J.D.S.)
| | - Liuhua Shi
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA (M.D.Y., Y.W., Q.D., Y.W., W.J.R., L.S., J.S.E., P.K., J.D.S.).,Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA (L.S.)
| | - Matthew Benjamin Sabath
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA (Y.W., M.B.S., F.D., B.A.C.)
| | - Francesca Dominici
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA (Y.W., M.B.S., F.D., B.A.C.)
| | - Brent A. Coull
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA (Y.W., M.B.S., F.D., B.A.C.)
| | - John S. Evans
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA (M.D.Y., Y.W., Q.D., Y.W., W.J.R., L.S., J.S.E., P.K., J.D.S.)
| | - Petros Koutrakis
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA (M.D.Y., Y.W., Q.D., Y.W., W.J.R., L.S., J.S.E., P.K., J.D.S.)
| | - Joel D. Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA (M.D.Y., Y.W., Q.D., Y.W., W.J.R., L.S., J.S.E., P.K., J.D.S.).,Vanke School of Public Health, Tsinghua University, Beijing, China (Q.D.)
| |
Collapse
|
27
|
Ruan Z, Qi J, Yin P, Qian Z(M, Liu J, Liu Y, Yang Y, Li H, Zhang S, Howard SW, Lin H, Wang L. Prolonged Life Expectancy for Those Dying of Stroke by Achieving the Daily PM 2.5 Targets. GLOBAL CHALLENGES (HOBOKEN, NJ) 2020; 4:2000048. [PMID: 33304609 PMCID: PMC7713556 DOI: 10.1002/gch2.202000048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 05/11/2023]
Abstract
This time-series study collects data on stroke-related mortality, years of life lost (YLL), air pollution, and meteorological conditions in 96 Chinese cities from 2013 to 2016 and proposes a three-stage strategy to generate the national and regional estimations of avoidable YLL, gains in life expectancy and stroke-related population attributable fraction by postulating that the daily fine particulate matter (PM2.5) has been kept under certain standards. A total of 1 318 911 stroke deaths are analyzed. Each 10 µg m-3 increment in PM2.5 at lag03 is associated with a city-mean increase of 0.31 (95% CI: 0.19, 0.44) years of life lost from stroke. A number of 914.11 (95% CI: 538.28, 1288.94) years of city-mean life lost from stoke could be avoided by attaining the WHO's Air Quality Guidelines (AQG) (25 µg m-3). Moreover, by applying the AQG standard, 0.11 (0.08, 0.15) years of life lost might be prevented for each death, and about 0.91% (95% CI: 0.62%, 1.19%) of the total years of life lost from stroke might be explained by the daily excess PM2.5 exposure. This study indicates that stroke patients can have a longer life expectancy if stricter PM2.5 standards are put in place, especially ischemic stroke patients.
Collapse
Affiliation(s)
- Zengliang Ruan
- Department of EpidemiologySchool of Public HealthSun Yat‐Sen UniversityGuangzhou510080China
| | - Jinlei Qi
- National Center for Chronic and Noncommunicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijing100050China
| | - Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijing100050China
| | - Zhengmin (Min) Qian
- Department of Epidemiology and BiostatisticsCollege for Public Health & Social JusticeSaint Louis UniversitySaint LouisMO63104USA
| | - Jiangmei Liu
- National Center for Chronic and Noncommunicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijing100050China
| | - Yunning Liu
- National Center for Chronic and Noncommunicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijing100050China
| | - Yin Yang
- Department of EpidemiologySchool of Public HealthSun Yat‐Sen UniversityGuangzhou510080China
| | - Huan Li
- Department of EpidemiologySchool of Public HealthSun Yat‐Sen UniversityGuangzhou510080China
| | - Shiyu Zhang
- Department of EpidemiologySchool of Public HealthSun Yat‐Sen UniversityGuangzhou510080China
| | - Steven W. Howard
- Department of Health Management & PolicyCollege for Public Health & Social JusticeSaint Louis UniversitySaint LouisMO63104USA
| | - Hualiang Lin
- Department of EpidemiologySchool of Public HealthSun Yat‐Sen UniversityGuangzhou510080China
| | - Lijun Wang
- National Center for Chronic and Noncommunicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijing100050China
| |
Collapse
|
28
|
Pozzer A, Dominici F, Haines A, Witt C, Münzel T, Lelieveld J. Regional and global contributions of air pollution to risk of death from COVID-19. Cardiovasc Res 2020; 116:2247-2253. [PMID: 33236040 PMCID: PMC7797754 DOI: 10.1093/cvr/cvaa288] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/03/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
AIMS The risk of mortality from the coronavirus disease that emerged in 2019 (COVID-19) is increased by comorbidity from cardiovascular and pulmonary diseases. Air pollution also causes excess mortality from these conditions. Analysis of the first severe acute respiratory syndrome coronavirus (SARS-CoV-1) outcomes in 2003, and preliminary investigations of those for SARS-CoV-2 since 2019, provide evidence that the incidence and severity are related to ambient air pollution. We estimated the fraction of COVID-19 mortality that is attributable to the long-term exposure to ambient fine particulate air pollution. METHODS AND RESULTS We characterized global exposure to fine particulates based on satellite data, and calculated the anthropogenic fraction with an atmospheric chemistry model. The degree to which air pollution influences COVID-19 mortality was derived from epidemiological data in the USA and China. We estimate that particulate air pollution contributed ∼15% (95% confidence interval 7-33%) to COVID-19 mortality worldwide, 27% (13 - 46%) in East Asia, 19% (8-41%) in Europe, and 17% (6-39%) in North America. Globally, ∼50-60% of the attributable, anthropogenic fraction is related to fossil fuel use, up to 70-80% in Europe, West Asia, and North America. CONCLUSION Our results suggest that air pollution is an important cofactor increasing the risk of mortality from COVID-19. This provides extra motivation for combining ambitious policies to reduce air pollution with measures to control the transmission of COVID-19.
Collapse
Affiliation(s)
- Andrea Pozzer
- International Center for Theoretical Physics, Trieste, Italy
- Max Planck Institute for Chemistry, Atmospheric Chemistry
Department, Mainz, Germany
| | - Francesca Dominici
- Harvard T.H. Chan School of Public Health, Department of
Biostatistics, Boston, MA, USA
| | - Andy Haines
- Centre for Climate Change and Planetary Health, London School of Hygiene and
Tropical Medicine, London, UK
| | - Christian Witt
- Charité University Medicine, Pneumological Oncology and
Transplantology, Berlin, Germany
| | - Thomas Münzel
- University Medical Center of the Johannes Gutenberg University,
Mainz, Germany
- German Center for Cardiovascular Research, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry
Department, Mainz, Germany
- The Cyprus Institute, Climate and Atmosphere Research Center,
Nicosia, Cyprus
| |
Collapse
|
29
|
Rajak R, Chattopadhyay A. Short and Long Term Exposure to Ambient Air Pollution and Impact on Health in India: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2020; 30:593-617. [PMID: 31070475 DOI: 10.1080/09603123.2019.1612042] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Health effects attributable to short-term and long-term ambient air pollution (AAP) exposure in Indian population are less understood. This study evaluates the effect of short time and long-term exposure to AAP on respiratory morbidity, mortality and premature mortality for the exposed population. A total of 59 studies are reviewed to examine the effects of short-term exposure (n = 23); long-term exposure (n = 18) and premature mortality (n = 18). Short-term exposures to ambient pollutants have strong associations between COPD, respiratory illnesses and higher rates of hospital admission or visit. The long-term effects of AAP, associated with deficit lung function, asthma, heart attack, cardiovascular mortality and premature mortality have received much attention. Particulate matter (PM2.5 and PM10) is primarily responsible for respiratory health problems. Out of 18 literature reviewed on premature mortality, most (12 of 18) studies have statistically significant associations between AAP exposure and increased premature mortality risk.
Collapse
Affiliation(s)
- Rahul Rajak
- International Institute for Population Sciences, Mumbai, India
| | | |
Collapse
|
30
|
Son JY, Fong KC, Heo S, Kim H, Lim CC, Bell ML. Reductions in mortality resulting from reduced air pollution levels due to COVID-19 mitigation measures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:141012. [PMID: 32693269 PMCID: PMC7366090 DOI: 10.1016/j.scitotenv.2020.141012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 05/18/2023]
Abstract
To control the novel coronavirus disease (COVID-19) outbreak, state and local governments in the United States have implemented several mitigation efforts that resulted in lower emissions of traffic-related air pollutants. This study examined the impacts of COVID-19 mitigation measures on air pollution levels and the subsequent reductions in mortality for urban areas in 10 US states and the District of Columbia. We calculated changes in levels of particulate matter with aerodynamic diameter no larger than 2.5 μm (PM2.5) during mitigation period versus the baseline period (pre-mitigation measure) using the difference-in-difference approach and the estimated avoided total and cause-specific mortality attributable to these changes in PM2.5 by state and district. We found that PM2.5 concentration during the mitigation period decreased for most states (except for 3 states) and the capital. Decreases of average PM2.5 concentration ranged from 0.25 μg/m3 (4.3%) in Maryland to 4.20 μg/m3 (45.1%) in California. On average, PM2.5 levels across 7 states and the capital reduced by 12.8%. We estimated that PM2.5 reduction during the mitigation period lowered air pollution-related total and cause-specific deaths. An estimated 483 (95% CI: 307, 665) PM2.5-related deaths was avoided in the urban areas of California. Our findings have implications for the effects of mitigation efforts and provide insight into the mortality reductions can be achieved from reduced air pollution levels.
Collapse
Affiliation(s)
- Ji-Young Son
- Yale School of the Environment, Yale University, New Haven, CT, USA.
| | - Kelvin C Fong
- Yale School of the Environment, Yale University, New Haven, CT, USA
| | - Seulkee Heo
- Yale School of the Environment, Yale University, New Haven, CT, USA
| | - Honghyok Kim
- Yale School of the Environment, Yale University, New Haven, CT, USA
| | - Chris C Lim
- Yale School of the Environment, Yale University, New Haven, CT, USA
| | - Michelle L Bell
- Yale School of the Environment, Yale University, New Haven, CT, USA
| |
Collapse
|
31
|
Orellano P, Reynoso J, Quaranta N, Bardach A, Ciapponi A. Short-term exposure to particulate matter (PM 10 and PM 2.5), nitrogen dioxide (NO 2), and ozone (O 3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. ENVIRONMENT INTERNATIONAL 2020; 142:105876. [PMID: 32590284 DOI: 10.1016/j.envint.2020.105876] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Air pollution is a leading cause of mortality and morbidity worldwide. Short-term exposure (from one hour to days) to selected air pollutants has been associated with human mortality. This systematic review was conducted to analyse the evidence on the effects of short-term exposure to particulate matter with aerodynamic diameters less or equal than 10 and 2.5 µm (PM10, PM2.5), nitrogen dioxide (NO2), and ozone (O3), on all-cause mortality, and PM10 and PM2.5 on cardiovascular, respiratory, and cerebrovascular mortality. METHODS We included studies on human populations exposed to outdoor air pollution from any source, excluding occupational exposures. Relative risks (RRs) per 10 µg/m3 increase in air pollutants concentrations were used as the effect estimates. Heterogeneity between studies was assessed using 80% prediction intervals. Risk of bias (RoB) in individual studies was analysed using a new domain-based assessment tool, developed by a working group convened by the World Health Organization and designed specifically to evaluate RoB within eligible air pollution studies included in systematic reviews. We conducted subgroup and sensitivity analyses by age, sex, continent, study design, single or multicity studies, time lag, and RoB. The certainty of evidence was assessed for each exposure-outcome combination. The protocol for this review was registered with PROSPERO (CRD42018087749). RESULTS We included 196 articles in quantitative analysis. All combinations of pollutants and all-cause and cause-specific mortality were positively associated in the main analysis, and in a wide range of sensitivity analyses. The only exception was NO2, but when considering a 1-hour maximum exposure. We found positive associations between pollutants and all-cause mortality for PM10 (RR: 1.0041; 95% CI: 1.0034-1.0049), PM2.5 (RR: 1.0065; 95% CI: 1.0044-1.0086), NO2 (24-hour average) (RR: 1.0072; 95% CI: 1.0059-1.0085), and O3 (RR: 1.0043; 95% CI: 1.0034-1.0052). PM10 and PM2.5 were also positively associated with cardiovascular, respiratory, and cerebrovascular mortality. We found some degree of heterogeneity between studies in three exposure-outcome combinations, and this heterogeneity could not be explained after subgroup analysis. RoB was low or moderate in the majority of articles. The certainty of evidence was judged as high in 10 out of 11 combinations, and moderate in one combination. CONCLUSIONS This study found evidence of a positive association between short-term exposure to PM10, PM2.5, NO2, and O3 and all-cause mortality, and between PM10 and PM2.5 and cardiovascular, respiratory and cerebrovascular mortality. These results were robust through several sensitivity analyses. In general, the level of evidence was high, meaning that we can be confident in the associations found in this study.
Collapse
Affiliation(s)
- Pablo Orellano
- Centro de Investigaciones y Transferencia San Nicolás, Universidad Tecnológica Nacional (CONICET), San Nicolás, Argentina.
| | | | - Nancy Quaranta
- Facultad Regional San Nicolás, Universidad Tecnológica Nacional, San Nicolás, Argentina; Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| | - Ariel Bardach
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Argentina
| | - Agustin Ciapponi
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Argentina
| |
Collapse
|
32
|
Attributable Risk to Assess the Health Impact of Air Pollution: Advances, Controversies, State of the Art and Future Needs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124512. [PMID: 32585937 PMCID: PMC7344816 DOI: 10.3390/ijerph17124512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022]
Abstract
Despite the increased attention given to the health impact assessment of air pollution and to the strategies to control it in both scientific literature and concrete interventions, the results of the implementations, especially those involving traffic, have not always been satisfactory and there is still disagreement about the most appropriate interventions and the methods to assess their effectiveness. This state-of-the-art article reviews the recent interpretation of the concepts that concern the impact assessment, and compares old and new measurements of attributable risk and attributable fraction. It also summarizes the ongoing discussion about the designs and methods for assessing the air pollution impact with particular attention to improvements due to spatio-temporal analysis and other new approaches, such as studying short term effects in cohorts, and the still discussed methods of predicting the values of attributable risk (AR). Finally, the study presents the more recent analytic perspectives and the methods for directly assessing the effects of not yet implemented interventions on air quality and health, in accordance with the suggestion in the strategic plan 2020-2025 from the Health Effect Institute.
Collapse
|
33
|
Chu HJ, Ali MZ. Establishment of Regional Concentration-Duration-Frequency Relationships of Air Pollution: A Case Study for PM 2.5. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1419. [PMID: 32098343 PMCID: PMC7068585 DOI: 10.3390/ijerph17041419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
Abstract
Poor air quality usually leads to PM2.5 warnings and affects human health. The impact of frequency and duration of extreme air quality has received considerable attention. The extreme concentration of air pollution is related to its duration and annual frequency of occurrence known as concentration-duration-frequency (CDF) relationships. However, the CDF formulas are empirical equations representing the relationship between the maximum concentration as a dependent variable and other parameters of interest, i.e., duration and annual frequency of occurrence. As a basis for deducing the extreme CDF relationship of PM2.5, the function assumes that the extreme concentration is related to the duration and frequency. In addition, the spatial pattern estimation of extreme PM2.5 is identified. The regional CDF identifies the regional extreme concentration with a specified duration and return period. The spatial pattern of extreme air pollution over 8 h duration shows the hotspots of air quality in the central and southwestern areas. Central and southwestern Taiwan is at high risk of exposure to air pollution. Use of the regional CDF analysis is highly recommended for efficient design of air quality management and control.
Collapse
Affiliation(s)
- Hone-Jay Chu
- Department of Geomatics, National Cheng Kung University, Tainan 70101, Taiwan;
| | | |
Collapse
|
34
|
Lipfert FW, Wyzga RE. Longitudinal relationships between lung cancer mortality rates, smoking, and ambient air quality: a comprehensive review and analysis. Crit Rev Toxicol 2020; 49:790-818. [DOI: 10.1080/10408444.2019.1700210] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Qi J, Ruan Z, Qian Z(M, Yin P, Yang Y, Acharya BK, Wang L, Lin H. Potential gains in life expectancy by attaining daily ambient fine particulate matter pollution standards in mainland China: A modeling study based on nationwide data. PLoS Med 2020; 17:e1003027. [PMID: 31951613 PMCID: PMC6968855 DOI: 10.1371/journal.pmed.1003027] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Ambient fine particulate matter pollution (PM2.5) is one leading cause of disease burden, but no study has quantified the association between daily PM2.5 exposure and life expectancy. We aimed to assess the potential benefits in life expectancy by attaining the daily PM2.5 standards in 72 cities of China during 2013-2016. METHODS AND FINDINGS We applied a two-stage approach for the analysis. At the first stage, we used a generalized additive model (GAM) with a Gaussian link to examine the city-specific short-term association between daily PM2.5 and years of life lost (YLL); at the second stage, a random-effects meta-analysis was used to generate the regional and national estimations. We further estimated the potential gains in life expectancy (PGLE) by assuming that ambient PM2.5 has met the Chinese National Ambient Air Quality Standard (NAAQS, 75 μg/m3) or the ambient air quality guideline (AQG) of the World Health Organization (WHO) (25 μg/m3). We also calculated the attributable fraction (AF), which denoted the proportion of YLL attributable to a higher-than-standards daily mean PM2.5 concentration. During the period from January 18, 2013 to December 31, 2016, we recorded 1,226,849 nonaccidental deaths in the study area. We observed significant associations between daily PM2.5 and YLL: each 10 μg/m3 increase in three-day-averaged (lag02) PM2.5 concentrations corresponded to an increment of 0.43 years of life lost (95% CI: 0.29-0.57). We estimated that 168,065.18 (95% CI: 114,144.91-221,985.45) and 68,684.95 (95% CI: 46,648.79-90,721.11) years of life lost can be avoided by achieving WHO's AQG and Chinese NAAQS in the study area, which corresponded to 0.14 (95% CI: 0.09-0.18) and 0.06 (95% CI: 0.04-0.07) years of gain in life expectancy for each death in these cities. We observed differential regional estimates across the 7 regions, with the highest gains in the Northwest region (0.28 years of gain [95% CI: 0.06-0.49]) and the lowest in the North region (0.08 [95% CI: 0.02-0.15]). Furthermore, using WHO's AQG and Chinese NAAQS as the references, we estimated that 1.00% (95% CI: 0.68%-1.32%) and 0.41% (95% CI: 0.28%-0.54%) of YLL could be attributable to the PM2.5 exposure at the national level. Findings from this study were mainly limited by the unavailability of data on individual PM2.5 exposure. CONCLUSIONS This study indicates that significantly longer life expectancy could be achieved by a reduction in the ambient PM2.5 concentrations. It also highlights the need to formulate a stricter ambient PM2.5 standard at both national and regional levels of China to protect the population's health.
Collapse
Affiliation(s)
- Jinlei Qi
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zengliang Ruan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhengmin (Min) Qian
- College for Public Health & Social Justice, Saint Louis University, St. Louis, Missouri, United States of America
| | - Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yin Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Bipin Kumar Acharya
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lijun Wang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail: (LW); (HL)
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- * E-mail: (LW); (HL)
| |
Collapse
|
36
|
Yang Y, Ruan Z, Wang X, Yang Y, Mason TG, Lin H, Tian L. Short-term and long-term exposures to fine particulate matter constituents and health: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:874-882. [PMID: 30731313 DOI: 10.1016/j.envpol.2018.12.060] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Fine particulate matter (Particulate matter with diameter ≤ 2.5 μm) is associated with multiple health outcomes, with varying effects across seasons and locations. It remains largely unknown that which components of PM2.5 are most harmful to human health. METHODS We systematically searched all the relevent studies published before August 1, 2018, on the associations of fine particulate matter constituents with mortality and morbidity, using Web of Science, MEDLINE, PubMed and EMBASE. Studies were included if they explored the associations between short term or long term exposure of fine particulate matter constituents and natural, cardiovascular or respiratory health endpoints. The criteria for the risk of bias was adapted from OHAT and New Castle Ottawa. We applied a random-effects model to derive the risk estimates for each constituent. We performed main analyses restricted to studies which adjusted the PM2.5 mass in their models. RESULTS Significant associations were observed between several PM2.5 constituents and different health endpoints. Among them, black carbon and organic carbon were most robustly and consistently associated with all natural, cardiovascular mortality and morbidity. Other potential toxic constituents including nitrate, sulfate, Zinc, silicon, iron, nickel, vanadium, and potassium were associated with adverse cardiovascular health, while nitrate, sulfate and vanadium were relevant for adverse respiratory health outcomes. CONCLUSIONS Our analysis suggests that black carbon and organic carbon are important detrimental components of PM2.5, while other constituents are probably hazardous to human health. However, more studies are needed to further confirm our results.
Collapse
Affiliation(s)
- Yang Yang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zengliang Ruan
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaojie Wang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yin Yang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Tonya G Mason
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hualiang Lin
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Linwei Tian
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
37
|
Yang Y, Tang R, Qiu H, Lai PC, Wong P, Thach TQ, Allen R, Brauer M, Tian L, Barratt B. Long term exposure to air pollution and mortality in an elderly cohort in Hong Kong. ENVIRONMENT INTERNATIONAL 2018; 117:99-106. [PMID: 29730535 DOI: 10.1016/j.envint.2018.04.034] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Several studies have reported associations between long term exposure to air pollutants and cause-specific mortality. However, since the concentrations of air pollutants in Asia are much higher compared to those reported in North American and European cohort studies, cohort studies on long term effects of air pollutants in Asia are needed for disease burden assessment and to inform policy. OBJECTIVES To assess the effects of long-term exposure to particulate matter with aerodynamic diameter < 2.5 μm (PM2.5), black carbon (BC) and nitrogen dioxide (NO2) on cause-specific mortality in an elderly cohort in Hong Kong. METHODS In a cohort of 66,820 participants who were older than or equal to 65 years old in Hong Kong from 1998 to 2011, air pollutant concentrations were estimated by land use regression and assigned to the residential addresses of all participants at baseline and for each year during a 11 year follow up period. Hazard ratios (HRs) of cause-specific mortality (including all natural cause, cardiovascular and respiratory mortality) associated with air pollutants were estimated with Cox models, including a number of personal and area-level socioeconomic, demographic, and lifestyle factors. RESULTS The median concentration of PM2.5 during the baseline period was 42.2 μg/m3 with an IQR of 5.5 μg/m3, 12.1 (9.6) μg/m3 for BC and 104 (25.6) μg/m3 for NO2. For PM2.5, adjusted HR per IQR increase and per 10 μg/m3 for natural cause mortality was 1.03 (95%CI: 1.01, 1.06) and 1.06 (95%CI: 1.02, 1.11) respectively. The corresponding HR were 1.06 (95%CI: 1.02, 1.10) and 1.01 (95%CI: 0.96, 1.06) for cardiovascular disease and respiratory disease mortality, respectively. For BC, the HR of an interquartile range increase for all natural cause mortality was 1.03 (95%CI: 1.00, 1.05). The corresponding HR was 1.07 (95%CI: 1.03, 1.11) and 0.99 (95%CI: 0.94, 1.04) for cardiovascular disease and respiratory disease mortality. For NO2, almost all HRs were approximately 1.0, except for IHD (ischemic heart disease) mortality. CONCLUSION Long-term exposure to ambient PM2.5 and BC was associated with an elevated risk of cardiovascular mortality. Despite far higher air pollution exposure concentrations, HRs per unit increase in PM2.5 were similar to those from recent comparable studies in North America.
Collapse
Affiliation(s)
- Yang Yang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Robert Tang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hong Qiu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Poh-Chin Lai
- Department of Geography, The University of Hong Kong, Hong Kong, China
| | - Paulina Wong
- Lingnan University, Science Unit, Hong Kong, China
| | - Thuan-Quoc Thach
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ryan Allen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Linwei Tian
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Benjamin Barratt
- MRC-PHE Centre for Environment and Health, Faculty of Life Sciences & Medicine, King's College London, London, UK; HPRU Health Impact of Environmental Hazards, King's College London, London, UK.
| |
Collapse
|
38
|
Yang Y, Luo L, Song C, Yin H, Yang J. Spatiotemporal Assessment of PM 2.5-Related Economic Losses from Health Impacts during 2014⁻2016 in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061278. [PMID: 29914184 PMCID: PMC6024949 DOI: 10.3390/ijerph15061278] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 01/02/2023]
Abstract
Background: Particulate air pollution, especially PM2.5, is highly correlated with various adverse health impacts and, ultimately, economic losses for society, however, few studies have undertaken a spatiotemporal assessment of PM2.5-related economic losses from health impacts covering all of the main cities in China. Methods: PM2.5 concentration data were retrieved for 190 Chinese cities for the period 2014–2016. We used a log-linear exposure–response model and monetary valuation methods, such as value of a statistical life (VSL), amended human capital (AHC), and cost of illness to evaluate PM2.5-related economic losses from health impacts at the city level. In addition, Monte Carlo simulation was used to analyze uncertainty. Results: The average economic loss was 0.3% (AHC) to 1% (VSL) of the total gross domestic product (GDP) of 190 Chinese cities from 2014 to 2016. Overall, China experienced a downward trend in total economic losses over the three-year period, but the Beijing–Tianjin–Hebei, Shandong Peninsula, Yangtze River Delta, and Chengdu-Chongqing regions experienced greater annual economic losses. Conclusions: Exploration of spatiotemporal variations in PM2.5-related economic losses from long-term health impacts could provide new information for policymakers regarding priority areas for PM2.5 pollution prevention and control in China.
Collapse
Affiliation(s)
- Yang Yang
- School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China.
| | - Liwen Luo
- School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China.
| | - Chao Song
- School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China.
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China.
- Department of Geography, Dartmouth College, Hanover, NH 03755, USA.
| | - Hao Yin
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China.
- Department of Planning, Danish Centre for Environmental Assessment, Aalborg University, Rendsburggade 14, 9000 Aalborg, Denmark.
| | - Jintao Yang
- School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China.
| |
Collapse
|
39
|
Lasko K, Vadrevu KP, Nguyen TTN. Analysis of air pollution over Hanoi, Vietnam using multi-satellite and MERRA reanalysis datasets. PLoS One 2018; 13:e0196629. [PMID: 29738543 PMCID: PMC5940215 DOI: 10.1371/journal.pone.0196629] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/15/2018] [Indexed: 11/19/2022] Open
Abstract
Air pollution is one of the major environmental concerns in Vietnam. In this study, we assess the current status of air pollution over Hanoi, Vietnam using multiple different satellite datasets and weather information, and assess the potential to capture rice residue burning emissions with satellite data in a cloud-covered region. We used a timeseries of Ozone Monitoring Instrument (OMI) Ultraviolet Aerosol Index (UVAI) satellite data to characterize absorbing aerosols related to biomass burning. We also tested a timeseries of 3-hourly MERRA-2 reanalysis Black Carbon (BC) concentration data for 5 years from 2012–2016 and explored pollution trends over time. We then used MODIS active fires, and synoptic wind patterns to attribute variability in Hanoi pollution to different sources. Because Hanoi is within the Red River Delta where rice residue burning is prominent, we explored trends to see if the residue burning signal is evident in the UVAI or BC data. Further, as the region experiences monsoon-influenced rainfall patterns, we adjusted the BC data based on daily rainfall amounts. Results indicated forest biomass burning from Northwest Vietnam and Laos impacts Hanoi air quality during the peak UVAI months of March and April. Whereas, during local rice residue burning months of June and October, no increase in UVAI is observed, with slight BC increase in October only. During the peak BC months of December and January, wind patterns indicated pollutant transport from southern China megacity areas. Results also indicated severe pollution episodes during December 2013 and January 2014. We observed significantly higher BC concentrations during nighttime than daytime with peaks generally between 2130 and 0030 local time. Our results highlight the need for better air pollution monitoring systems to capture episodic pollution events and their surface-level impacts, such as rice residue burning in cloud-prone regions in general and Hanoi, Vietnam in particular.
Collapse
Affiliation(s)
- Kristofer Lasko
- Department of Geographical Sciences, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| | - Krishna Prasad Vadrevu
- Earth Science Office, NASA Marshall Space Flight Center, Huntsville, Alabama, United States of America
| | - Thanh Thi Nhat Nguyen
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
40
|
Buteau S, Goldberg MS, Burnett RT, Gasparrini A, Valois MF, Brophy JM, Crouse DL, Hatzopoulou M. Associations between ambient air pollution and daily mortality in a cohort of congestive heart failure: Case-crossover and nested case-control analyses using a distributed lag nonlinear model. ENVIRONMENT INTERNATIONAL 2018; 113:313-324. [PMID: 29361317 DOI: 10.1016/j.envint.2018.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND Persons with congestive heart failure may be at higher risk of the acute effects related to daily fluctuations in ambient air pollution. To meet some of the limitations of previous studies using grouped-analysis, we developed a cohort study of persons with congestive heart failure to estimate whether daily non-accidental mortality were associated with spatially-resolved, daily exposures to ambient nitrogen dioxide (NO2) and ozone (O3), and whether these associations were modified according to a series of indicators potentially reflecting complications or worsening of health. METHODS We constructed the cohort from the linkage of administrative health databases. Daily exposure was assigned from different methods we developed previously to predict spatially-resolved, time-dependent concentrations of ambient NO2 (all year) and O3 (warm season) at participants' residences. We performed two distinct types of analyses: a case-crossover that contrasts the same person at different times, and a nested case-control that contrasts different persons at similar times. We modelled the effects of air pollution and weather (case-crossover only) on mortality using distributed lag nonlinear models over lags 0 to 3 days. We developed from administrative health data a series of indicators that may reflect the underlying construct of "declining health", and used interactions between these indicators and the cross-basis function for air pollutant to assess potential effect modification. RESULTS The magnitude of the cumulative as well as the lag-specific estimates of association differed in many instances according to the metric of exposure. Using the back-extrapolation method, which is our preferred exposure model, we found for the case-crossover design a cumulative mean percentage changes (MPC) in daily mortality per interquartile increment in NO2 (8.8 ppb) of 3.0% (95% CI: -0.4, 6.6%) and for O3 (16.5 ppb) 3.5% (95% CI: -4.5, 12.1). For O3 there was strong confounding by weather (unadjusted MPC = 7.1%; 95% CI: 1.7, 12.7%). For the nested case-control approach the cumulative MPC for NO2 in daily mortality was 2.9% (95% CI: -0.9, 6.9%) and for O3 7.3% (95% CI: 3.0, 11.9%). We found evidence of effect modification between daily mortality and cumulative NO2 and O3 according to the prescribed dose of furosemide in the nested case-control analysis, but not in the case-crossover analysis. CONCLUSIONS Mortality in congestive heart failure was associated with exposure to daily ambient NO2 and O3 predicted from a back-extrapolation method using a land use regression model from dense sampling surveys. The methods used to assess exposure can have considerable influence on the estimated acute health effects of the two air pollutants.
Collapse
Affiliation(s)
- Stephane Buteau
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Institut national de sante publique du Quebec (INSPQ), Montreal, Quebec, Canada.
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Division of Clinical Epidemiology, Research Institute of the McGill University Hospital Centre, Montreal, Canada
| | | | - Antonio Gasparrini
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Marie-France Valois
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Division of Clinical Epidemiology, Research Institute of the McGill University Hospital Centre, Montreal, Canada
| | - James M Brophy
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Dan L Crouse
- Department of Sociology, University of New Brunswick, Fredericton, New Brunswick, Canada; New Brunswick Institute for Research, Data, and Training, Fredericton, New Brunswick, Canada
| | - Marianne Hatzopoulou
- Department of Civil Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Jiang P, Yang J, Huang C, Liu H. The contribution of socioeconomic factors to PM 2.5 pollution in urban China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:977-985. [PMID: 29079025 DOI: 10.1016/j.envpol.2017.09.090] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/01/2017] [Accepted: 09/26/2017] [Indexed: 05/13/2023]
Abstract
PM2.5 pollution poses severe health risks to urban residents in low and middle-income countries. Existing studies have shown that the problem is affected by multiple socioeconomic factors. However, the relative contribution of these factors is not well understood, which sometimes leads to controversial controlling measures. In this study, we quantified the relative contribution of different socioeconomic factors, including the city size, industrial activities, and residents' activities, to PM2.5 pollution in urban China between 2014 and 2015 by using structural equation model (SEM). Our results showed that industrial activities contributed more to PM2.5 pollution than other factors. The city size and residents' activities also had significant impacts on PM2.5 pollution. The combined influence of all socioeconomic factors could explain between 44% and 48% of variation in PM2.5 pollution, which indicated the existence of influences from other factors such as weather conditions and outside sources of pollutants. Findings from our study can contribute to a more comprehensive understanding of the socioeconomic causes of PM2.5 pollution.
Collapse
Affiliation(s)
- Peng Jiang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China.
| | - Jun Yang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China; Joint Center for Global Change Studies, Beijing 100875, China.
| | - Conghong Huang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China.
| | - Huakui Liu
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
42
|
Tan C, Lu S, Wang Y, Zhu Y, Shi T, Lin M, Deng Z, Wang Z, Song N, Li S, Yang P, Yang L, Liu Y, Chen Z, Xu K. Long-term exposure to high air pollution induces cumulative DNA damages in traffic policemen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:330-336. [PMID: 28346906 DOI: 10.1016/j.scitotenv.2017.03.179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/19/2017] [Accepted: 03/19/2017] [Indexed: 06/06/2023]
Abstract
The specific effects of long-term exposure to high air pollution on human health and biological remain unclear. To explore the adverse health effects as well as biological mechanisms and biomarkers for durative exposure to air pollution, 183 traffic policemen and 88 office policemen were enrolled in this study. The concentration of PM2.5 in both the traffic and office policemen's working environments were obtained. Detailed personal questionnaires were completed and levels of inflammation, oxidative stress and DNA damage markers of all participants were analyzed in this study. The average PM2.5 concentration of the intersections of main roads and the offices of control group were 132.4±48.9μg/m3 and 50.80±38.6μg/m3, respectively. The traffic policemen, who stably exposed to at least 2 times higher PM2.5 in their work area as compared with the control group, have a median average duration of 7.00years, and average cumulative intersection duty time reached 8030h. No statistically significant differences in the levels of inflammation markers were observed between the traffic and office policemen. However, the DNA damage markers in traffic policemen shared significant positive correlation with cumulative intersection duty time and higher than those in the office policemen. Multiple linear regression analysis demonstrated that the increase of cumulative intersection duty time by 1h per day for one year was associated with the increase in 8-hydroxy-20-deoxyguanosine of 0.329% (95% CI: 0.249% to 0.409%), tail DNA of 0.051% (95% CI: 0.041% to 0.061%), micronucleus frequency of 0.036‰ (95% CI: 0.03‰ to 0.043‰), and a decrease in glutathione of 0.482% (95% CI: -0.652% to -0.313%). These findings suggest that long-term exposure to high air pollution could induce cumulative DNA damages, supporting the hypothesis that durative exposure to air pollution is associated with an increased risk of cancer.
Collapse
Affiliation(s)
- Chaochao Tan
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Shijie Lu
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Yupeng Wang
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Yan Zhu
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Ting Shi
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Mingyue Lin
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Zhonghua Deng
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Zhu Wang
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Nana Song
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Shuna Li
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Pingting Yang
- Health Management Centre, The Third Xiangya Hospital, Central South University, Changsha 410013, PR China
| | - Liyan Yang
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Yuanyuan Liu
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Zhiheng Chen
- Health Management Centre, The Third Xiangya Hospital, Central South University, Changsha 410013, PR China.
| | - Keqian Xu
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China.
| |
Collapse
|
43
|
Dijkema MBA, van Strien RT, van der Zee SC, Mallant SF, Fischer P, Hoek G, Brunekreef B, Gehring U. Spatial variation in nitrogen dioxide concentrations and cardiopulmonary hospital admissions. ENVIRONMENTAL RESEARCH 2016; 151:721-727. [PMID: 27644030 DOI: 10.1016/j.envres.2016.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND Air pollution episodes are associated with increased cardiopulmonary hospital admissions. Cohort studies showed associations of spatial variation in traffic-related air pollution with respiratory and cardiovascular mortality. Much less is known in particular about associations with cardiovascular morbidity. We explored the relation between spatial variation in nitrogen dioxide (NO2) concentrations and cardiopulmonary hospital admissions. METHODS This ecological study was based on hospital admissions data (2001-2004) from the National Medical Registration and general population data for the West of the Netherlands (population 4.04 million). At the 4-digit postcode area level (n=683) associations between modeled annual average outdoor NO2 concentrations and hospital admissions for respiratory and cardiovascular causes were evaluated by linear regression with the log of the postcode-specific percentage of subjects that have been admitted at least once during the study period as the dependent variable. All analyses were adjusted for differences in composition of the population of the postcode areas (age, sex, income). RESULTS At the postcode level, positive associations were found between outdoor NO2 concentrations and hospital admission rates for asthma, chronic obstructive pulmonary disease (COPD), all cardiovascular causes, ischemic heart disease and stroke (e.g. adjusted relative risk (95% confidence interval) for the second to fourth quartile relative to the first quartile of exposure were 1.87 (1.46-2.40), 2.34 (1.83-3.01) and 2.81 (2.16-3.65) for asthma; 1.44 (1.19-1.74), 1.50 (1.24-1.82) and 1.60 (1.31-1.96) for COPD). Associations remained after additional (indirect) adjustment for smoking (COPD admission rate) and degree of urbanization. CONCLUSIONS Our study suggests an increased risk of hospitalization for respiratory and cardiovascular causes in areas with higher levels of NO2. Our findings add to the currently limited evidence of a long-term effect of air pollution on hospitalization. The ecological design of our study is a limitation and more studies with individual data are needed to confirm our findings.
Collapse
Affiliation(s)
- Marieke B A Dijkema
- Public Health Service (GGD) Amsterdam, Department of Environmental Health, Amsterdam, The Netherlands; Institute for Risk Assessment Sciences (IRAS), Division Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands
| | - Robert T van Strien
- Public Health Service (GGD) Amsterdam, Department of Environmental Health, Amsterdam, The Netherlands
| | - Saskia C van der Zee
- Public Health Service (GGD) Amsterdam, Department of Environmental Health, Amsterdam, The Netherlands
| | - Sanne F Mallant
- Public Health Service (GGD) Amsterdam, Department of Environmental Health, Amsterdam, The Netherlands
| | - Paul Fischer
- National Institute for Public Health and the Environment (RIVM), Centre for Environmental Health, Bilthoven, The Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences (IRAS), Division Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences (IRAS), Division Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences (IRAS), Division Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
44
|
Ward-Caviness CK, Breitner S, Wolf K, Cyrys J, Kastenmüller G, Wang-Sattler R, Schneider A, Peters A. Short-term NO2 exposure is associated with long-chain fatty acids in prospective cohorts from Augsburg, Germany: results from an analysis of 138 metabolites and three exposures. Int J Epidemiol 2016; 45:1528-1538. [PMID: 27892410 DOI: 10.1093/ije/dyw247] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Short-term exposure to air pollution is associated with morbidity and mortality. Metabolites are intermediaries in biochemical processes, and associations between air pollution and metabolites can yield unique mechanistic insights. METHODS We used independent cross-sectional samples with targeted metabolomics (138 metabolites across five metabolite classes) from three cohort studies, each a part of the Cooperative Health Research in the Region of Augsburg (KORA). The KORA cohorts are numbered (1 to 4) according to which survey they belong to, and lettered S or F according to whether the survey was a baseline or follow-up survey. KORA F4 (N = 3044) served as our discovery cohort, with KORA S4 (N = 485) serving as the primary replication cohort. KORA F4 and KORA S4 were primarily fasting cohorts. We used the non-fasting KORA F3 (N = 377) cohort to evaluate replicated associations in non-fasting individuals, and we performed a random effects meta-analysis of all three cohorts. Associations between the 0-4-day lags and the 5-day average of particulate matter (PM)2.5, NO2 and ozone were modelled via generalized additive models. All air pollution exposures were scaled to the interquartile range, and effect estimates presented as percent changes relative to the geometric mean of the metabolite concentration (ΔGM). RESULTS There were 10 discovery cohort associations, of which seven were lysophosphatidylcholines (LPCs); NO2 was the most ubiquitous exposure (5/10). The 5-day average NO2-LPC(28:0) association was associated at a Bonferroni corrected P-value threshold (P < 1.2x10-4) in KORA F4 [ΔGM = 11.5%; 95% confidence interval (CI) = 6.60, 16.3], and replicated (P < 0.05) in KORA S4 (ΔGM = 21.0%; CI = 4.56, 37.5). This association was not observed in the non-fasting KORA F3 cohort (ΔGM = -5.96%; CI = -26.3, 14.3), but remained in the random effects meta-analysis (ΔGM = 10.6%; CI = 0.16, 21). CONCLUSIONS LPCs are associated with short-term exposure to air pollutants, in particular NO2 Further research is needed to understand the effect of nutritional/fasting status on these associations and the causal mechanisms linking air pollution exposure and metabolite profiles.
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Wang-Sattler
- Institute of Epidemiology II.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | |
Collapse
|
45
|
Faustini A, Stafoggia M, Renzi M, Cesaroni G, Alessandrini E, Davoli M, Forastiere F. Does chronic exposure to high levels of nitrogen dioxide exacerbate the short-term effects of airborne particles? Occup Environ Med 2016; 73:772-778. [DOI: 10.1136/oemed-2016-103666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/11/2016] [Indexed: 11/04/2022]
|
46
|
Elliot AJ, Smith S, Dobney A, Thornes J, Smith GE, Vardoulakis S. Monitoring the effect of air pollution episodes on health care consultations and ambulance call-outs in England during March/April 2014: A retrospective observational analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:903-911. [PMID: 27179935 DOI: 10.1016/j.envpol.2016.04.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
There is an increasing body of evidence illustrating the negative health effects of air pollution including increased risk of respiratory, cardiac and other morbid conditions. During March and April 2014 there were two air pollution episodes in England that occurred in close succession. We used national real-time syndromic surveillance systems, including general practitioner (GP) consultations, emergency department attendances, telehealth calls and ambulance dispatch calls to further understand the impact of these short term acute air pollution periods on the health seeking behaviour of the general public. Each air pollution period was comparable with respect to particulate matter concentrations (PM10 and PM2.5), however, the second period was longer in duration (6 days vs 3 days) and meteorologically driven 'Sahara dust' contributed to the pollution. Health surveillance data revealed a greater impact during the second period, with GP consultations, emergency department attendances and telehealth (NHS 111) calls increasing for asthma, wheeze and difficulty breathing indicators, particularly in patients aged 15-64 years. Across regions of England there was good agreement between air quality levels and health care seeking behaviour. The results further demonstrate the acute impact of short term air pollution episodes on public health and also illustrate the potential role of mass media reporting in escalating health care seeking behaviour.
Collapse
Affiliation(s)
- Alex J Elliot
- Real-time Syndromic Surveillance Team, National Infection Service, Public Health England, Birmingham B3 2PW, UK.
| | - Sue Smith
- Real-time Syndromic Surveillance Team, National Infection Service, Public Health England, Birmingham B3 2PW, UK
| | - Alec Dobney
- Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Birmingham B3 2PW, UK
| | - John Thornes
- Environmental Change Department, Centre for Radiation Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 0RQ, UK; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gillian E Smith
- Real-time Syndromic Surveillance Team, National Infection Service, Public Health England, Birmingham B3 2PW, UK
| | - Sotiris Vardoulakis
- Environmental Change Department, Centre for Radiation Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 0RQ, UK; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
47
|
Cai Y, Zhang B, Ke W, Feng B, Lin H, Xiao J, Zeng W, Li X, Tao J, Yang Z, Ma W, Liu T. Associations of Short-Term and Long-Term Exposure to Ambient Air Pollutants With Hypertension. Hypertension 2016; 68:62-70. [DOI: 10.1161/hypertensionaha.116.07218] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/05/2016] [Indexed: 01/01/2023]
Abstract
Hypertension is a major disease of burden worldwide. Previous studies have indicated that air pollution might be a risk factor for hypertension, but the results were controversial. To fill this gap, we performed a meta-analysis of epidemiological studies to investigate the associations of short-term and long-term exposure to ambient air pollutants with hypertension. We searched all of the studies published before September 1, 2015, on the associations of ozone (O
3
), carbon monoxide (CO), nitrogen oxide (NO
2
and NO
X
), sulfur dioxide (SO
2
), and particulate matter (PM
10
and PM
2.5
) with hypertension in the English electronic databases. A pooled odds ratio (OR) for hypertension in association with each 10 μg/m
3
increase in air pollutant was calculated by a random-effects model (for studies with significant heterogeneity) or a fixed-effect model (for studies without significant heterogeneity). A total of 17 studies examining the effects of short-term (n=6) and long-term exposure (n=11) to air pollutants were identified. Short-term exposure to SO
2
(OR=1.046, 95% confidence interval [CI]: 1.012–1.081), PM
2.5
(OR=1.069, 95% CI: 1.003–1.141), and PM
10
(OR=1.024, 95% CI: 1.016–1.032) were significantly associated with hypertension. Long-term exposure (a 10 μg/m
3
increase) to NO
2
(OR=1.034, 95% CI: 1.005–1.063) and PM
10
(OR=1.054, 95% CI: 1.036–1.072) had significant associations with hypertension. Exposure to other ambient air pollutants (short-term exposure to NO
2
, O
3
, and CO and long-term exposure to NO
x
, PM
2.5
, and SO
2
) also had positive relationships with hypertension, but lacked statistical significance. Our results suggest that short-term or long-term exposure to some air pollutants may increase the risk of hypertension.
Collapse
Affiliation(s)
- Yuanyuan Cai
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Bo Zhang
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Weixia Ke
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Baixiang Feng
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Hualiang Lin
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Jianpeng Xiao
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Weilin Zeng
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Xing Li
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Jun Tao
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Zuyao Yang
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Wenjun Ma
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| | - Tao Liu
- From the Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou, China (Y.C., B.Z.); Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangzhou, China (Y.C., B.Z.); Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (W.K., B.F., H.L., J.X., W.Z., X.L., W.M., T.L.); South China Institute of Environmental Sciences, Ministry of Environmental Protection,
| |
Collapse
|
48
|
Sun S, Tian L, Qiu H, Chan KP, Tsang H, Tang R, Lee RSY, Thach TQ, Wong CM. The influence of pre-existing health conditions on short-term mortality risks of temperature: Evidence from a prospective Chinese elderly cohort in Hong Kong. ENVIRONMENTAL RESEARCH 2016; 148:7-14. [PMID: 26994463 DOI: 10.1016/j.envres.2016.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/22/2016] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Both cold and hot temperatures are associated with adverse health outcomes. Less is known about the role of pre-existing medical conditions to confer individual's susceptibility to temperature extremes. METHODS We studied 66,820 subjects aged ≥65 who were enrolled and interviewed in all the 18 Elderly Health Centers of Department of Health, Hong Kong from 1998 to 2001, and followed up for 10-13 years. The distributed lag nonlinear model (DLNM) combined with a nested case-control study design was applied to estimate the nonlinear and delayed effects of cold or hot temperature on all natural mortality among subjects with different pre-existing diseases. RESULTS The relative risk of all natural mortality associated with a decrease of temperature from 25th percentile (19.5°C) to 1st percentile (11.3°C) over 0-21 lag days for participants who reported to have an active disease at the baseline was 2.21 (95% confidence interval (CI): 1.19, 4.10) for diabetes mellitus (DM), 1.59 (1.12, 2.26) for circulatory system diseases (CSD), and 1.23 (0.53, 2.84) for chronic obstructive pulmonary disease (COPD), whereas 1.04 (0.59, 1.85) for non-disease group (NDG). Compared with NDG, elders with COPD had excess risk of mortality associated with thermal stress attributable to hot temperature, while elders with DM and CSD were vulnerable to both hot and cold temperatures. CONCLUSIONS Elders with pre-existing health conditions were more vulnerable to excess mortality risk to hot and/or cold temperature. Preventative measures should target on elders with chronic health problems.
Collapse
Affiliation(s)
- Shengzhi Sun
- School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Linwei Tian
- School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Hong Qiu
- School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - King-Pan Chan
- School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Hilda Tsang
- School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Robert Tang
- School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Ruby Siu-Yin Lee
- Elderly Health Service, Department of Health, Hong Kong SAR, China
| | - Thuan-Quoc Thach
- School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Chit-Ming Wong
- School of Public Health, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
49
|
Zeng X, Xu X, Zheng X, Reponen T, Chen A, Huo X. Heavy metals in PM2.5 and in blood, and children's respiratory symptoms and asthma from an e-waste recycling area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 210:346-53. [PMID: 26803791 DOI: 10.1016/j.envpol.2016.01.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/06/2016] [Accepted: 01/10/2016] [Indexed: 02/05/2023]
Abstract
This study was to investigate the levels of heavy metals in PM2.5 and in blood, the prevalence of respiratory symptoms and asthma, and the related factors to them. Lead and cadmium in both PM2.5 and blood were significant higher in Guiyu (exposed area) than Haojiang (reference area) (p < 0.05), however, no significant difference was found for chromium and manganese in PM2.5 and in blood. The prevalence of cough, phlegm, dyspnea, and wheeze of children was higher in Guiyu compared to Haojiang (p < 0.05). No significant difference was found for the prevalence of asthma in children between Guiyu and Haojiang. Living in Guiyu was positively associated with blood lead (B = 0.196, p < 0.001), blood cadmium (B = 0.148, p < 0.05) and cough (OR, 2.37; 95% CI, 1.30-4.32; p < 0.01). Blood lead>5 μg/dL was significantly associated with asthma (OR, 9.50; 95% CI, 1.16-77.49). Higher blood chromium and blood manganese were associated with more cough and wheeze, respectively. Our data suggest that living in e-waste exposed area may lead to increased levels of heavy metals, and accelerated prevalence of respiratory symptoms and asthma.
Collapse
Affiliation(s)
- Xiang Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou University, 22 Xinling Road, Shantou 515041, China; Department of Epidemiology, University Medical Center Groningen, University of Groningen, 1 Hanzeplein, Groningen 9700RB, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, 1 Hanzeplein, Groningen 9700RB, The Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou University, 22 Xinling Road, Shantou 515041, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou University, 22 Xinling Road, Shantou 515041, China
| | - Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou University, 22 Xinling Road, Shantou 515041, China
| | - Tiina Reponen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Aimin Chen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xia Huo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
50
|
Nance E, King D, Wright B, Bullard RD. Ambient air concentrations exceeded health-based standards for fine particulate matter and benzene during the Deepwater Horizon oil spill. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2016; 66:224-36. [PMID: 26565439 DOI: 10.1080/10962247.2015.1114044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
UNLABELLED The Deepwater Horizon oil spill is considered one of the largest marine oil spills in the history of the United States. Air emissions associated with the oil spill caused concern among residents of Southeast Louisiana. The purpose of this study was to assess ambient concentrations of benzene (n=3,887) and fine particulate matter (n=102,682) during the oil spill and to evaluate potential exposure disparities in the region. Benzene and fine particulate matter (PM2.5) concentrations in the targeted parishes were generally higher following the oil spill, as expected. Benzene concentrations reached 2 to 19 times higher than background, and daily exceedances of PM2.5 were 10 to 45 times higher than background. Both benzene and PM2.5 concentrations were considered high enough to exceed public health criteria, with measurable exposure disparities in the coastal areas closer to the spill and clean-up activities. These findings raise questions about public disclosure of environmental health risks associated with the oil spill. The findings also provide a science-based rationale for establishing health-based action levels in future disasters. IMPLICATIONS Benzene and particulate matter monitoring during the Deepwater Horizon oil spill revealed that ambient air quality was a likely threat to public health and that residents in coastal Louisiana experienced significantly greater exposures than urban residents. Threshold air pollution levels established for the oil spill apparently were not used as a basis for informing the public about these potential health impacts. Also, despite carrying out the most comprehensive air monitoring ever conducted in the region, none of the agencies involved provided integrated analysis of the data or conclusive statements about public health risk. Better information about real-time risk is needed in future environmental disasters.
Collapse
Affiliation(s)
- Earthea Nance
- a Texas Southern University , Barbara Jordan-Mickey Leland School of Public Affairs , Houston , TX , USA
| | - Denae King
- a Texas Southern University , Barbara Jordan-Mickey Leland School of Public Affairs , Houston , TX , USA
| | - Beverly Wright
- b Dillard University , Deep South Center for Environmental Justice , New Orleans , LA , USA
| | - Robert D Bullard
- a Texas Southern University , Barbara Jordan-Mickey Leland School of Public Affairs , Houston , TX , USA
| |
Collapse
|