1
|
Li J, Wei H, Wang N, Chen J, Zhang W, An Z, Song J, Liang Y, Liu X, Wu W. Concurrent ozone and high temperature exacerbates nasal epithelial barrier damage in allergic rhinitis mice: Insights from the nasal transcriptome and nasal microbiota. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135800. [PMID: 39265397 DOI: 10.1016/j.jhazmat.2024.135800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/15/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
The global ambient temperature has been rising in recent decades and high temperature is usually accompanied by ozone (O3) pollution. Environmental change is an underlying factor for the increased prevalence of respiratory allergic disease. However, the potential mechanisms are complex and remain elusive. This study was performed to reveal toxic effects and molecular mechanisms of O3 or/and high temperature induced allergic rhinitis (AR) deterioration. The results indicated that O3 and high temperature co-exposure exacerbated rhinitis symptoms, destroyed ultrastructure of nasal mucosa and down-regulated the expression of nasal epithelial barrier structural proteins ZO-1 and occludin. Moreover, the levels of total protein and lactate dehydrogenase (LDH) in nasal lavage fluid and the levels of IL-1β and TNF-α in serum also exhibited a significant upward trend. Transcriptomic analysis revealed that immune and inflammatory signaling pathways such as IL-17 signaling pathway was involved in the combined toxicity of O3 and high temperature. Microbiome examination showed that Prevotella and Elizabethkingia were linked to nasal injury. What's more, spearman correlation analysis revealed correlations among nasal microbiota dysbiosis, inflammation and injury. To sum up, the present study assessed the combined toxicity of O3 and high temperature and found potential mechanisms, which provided important experimental evidence for making preventive intervention strategies and protecting vulnerable populations.
Collapse
Affiliation(s)
- Juan Li
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Huai Wei
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Ning Wang
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jing Chen
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Weiping Zhang
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Zhen An
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jie Song
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yixuan Liang
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xiaowan Liu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Weidong Wu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| |
Collapse
|
2
|
Stowell JD, Sun Y, Gause EL, Spangler KR, Schwartz J, Bernstein A, Wellenius GA, Nori-Sarma A. Warm season ambient ozone and children's health in the USA. Int J Epidemiol 2024; 53:dyae035. [PMID: 38553030 PMCID: PMC10980558 DOI: 10.1093/ije/dyae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/15/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Over 120 million people in the USA live in areas with unsafe ozone (O3) levels. Studies among adults have linked exposure to worse lung function and higher risk of asthma and chronic obstructive pulmonary disease (COPD). However, few studies have examined the effects of O3 in children, and existing studies are limited in terms of their geographic scope or outcomes considered. METHODS We leveraged a dataset of encounters at 42 US children's hospitals from 2004-2015. We used a one-stage case-crossover design to quantify the association between daily maximum 8-hour O3 in the county in which the hospital is located and risk of emergency department (ED) visits for any cause and for respiratory disorders, asthma, respiratory infections, allergies and ear disorders. RESULTS Approximately 28 million visits were available during this period. Per 10 ppb increase, warm-season (May through September) O3 levels over the past three days were associated with higher risk of ED visits for all causes (risk ratio [RR]: 0.3% [95% confidence interval (CI): 0.2%, 0.4%]), allergies (4.1% [2.5%, 5.7%]), ear disorders (0.8% [0.3%, 1.3%]) and asthma (1.3% [0.8%, 1.9%]). When restricting to levels below the current regulatory standard (70 ppb), O3 was still associated with risk of ED visits for all-cause, allergies, ear disorders and asthma. Stratified analyses suggest that the risk of O3-related all-cause ED visits may be higher in older children. CONCLUSIONS Results from this national study extend prior research on the impacts of daily O3 on children's health and reinforce the presence of important adverse health impacts even at levels below the current regulatory standard in the USA.
Collapse
Affiliation(s)
- Jennifer D Stowell
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Yuantong Sun
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Emma L Gause
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Keith R Spangler
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health Boston, MA, USA
| | - Aaron Bernstein
- Division of General Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Gregory A Wellenius
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Amruta Nori-Sarma
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
3
|
Huang HC, Zou ML, Chen YH, Jiang CB, Wu CD, Lung SCC, Chien LC, Lo YC, Chao HJ. Effects of indoor air quality and home environmental characteristics on allergic diseases among preschool children in the Greater Taipei Area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165392. [PMID: 37423284 DOI: 10.1016/j.scitotenv.2023.165392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/11/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Indoor air quality and home environmental characteristics are potential factors associated with the onset and exacerbation of allergic diseases. Our study examined the effects of these factors on allergic diseases (i.e., asthma, allergic rhinitis, allergic conjunctivitis, and atopic dermatitis) among preschool children. We recruited a total of 120 preschool children from an ongoing birth cohort study in the Greater Taipei Area. A comprehensive environmental evaluation was conducted at each participant's residence and included measurements of indoor and outdoor air pollutants, fungal spores, endotoxins, and house dust mite allergens. A structured questionnaire was used to collect information on the allergic diseases and home environments of participants. Land-use characteristics and points of interest in the surrounding area of each home were analyzed. Other covariates were obtained from the cohort data. Multiple logistic regressions were used to examine the relationships between allergic diseases and covariates. We observed that all mean indoor air pollutant levels were below Taiwan's indoor air quality standards. After adjustment for covariates, the total number of fungal spores and the ozone, Der f 1, and endotoxin levels were significantly associated with increased risks of allergic diseases. Biological contaminants more significantly affected allergic diseases than other pollutants. Moreover, home environmental characteristics (e.g., living near power facilities and gas stations) were associated with an increased risk of allergic diseases. Regular and proper home sanitation is recommended to prevent the accumulation of indoor pollutants, especially biological contaminants. Living away from potential sources of pollution is also crucial for protecting the health of children.
Collapse
Affiliation(s)
- Hsiao-Chun Huang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ming-Lun Zou
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hua Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Tainan, Taiwan
| | | | - Ling-Chu Chien
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsing Jasmine Chao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
Connor EM, Zablotsky B. The association between air pollution and childhood asthma: United States, 2010-2015. J Asthma 2022; 59:2069-2080. [PMID: 34587862 PMCID: PMC9148369 DOI: 10.1080/02770903.2021.1988105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The current population-based study examines the association between county-level ambient air pollution and childhood asthma. METHODS Data from the nationally representative 2010-2015 National Health Interview Survey were linked to nationwide fine particulate matter (PM2.5) air pollution data at the county-level from the National Environmental Public Health Tracking Network which utilizes air quality monitoring stations and modeled PM2.5 measurements (Downscaler model data) and adjusted by county-level socioeconomic characteristics data from the 2010-2015 American Community Survey. Multilevel modeling techniques were used to assess the association between PM2.5 annual concentrations (quartiles < 8.11, 8.11-9.50, 9.51-10.59, ≥ 10.60 µg/m3) and current childhood asthma along with two asthma outcomes (episode in the past year, emergency room (ER) visit due to asthma). RESULTS From 2010 to 2015, there were significant declines in PM2.5 concentrations and asthma outcomes. In unadjusted models, children living in areas with higher PM2.5 concentrations were more likely to have current asthma, ≥1 asthma episode in the past year, and ≥1 ER visit due to asthma compared with children living in areas with the lowest quartile (< 8.11 µg/m3). After adjusting for characteristics at the county, geographic, and child and family-level, significant associations remained for asthma episode, and ER visit among children living in areas with PM2.5 annual concentrations between 9.51 and 10.59 µg/m3 (3rd quartile) compared with children living in areas with the lowest quartile. CONCLUSIONS This study adds to the limited literature by incorporating nationally representative county-, child-, and family-level data to provide a multi-level analysis of the associations between air pollution and childhood asthma in the U.S.
Collapse
Affiliation(s)
- Eric M Connor
- National Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville, MD, USA
| | - Benjamin Zablotsky
- National Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville, MD, USA
| |
Collapse
|
5
|
Liu Y, Lu C, Li Y, Norbäck D, Deng Q. Outdoor Air Pollution and Indoor Window Condensation Associated with Childhood Symptoms of Allergic Rhinitis to Pollen. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138071. [PMID: 35805726 PMCID: PMC9266097 DOI: 10.3390/ijerph19138071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022]
Abstract
Pollen is the main factor causing asthma and allergic rhinitis (AR). However, the key indoor and outdoor factors associated with childhood symptoms of allergic rhinitis (SAR) to pollen are unclear. We investigate the association of exposure to outdoor air pollution and indoor environmental factors with childhood SAR to pollen and consider SAR to pollen in different seasons. A cross-sectional study of 2598 preschool children aged 3–6 was conducted in Changsha, China (2011–2012). The prevalence of SAR to pollen in children and information on indoor environmental factors were obtained by questionnaire. Children’s exposure to outdoor air pollutants (PM10, SO2, and NO2) was estimated from the monitored concentrations. The association of exposure to indoor environmental factors and outdoor air pollution with childhood SAR to pollen was estimated by multiple logistic regression models using odds ratio (OR) and a 95% confidence interval (CI), and the relationship between outdoor air pollutants and childhood SAR to pollen was investigated using restricted cubic splines. We found that early-life and current exposure to outdoor air pollution were significantly associated with childhood SAR to pollen in autumn, including exposure to SO2 one year before conception (OR = 1.60, 95% CI = 1.08–2.37) and during entire pregnancy (OR = 1.49, 95% CI = 1.01–2.20) periods, exposure to PM10 during the current period (OR = 1.78, 95% CI = 1.07–2.96), and exposure to NO2 during the early-life (one year before conception and entire pregnancy) and current periods with ORs (95% CI) of 1.72 (1.10–2.71), 1.82 (1.17–2.83), and 1.94 (1.11–3.40), respectively. Further, we found significant associations of both prenatal and postnatal exposure to window condensation with childhood SAR to pollen, with ORs (95% CI) = 1.37 (1.05–1.77) and 1.38 (1.02–1.88), respectively. We encourage SAR to pollen sufferers to stay indoors due to outdoor air pollution and higher pollen concentration outdoors, but indoor ventilation should be maintained.
Collapse
Affiliation(s)
- Yingjie Liu
- School of Energy Science and Engineering, Central South University, Changsha 410083, China;
| | - Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410078, China;
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China;
| | - Dan Norbäck
- Department of Medical Sciences, Uppsala University, 752 36 Uppsala, Sweden;
| | - Qihong Deng
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Correspondence:
| |
Collapse
|
6
|
Meng X, Cao S, Li S, Yan M, Guo Q, Gong J, Liu Q, Zhang JJ, Duan X. Household environmental factors and children's respiratory health: comparison of two cross-sectional studies over 25 years in Wuhan, China. J Thorac Dis 2021; 13:4589-4600. [PMID: 34422384 PMCID: PMC8339747 DOI: 10.21037/jtd-20-2170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/05/2021] [Indexed: 11/24/2022]
Abstract
Background Over the recent decades, residential lifestyle and household environment have changed substantially with rapid development of industrialization and urbanization in China. Whether the prevalence of respiratory diseases changed is still lack of evidence. The objective of this study is to assess potential changes in children’s respiratory disease prevalence and associated household environmental factors in Wuhan over a 25-year time interval. Methods Two cross-sectional studies in the Period 1 (1993 to 1996) and Period 2 (2017 to 2018) were compared in this research. Elementary school children in period 1 (N=2,517) and in period 2 (N=3,152) were recruited in Wuhan, China. The respiratory health condition, home environmental factors, and family socioeconomic status of each subject were acquired through questionnaire survey using the same protocols in both periods. We used the Chi-square test to analyze the difference of household environmental factors (focused on three indoor air quality determinants) and children’s respiratory health condition between two periods. Logistic regression models were used to assess the impacts of household environmental determinants on children’s respiratory diseases and symptoms between the two studies, by adjusting a set of covariates. Results The three indoor air quality determinants have reduced substantially in prevalence from period 1 to period 2: environment tobacco smoke (ETS) from 86.6% to 45.9%, household coal use from 47.6% to 4.9%, and kitchen smoke from 58.9% to 7.3%. The prevalence of certain respiratory symptoms in children significantly decreased, such as cough with colds (51.1% to 41.6%) and phlegm with colds (22.3% to 17.7%). The prevalence of asthma was 2.5% and 2.4% and that of bronchitis was 27.1% and 29.8% in both periods. Coal use was a risk factor for asthma in period 1 (OR =2.34, 95% CI: 1.30–4.23), while it was not significantly associated with prevalence of asthma in period 2 (OR =0.60, 95% CI: 0.08–4.51). Conclusions Household indoor air quality determinants and respiratory health condition of children in Wuhan has been improved over the last 25 years. At present, kitchen smoke is an important factor affecting the prevalence of wheeze whatever child has a cold or not and reducing exposure to ETS could be beneficial to protect children to be less likely to develop bronchitis.
Collapse
Affiliation(s)
- Xin Meng
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China.,Beijing Innovation Center for Engineering Science and Advanced Technology, State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, China
| | - Suzhen Cao
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Sai Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Meilin Yan
- Beijing Innovation Center for Engineering Science and Advanced Technology, State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, China
| | - Qian Guo
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Jicheng Gong
- Beijing Innovation Center for Engineering Science and Advanced Technology, State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, China
| | - Qin Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Junfeng Jim Zhang
- Global Health Research Center, Duke Kunshan University, Kunshan, China.,Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, USA.,Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
7
|
Yum HY, Ha EK, Shin YH, Han MY. Prevalence, comorbidities, diagnosis, and treatment of nonallergic rhinitis: real-world comparison with allergic rhinitis. Clin Exp Pediatr 2021; 64:373-383. [PMID: 32777916 PMCID: PMC8342874 DOI: 10.3345/cep.2020.00822] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/15/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Rhinitis is among the most common respiratory diseases in children. Nonallergic rhinitis, which involves nasal symptoms without evidence of systemic allergic inflammation or infection, is a heterogeneous entity with diverse manifestations and intensities. Nonallergic rhinitis accounts for 16%-89% of the chronic rhinitis cases, affecting 1%-50% (median 10%) of the total pediatric population. The clinical course of nonallergic rhinitis is generally rather mild and less likely to be associated with allergic comorbidities than allergic rhinitis. Here, we aimed to estimate the rate of coexisting comorbidities of nonallergic rhinitis. Nonallergic rhinitis is more prevalent during the first 2 years of life; however, its underestimation for children with atopic tendencies is likely due to low positive rates of specific allergic tests during early childhood. Local allergic rhinitis is a recently noted phenotype with rates similar to those in adults (median, 44%; range, 4%-67%), among patients previously diagnosed with nonallergic rhinitis. Idiopathic rhinitis, a subtype of nonallergic rhinitis, has been poorly studied in children, and its rates are known to be lower than those in adults. The prevalence of nonallergic rhinitis with eosinophilia syndrome is even lower. A correlation between nonallergic rhinitis and pollution has been suggested owing to the recent increase in nonallergic rhinitis rates in highly developing regions such as some Asian countries, but many aspects remain unknown. Conventional treatments include antihistamines, intranasal corticosteroids, and recent treatments include combination of intranasal corticosteroids with azelastin or decongestants. Here we review the prevalence, diagnosis, comorbidities, and treatment recommendations for nonallergic rhinitis versus allergic rhinitis in children.
Collapse
Affiliation(s)
- Hye Yung Yum
- Department of Pediatrics, Seoul Medical Center, Seoul, Korea
| | - Eun Kyo Ha
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Yoon Ho Shin
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Korea
| | - Man Yong Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
8
|
Allergic Rhinitis: Association with Air Pollution and Weather Changes, and Comparison with That of Allergic Conjunctivitis in Taiwan. ATMOSPHERE 2020. [DOI: 10.3390/atmos11111152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Allergic conjunctivitis (AC) and rhinitis (AR) are common allergic diseases that may be environmentally related. We used a systematic sampling cohort database, which was applied in an AC study previously, to examine the association of AR with air pollution and weather changes. A case-crossover design coupled with conditional logistic analysis was implemented in the analysis; we identified 140,365 eligible AR subjects, and matched their diagnoses with environmental monitoring data. Unlike AC, the descriptive statistics indicated that AR occurred the most in adults under 50 years old by age (44.7%), and in winter by season (28.7%) (p < 0.001); similar to AC, AR occurred more in women than to men. Nitrogen dioxide (NO2) was found to be positively associated with AR (p < 0.001), whereas relative humidity and temperature were negatively related (p < 0.001). We found that the risk of AR increased with descending NO2 levels relative to AC (OR = 0.984, p = 0.003) after adjustment for covariates. It is suggested that AR could be triggered or exacerbated by lower levels of NO2 than is AC. We recommend that AR patients pay extra attention to air pollution and mitigate their allergic problem accordingly.
Collapse
|
9
|
Yang H, Yan C, Li M, Zhao L, Long Z, Fan Y, Zhang Z, Chen R, Huang Y, Lu C, Zhang J, Tang J, Liu H, Liu M, Guo W, Yang L, Zhang X. Short term effects of air pollutants on hospital admissions for respiratory diseases among children: A multi-city time-series study in China. Int J Hyg Environ Health 2020; 231:113638. [PMID: 33080524 DOI: 10.1016/j.ijheh.2020.113638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022]
Abstract
Evidence concerning short-term acute association between air pollutants and hospital admissions for respiratory diseases among children in a multi-city setting was quite limited. We conducted a time-series analysis to evaluate the association of six common air pollutants with hospital admissions for respiratory diseases among children aged 0-14 years in 4 cities (Guangzhou, Shanghai, Wuhan and Xining), China during 2013-2018. We used generalized additive models incorporating penalized smoothing splines and random-effect meta-analysis to calculate city-specific and pooled estimates, respectively. The exposure-response relationship curves were fitted using the cubic spline regression. Subgroup analyses by gender, age, season and disease subtype were also performed. A total of 183,036 respiratory diseases hospitalizations were recorded during the study period, and 94.1% of the cases were acute respiratory infections. Overall, we observed that increased levels of air pollutants except O3, were significantly associated with increased hospital admissions for respiratory disease. Each 10 μg/m3 increase in PM2.5, SO2 and NO2 at lag 07, PM10 at lag 03 and per 1 mg/m3 increase in CO at lag 01 corresponded to increments of 1.19%, 3.58%, 2.23%, 0.51% and 6.10% in total hospitalizations, respectively. Generally, exposure-response relationships of PM2.5 and SO2 in Guangzhou, SO2, NO2 and CO in Wuhan, as well as SO2 and NO2 in Xining with respiratory disease hospitalizations were also found. Moreover, the adverse effects of these pollutants apart from PM2.5 in certain cities remained significant even at exposure levels below the current Chinese Ambient Air Quality Standards (CAAQS) Grade II. Children aged 4-14 years appeared to be more vulnerable to the adverse effects of PM2.5, SO2 and NO2. Furthermore, with the exception of O3, the associations were stronger in cold season than in warm season. Short-term exposure to PM2.5, SO2, NO2 and CO were associated, in dose-responsive manners, with increased risks of hospitalizations for childhood respiratory diseases, and adverse effects of air pollutants except PM2.5 held even at exposure levels below the current CAAQS Grade II in certain cities.
Collapse
Affiliation(s)
- Huihua Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Chunxiang Yan
- Wuhan Children's Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Meng Li
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Zhen Long
- Department of Pediatric Respiratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, HUST, Wuhan, China
| | - Yali Fan
- Qinghai Provincial Women and Children's Hospital, Xining, China
| | - Zhonggang Zhang
- Qinghai Provincial Women and Children's Hospital, Xining, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yihui Huang
- Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Congbin Lu
- Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jianduan Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jie Tang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Hua Liu
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
10
|
Klis K, Wronka I. Associations between childhood and adolescence exposure to air pollution and adult height in polish women. ENVIRONMENTAL RESEARCH 2020; 189:109965. [PMID: 32739685 DOI: 10.1016/j.envres.2020.109965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/07/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Exposure to airborne substances harmful to health during pre- and postnatal stage may significantly affect the correct development of organs and systems. Many studies analyze the relationship between air quality and health, but data on the impact of air pollution on human biological development are scanty. The aim of the study was to assess the relationships between adult body height and air quality in the place of residence during childhood and adolescence. The parameters measured included absolute stature (cm) and relative stature defined as a percentage of mean stature of both parents. The analysis covered data collected from 1257 women. Subject's height was measured. Data on parental height were obtained using a questionnaire. The level of each analysed environmental pollution in the place of residence during childhood and adolescence: particulate matter (PM10, PM2.5), sulphur dioxide (SO2), nitric dioxide (NO2) and benzene (C6H6) in the place of residence during childhood and adolescence was determined on the basis of the data made available by the Polish Chief Inspectorate for Environmental Protection. Results of our study show that mean stature decreases with growing air pollution level. Significant differences were observed both in absolute stature and relative stature (expressed as percentage of mean stature of both parents) depending on PM10 and PM2.5 levels in place of residence during childhood and adolescence as well as on the total index of air quality. The differences remain statistically significant also after adjustment for the degree of urbanisation of the place of residence and factors related to socio-economic status. Our findings suggest that air pollution level in the place of residence during childhood and adolescence has significant impact on the children growth, potentially leading to worse health status later in life.
Collapse
Affiliation(s)
- Katarzyna Klis
- Department of Human Biology, University of Wroclaw, Poland
| | - Iwona Wronka
- Department of Anthropology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
11
|
Liu W, Huang C, Cai J, Fu Q, Zou Z, Sun C, Zhang J. Prenatal and postnatal exposures to ambient air pollutants associated with allergies and airway diseases in childhood: A retrospective observational study. ENVIRONMENT INTERNATIONAL 2020; 142:105853. [PMID: 32585502 DOI: 10.1016/j.envint.2020.105853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
It's inconsistent about associations of early exposures to outdoor air pollutants with allergies and airway diseases in childhood. Here, we investigated associations of prenatal and postnatal exposures to outdoor nitrogen dioxide (NO2), sulphur dioxide (SO2), and PM10 (particulate matter with an aerodynamic diameter ≤ 10 μm) with asthma, wheeze, hay fever, rhinitis, pneumonia, and eczema in childhood. We surveyed 3,177 preschoolers who never change residences since birth in Shanghai, China. Parents reported information regarding children's health status. Daily-averaged concentrations of these pollutants in the children's gestation and in the first year of lifetime for district where children lived were collected by Shanghai Environmental Monitoring Center. After adjusting for covariates, exposures to higher level of NO2 during different trimesters of gestation and of the first year of lifetime had significant associations with the increased odds of asthma, hay fever, rhinitis, pneumonia, and eczema in childhood. Associations of NO2 exposures in the early trimesters of gestation and of the first year of lifetime with pneumonia were stronger than in the later trimesters, whereas associations of NO2 exposures in the early trimesters with hay fever and eczema were weaker than in the later trimesters. Our results indicated that prenatal and postnatal exposures to outdoor NO2 could be risk factors for allergies and airway diseases in childhood. Both dose and duration were related with the influence degree of early NO2 exposure on childhood allergies and airway diseases.
Collapse
Affiliation(s)
- Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, China
| | - Chen Huang
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China.
| | - Jiao Cai
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai, China
| | - Zhijun Zou
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Chanjuan Sun
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jialing Zhang
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
12
|
Liu W, Cai J, Fu Q, Zou Z, Sun C, Zhang J, Huang C. Associations of ambient air pollutants with airway and allergic symptoms in 13,335 preschoolers in Shanghai, China. CHEMOSPHERE 2020; 252:126600. [PMID: 32234631 DOI: 10.1016/j.chemosphere.2020.126600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/14/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Findings are inconsistent in studies for impacts of outdoor air pollutants on airway health in childhood. In this paper, we collected data regarding airway and allergic symptoms in the past year before a survey in 13,335 preschoolers from a cross-sectional study. Daily averaged concentrations of ambient sulphur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter with an aerodynamic diameter ≤10 μm (PM10) in the past year before the survey were collected in the kindergarten-located district. We investigated associations of 12-month average concentrations of these pollutants with childhood airway and allergic symptoms. In the two-level (district-child) logistic regression analyses, exposure to higher level of NO2 and of PM10 increased odds of wheeze symptoms (adjusted OR, 95%CI: 1.03, 1.01-1.05 for per 3.0 μg/m3 increase in NO2; 1.22, 1.09-1.39 for per 7.6 μg/m3 increase in PM10), wheeze with a cold (1.03, 1.01-1.06; 1.22, 1.08-1.39), dry cough during night (1.05, 1.03-1.08; 1.23, 1.09-1.40), rhinitis symptoms (1.11, 1.08-1.13; 1.32, 1.07-1.63), rhinitis on pet (1.11, 1.05-1.18; 1.37, 0.95-1.98) and pollen (1.12, 1.03-1.21; 1.23, 0.84-1.82) exposure, eczema symptoms (1.09, 1.05-1.12; 1.22, 0.98-1.52), and lack of sleep due to eczema (1.12, 1.07-1.18; 1.58, 1.25-1.98). Exposures to NO2 and PM10 were also significantly and positively associated with the accumulative score of airway symptoms. Similar positive associations were found of NO2 and of PM10 with the individual symptoms and symptom scores among preschoolers from different kindergarten-located district. These results indicate that ambient NO2 and PM10 likely are risk factors for airway and allergic symptoms in childhood in Shanghai, China.
Collapse
Affiliation(s)
- Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, China; School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, China
| | - Jiao Cai
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai, China
| | - Zhijun Zou
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Chanjuan Sun
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jialing Zhang
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Huang
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
13
|
Robichaud A. An overview of selected emerging outdoor airborne pollutants and air quality issues: The need to reduce uncertainty about environmental and human impacts. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:341-378. [PMID: 31994992 DOI: 10.1080/10962247.2020.1723738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
According to the literature, it is estimated that outdoor air pollution is responsible for the premature death in a range from 3.7 to 8.9 million persons on an annual basis across the world. Although there is uncertainty on this figure, outdoor air pollution represents one of the greatest global risks to human health. In North America, the rapid evolution of technologies (e.g., nanotechnology, unconventional oil and gas rapid development, higher demand for fertilizers in agriculture) and growing demand for ground, marine and air transportation may result in significant increases of emissions of pollutants that have not been carefully studied so far. As a result, these atmospheric pollutants insufficiently addressed by science in Canada and elsewhere are becoming a growing issue with likely human and environmental impacts in the near future. Here, an emerging pollutant is defined as one that meets the following criteria: 1) potential or demonstrated risk for humans or the environment, 2) absence of Canada-wide national standard, 3) insufficient routine monitoring, 4) yearly emissions greater than one ton in Canada, 5) insufficient data concerning significant sources, fate, and detection limit, and 6) insufficiently addressed by epidemiological studies. A new methodology to rank emerging pollutants is proposed here based on weighting multiple criteria. Some selected emerging issues are also discussed here and include the growing concern of ultrafine or nanoparticles, growing ammonia emissions (due to rapid expansion of the agriculture), increased methane/ethane/propane emissions (due to the expanding hydraulic fracturing in the oil and gas sector) and the growing transportation sector. Finally, the interaction between biological and anthropogenic pollution has been found to be a double threat for public health. Here, a multidisciplinary and critical overview of selected emerging pollutants and related critical issues is presented with a focus in Canada.Implications: This overview paper provides a selection methodology for emerging pollutants in the atmospheric environment. It also provides a critical discussion of some related issues. The ultimate objective is to inform about the need to 1) address emerging issues through adequate surface monitoring and modeling in order to inform the development of regulations, 2) reduce uncertainties by geographically mapping emerging pollutants (e.g., through data fusion, data assimilation of observations into air quality models) which can improve the scientific support of epidemiological studies and policies. This review also highlights some of the difficulties with the management of these emerging pollutants, and the need for an integrated approach.
Collapse
Affiliation(s)
- Alain Robichaud
- Air Quality Modelling and Integration Section, Air Quality Research Division, Environment and Climate Change Canada, Dorval, Quebec
| |
Collapse
|
14
|
Characteristics of Polycyclic Aromatic Hydrocarbons (PAHs) and Common Air Pollutants at Wajima, a Remote Background Site in Japan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030957. [PMID: 32033127 PMCID: PMC7036938 DOI: 10.3390/ijerph17030957] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/30/2022]
Abstract
Background: Background sites are mainly affected by long-range-transported air pollutants, resulting in potential adverse effects on local atmospheric environments. A 4–5 year observational study was conducted to illustrate the air pollution profile at the Kanazawa University Wajima air monitoring station (KUWAMS), an ideal remote background site in Japan. Methods: Nine polycyclic aromatic hydrocarbons (PAHs) in the particulate phase and various air pollutants were continuously monitored for 4–5 years. Diagnostic ratios of PAHs and back-trajectory analysis were applied to trace the possible sources of the air pollutants collected at the sampling site. Results: The atmospheric concentration of PAHs in the atmosphere at the site decreased from 2014 to 2019, benefit from the predominant air pollution control policy in China and Japan. Common air pollutants including sulfur dioxide (SO2), nitrogen oxides (NOx), ozone, methane (CH4), and non-methane hydrocarbon (NMHC) were detected in low concentrations from 2016 to 2019, while ozone (O3) and particulate matter (PM2.5, PM with a diameter less than 2.5 μm) were present in high levels that exceeded the Japanese standards. Most air pollutants peaked in spring and showed evident diurnal variations in spring and summer. Conclusions: This is the first study to clarify the atmospheric behaviors of multiple air pollutants at a background site in Japan. Significant external air pollutant impact and unneglectable air pollution were demonstrated at KUWAMS, indicating the importance of studying atmospheric pollution at remote sites.
Collapse
|
15
|
Wang M, Wang S, Wang X, Tian Y, Wu Y, Cao Y, Song J, Wu T, Hu Y. The association between PM 2.5 exposure and daily outpatient visits for allergic rhinitis: evidence from a seriously air-polluted environment. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:139-144. [PMID: 31754771 DOI: 10.1007/s00484-019-01804-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 05/22/2023]
Abstract
Limited evidence was seen as the association between fine particulate matter (PM2.5) and physician visits for allergic rhinitis (AR), especially in countries with extreme air pollution exposure. This paper addressed the issues about the association between PM2.5 and daily outpatient visits for AR among individuals residing in Beijing, China. Data on daily outpatient visits for AR obtained from Beijing Medical Claim Data for Employees and daily PM2.5 concentrations available from US embassy reports were linked by date from January 1, 2010, to June 30, 2012. A time-series analysis was conducted with a generalized additive Poisson model to assess the association between PM2.5 and AR, adjusting for daily average temperature, relative humidity, day of the week, calendar time, and public holiday. Totally, 229,685 outpatient visits for AR were included in the analysis. The daily mean (SD) concentration of PM2.5 was 99.5 (75.3) μg/m3 during the study period. We found that a 10-μg/m3 increase in PM2.5 content was associated with a 0.47% (95% CI: 0.39% to 0.55%) increase in the number of outpatient visits on the same day. Furthermore, results from subgroup analyses suggested that the association was consistently significant among the groups of different ages (< 65 years and ≥ 65 years) and gender. However, this study failed to find a statistically significant association in the autumn season but found significant positive associations during the spring and summer seasons (P for interaction < 0.001). This study indicated a possible association between PM2.5 and AR outpatients, which may benefit further researches in studying PM2.5 and its influence on diseases in a real and seriously air-polluted context.
Collapse
Affiliation(s)
- Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Siyue Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xiaowen Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yaohua Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yaying Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Jing Song
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
16
|
Mendy A, Wilkerson J, Salo PM, Weir CH, Feinstein L, Zeldin DC, Thorne PS. Synergistic Association of House Endotoxin Exposure and Ambient Air Pollution with Asthma Outcomes. Am J Respir Crit Care Med 2019; 200:712-720. [PMID: 30965018 PMCID: PMC6775869 DOI: 10.1164/rccm.201809-1733oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/05/2019] [Indexed: 01/08/2023] Open
Abstract
Rationale: House endotoxin and ambient air pollution are risk factors for asthma; however, the effects of their coexposure on asthma are not well characterized.Objectives: To examine potential synergistic associations of coexposure to house dust endotoxin and ambient air pollutants with asthma outcomes.Methods: We analyzed data of 6,488 participants in the National Health and Nutrition Examination Survey 2005-2006. Dust from bedding and bedroom floor was analyzed for endotoxin content. The Community Multiscale Air Quality Modeling System (CMAQ) and Downscaler Model data were used to determine annual average particulate matter ≤2.5 μm in aerodynamic diameter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) exposures at participants' residential locations. The associations of the coexposures with asthma outcomes were assessed and tested for synergistic interaction.Measurements and Main Results: In adjusted analysis, PM2.5 (CMAQ) (odds ratio [OR], 1.12; 95% confidence interval [CI], 1.07-1.18), O3 (Downscaler Model) (OR, 1.07; 95% CI, 1.02-1.13), and log10 NO2 (CMAQ) (OR, 3.15; 95% CI, 1.33-7.45) were positively associated with emergency room visits for asthma in the past 12 months. Coexposure to elevated concentrations of house dust endotoxin and PM2.5 (CMAQ) was synergistically associated with the outcome, increasing the odds by fivefold (OR, 5.01; 95% CI, 2.54-9.87). A synergistic association was also found for coexposure to higher concentrations of endotoxin and NO2 in children (OR, 3.45; 95% CI, 1.65-7.18).Conclusions: Coexposure to elevated concentrations of residential endotoxin and ambient PM2.5 in all participants and NO2 in children is synergistically associated with increased emergency room visits for asthma. Therefore, decreasing exposure to both endotoxin and air pollution may help reduce asthma morbidity.
Collapse
Affiliation(s)
- Angelico Mendy
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| | | | - Pӓivi M. Salo
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and
| | - Charles H. Weir
- Office of Emergency Management, U.S. Department of Health and Human Services, Atlanta, Georgia
| | | | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and
| | - Peter S. Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| |
Collapse
|
17
|
Smiljanic K, Prodic I, Apostolovic D, Cvetkovic A, Veljovic D, Mutic J, van Hage M, Burazer L, Cirkovic Velickovic T. In-depth quantitative profiling of post-translational modifications of Timothy grass pollen allergome in relation to environmental oxidative stress. ENVIRONMENT INTERNATIONAL 2019; 126:644-658. [PMID: 30856452 DOI: 10.1016/j.envint.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/02/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
An association between pollution (e.g., from traffic emissions) and the increased prevalence of respiratory allergies has been observed. Field-realistic exposure studies provide the most relevant assessment of the effects of the intensity and diversity of urban and industrial contamination on pollen structure and allergenicity. The significance of in-depth post-translational modification (PTM) studies of pollen proteomes, when compared with studies on other aspects of pollution and altered pollen allergenicity, has not yet been determined; hence, little progress has been made within this field. We undertook a comprehensive comparative analysis of multiple polluted and environmentally preserved Phleum pratense (Timothy grass) pollen samples using scanning electron microscopy, in-depth PTM profiling, determination of organic and inorganic pollutants, analysis of the release of sub-pollen particles and phenols/proteins, and analysis of proteome expression using high resolution tandem mass spectrometry. In addition, we used quantitative enzyme-linked immunosorbent assays (ELISA) and immunoglobulin E (IgE) immunoblotting. An increased phenolic content and release of sub-pollen particles was found in pollen samples from the polluted area, including a significantly higher content of mercury, cadmium, and manganese, with irregular long spines on pollen grain surface structures. Antioxidative defense-related enzymes were significantly upregulated and seven oxidative PTMs were significantly increased (methionine, histidine, lysine, and proline oxidation; tyrosine glycosylation, lysine 4-hydroxy-2-nonenal adduct, and lysine carbamylation) in pollen exposed to the chemical plant and road traffic pollution sources. Oxidative modifications affected several Timothy pollen allergens; Phl p 6, in particular, exhibited several different oxidative modifications. The expression of Phl p 6, 12, and 13 allergens were downregulated in polluted pollen, and IgE binding to pollen extract was substantially lower in the 18 patients studied, as measured by quantitative ELISA. Quantitative, unrestricted, and detailed PTM searches using an enrichment-free approach pointed to modification of Timothy pollen allergens and suggested that heavy metals are primarily responsible for oxidative stress effects observed in pollen proteins.
Collapse
Affiliation(s)
- Katarina Smiljanic
- University of Belgrade-Faculty of Chemistry, Centre of Excellence for Molecular Food Sciences and Department of Biochemistry, Belgrade, Serbia.
| | - Ivana Prodic
- Innovation Center Ltd, University of Belgrade-Faculty of Chemistry, Belgrade, Serbia
| | | | - Anka Cvetkovic
- Institute of Public Health of Belgrade, Belgrade, Serbia
| | - Djordje Veljovic
- University of Belgrade-Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Jelena Mutic
- University of Belgrade-Faculty of Chemistry, Centre of Excellence for Molecular Food Sciences and Department of Biochemistry, Belgrade, Serbia; Ghent University Global Campus, Incheon, South Korea
| | - Marianne van Hage
- Karolinska Institute, Department of Medicine, Solna, Stockholm, Sweden
| | - Lidija Burazer
- Institute of Immunology, Virology and Sera Production, Torlak Institut, Belgrade, Serbia
| | - Tanja Cirkovic Velickovic
- University of Belgrade-Faculty of Chemistry, Centre of Excellence for Molecular Food Sciences and Department of Biochemistry, Belgrade, Serbia; Ghent University Global Campus, Incheon, South Korea; Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium; Serbian Academy of Sciences and Arts, Belgrade, Serbia.
| |
Collapse
|
18
|
Abstract
Urban residential greening provides opportunities for social integration and physical exercise. These activities are beneficial to promoting citizens’ mental health, relieving stress, and reducing obesity and violent crimes. However, how to measure the distribution and spatial difference of green resources in urban residential areas have been controversial. This study takes the greening of urban residential units in Shenzhen City as its research object, measures the various greening index values of each residential unit, and analyses the spatial distribution characteristics of residential greening, regional differences, and influencing factors. A large sample of street view pictures, urban land use and high-resolution remote sensing image data are employed to establish an urban residential greening database containing 14,196 residential units. This study proposes three greening indicators, namely, green coverage index, green view index, and accessible public green land index, for measuring the green coverage of residential units, the visible greening of surrounding street space and the public green land around, respectively. Results show that (1) the greening level of residential units in Shenzhen City is generally high, with the three indicators averaging 32.7%, 30.5%, and 15.1%, respectively; (2) the types of residential greening differ per area; and (3) the level of residential greening is affected by development intensity, location, elevation and residential type. Such findings can serve as a reference for improving the greening level of residential units. This study argues that one indicator alone cannot measure the greenness of a residential community. It proposes an accessible public green land index as a measure for the spatial relationship between residential units and green lands. It suggests that future green space planning should pay more attention to the spatial distribution of green land, and introduce quantitative indicators to ensure sufficient green lands around the walking range of residential areas.
Collapse
|
19
|
Abstract
This article on exposome and asthma focuses on the interaction of patients and their environments in various parts of their growth, development, and stages of life. Indoor and outdoor environments play a role in pathogenesis via levels and duration of exposure, with genetic susceptibility as a crucial factor that alters the initiation and trajectory of common conditions such as asthma. Knowledge of environmental exposures globally and changes that are occurring is necessary to function effectively as medical professionals and health advocates.
Collapse
Affiliation(s)
- Ahila Subramanian
- Department of Allergy and Clinical Immunology, Respiratory Institute, Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, CWRU School of Medicine, 9500 Euclid Avenue/A90, Cleveland, OH 4419, USA
| | - Sumita B Khatri
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, CWRU School of Medicine, 9500 Euclid Avenue/A90, Cleveland, OH 4419, USA.
| |
Collapse
|
20
|
Keet CA, Keller JP, Peng RD. Long-Term Coarse Particulate Matter Exposure Is Associated with Asthma among Children in Medicaid. Am J Respir Crit Care Med 2018; 197:737-746. [PMID: 29243937 PMCID: PMC5855070 DOI: 10.1164/rccm.201706-1267oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/21/2017] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Short- and long-term fine particulate matter (particulate matter ≤2.5 μm in aerodynamic diameter [PM2.5]) pollution is associated with asthma development and morbidity, but there are few data on the effects of long-term exposure to coarse PM (PM10-2.5) on respiratory health. OBJECTIVES To understand the relationship between long-term fine and coarse PM exposure and asthma prevalence and morbidity among children. METHODS A semiparametric regression model that incorporated PM2.5 and PM10 monitor data and geographic characteristics was developed to predict 2-year average PM2.5 and PM10-2.5 exposure during the period 2009 to 2010 at the zip-code tabulation area level. Data from 7,810,025 children aged 5 to 20 years enrolled in Medicaid from 2009 to 2010 were used in a log-linear regression model with predicted PM levels to estimate the association between PM exposure and asthma prevalence and morbidity, adjusting for race/ethnicity, sex, age, area-level urbanicity, poverty, education, and unmeasured spatial confounding. MEASUREMENTS AND MAIN RESULTS Exposure to coarse PM was associated with increased asthma diagnosis prevalence (rate ratio [RR] for 1-μg/m3 increase in coarse PM level, 1.006; 95% confidence interval [CI], 1.001-1.011), hospitalizations (RR, 1.023; 95% CI, 1.003-1.042), and emergency department visits (RR, 1.017; 95% CI, 1.001-1.033) when adjusting for fine PM. Fine PM exposure was more strongly associated with increased asthma prevalence and morbidity than coarse PM. The estimates remained elevated across different levels of spatial confounding adjustment. CONCLUSIONS Among children enrolled in Medicaid, exposure to higher average coarse PM levels is associated with increased asthma prevalence and morbidity. These results suggest the need for direct monitoring of coarse PM and reconsideration of limits on long-term average coarse PM pollution levels.
Collapse
Affiliation(s)
- Corinne A Keet
- 1 Division of Pediatric Allergy and Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Joshua P Keller
- 2 Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Roger D Peng
- 2 Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
21
|
Salo PM, Wilkerson J, Rose KM, Cohn RD, Calatroni A, Mitchell HE, Sever ML, Gergen PJ, Thorne PS, Zeldin DC. Bedroom allergen exposures in US households. J Allergy Clin Immunol 2017; 141:1870-1879.e14. [PMID: 29198587 DOI: 10.1016/j.jaci.2017.08.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 08/16/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Bedroom allergen exposures contribute to allergic disease morbidity because people spend considerable time in bedrooms, where they come into close contact with allergen reservoirs. OBJECTIVE We investigated participant and housing characteristics, including sociodemographic, regional, and climatic factors, associated with bedroom allergen exposures in a nationally representative sample of the US population. METHODS Data were obtained from National Health and Nutrition Examination Survey 2005-2006. Information on participant and housing characteristics was collected by using questionnaires and environmental assessments. Concentrations of 8 indoor allergens (Alt a 1, Bla g 1, Can f 1, Fel d 1, Der f 1, Der p 1, Mus m 1, and Rat n 1) in dust vacuumed from nearly 7000 bedrooms were measured by using immunoassays. Exposure levels were classified as increased based on percentile (75th/90th) cutoffs. We estimated the burden of exposure to multiple allergens and used multivariable logistic regression to identify independent predictors for each allergen and household allergen burden. RESULTS Almost all participants (>99%) had at least 1 and 74.2% had 3 to 6 allergens detected. More than two thirds of participants (72.9%) had at least 1 allergen and 18.2% had 3 or more allergens exceeding increased levels. Although exposure variability showed significant racial/ethnic and regional differences, high exposure burden to multiple allergens was most consistently associated with the presence of pets and pests, living in mobile homes/trailers and older and rental homes, and living in nonmetropolitan areas. CONCLUSIONS Exposure to multiple allergens is common. Despite highly variable exposures, bedroom allergen burden is strongly associated with the presence of pets and pests.
Collapse
Affiliation(s)
- Päivi M Salo
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | | | | | | | | | | | | | - Peter J Gergen
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Peter S Thorne
- University of Iowa College of Public Health, Iowa City, Iowa
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC.
| |
Collapse
|
22
|
Malley CS, Henze DK, Kuylenstierna JCI, Vallack HW, Davila Y, Anenberg SC, Turner MC, Ashmore MR. Updated Global Estimates of Respiratory Mortality in Adults ≥30Years of Age Attributable to Long-Term Ozone Exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:087021. [PMID: 28858826 PMCID: PMC5880233 DOI: 10.1289/ehp1390] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Relative risk estimates for long-term ozone (O3) exposure and respiratory mortality from the American Cancer Society Cancer Prevention Study II (ACS CPS-II) cohort have been used to estimate global O3-attributable mortality in adults. Updated relative risk estimates are now available for the same cohort based on an expanded study population with longer follow-up. OBJECTIVES We estimated the global burden and spatial distribution of respiratory mortality attributable to long-term O3 exposure in adults ≥30y of age using updated effect estimates from the ACS CPS-II cohort. METHODS We used GEOS-Chem simulations (2×2.5º grid resolution) to estimate annual O3 exposures, and estimated total respiratory deaths in 2010 that were attributable to long-term annual O3 exposure based on the updated relative risk estimates and minimum risk thresholds set at the minimum or fifth percentile of O3 exposure in the most recent CPS-II analysis. These estimates were compared with attributable mortality based on the earlier CPS-II analysis, using 6-mo average exposures and risk thresholds corresponding to the minimum or fifth percentile of O3 exposure in the earlier study population. RESULTS We estimated 1.04-1.23 million respiratory deaths in adults attributable to O3 exposures using the updated relative risk estimate and exposure parameters, compared with 0.40-0.55 million respiratory deaths attributable to O3 exposures based on the earlier CPS-II risk estimate and parameters. Increases in estimated attributable mortality were larger in northern India, southeast China, and Pakistan than in Europe, eastern United States, and northeast China. CONCLUSIONS These findings suggest that the potential magnitude of health benefits of air quality policies targeting O3, health co-benefits of climate mitigation policies, and health implications of climate change-driven changes in O3 concentrations, are larger than previously thought. https://doi.org/10.1289/EHP1390.
Collapse
Affiliation(s)
- Christopher S Malley
- Stockholm Environment Institute, Environment Department, University of York , York, UK
| | - Daven K Henze
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado, USA
| | | | - Harry W Vallack
- Stockholm Environment Institute, Environment Department, University of York , York, UK
| | - Yanko Davila
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado, USA
| | - Susan C Anenberg
- Environmental Health Analytics, LLC. , Washington, District of Columbia, USA
| | - Michelle C Turner
- Barcelona Institute for Global Health (ISGlobal) , Barcelona, Spain
- Universitat Pompeu Fabra (UPF) , Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) , Madrid, Spain
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa , Ottawa, Ontario, Canada
| | - Mike R Ashmore
- Stockholm Environment Institute, Environment Department, University of York , York, UK
| |
Collapse
|
23
|
Zhu L, Ge X, Chen Y, Zeng X, Pan W, Zhang X, Ben S, Yuan Q, Xin J, Shao W, Ge Y, Wu D, Han Z, Zhang Z, Chu H, Wang M. Short-term effects of ambient air pollution and childhood lower respiratory diseases. Sci Rep 2017; 7:4414. [PMID: 28667279 PMCID: PMC5493680 DOI: 10.1038/s41598-017-04310-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/12/2017] [Indexed: 12/18/2022] Open
Abstract
The association between air pollution and childhood respiratory disease is inconsistent. In the present study, we investigated a short-term effect of ambient air pollutants and daily childhood lower respiratory diseases (CLRD). Daily air pollutants, weather data, and CLRD data were collected from January 2014 to April 2015 (452 days) in Nanjing, China. Time-series regression and generalized additive models were used to assess the effects of air pollutants (PM10, PM2.5, NO2, SO2, O3, and CO) on CLRD. We observed that an interquartile range (IQR) increase in concentrations of PM10, NO2, and SO2 significantly increased the daily CLRD with 6 days cumulative effects (difference of estimates: 2.8%, 95% CI: 0.6–5.0%; 4.1%, 1.2–7.0%; 5.6%, 2.6–8.6%, respectively). However, no significant association was found in IQR concentrations of PM2.5, O3, and CO. Specifically, elevated PM10, PM2.5, NO2, and SO2 significantly increased the numbers of CLRD in cool season (3.6%, 1.5–5.7%; 2.4%, 0.3–4.5%; 4.9%, 2.9–7.0%; 6.3%, 3.7–9.0%, respectively). Additionally, the effect estimates of PM10, NO2, and SO2 in female and age >27 months were more pronounced than in male and age ≤27 months. This study suggested that short-term exposure to ambient PM10, NO2, and SO2 were associated with the increased CLRD numbers.
Collapse
Affiliation(s)
- Liyang Zhu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Statistics, School of Economics, Nanjing University Of Finance & Economics, Nanjing, China
| | - Xuhua Ge
- Department of Emergency, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yaoyao Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xinying Zeng
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wang Pan
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xu Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuai Ben
- School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Qi Yuan
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Shao
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yuqiu Ge
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Dongmei Wu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhong Han
- Department of Statistics, School of Economics, Nanjing University Of Finance & Economics, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
24
|
Liu W, Cai J, Huang C, Hu Y, Fu Q, Zou Z, Sun C, Shen L, Wang X, Pan J, Huang Y, Chang J, Zhao Z, Sun Y, Sundell J. Associations of gestational and early life exposures to ambient air pollution with childhood atopic eczema in Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:34-42. [PMID: 27490301 DOI: 10.1016/j.scitotenv.2016.07.197] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 05/22/2023]
Abstract
Whether ambient air pollution is associated with childhood atopic eczema is controversial. In this paper, we selected 3358 preschool children who had not altered residences since pregnancy from a cross-sectional study during 2011-2012 in Shanghai, China, and obtained parent-reported data regarding childhood atopic eczema using an improved ISAAC questionnaire. We recorded daily concentrations of SO2, NO2, and PM10 throughout the child's lifetime (2006-2012), and calculated period-averaged concentrations for each district where the child lived to represent the child's exposure levels of these pollutants during different periods. In the multiple logistic regression analyses adjusted for potential confounders as well as for the other pollutants in the same periods, childhood atopic eczema was significantly associated with increments of NO2 in the approximate interquartile range (20μg/m3) during gestational period (adjusted OR, 95% CI for eczema lifetime-ever: 1.80, 1.29-2.49; for eczema in the year prior to the survey: 2.32, 1.57-3.43) and during the first year of life (2.00, 1.40-2.84; 2.16, 1.43-3.28). Exposure to elevated NO2 in the first two years, three years and total lifetime, as well as exposure to mixtures containing NO2 in each of these periods, were consistently associated with increased likelihood of childhood eczema. The highest odds ratios were found between exposure to a mixture of SO2 and NO2 during total lifetime (increment: 35μg/m3) and childhood eczema (adjusted OR, 95% CI: 2.80, 1.75-4.48; 3.50, 1.98-6.19). No significant associations were found between childhood eczema and ambient SO2 and PM10 individually or in mixtures. This study indicates that gestational and lifetime exposures to ambient NO2 are risk factors for atopic eczema in childhood. Exposure to ambient SO2 and PM10 may enhance the effect of NO2 exposure on childhood eczema.
Collapse
Affiliation(s)
- Wei Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China
| | - Jiao Cai
- School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China.
| | - Yu Hu
- Tongji Architectural Design (Group) Company Limited (TJAD), Shanghai, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center (SEMC), Shanghai, China
| | - Zhijun Zou
- School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China
| | - Chanjuan Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China
| | - Li Shen
- R&B Technology (Shanghai) Company Limited, Shanghai, China
| | - Xueying Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China
| | - Jun Pan
- Shanghai Environmental Monitoring Center (SEMC), Shanghai, China
| | - Yanmin Huang
- Shanghai Environmental Monitoring Center (SEMC), Shanghai, China
| | - Jing Chang
- School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China; Department of Thermal Energy and Power Engineering, Shandong Jiaotong University, Jinan, China
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Yuexia Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jan Sundell
- School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China; Department of Building Science, Tsinghua University, Beijing, China
| |
Collapse
|
25
|
Telloli C, Chicca M, Leis M, Vaccaro C. Fungal spores and pollen in particulate matter collected during agricultural activities in the Po Valley (Italy). J Environ Sci (China) 2016; 46:229-240. [PMID: 27521955 DOI: 10.1016/j.jes.2016.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 06/06/2023]
Abstract
Airborne particulate matter (PM) containing fungal spores and pollen grains was sampled within a monitoring campaign of wheat threshing, plowing and sowing agricultural operations. Fungal spores and pollen grains were detected and identified on morphological basis. No studies were previously available about fungal spore and pollen content in agricultural PM in the Po Valley. Sampling was conducted in a Po Valley farmland in Mezzano (Ferrara, Italy). The organic particles collected were examined by scanning electron microscopy with energy dispersive X-ray spectrometer. Fungal spores and pollen grains were identified when possible at the level of species. The most frequent components of the organic particles sampled were spores of Aspergillus sp., which could represent a risk of developing allergies and aspergillosis for crop farmers.
Collapse
Affiliation(s)
- Chiara Telloli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Technical Unit for Environmental Assessment Models, Methods and Technologies (UTVALAMB), Air Quality Laboratory (AIR), 40129 Bologna, Italy.
| | - Milvia Chicca
- Department of Life Science and Biotechnologies, Ferrara University, Italy
| | - Marilena Leis
- Department of Life Science and Biotechnologies, Ferrara University, Italy
| | - Carmela Vaccaro
- Department of Physics and Earth Sciences, Ferrara University, Italy
| |
Collapse
|
26
|
Liu W, Huang C, Hu Y, Fu Q, Zou Z, Sun C, Shen L, Wang X, Cai J, Pan J, Huang Y, Chang J, Sun Y, Sundell J. Associations of gestational and early life exposures to ambient air pollution with childhood respiratory diseases in Shanghai, China: A retrospective cohort study. ENVIRONMENT INTERNATIONAL 2016; 92-93:284-293. [PMID: 27128713 DOI: 10.1016/j.envint.2016.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Associations of ambient air pollutants with respiratory health are inconsistent. OBJECTIVES We analyzed the associations of gestational and early life exposures to air pollutants with doctor-diagnosed asthma, allergic rhinitis, and pneumonia in children. METHODS We selected 3358 preschool children who did not alter residences after birth from a cross-sectional study in 2011-2012 in Shanghai, China. Parents reported children's respiratory health history, home environment, and family lifestyle behaviors. We collected daily concentrations of sulphur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter with an aerodynamic diameter ≤10μm (PM10) during the child's total lifetime (2006-2012) for each district where the children lived. We analyzed the associations using logistic regression models. RESULTS After adjusting for covariates and the other studied pollutants, we found that exposure to NO2 (increment of 20μg/m(3)) during the first year of life was significantly associated with asthma [odds ratio (OR)=1.77; 95% confidence interval (CI): 1.29-2.43] and allergic rhinitis (OR=1.67; 95% CI: 1.07-2.61). Exposure to NO2 during gestation, the first two and three years, and over total lifetimewas all consistently associated with increased odds of allergic rhinitis. Quartiles of NO2 concentration during different exposure periods showed a slight dose-response relationship with the studied diseases. These diseases had significant associations with pollutant mixtures that included NO2, but had no significant association with exposures to SO2 and PM10 individually or in mixtures. CONCLUSIONS Gestational and early life exposures to ambient NO2 are risk factors for childhood respiratory diseases.
Collapse
Affiliation(s)
- Wei Liu
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China
| | - Chen Huang
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China.
| | - Yu Hu
- Tongji Architectural Design (Group) Company Limited (TJAD), Shanghai, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center (SEMC), Shanghai, China
| | - Zhijun Zou
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China
| | - Chanjuan Sun
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China
| | - Li Shen
- R&B Technology (Shanghai) Company Limited, Shanghai, China
| | - Xueying Wang
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China
| | - Jiao Cai
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China
| | - Jun Pan
- Shanghai Environmental Monitoring Center (SEMC), Shanghai, China
| | - Yanmin Huang
- Shanghai Environmental Monitoring Center (SEMC), Shanghai, China
| | - Jing Chang
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China; Department of Thermal Energy and Power Engineering, Shandong Jiaotong University, Jinan, China
| | - Yuexia Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jan Sundell
- Department of Building Environment and Energy Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology (USST), Shanghai, China; Department of Building Science, Tsinghua University, Beijing, China
| |
Collapse
|
27
|
Association between the First Occurrence of Allergic Rhinitis in Preschool Children and Air Pollution in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13030268. [PMID: 26927153 PMCID: PMC4808931 DOI: 10.3390/ijerph13030268] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 12/03/2022]
Abstract
The occurrence of allergic rhinitis (AR) may be significantly influenced by air pollution. This study examined the association between the first occurrence of AR in preschool children and the pre-incident levels of air pollutants in Taiwan. We identified 9960 eligible subjects from a systematic sampling cohort database containing 400,000 insureds of the National Health Insurance from 2007 to 2011 and matched them with the environmental monitoring data from 2006 to 2011 according to the locations of their clinics. Pre-incident levels were determined using the average concentrations of air pollutants one or two weeks prior to the AR diagnoses. Logistic regression analyses were performed to determine any significant relationships between AR and specific air pollutants. The first AR incidence for Taiwanese preschool children, which increased with age, was 10.9% on average; boys appeared to have a higher percentage (14.2%) than girls (8.27%). Among the air pollutants, carbon monoxide (CO) and nitrogen oxides (NOX) were significantly related to AR after adjusting for age and gender (p < 0.05). Because both pollutants are considered to be traffic emissions, this study suggests that traffic emissions in Taiwan need to be controlled to lower the prevalence of children’s AR.
Collapse
|
28
|
Romeo Upperman C, Parker J, Jiang C, He X, Murtugudde R, Sapkota A. Frequency of Extreme Heat Event as a Surrogate Exposure Metric for Examining the Human Health Effects of Climate Change. PLoS One 2015; 10:e0144202. [PMID: 26641244 PMCID: PMC4671592 DOI: 10.1371/journal.pone.0144202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/13/2015] [Indexed: 11/18/2022] Open
Abstract
Epidemiological investigation of the impact of climate change on human health, particularly chronic diseases, is hindered by the lack of exposure metrics that can be used as a marker of climate change that are compatible with health data. Here, we present a surrogate exposure metric created using a 30-year baseline (1960–1989) that allows users to quantify long-term changes in exposure to frequency of extreme heat events with near unabridged spatial coverage in a scale that is compatible with national/state health outcome data. We evaluate the exposure metric by decade, seasonality, area of the country, and its ability to capture long-term changes in weather (climate), including natural climate modes. Our findings show that this generic exposure metric is potentially useful to monitor trends in the frequency of extreme heat events across varying regions because it captures long-term changes; is sensitive to the natural climate modes (ENSO events); responds well to spatial variability, and; is amenable to spatial/temporal aggregation, making it useful for epidemiological studies.
Collapse
Affiliation(s)
- Crystal Romeo Upperman
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, United States of America
- Marine Estuarine Environmental Science Program, University of Maryland, College Park, Maryland, United States of America
| | - Jennifer Parker
- National Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville, Maryland, United States of America
| | - Chengsheng Jiang
- Marine Estuarine Environmental Science Program, University of Maryland, College Park, Maryland, United States of America
| | - Xin He
- Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, Maryland, United States of America
| | - Raghuram Murtugudde
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, United States of America
| | - Amir Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Murakami S, Nakayama S, Hattori M, Yoshida T. Establishment and characterization of a novel murine model for pollen allergy. Biosci Biotechnol Biochem 2015; 79:1447-53. [DOI: 10.1080/09168451.2015.1027654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Although there have been many studies revealing the mechanism and establishing the therapeutical method for allergic rhinitis, no suitable animal models for allergic rhinitis, especially for pollen allergy, are currently available. We therefore aimed in this study to develop a murine model producing IgE in response to an inhaled antigen without using any adjuvants. Ovalbumin (OVA)-specific T cell receptor transgenic mice (DO11.10) inhaled an OVA solution for one h, twice a week, for six weeks. The resulting increase of OVA-specific IgE in the serum was observed depending on the times of inhalation. Spleen cells from mice that had inhaled the antigen produced more IL-4 and less IFN-γ than those from the control mice in vitro. These results indicate that inhaled antigen enhanced the Th2-type responses and induced IgE production in a T cell-mediated manner. Our findings would contribute to studies on prevention and treatment of pollen allergy.
Collapse
Affiliation(s)
- Shiho Murakami
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Sayuri Nakayama
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Makoto Hattori
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tadashi Yoshida
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
30
|
Ruokolainen L, Hertzen L, Fyhrquist N, Laatikainen T, Lehtomäki J, Auvinen P, Karvonen AM, Hyvärinen A, Tillmann V, Niemelä O, Knip M, Haahtela T, Pekkanen J, Hanski I. Green areas around homes reduce atopic sensitization in children. Allergy 2015; 70:195-202. [PMID: 25388016 PMCID: PMC4303942 DOI: 10.1111/all.12545] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2014] [Indexed: 12/13/2022]
Abstract
Background Western lifestyle is associated with high prevalence of allergy, asthma and other chronic inflammatory disorders. To explain this association, we tested the ‘biodiversity hypothesis’, which posits that reduced contact of children with environmental biodiversity, including environmental microbiota in natural habitats, has adverse consequences on the assembly of human commensal microbiota and its contribution to immune tolerance. Methods We analysed four study cohorts from Finland and Estonia (n = 1044) comprising children and adolescents aged 0.5–20 years. The prevalence of atopic sensitization was assessed by measuring serum IgE specific to inhalant allergens. We calculated the proportion of five land-use types – forest, agricultural land, built areas, wetlands and water bodies – in the landscape around the homes using the CORINE2006 classification. Results The cover of forest and agricultural land within 2–5 km from the home was inversely and significantly associated with atopic sensitization. This relationship was observed for children 6 years of age and older. Land-use pattern explained 20% of the variation in the relative abundance of Proteobacteria on the skin of healthy individuals, supporting the hypothesis of a strong environmental effect on the commensal microbiota. Conclusions The amount of green environment (forest and agricultural land) around homes was inversely associated with the risk of atopic sensitization in children. The results indicate that early-life exposure to green environments is especially important. The environmental effect may be mediated via the effect of environmental microbiota on the commensal microbiota influencing immunotolerance.
Collapse
Affiliation(s)
- L. Ruokolainen
- Department of Biosciences University of Helsinki Helsinki Finland
| | - L. Hertzen
- Allergy Department, Skin and Allergy Hospital Helsinki University Hospital Helsinki Finland
| | - N. Fyhrquist
- Finnish Institute of Occupational Health Helsinki Finland
| | - T. Laatikainen
- Department of Chronic Disease Prevention National Institute for Health and Welfare Helsinki Finland
- Institute of Public Health and Clinical Nutrition University of Eastern Finland Kuopio Finland
| | - J. Lehtomäki
- Department of Biosciences University of Helsinki Helsinki Finland
| | - P. Auvinen
- Institute of Biotechnology University of Helsinki Helsinki Finland
| | - A. M. Karvonen
- Department of Environmental Health National Institute for Health and Welfare Kuopio Finland
| | - A. Hyvärinen
- Department of Environmental Health National Institute for Health and Welfare Kuopio Finland
| | - V. Tillmann
- Department of Pediatrics University of Tartu Tartu Estonia
- Tartu University Hospital Tartu Estonia
| | - O. Niemelä
- Department of Laboratory Medicine and Medical Research Unit Seinäjoki Central Hospital and University of Tampere Tampere Finland
| | - M. Knip
- Children's Hospital University of Helsinki and Helsinki University Central Hospital Helsinki Finland
- Diabetes and Obesity Research Program University of Helsinki Helsinki Finland
- Folkhälsan Research Center Helsinki Finland
- Department of Pediatrics Tampere University Hospital Tampere Finland
| | - T. Haahtela
- Allergy Department, Skin and Allergy Hospital Helsinki University Hospital Helsinki Finland
| | - J. Pekkanen
- Department of Environmental Health National Institute for Health and Welfare Kuopio Finland
- Department of Public Health University of Helsinki Helsinki Finland
| | - I. Hanski
- Department of Biosciences University of Helsinki Helsinki Finland
| |
Collapse
|
31
|
Tong GQ, Zhang ZH, Zhao Y, Liu JJ, Han JB. Traffic-related PM2.5 induces cytosolic [Ca²⁺] increase regulated by Orai1, alters the CaN-NFAT signaling pathway, and affects IL-2 and TNF-α cytoplasmic levels in Jurkat T-cells. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 68:31-37. [PMID: 25194241 DOI: 10.1007/s00244-014-0077-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 08/05/2014] [Indexed: 06/03/2023]
Abstract
The atmospheric particulate matter with a diameter less than or equal to 2.5 um (PM2.5) can result in increased immune system damage or diseases, however, the possible mechanism remains unclear. In this study, we used Jurkat T cells to determine the effects of PM2.5 on T cell-mediated adaptive immune response. Our results indicated that PM2.5 exposure increased intracellular calcium ion concentration [Ca(2+)]. In contrast, cytosolic free Ca(2+) concentration [Ca(2+)]i significantly decreased in Jurkat T cells transfected with Orai1siRNA. In addition, we detected the level of interleukin (IL)-2 and tumor-necrosis factor (TNF)-α as well as other signalling molecules, including calcineurin (CaN) and NFATc2, a gene on 20q13.2 that encodes a member of the nuclear factor of activated T cells (NFAT), in the supernatant of cells exposed to PM2.5. The expression of NFATc2 protein increased in a time-dependent manner after exposure to PM2.5, but the activity of CaN decreased. NFATc2 was not consistent with IL-2 accumulation, thus indicating the involvement of other signals in the suppression of IL-2 accumulation. Our findings demonstrate that PM2.5 exposure in immune cells results in locally increased [Ca(2+)]i generated by Orai1 and CaN-NFAT gene expression, TNF-α and IL-2 cytoplasmic concentrations may be altered.
Collapse
Affiliation(s)
- Guo-Qiang Tong
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, The People's Republic of China
| | | | | | | | | |
Collapse
|
32
|
Boisa N, Entwistle J, Dean JR. A new simple, low-cost approach for generation of the PM10 fraction from soil and related materials: Application to human health risk assessment. Anal Chim Acta 2014; 852:97-104. [DOI: 10.1016/j.aca.2014.09.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/15/2022]
|
33
|
Konishi S, Ng CFS, Stickley A, Nishihata S, Shinsugi C, Ueda K, Takami A, Watanabe C. Particulate matter modifies the association between airborne pollen and daily medical consultations for pollinosis in Tokyo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 499:125-132. [PMID: 25181044 DOI: 10.1016/j.scitotenv.2014.08.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/21/2014] [Accepted: 08/15/2014] [Indexed: 06/03/2023]
Abstract
Pollen from Japanese cedar (sugi) and cypress (hinoki) trees is responsible for the growing prevalence of allergic rhinitis, especially pollinosis in Japan. Previous studies have suggested that air pollutants enhance the allergic response to pollen in susceptible individuals. We conducted a time-stratified case-crossover study to examine the potential modifying effects of PM2.5 and suspended particulate matter (SPM) on the association between pollen concentration and daily consultations for pollinosis. A total of 11,713 daily pollinosis cases (International Classification of Diseases, ICD-10, J30.1) from January to May, 2001-2011, were obtained from a clinic in Chiyoda, Tokyo. Daily pollen counts and the daily mean values of air pollutants (PM2.5, SPM, SO2, NO2, CO, and O3) were collected from monitoring stations across Tokyo. The effects of pollen were stratified by the level of PM2.5 and SPM to examine the interaction effect of pollen and particulate pollutants. We found a statistically significant interaction between pollen concentration and PM2.5/SPM. On days with a high level of PM2.5 (>95th percentile), an interquartile increase in the mean cumulative pollen count (an average of 28 pollen grains per cm(2) during lag-days 0 to 5) corresponded to a 10.30% (95%CI: 8.48%-12.16%) increase in daily new pollinosis cases, compared to 8.04% (95%CI: 7.28%-8.81%) on days with a moderate level of PM2.5 (5th-95th percentile). This interaction persisted when different percentile cut-offs were used and was robust to the inclusion of other air pollutants. A similar interaction pattern was observed between SPM and pollen when a less extreme cut-off for SPM was used to stratify the effect of pollen. Our study showed the acute effect of pollen was greater when the concentration of air particulate pollutant, specifically PM2.5 and SPM, was higher. These findings are consistent with the notion that particulate air pollution may act as an adjuvant that promotes allergic disease (i.e. pollinosis).
Collapse
Affiliation(s)
- Shoko Konishi
- Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Anthropology, University of Washington, Box 353100, Seattle, WA 98195-3100, USA.
| | - Chris Fook Sheng Ng
- Environmental Epidemiology Section, Center for Environmental Health Sciences, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Andrew Stickley
- Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinichi Nishihata
- Nishihata Ear, Nose and Throat Clinic, 2-10-1 Yuraku-cho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Chisa Shinsugi
- Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kayo Ueda
- Environmental Epidemiology Section, Center for Environmental Health Sciences, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Akinori Takami
- Center for Regional Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba-City, Ibaraki 305-8506, Japan
| | - Chiho Watanabe
- Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
34
|
deCastro BR. Acrolein and asthma attack prevalence in a representative sample of the United States adult population 2000-2009. PLoS One 2014; 9:e96926. [PMID: 24816802 PMCID: PMC4016153 DOI: 10.1371/journal.pone.0096926] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/12/2014] [Indexed: 01/29/2023] Open
Abstract
Background Acrolein is an air toxic and highly potent respiratory irritant. There is little epidemiology available, but US EPA estimates that outdoor acrolein is responsible for about 75 percent of non-cancer respiratory health effects attributable to air toxics in the United States, based on the Agency's 2005 NATA (National-Scale Air Toxics Assessment) and acrolein's comparatively potent inhalation reference concentration of 0.02 µg/m3. Objectives Assess the association between estimated outdoor acrolein exposure and asthma attack reported by a representative cross-sectional sample of the adult United States population. Methods NATA 2005 chronic outdoor acrolein exposure estimates at the census tract were linked with residences oif adults (≥18 years old) in the NHIS (National Health Interview Survey) 2000 – 2009 (n = 271,348 subjects). A sample-weighted logistic regression model characterized the association between the prevalence of reporting at least one asthma attack in the 12 months prior to survey interview and quintiles of exposure to outdoor acrolein, controlling for potential confounders. Results In the highest quintile of outdoor acrolein exposure (0.05 – 0.46 µg/m3), there was a marginally significant increase in the asthma attack pOR (prevalence-odds ratio [95% CI] = 1.08 [0.98∶1.19]) relative to the lowest quintile. The highest quintile was also associated with a marginally significant increase in prevalence-odds (1.13 [0.98∶1.29]) in a model limited to never smokers (n = 153,820). Conclusions Chronic exposure to outdoor acrolein of 0.05 – 0.46 µg/m3 appears to increase the prevalence-odds of having at least one asthma attack in the previous year by 8 percent in a representative cross-sectional sample of the adult United States population.
Collapse
Affiliation(s)
- B. Rey deCastro
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States
- * E-mail:
| |
Collapse
|
35
|
Prevalence of allergic sensitization in the United States: results from the National Health and Nutrition Examination Survey (NHANES) 2005-2006. J Allergy Clin Immunol 2014; 134:350-9. [PMID: 24522093 DOI: 10.1016/j.jaci.2013.12.1071] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 12/06/2013] [Accepted: 12/11/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Allergic sensitization is an important risk factor for the development of atopic disease. The National Health and Nutrition Examination Survey (NHANES) 2005-2006 provides the most comprehensive information on IgE-mediated sensitization in the general US population. OBJECTIVE We investigated clustering, sociodemographic, and regional patterns of allergic sensitization and examined risk factors associated with IgE-mediated sensitization. METHODS Data for this cross-sectional analysis were obtained from NHANES 2005-2006. Participants aged 1 year or older (n = 9440) were tested for serum specific IgEs (sIgEs) to inhalant and food allergens; participants 6 years or older were tested for 19 sIgEs, and children aged 1 to 5 years were tested for 9 sIgEs. Serum samples were analyzed by using the ImmunoCAP System. Information on demographics and participants' characteristics was collected by means of questionnaire. RESULTS Of the study population aged 6 years and older, 44.6% had detectable sIgEs, whereas 36.2% of children aged 1 to 5 years were sensitized to 1 or more allergens. Allergen-specific IgEs clustered into 7 groups that might have largely reflected biological cross-reactivity. Although sensitization to individual allergens and allergen types showed regional variation, the overall prevalence of sensitization did not differ across census regions, except in early childhood. In multivariate modeling young age, male sex, non-Hispanic black race/ethnicity, geographic location (census region), and reported pet avoidance measures were most consistently associated with IgE-mediated sensitization. CONCLUSIONS The overall prevalence of allergic sensitization does not vary across US census regions, except in early life, although allergen-specific sensitization differs based on sociodemographic and regional factors. Biological cross-reactivity might be an important but not the sole contributor to the clustering of allergen-specific IgEs.
Collapse
|
36
|
Caillaud D, Toloba Y, Raobison R, Besancenot JP, Thibaudon M, Martin S, Segala C. [Health impact of exposure to pollens: A review of epidemiological studies]. Rev Mal Respir 2013; 31:142-9. [PMID: 24602681 DOI: 10.1016/j.rmr.2013.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/11/2013] [Indexed: 12/31/2022]
Abstract
The aim of this review is to describe the health impact of exposure to pollen based on recently published epidemiological studies. The methodology chapter, describes a review of the literature and outlines important elements of these studies: measurement of exposure to pollens, study types used, study populations and the health indicators related to pollen exposure. In this review, two types of studies have been used to assess the epidemiological evidence of short-term links between pollen exposure and hay fever or asthma. Ecological time-series studies use daily indicators of asthma exacerbations (emergency room admissions or hospitalizations), consultations for rhinitis or conjunctivitis, or anti-allergic drug consumption within general population. Panel studies relate measurements of pollen grain concentrations to nasal, ocular and bronchial symptom severity in a group of subjects sensitized to a specific pollen, monitored during the pollen season. In both cases, the studies show a relationship on a day-to-day basis between health indicators and daily rates of atmospheric pollen collected by a pollen trap. These studies take into account confounding factors, such as air pollution, weather factors and sometimes exposure to outdoor molds. Unlike earlier studies, more and more studies focus on the shape of the dose-response relationship and the lag between pollen exposure and symptoms. Only rarely, individual susceptibility factors, the clinical phenomenon of priming and polysensitization are reported. Thus, ecological time-series studies and panel studies assess respectively the impact of pollen exposure in the general population and in groups of sensitized patients. Using appropriate statistical tools, these studies provide insight into the shape of the dose-response relationship, with a potential threshold below which symptoms are absent, then a linear relationship for nasal, ocular and bronchial symptoms and a plateau where the symptoms do not increase despite the continued increase in pollen.
Collapse
Affiliation(s)
- D Caillaud
- Service de pneumologie, hôpital Gabriel-Montpied, CHU Clermont-Ferrand, rue Montalembert, 63003 Clermont-Ferrand, France.
| | - Y Toloba
- Service de pneumologie, hôpital Gabriel-Montpied, CHU Clermont-Ferrand, rue Montalembert, 63003 Clermont-Ferrand, France
| | - R Raobison
- Service de pneumologie, hôpital Gabriel-Montpied, CHU Clermont-Ferrand, rue Montalembert, 63003 Clermont-Ferrand, France
| | - J-P Besancenot
- Réseau national de surveillance aérobiologique (RNSA), 69960 Brussieu, France
| | - M Thibaudon
- Réseau national de surveillance aérobiologique (RNSA), 69960 Brussieu, France
| | | | | |
Collapse
|
37
|
Shahali Y, Poncet P, Sénéchal H. Pollinose aux Cupressacées et pollution atmosphérique. REVUE FRANCAISE D ALLERGOLOGIE 2013. [DOI: 10.1016/j.reval.2013.01.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Weir CH, Yeatts KB, Sarnat JA, Vizuete W, Salo PM, Jaramillo R, Cohn RD, Chu H, Zeldin DC, London SJ. Nitrogen dioxide and allergic sensitization in the 2005-2006 National Health and Nutrition Examination Survey. Respir Med 2013; 107:1763-72. [PMID: 24045117 DOI: 10.1016/j.rmed.2013.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Allergic sensitization is a risk factor for asthma and allergic diseases. The relationship between ambient air pollution and allergic sensitization is unclear. OBJECTIVE To investigate the relationship between ambient air pollution and allergic sensitization in a nationally representative sample of the US population. METHODS We linked annual average concentrations of nitrogen dioxide (NO2), particulate matter ≤10 μm (PM10), particulate matter ≤2.5 μm (PM2.5), and summer concentrations of ozone (O3), to allergen-specific immunoglobulin E (IgE) data for participants in the 2005-2006 National Health and Nutrition Examination Survey (NHANES). In addition to the monitor-based air pollution estimates, we used the Community Multiscale Air Quality (CMAQ) model to increase the representation of rural participants in our sample. Logistic regression with population-based sampling weights was used to calculate adjusted prevalence odds ratios per 10 ppb increase in O3 and NO2, per 10 μg/m(3) increase in PM10, and per 5 μg/m(3) increase in PM2.5 adjusting for race, gender, age, socioeconomic status, smoking, and urban/rural status. RESULTS Using CMAQ data, increased levels of NO2 were associated with positive IgE to any (OR 1.15, 95% CI 1.04, 1.27), inhalant (OR 1.17, 95% CI 1.02, 1.33), and indoor (OR 1.16, 95% CI 1.03, 1.31) allergens. Higher PM2.5 levels were associated with positivity to indoor allergen-specific IgE (OR 1.24, 95% CI 1.13, 1.36). Effect estimates were similar using monitored data. CONCLUSIONS Increased ambient NO2 was consistently associated with increased prevalence of allergic sensitization.
Collapse
Affiliation(s)
- Charles H Weir
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
SIERRA-VARGAS MARTHAPATRICIA, TERAN LUISM. Air pollution: impact and prevention. Respirology 2012; 17:1031-8. [PMID: 22726103 PMCID: PMC3532603 DOI: 10.1111/j.1440-1843.2012.02213.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/03/2012] [Accepted: 05/05/2012] [Indexed: 01/06/2023]
Abstract
Air pollution is becoming a major health problem that affects millions of people worldwide. In support of this observation, the World Health Organization estimates that every year, 2.4 million people die because of the effects of air pollution on health. Mitigation strategies such as changes in diesel engine technology could result in fewer premature mortalities, as suggested by the US Environmental Protection Agency. This review: (i) discusses the impact of air pollution on respiratory disease; (ii) provides evidence that reducing air pollution may have a positive impact on the prevention of disease; and (iii) demonstrates the impact concerted polices may have on population health when governments take actions to reduce air pollution.
Collapse
Affiliation(s)
| | - LUIS M TERAN
- National Institute for Respiratory Diseases ‘Ismael Cosío Villegas’México
- Biomedicine in the Post-Genomic EraHuitzilac, Morelos, Mexico
| |
Collapse
|
40
|
Svendsen ER, Gonzales M, Mukerjee S, Smith L, Ross M, Walsh D, Rhoney S, Andrews G, Ozkaynak H, Neas LM. GIS-modeled indicators of traffic-related air pollutants and adverse pulmonary health among children in El Paso, Texas. Am J Epidemiol 2012; 176 Suppl 7:S131-41. [PMID: 23035137 DOI: 10.1093/aje/kws274] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Investigators examined 5,654 children enrolled in the El Paso, Texas, public school district by questionnaire in 2001. Exposure measurements were first collected in the late fall of 1999. School-level and residence-level exposures to traffic-related air pollutants were estimated using a land use regression model. For 1,529 children with spirometry, overall geographic information system (GIS)-modeled residential levels of traffic-related ambient air pollution (calibrated to a 10-ppb increment in nitrogen dioxide levels) were associated with a 2.4% decrement in forced vital capacity (95% confidence interval (CI): -4.0, -0.7) after adjustment for demographic, anthropomorphic, and socioeconomic factors and spirometer/technician effects. After adjustment for these potential covariates, overall GIS-modeled residential levels of traffic-related ambient air pollution (calibrated to a 10-ppb increment in nitrogen dioxide levels) were associated with pulmonary function levels below 85% of those predicted for both forced vital capacity (odds ratio (OR) = 3.10, 95% CI: 1.65, 5.78) and forced expiratory volume in 1 second (OR = 2.35, 95% CI: 1.38, 4.01). For children attending schools at elevations above 1,170 m, a 10-ppb increment in modeled nitrogen dioxide levels was associated with current asthma (OR = 1.56, 95% CI: 1.08, 2.50) after adjustment for demographic, socioeconomic, and parental factors and random school effects. These results are consistent with previous studies in Europe and California that found adverse health outcomes in children associated with modeled traffic-related air pollutants.
Collapse
Affiliation(s)
- Erik R Svendsen
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Soyiri IN, Reidpath DD. Semistructured black-box prediction: proposed approach for asthma admissions in London. Int J Gen Med 2012; 5:693-705. [PMID: 22973117 PMCID: PMC3430118 DOI: 10.2147/ijgm.s34647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Asthma is a global public health problem and the most common chronic disease among children. The factors associated with the condition are diverse, and environmental factors appear to be the leading cause of asthma exacerbation and its worsening disease burden. However, it remains unknown how changes in the environment affect asthma over time, and how temporal or environmental factors predict asthma events. The methodologies for forecasting asthma and other similar chronic conditions are not comprehensively documented anywhere to account for semistructured noncausal forecasting approaches. This paper highlights and discusses practical issues associated with asthma and the environment, and suggests possible approaches for developing decision-making tools in the form of semistructured black-box models, which is relatively new for asthma. Two statistical methods which can potentially be used in predictive modeling and health forecasting for both anticipated and peak events are suggested. Importantly, this paper attempts to bridge the areas of epidemiology, environmental medicine and exposure risks, and health services provision. The ideas discussed herein will support the development and implementation of early warning systems for chronic respiratory conditions in large populations, and ultimately lead to better decision-making tools for improving health service delivery.
Collapse
Affiliation(s)
- Ireneous N Soyiri
- Global Public Health, School of Medicine and Health Sciences, Monash University, Malaysia
- School of Public Health, University of Ghana, Accra, Ghana
| | - Daniel D Reidpath
- Global Public Health, School of Medicine and Health Sciences, Monash University, Malaysia
| |
Collapse
|
42
|
Hao Y, Flowers H, Monti MM, Qualters JR. U.S. census unit population exposures to ambient air pollutants. Int J Health Geogr 2012; 11:3. [PMID: 22239864 PMCID: PMC3274475 DOI: 10.1186/1476-072x-11-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Progress has been made recently in estimating ambient PM(2.5) (particulate matter with aerodynamic diameter < 2.5 μm) and ozone concentrations using various data sources and advanced modeling techniques, which resulted in gridded surfaces. However, epidemiologic and health impact studies often require population exposures to ambient air pollutants to be presented at an appropriate census geographic unit (CGU), where health data are usually available to maintain confidentiality of individual health data. We aim to generate estimates of population exposures to ambient PM(2.5) and ozone for U.S. CGUs. METHODS We converted 2001-2006 gridded data, generated by the U.S. Environmental Protection Agency (EPA) for CDC's (Centers for Disease Control and Prevention) Environmental Public Health Tracking Network (EPHTN), to census block group (BG) based on spatial proximities between BG and its four nearest grids. We used a bottom-up (fine to coarse) strategy to generate population exposure estimates for larger CGUs by aggregating BG estimates weighted by population distribution. RESULTS The BG daily estimates were comparable to monitoring data. On average, the estimates deviated by 2 μg/m(3) (for PM(2.5)) and 3 ppb (for ozone) from their corresponding observed values. Population exposures to ambient PM(2.5) and ozone varied greatly across the U.S. In 2006, estimates for daily potential population exposure to ambient PM(2.5) in west coast states, the northwest and a few areas in the east and estimates for daily potential population exposure to ambient ozone in most of California and a few areas in the east/southeast exceeded the National Ambient Air Quality Standards (NAAQS) for at least 7 days. CONCLUSIONS These estimates may be useful in assessing health impacts through linkage studies and in communicating with the public and policy makers for potential intervention.
Collapse
Affiliation(s)
- Yongping Hao
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Helen Flowers
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Michele M Monti
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Judith R Qualters
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
43
|
Wagner W, Sachrajda I, Pułaski Ł, Hałatek T, Dastych J. Application of cellular biosensors for analysis of bioactivity associated with airborne particulate matter. Toxicol In Vitro 2011; 25:1132-42. [DOI: 10.1016/j.tiv.2011.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 02/28/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022]
|
44
|
Abstract
Epidemiological and toxicological research continues to support a link between urban air pollution and an increased incidence and/or severity of airway disease. Detrimental effects of ozone (O(3)), nitrogen dioxide (NO(2)) and particulate matter (PM), as well as traffic-related pollution as a whole, on respiratory symptoms and function are well documented. Not only do we have strong epidemiological evidence of a relationship between air pollution and exacerbation of asthma and respiratory morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD), but recent studies, particularly in urban areas, have suggested a role for pollutants in the development of both asthma and COPD. Similarly, while prevalence and severity of atopic conditions appear to be more common in urban compared with rural communities, evidence is emerging that traffic-related pollutants may contribute to the development of allergy. Furthermore, numerous epidemiological and experimental studies suggest an association between exposure to NO(2) , O(3) , PM and combustion products of biomass fuels and an increased susceptibility to and morbidity from respiratory infection. Given the considerable contribution that traffic emissions make to urban air pollution researchers have sought to characterize the relative toxicity of traffic-related PM pollutants. Recent advances in mechanisms implicated in the association of air pollutants and airway disease include epigenetic alteration of genes by combustion-related pollutants and how polymorphisms in genes involved in antioxidant pathways and airway inflammation can modify responses to air pollution exposures. Other interesting epidemiological observations related to increased host susceptibility include a possible link between chronic PM exposure during childhood and vulnerability to COPD in adulthood, and that infants subjected to higher prenatal levels of air pollution may be at greater risk of developing respiratory conditions. While the characterization of pollutant components and sources promise to guide pollution control strategies, the identification of susceptible subpopulations will be necessary if targeted therapy/prevention of pollution-induced respiratory diseases is to be developed.
Collapse
Affiliation(s)
- F J Kelly
- MRC-HPA Centre for Environment and Health, King's College, London, 150 Stamford Street, London SE1 9NH, UK.
| | | |
Collapse
|
45
|
Jones RB, Hewson P, Kaminski ER. Referrals to a regional allergy clinic - an eleven year audit. BMC Public Health 2010; 10:790. [PMID: 21190546 PMCID: PMC3022859 DOI: 10.1186/1471-2458-10-790] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 12/29/2010] [Indexed: 12/21/2022] Open
Abstract
Background Allergy is a serious and apparently increasing public health problem yet relatively little is known about the types of allergy seen in routine tertiary practice, including their spatial distribution, co-occurrence or referral patterns. This study reviewed referrals over an eleven year period to a regional allergy clinic that had a well defined geographical boundary. For those patients confirmed as having an allergy we explored: (i) differences over time and by demographics, (ii) types of allergy, (iii) co-occurrence, and (iv) spatial distributions. Methods Data were extracted from consultant letters to GPs, from September 1998 to September 2009, for patients confirmed as having an allergy. Other data included referral statistics and population data by postcode. Simple descriptive analysis was used to describe types of allergy. We calculated 11 year standardised morbidity ratios for postcode districts and checked for spatial clustering. We present maps showing 11 year rates by postcode, and 'difference' maps which try to separate referral effect from possible environmental effect. Results Of 5778 referrals, 961 patients were diagnosed with an allergy. These were referred by a total of 672 different GPs. There were marked differences in referral patterns between GP practices and also individual GPs. The mean age of patients was 35 and there were considerably more females (65%) than males. Airborne allergies were the most frequent (623), and there were very high rates of co-occurrence of pollen, house dust mite, and animal hair allergies. Less than half (410) patients had a food allergy, with nuts, fruit, and seafood being the most common allergens. Fifteen percent (142) had both a food and a non-food allergy. Certain food allergies were more likely to co-occur, for example, patients allergic to dairy products were more likely to be allergic to egg. There were age differences by types of allergy; people referred with food allergies were on average 5 years younger than those with other allergies, and those allergic to nuts were much younger (26 Vs 38) than those with other food allergies. There was clear evidence for spatial clustering with marked clustering around the referral hospital. However, the geographical distribution varied between allergies; airborne (particularly pollen allergies) clustered in North Dartmoor and Exmoor, food allergies (particularly nut allergies) in the South Hams, and on small numbers, some indication of seafood allergy in the far south west of Cornwall and in the Padstow area. Conclusions This study shows marked geographical differences in allergy referrals which are likely to reflect a combination of environmental factors and GP referral patterns. The data suggest that GPs may benefit from education and ongoing decision support and be supported by public education on the nature of allergy. It suggests further research into what happens to patients with allergy where there has been low use of tertiary services and further research into cross-reactivity and co-occurrence, and spatial distribution of allergy.
Collapse
Affiliation(s)
- Ray B Jones
- Faculty of Health, University of Plymouth, 3 Portland Villas, Plymouth PL4 8AA, UK.
| | | | | |
Collapse
|
46
|
Carey SA, Ballinger CA, Plopper CG, McDonald RJ, Bartolucci AA, Postlethwait EM, Harkema JR. Persistent rhinitis and epithelial remodeling induced by cyclic ozone exposure in the nasal airways of infant monkeys. Am J Physiol Lung Cell Mol Physiol 2010; 300:L242-54. [PMID: 21131400 DOI: 10.1152/ajplung.00177.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Children chronically exposed to high levels of ozone (O(3)), the principal oxidant pollutant in photochemical smog, are more vulnerable to respiratory illness and infections. The specific factors underlying this differential susceptibility are unknown but may be related to air pollutant-induced nasal alterations during postnatal development that impair the normal physiological functions (e.g., filtration and mucociliary clearance) serving to protect the more distal airways from inhaled xenobiotics. In adult animal models, chronic ozone exposure is associated with adaptations leading to a decrease in airway injury. The purpose of our study was to determine whether cyclic ozone exposure induces persistent morphological and biochemical effects on the developing nasal airways of infant monkeys early in life. Infant (180-day-old) rhesus macaques were exposed to 5 consecutive days of O(3) [0.5 parts per million (ppm), 8 h/day; "1-cycle"] or filtered air (FA) or 11 biweekly cycles of O(3) (FA days 1-9; 0.5 ppm, 8 h/day on days 10-14; "11-cycle"). The left nasal passage was processed for light microscopy and morphometric analysis. Mucosal samples from the right nasal passage were processed for GSH, GSSG, ascorbate (AH(2)), and uric acid (UA) concentration. Eleven-cycle O(3) induced persistent rhinitis, squamous metaplasia, and epithelial hyperplasia in the anterior nasal airways of infant monkeys, resulting in a 39% increase in the numeric density of epithelial cells. Eleven-cycle O(3) also induced a 65% increase in GSH concentrations at this site. The persistence of epithelial hyperplasia was positively correlated with changes in GSH. These results indicate that early life ozone exposure causes persistent nasal epithelial alterations in infant monkeys and provide a potential mechanism for the increased susceptibility to respiratory illness exhibited by children in polluted environments.
Collapse
Affiliation(s)
- Stephan A Carey
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, 48824, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Maniar-Hew K, Postlethwait EM, Fanucchi MV, Ballinger CA, Evans MJ, Harkema JR, Carey SA, McDonald RJ, Bartolucci AA, Miller LA. Postnatal episodic ozone results in persistent attenuation of pulmonary and peripheral blood responses to LPS challenge. Am J Physiol Lung Cell Mol Physiol 2010; 300:L462-71. [PMID: 21131396 DOI: 10.1152/ajplung.00254.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Early life is a dynamic period of growth for the lung and immune system. We hypothesized that ambient ozone exposure during postnatal development can affect the innate immune response to other environmental challenges in a persistent fashion. To test this hypothesis, we exposed infant rhesus macaque monkeys to a regimen of 11 ozone cycles between 30 days and 6 mo of age; each cycle consisted of ozone for 5 days (0.5 parts per million at 8 h/day) followed by 9 days of filtered air. Animals were subsequently housed in filtered air conditions and challenged with a single dose of inhaled LPS at 1 yr of age. After completion of the ozone exposure regimen at 6 mo of age, total peripheral blood leukocyte and polymorphonuclear leukocyte (PMN) numbers were reduced, whereas eosinophil counts increased. In lavage, total cell numbers at 6 mo were not affected by ozone, however, there was a significant reduction in lymphocytes and increased eosinophils. Following an additional 6 mo of filtered air housing, only monocytes were increased in blood and lavage in previously exposed animals. In response to LPS challenge, animals with a prior history of ozone showed an attenuated peripheral blood and lavage PMN response compared with controls. In vitro stimulation of peripheral blood mononuclear cells with LPS resulted in reduced secretion of IL-6 and IL-8 protein in association with prior ozone exposure. Collectively, our findings suggest that ozone exposure during infancy can result in a persistent effect on both pulmonary and systemic innate immune responses later in life.
Collapse
Affiliation(s)
- Kinjal Maniar-Hew
- California National Primate Research Center, Univ. of California, Davis, 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Dey R, Van Winkle L, Ewart G, Balmes J, Pinkerton K. A second chance. Setting a protective ozone standard. Am J Respir Crit Care Med 2010; 181:297-9. [PMID: 20130144 DOI: 10.1164/rccm.201001-0032ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Leiss JK, Kotch JB. The importance of children's environmental health for the field of maternal and child health: a wake-up call. Matern Child Health J 2010; 14:307-17. [PMID: 20091109 DOI: 10.1007/s10995-009-0560-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jack K Leiss
- Epidemiology Research Program, Cedar Grove Institute for Sustainable Communities, 6919 Lee Street, Mebane, NC 27302, USA.
| | | |
Collapse
|