1
|
Liu M, Du X, Chen H, Bai C, Lan L. Systemic investigation of di-isobutyl phthalate (DIBP) exposure in the risk of cardiovascular via influencing the gut microbiota arachidonic acid metabolism in obese mice model. Regen Ther 2024; 27:290-300. [PMID: 38638558 PMCID: PMC11024931 DOI: 10.1016/j.reth.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/20/2024] Open
Abstract
Phthalate esters (PE), a significant class of organic compounds used in industry, can contaminate humans and animals by entering water and food chains. Recent studies demonstrate the influence of PE on the development and progression of heart diseases, particularly in obese people. Di-isobutyl phthalate (DIBP) was administered orally to normal and diet-induced obese mice in this research to assess cardiovascular risk. The modifications in the microbial composition and metabolites were examined using RNA sequencing and mass spectrometry analysis. Based on the findings, lean group rodents were less susceptible to DIBP exposure than fat mice because of their cardiovascular systems. Histopathology examinations of mice fed a high-fat diet revealed lesions and plagues that suggested a cardiovascular risk. In the chronic DIBP microbial remodeling metagenomics Faecalibaculum rodentium was the predominant genera in obese mice. According to metabolomics data, arachidonic acid (AA) metabolism changes caused by DIBP were linked to unfavorable cardiovascular events. Our research offers new understandings of the cardiovascular damage caused by DIBP exposure in obese people and raises the possibility that arachidonic acid metabolism could be used as a regulator of the gut microbiota to avert related diseases.
Collapse
Affiliation(s)
- Min Liu
- Department of General Practice, First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Taiyuan, Shanxi, 030001, China
| | - Xifeng Du
- Department of General Practice, First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Taiyuan, Shanxi, 030001, China
| | - Huifang Chen
- Department of General Practice, First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Taiyuan, Shanxi, 030001, China
| | - Chenkai Bai
- Department of General Practice, First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Taiyuan, Shanxi, 030001, China
| | - Lizhen Lan
- Department of General Practice, First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Taiyuan, Shanxi, 030001, China
| |
Collapse
|
2
|
Zhang J, Wang Z, Li X, Zhang Y, Yuan J, Wang Z, Xu F, Chen Y, Li C. Association between phthalates exposure and myocardial damage in the general population: A cross-sectional study. ENVIRONMENTAL RESEARCH 2024; 261:119632. [PMID: 39025350 DOI: 10.1016/j.envres.2024.119632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Cardiovascular consequences of phthalates exposure have been given increasing attention, but the association of phthalates with subclinical cardiovascular disease (CVD) was unknown. Accordingly, this study aimed to investigate the association between phthalates exposure and high-sensitivity cardiac troponin I (hs-cTnI), a marker of myocardial injury, which was detectable in the subclinical stage of CVD. METHODS Participants aged 6 years or older with available urinary phthalates metabolites and serum hs-cTnI concentrations were included in the National Health and Nutrition Examination Survey 2003-2004 cycle. Multivariable linear regression and weighted quantiles sum (WQS) regression were used to assess the association of hs-cTnI with individual phthalates and their co-exposure. Di-2-ethylhexylphthalate (ΣDEHP), high-molecular-weight phthalate (ΣHMWP), and low-molecular-weight phthalate (ΣLMWP) were defined as the molecular sum of phthalates metabolites in urine. RESULTS 2241 participants were finally included. The percent change of serum hs-cTnI concentrations related to per 1-standard deviation increase of logarithmic urinary phthalates concentrations was 3.4% (0.1-6.7, P = 0.04) for ΣDEHP, 3.6% (0.3-6.9, P = 0.03) for ΣHMWP, and 3.5% (0.2-6.8, P = 0.04) for ΣLMWP. Co-exposure to phthalates metabolites expressed as the WQS index also demonstrated a positive association with hs-cTnI. A similar association pattern was found in the population with no prior CVD. CONCLUSIONS This study indicated the potential of phthalates to myocardial injury which may occur even before clinically apparent CVD was identified, emphasizing the significance of reducing phthalates in the prevention of CVD.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxing Li
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yiwen Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaquan Yuan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Zerui Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| | - Chuanbao Li
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
3
|
Chuang YT, Yen CY, Chien TM, Chang FR, Wu KC, Tsai YH, Shiau JP, Chang HW. Natural products modulate phthalate-associated miRNAs and targets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117015. [PMID: 39265265 DOI: 10.1016/j.ecoenv.2024.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Phthalates are widespread and commonly used plasticizers that lead to adverse health effects. Several natural products provide a protective effect against phthalates. Moreover, microRNAs (miRNAs) are regulated by natural products and phthalates. Therefore, miRNAs' impacts and potential targets may underlie the mechanism of phthalates. However, the relationship between phthalate-modulated miRNAs and phthalate protectors derived from natural products is poorly understood and requires further supporting information. In this paper, we review the adverse effects and potential targets of phthalates on reproductive systems as well as cancer and non-cancer responses. Information on natural products that attenuate the adverse effects of phthalates is retrieved through a search of Google Scholar and the miRDB database. Moreover, information on miRNAs that are upregulated or downregulated in response to phthalates is collected, along with their potential targets. The interplay between phthalate-modulated miRNAs and natural products is established. Overall, this review proposes a straightforward pathway showing how phthalates modulate different miRNAs and targets and cause adverse effects, which are partly attenuated by several natural products, thereby providing a direction for investigating the natural product-miRNA-target axis against phthalate-induced effects.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan; Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan.
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung 900392, Taiwan.
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung 907101, Taiwan.
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
4
|
Frye RE, Rincon N, McCarty PJ, Brister D, Scheck AC, Rossignol DA. Biomarkers of mitochondrial dysfunction in autism spectrum disorder: A systematic review and meta-analysis. Neurobiol Dis 2024; 197:106520. [PMID: 38703861 DOI: 10.1016/j.nbd.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting 1 in 36 children and is associated with physiological abnormalities, most notably mitochondrial dysfunction, at least in a subset of individuals. This systematic review and meta-analysis discovered 204 relevant articles which evaluated biomarkers of mitochondrial dysfunction in ASD individuals. Significant elevations (all p < 0.01) in the prevalence of lactate (17%), pyruvate (41%), alanine (15%) and creatine kinase (9%) were found in ASD. Individuals with ASD had significant differences (all p < 0.01) with moderate to large effect sizes (Cohen's d' ≥ 0.6) compared to controls in mean pyruvate, lactate-to-pyruvate ratio, ATP, and creatine kinase. Some studies found abnormal TCA cycle metabolites associated with ASD. Thirteen controlled studies reported mitochondrial DNA (mtDNA) deletions or variations in the ASD group in blood, peripheral blood mononuclear cells, lymphocytes, leucocytes, granulocytes, and brain. Meta-analyses discovered significant differences (p < 0.01) in copy number of mtDNA overall and in ND1, ND4 and CytB genes. Four studies linked specific mtDNA haplogroups to ASD. A series of studies found a subgroup of ASD with elevated mitochondrial respiration which was associated with increased sensitivity of the mitochondria to physiological stressors and neurodevelopmental regression. Lactate, pyruvate, lactate-to-pyruvate ratio, carnitine, and acyl-carnitines were associated with clinical features such as delays in language, social interaction, cognition, motor skills, and with repetitive behaviors and gastrointestinal symptoms, although not all studies found an association. Lactate, carnitine, acyl-carnitines, ATP, CoQ10, as well as mtDNA variants, heteroplasmy, haplogroups and copy number were associated with ASD severity. Variability was found across biomarker studies primarily due to differences in collection and processing techniques as well as the intrinsic heterogeneity of the ASD population. Several studies reported alterations in mitochondrial metabolism in mothers of children with ASD and in neonates who develop ASD. Treatments targeting mitochondria, particularly carnitine and ubiquinol, appear beneficial in ASD. The link between mitochondrial dysfunction in ASD and common physiological abnormalities in individuals with ASD including gastrointestinal disorders, oxidative stress, and immune dysfunction is outlined. Several subtypes of mitochondrial dysfunction in ASD are discussed, including one related to neurodevelopmental regression, another related to alterations in microbiome metabolites, and another related to elevations in acyl-carnitines. Mechanisms linking abnormal mitochondrial function with alterations in prenatal brain development and postnatal brain function are outlined. Given the multisystem complexity of some individuals with ASD, this review presents evidence for the mitochondria being central to ASD by contributing to abnormalities in brain development, cognition, and comorbidities such as immune and gastrointestinal dysfunction as well as neurodevelopmental regression. A diagnostic approach to identify mitochondrial dysfunction in ASD is outlined. From this evidence, it is clear that many individuals with ASD have alterations in mitochondrial function which may need to be addressed in order to achieve optimal clinical outcomes. The fact that alterations in mitochondrial metabolism may be found during pregnancy and early in the life of individuals who eventually develop ASD provides promise for early life predictive biomarkers of ASD. Further studies may improve the understanding of the role of the mitochondria in ASD by better defining subgroups and understanding the molecular mechanisms driving some of the unique changes found in mitochondrial function in those with ASD.
Collapse
Affiliation(s)
- Richard E Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Southwest Autism Research and Resource Center, Phoenix, AZ, USA; Rossignol Medical Center, Phoenix, AZ, USA.
| | | | - Patrick J McCarty
- Tulane University School of Medicine, New Orleans, LA 70113, United States of America.
| | | | - Adrienne C Scheck
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, United States of America.
| | - Daniel A Rossignol
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Rossignol Medical Center, Aliso Viejo, CA, USA
| |
Collapse
|
5
|
Guerrelli D, Desai M, Semaan Y, Essa Y, Zurakowski D, Cendali F, Reisz J, D'Alessandro A, Luban N, Posnack NG. Prevalence and clinical implications of heightened plastic chemical exposure in pediatric patients undergoing cardiopulmonary bypass. Transfusion 2024; 64:808-823. [PMID: 38590100 DOI: 10.1111/trf.17821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Phthalate chemicals are used to manufacture plastic medical products, including many components of cardiopulmonary bypass (CPB) circuits. We aimed to quantify iatrogenic phthalate exposure in pediatric patients undergoing cardiac surgery and examine the link between phthalate exposure and postoperative outcomes. STUDY DESIGN AND METHODS The study included pediatric patients undergoing (n=122) unique cardiac surgeries at Children's National Hospital. For each patient, a single plasma sample was collected preoperatively and two additional samples were collected postoperatively upon return from the operating room and the morning after surgery. Concentrations of di(2-ethylhexyl) phthalate (DEHP) and its metabolites were quantified using ultra high-pressure liquid chromatography coupled to mass spectrometry. RESULTS Patients were subdivided into three groups, according to surgical procedure: (1) cardiac surgery not requiring CPB support, (2) cardiac surgery requiring CPB with a crystalloid prime, and (3) cardiac surgery requiring CPB with red blood cells (RBCs) to prime the circuit. Phthalate metabolites were detected in all patients, and postoperative phthalate levels were highest in patients undergoing CPB with an RBC-based prime. Age-matched (<1 year) CPB patients with elevated phthalate exposure were more likely to experience postoperative complications. RBC washing was an effective strategy to reduce phthalate levels in CPB prime. DISCUSSION Pediatric cardiac surgery patients are exposed to phthalate chemicals from plastic medical products, and the degree of exposure increases in the context of CPB with an RBC-based prime. Additional studies are warranted to measure the direct effect of phthalates on patient health outcomes and investigate mitigation strategies to reduce exposure.
Collapse
Affiliation(s)
- Devon Guerrelli
- Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA
- Department of Biomedical Engineering, The George Washington University School of Engineering and Applied Science, Washington, DC, USA
| | - Manan Desai
- Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
- Division of Cardiac Surgery, Children's National Hospital, Washington, DC, USA
| | - Youssef Semaan
- Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
- Department of Cardiovascular Services - Perfusion, Children's National Hospital, Washington, DC, USA
| | - Yasin Essa
- Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
- Division of Cardiac Surgery, Children's National Hospital, Washington, DC, USA
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julie Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Naomi Luban
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Division of Hematology and Laboratory Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Nikki Gillum Posnack
- Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
6
|
Singh J, Jangra A, Kumar D. Recent advances in toxicological research of di-(2-ethylhexyl)-phthalate: Focus on endoplasmic reticulum stress pathway. CHEMOSPHERE 2024; 356:141922. [PMID: 38593956 DOI: 10.1016/j.chemosphere.2024.141922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/01/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
The plasticizer di-(2-ethylhexyl)-phthalate (DEHP) is the most significant phthalate in production, usage, and environmental occurrence. DEHP is found in products such as personal care products, furniture materials, cosmetics, and medical devices. DEHP is noncovalently bind with plastic therefore, repeated uses lead to leaching out of it. Exposure to DEHP plasticizers leads to toxicity in essential organs of the body through various mechanisms. The main objective of this review article is to focus on the DEHP-induced endoplasmic reticulum (ER) stress pathway implicated in the testis, brain, lungs, kidney, heart, liver, and other organs. Not only ER stress, PPAR-related pathways, oxidative stress and inflammation, Ca2+ homeostasis disturbances in mitochondria are also identified as the relative mechanisms. ER is involved in various critical functions of the cell such as Protein synthesis, protein folding, calcium homeostasis, and lipid peroxidation but, DEHP exposure leads to augmentation of misfolded/unfolded protein. This review complies with various recently reported DEHP-induced toxicity studies and some pharmacological interventions that have been shown to be effective through ER stress pathway. DEHP exposure does assess health risks and vulnerability to populations across the globe. This study offers possible targets and approaches for addressing various DEHP-induced toxicity.
Collapse
Affiliation(s)
- Jiten Singh
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| |
Collapse
|
7
|
Kabekkodu SP, Gladwell LR, Choudhury M. The mitochondrial link: Phthalate exposure and cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119708. [PMID: 38508420 DOI: 10.1016/j.bbamcr.2024.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Phthalates' pervasive presence in everyday life poses concern as they have been revealed to induce perturbing health defects. Utilized as a plasticizer, phthalates are riddled throughout many common consumer products including personal care products, food packaging, home furnishings, and medical supplies. Phthalates permeate into the environment by leaching out of these products which can subsequently be taken up by the human body. It is previously established that a connection exists between phthalate exposure and cardiovascular disease (CVD) development; however, the specific mitochondrial link in this scenario has not yet been described. Prior studies have indicated that one possible mechanism for how phthalates exert their effects is through mitochondrial dysfunction. By disturbing mitochondrial structure, function, and signaling, phthalates can contribute to the development of the foremost cause of death worldwide, CVD. This review will examine the potential link among phthalates and their effects on the mitochondria, permissive of CVD development.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
8
|
Harris SM, Su AL, Dou JF, Loch-Caruso R, Elkin ER, Jaber S, Bakulski KM. Placental cell conditioned media modifies hematopoietic stem cell transcriptome invitro. Placenta 2024; 145:117-125. [PMID: 38128222 PMCID: PMC11270901 DOI: 10.1016/j.placenta.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Hematopoietic stem cells are cells that differentiate into blood cell types. Although the placenta secretes hormones, proteins and other factors important for maternal/fetal health, cross-talk between placental and hematopoietic stem cells is poorly understood. Moreover, toxicant impacts on placental-hematopoietic stem cell communication is understudied. The goals of this study were to determine if factors secreted from placental cells alter transcriptomic responses in hematopoietic stem cells and if monoethylhexyl phthalate (MEHP), the bioactive metabolite of the pollutant diethylhexyl phthalate, modifies these effects. METHODS We used K-562 and BeWo cells as in vitro models of hematopoietic stem cells and placental syncytiotrophoblasts, respectively. We treated K-562 cells with medium conditioned by incubation with BeWo cells, medium conditioned with BeWo cells treated with 10 μM MEHP for 24 h, or controls treated with unconditioned medium. We extracted K-562 cell RNA, performed RNA sequencing, then conducted differential gene expression and pathway analysis. RESULTS Relative to controls, K-562 cells treated with BeWo cell conditioned medium differentially expressed 173 genes (FDR<0.05 and fold-change>2.0), including 2.4-fold upregulatation of tropomyosin 4 (TPM4, a cytoskeletal regulator involved in processes such as cell morphology and migration) and 3.3-fold upregulatation of sphingosine-1-phosphate receptor 3 (S1PR3, a mediator of myeloid cell differentiation and inflammatory responses). Upregulated genes were enriched for pathways including stem cell maintenance, cell proliferation and immune processes. Downregulated genes were enriched for terms involved in protein translation and transcriptional regulation. MEHP treatment differentially expressed eight genes (FDR<0.05), including genes involved in lipid metabolism (e.g., Perilipin 2, fold-change: 1.4; Carnitine Palmitoyltransferase 1A, fold-change: 1.4). DISCUSSION K-562 cells, a model of hematopoietic stem cells, are responsive to media conditioned by placental cells, potentially impacting pathways like stem cell maintenance.
Collapse
Affiliation(s)
- Sean M Harris
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
| | - Anthony L Su
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
| | - John F Dou
- School of Public Health, Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Rita Loch-Caruso
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Elana R Elkin
- School of Public Health, Division of Environmental Health, San Diego State University, San Diego, CA, 92182, USA
| | - Sammy Jaber
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Kelly M Bakulski
- School of Public Health, Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Liu X, Wang Y, Fang J, Chen R, Sun Y, Tang S, Wang M, Kan H, Li T, Chen D. Plastic additive components of PM 2.5 increase corrected QT interval: Screening for exposure markers based on airborne exposome. PNAS NEXUS 2023; 2:pgad397. [PMID: 38047040 PMCID: PMC10691654 DOI: 10.1093/pnasnexus/pgad397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
The impact of industrial chemical components of ambient fine particles (e.g. PM2.5) on cardiovascular health has been poorly explored. Our study reports for the first time the associations between human exposure to complex plastic additive (PA) components of PM2.5 and prolongation of heart rate-corrected QT (QTC) interval by employing a screening-to-validation strategy based on a cohort of 373 participants (136 in the screening set and 237 in the validation set) recruited from 7 communities across China. The high-throughput airborne exposome framework revealed ubiquitous occurrences of 95 of 224 target PAs in PM2.5, totaling from 66.3 to 555 ng m-3 across the study locations. Joint effects were identified for 9 of the 13 groups of PAs with positive associations with QTC interval. Independent effect analysis also identified and validated tris(2-chloroisopropyl) phosphate, di-n-butyl/diisobutyl adipate, and 3,5-di-tert-butyl-4-hydroxybenzaldehyde as the key exposure markers for QTC interval prolongation and changes of selected cardiovascular biomarkers. Our findings highlight the important contributions of airborne industrial chemicals to the risks of cardiovascular diseases and underline the critical need for further research on the underlying mechanisms, toxic modes of action, and human exposure risks.
Collapse
Affiliation(s)
- Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Yue Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shuqin Tang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Minghao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| |
Collapse
|
10
|
Wójtowicz AK, Sitarz-Głownia AM, Wnuk A, Kajta M, Szychowski KA. Involvement of the peroxisome proliferator-activated receptor gamma (Pparγ) and matrix metalloproteinases-2 and -9 (Mmp-2 and -9) in the mechanism of action of di(2-ethylhexyl)phthalate (DEHP) in cultured mouse brain astrocytes and neurons. Toxicol In Vitro 2023; 92:105639. [PMID: 37406783 DOI: 10.1016/j.tiv.2023.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) is one of the most widely used phthalates in industry. It has been shown that, after entering the body, DEHP has the ability to cross the blood-placenta and blood-brain barriers. One of the proposed mechanisms of action of DEHP is the activation of peroxisome proliferator-activated receptors (PPARs). Many different functions of PPARγ in cells have been demonstrated, one of which is the modulation of the activation of matrix metalloproteinases (MMPs). The aim of this study was to investigate the role of Pparγ, Mmp-2, and Mmp-9 in the mechanism of action of DEHP. The experiments were performed on in vitro primary murine neurons and astrocytes. The results showed that DEHP has a pro-apototic effect on neurons, causing an increase in caspase-3 activity and in the number of apoptotic bodies. However, in astrocytes, the increase in caspase-3 activity was not related to the apoptosis process, as no increase in the formation of apoptotic bodies was observed. Moreover, DEHP increased the proliferation of astrocytes, which was confirmed by the increase in the amount and expression of the Ki-67 protein. In astrocytes, DEHP decreased the expression of the Pparγ and Mmp-9 proteins but increased the expression of the Mmp-2 protein. In DEHP neurons, it increased the expression of the Pparγ protein but decreased the expression of the Mmp-2 and Mmp-9 proteins.
Collapse
Affiliation(s)
- Anna K Wójtowicz
- Department of Nutrition, Animal Biotechnology and Fisheries, Faculty of Animal Sciences, University of Agriculture, Adama Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Agnieszka M Sitarz-Głownia
- Department of Nutrition, Animal Biotechnology and Fisheries, Faculty of Animal Sciences, University of Agriculture, Adama Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Agnieszka Wnuk
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland
| | - Małgorzata Kajta
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
11
|
Nazzari M, Romitti M, Hauser D, Carvalho DJ, Giselbrecht S, Moroni L, Costagliola S, Caiment F. Investigation of the effects of phthalates on in vitro thyroid models with RNA-Seq and ATAC-Seq. Front Endocrinol (Lausanne) 2023; 14:1200211. [PMID: 37810885 PMCID: PMC10556862 DOI: 10.3389/fendo.2023.1200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/08/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Phthalates are a class of endocrine-disrupting chemicals that have been shown to negatively correlate with thyroid hormone serum levels in humans and to cause a state of hyperactivity in the thyroid. However, their mechanism of action is not well described at the molecular level. Methods We analyzed the response of mouse thyroid organoids to the exposure to a biologically relevant dose range of the phthalates bis(2-ethylhexyl) phthalate (DEHP), di-iso-decylphthalate (DIDP), di-iso-nonylphthalate (DINP), and di-n-octylphthalate (DnOP) for 24 h and simultaneously analyzed mRNA and miRNA expression via RNA sequencing. Using the expression data, we performed differential expression and gene set enrichment analysis. We also exposed the human thyroid follicular epithelial cell line Nthy-ori 3-1 to 1 µM of DEHP or DINP for 5 days and analyzed changes in chromatin accessibility via ATAC-Seq. Results Dose-series analysis showed how the expression of several genes increased or decreased at the highest dose tested. As expected with the low dosing scheme, the compounds induced a modest response on the transcriptome, as we identified changes in only mmu-miR-143-3p after DINP treatment and very few differentially expressed genes. No effect was observed on thyroid markers. Ing5, a component of histones H3 and H4 acetylation complexes, was consistently upregulated in three out of four conditions compared to control, and we observed a partial overlap among the genes differentially expressed by the treatments. Gene set enrichment analysis showed enrichment in the treatment samples of the fatty acid metabolism pathway and in the control of pathways related to the receptor signalling and extracellular matrix organization. ATAC-Seq analysis showed a general increase in accessibility compared to the control, however we did not identify significant changes in accessibility in the identified regions. Discussion With this work, we showed that despite having only a few differentially expressed genes, diverse analysis methods could be applied to retrieve relevant information on phthalates, showing the potential of in vitro thyroid-relevant systems for the analysis of endocrine disruptors.
Collapse
Affiliation(s)
- Marta Nazzari
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Mírian Romitti
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Duncan Hauser
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Daniel J. Carvalho
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Florian Caiment
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
12
|
Kim D, Oh E, Kim H, Baek SM, Cho J, Kim EH, Choi S, Bian Y, Kim W, Bae ON. Mono-(2-ethylhexyl)-phthalate potentiates methylglyoxal-induced blood-brain barrier damage via mitochondria-derived oxidative stress and bioenergetic perturbation. Food Chem Toxicol 2023; 179:113985. [PMID: 37572985 DOI: 10.1016/j.fct.2023.113985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/30/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Phthalates in contaminated foods and personal care products are one of the most frequently exposed chemicals with a public health concern. Phthalate exposure is related to cardiovascular diseases, including diabetic vascular complications and cerebrovascular diseases, yet the mechanism is still unclear. The blood-brain barrier (BBB) integrity disruption is strongly associated with cardiovascular and neurological disease exacerbation. We investigated BBB damage by di-(2-ethylhexyl) phthalate (DEHP) or its metabolite mono-(2-ethylhexyl) phthalate (MEHP) using brain endothelial cells and rat models. BBB damage by the subthreshold level of MEHP, but not a DEHP, significantly increased by the presence of methylglyoxal (MG), a reactive dicarbonyl compound whose levels increase in the blood in hyperglycemic conditions in diabetic patients. Significant potentiation in apoptosis and autophagy activation, mitochondria-derived reactive oxygen species (ROS) production, and mitochondrial metabolic disturbance were observed in brain ECs by co-exposure to MG and MEHP. N-acetyl cysteine (NAC) restored autophagy activation as well as tight junction protein impairment induced by co-exposure to MG and MEHP. Intraperitoneal administration of MG and MEHP significantly altered mitochondrial membrane potential and tight junction integrity in rat brain endothelium. This study may provide novel insights into enhancing phthalate toxicity in susceptible populations, such as diabetic patients.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Eujin Oh
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Haram Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Seung Mi Baek
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Junho Cho
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Sungbin Choi
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Yiying Bian
- School of Public Health, China Medical University, Shenyang, 110122, China
| | - Wondong Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea.
| |
Collapse
|
13
|
Wang Z, Deng Y, Gao S, Lin Z, Zheng Z, Fang Q, Zhan M, Sun T, Huang G, Geng X. Association of urinary phthalate metabolites with all-cause and cardiovascular disease mortality among adults with diabetes mellitus: National Health and Nutrition Examination Survey 2005-2014. Front Public Health 2023; 11:1178057. [PMID: 37325320 PMCID: PMC10268004 DOI: 10.3389/fpubh.2023.1178057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Background The study regarding phthalate metabolites and mortality among diabetes mellitus (DM) is limited. We aimed to examine the association of urinary phthalate metabolites with all-cause and cardiovascular disease (CVD) mortality among adults with DM. Methods This study included 8,931 adults from the National Health and Nutrition Examination Survey (NHANES) from 2005-2006 to 2013-2014. Mortality data were linked to National Death Index public access files through December 31, 2015. Cox proportional hazard models were used to estimate hazard ratios (HR) and 95% confidences (CIs) for mortality. Results We identified 1,603 adults with DM [mean ± SE age, 47.08 ± 0.30 years; 50.5% (833) were men]. Mono-(carboxynonyl) phthalate (MCNP), mono-2-ethyl-5-carboxypentyl phthalate (MECPP), and the sum of Di (2-ethylhexyl) phthalate (DEHP) metabolites (∑DEHP) were positively associated with DM (MCNP: OR = 1.53, 95%CI = 1.16-2.01; MECPP: OR = 1.17, 95% CI = 1.03-1.32; ∑DEHP: OR = 1.14, 95% CI = 1.00-1.29). Among DM patients, mono-(3-carboxypropyl) phthalate (MCPP) was associated with a 34% (HR 1.34, 95% CI 1.12-1.61) increased risk of all-cause mortality while the HRs (95%CI) of CVD mortality were 2.02 (1.13-3.64) for MCPP, 2.17 (1.26-3.75) for mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), 2.47 (1.43-4.28) for mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), 2.65 (1.51-4.63) for MECPP, and 2.56 (1.46-4.46) for ∑DEHP, respectively. Conclusion This study is an academic exploration of the association between urinary phthalate metabolites and mortality among adults with DM, suggesting that exposure to phthalates might be associated with an increased risk of all-cause and CVD mortality in DM. These findings suggest that patients with DM should carefully use plastics products.
Collapse
Affiliation(s)
- Zhihong Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yao Deng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Sikang Gao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zefang Lin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Zhixiong Zheng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Qin Fang
- Department of Medical Affairs, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Taoping Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Guomin Huang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Xuyang Geng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| |
Collapse
|
14
|
Guerrelli D, Desai M, Semaan Y, Essa Y, Zurakowski D, Cendali FI, Reisz JA, D'Alessandro A, Luban NC, Posnack NG. Prevalence and Clinical Implications of Heightened Plastic Chemical Exposure in Pediatric Patients Undergoing Cardiopulmonary Bypass. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.02.23289379. [PMID: 37205364 PMCID: PMC10187441 DOI: 10.1101/2023.05.02.23289379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Importance Phthalate chemicals are used to manufacture disposable plastic medical products, including blood storage bags and components of cardiopulmonary bypass (CPB) circuits. During cardiac surgery, patients can be inadvertently exposed to phthalate chemicals that are released from these plastic products. Objective To quantify iatrogenic phthalate chemical exposure in pediatric patients undergoing cardiac surgery, and examine the link between phthalate exposure and post-operative outcomes. Design Setting and Participants The study cohort included 122 pediatric patients undergoing cardiac surgery at Children's National Hospital. For each patient, a single plasma sample was collected pre-operatively and two additional samples were collected post-operatively upon return from the operating room (post-operative day 0) and the morning after surgery (post-operative day 1). Exposures Concentrations of di(2-ethylhexyl)phthalate (DEHP) and its metabolites were quantified using ultra high-pressure liquid chromatography coupled to mass spectrometry. Main Outcomes and Measures Plasma concentrations of phthalates, post-operative blood gas measurements, and post-operative complications. Results Study subjects were subdivided into three groups, according to surgical procedure: 1) cardiac surgery not requiring CPB support, 2) cardiac surgery requiring CPB with crystalloid prime, and 3) cardiac surgery requiring CPB with red blood cells (RBCs) to prime the circuit. Phthalate metabolites were detected in all patients, and postoperative phthalate levels were highest in patients undergoing CPB with RBC-based prime. Age-matched (<1 year) CPB patients with elevated phthalate exposure were more likely to experience post-operative complications, including arrhythmias, low cardiac output syndrome, and additional post-operative interventions. RBC washing was an effective strategy to reduce DEHP levels in CPB prime. Conclusions and Relevance Pediatric cardiac surgery patients are exposed to phthalate chemicals from plastic medical products, and the degree of exposure increases in the context of CPB with RBC-based prime. Additional studies are warranted to measure the direct effect of phthalates on patient health outcomes and investigate mitigation strategies to reduce exposure. Key Points Question: Is cardiac surgery with cardiopulmonary bypass a significant source of phthalate chemical exposure in pediatric patients?Findings: In this study of 122 pediatric cardiac surgery patients, phthalate metabolites were quantified from blood samples before and after surgery. Phthalate concentrations were highest in patients undergoing cardiopulmonary bypass with red blood cell-based prime. Heightened phthalate exposure was associated with post-operative complications.Meaning: Cardiopulmonary bypass is a significant source of phthalate chemical exposure, and patients with heightened exposure may be at greater risk for postoperative cardiovascular complications.
Collapse
|
15
|
Hua S, Shi F, Xie Z, Wu L, Dai M, Zhang Y, Xu X, Zhu Y, Jiang J. Di-n-butyl phthalate induces oversecretion of vascular endothelium-derived NAP-2 and promotes epithelial-mesenchymal transition of urothelial cells in newborn hypospadias rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114892. [PMID: 37059017 DOI: 10.1016/j.ecoenv.2023.114892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/19/2023] [Accepted: 04/08/2023] [Indexed: 06/19/2023]
Abstract
Di-n-butyl phthalate (DBP) is a plasticizer commonly used in industrial production and is present in our daily life. It has been confirmed that DBP causes genitourinary malformations, especially hypospadias. However, the research of hypospadias mainly focusses on the genital tubercle in previous studies. In this study, we found DBP could affect the exocrine function of the vascular endothelium which disturb the development of genital nodules and induced hypospadias. We used cytokine array to find that vascular endothelium-derived NAP-2 may be a major abnormal secreted cytokine with biological functions. The transcriptomic sequencing analysis showed that abnormal activation of the RhoA/ROCK signaling pathway was the main reason for increased NAP-2 secretion. The expression levels of epithelial-mesenchymal transition (EMT) biomarkers and NAP-2 in hypospadias animal models were detected with Immunohistochemistry, Western blot, Immunofluorescence, and ELISA methods. The expression levels of NAP-2, RhoA/ROCK signaling pathway related proteins, reactive oxygen species (ROS) levels in HUVEC cells, EMT biomarkers and migration capacity of urothelial cells cocultured with HUVEC were measured with ELISA, flow cytometry, Western blot or Transwell assay for further cell experiments. The results showed that DBP leaded to NAP-2 oversecretion from vascular endothelium mainly rely on the activation of RhoA/ROCK signaling pathway and ROS accumulation. The RhoA/ROCK inhibitor fasudil could partially decrease ROS production, and both fasudil and N-acetyl-L-cysteine (NAC) could decrease NAP-2 secretion. Meanwhile, the oversecretion of NAP-2 from HUVEC in coculture system promoted EMT and migration capacity of urothelial cells, and TGF-β inhibitor LY219761 could block the aberrant activation of EMT process. Therefore, it could be concluded that DBP increase NAP-2 secretion from vascular endothelium by RhoA/ROCK/ROS pathway, and further promote EMT in urothelial cells through TGF-β pathway. This study provided a novel direction for studying the occurrence of hypospadias and may provide a hypospadias predictive marker in the future.
Collapse
Affiliation(s)
- Shan Hua
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Fei Shi
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhiwen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lei Wu
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| | - Mengqiao Dai
- Shanghai University of Traditional Chinese Medicine, School of Nursing, Shanghai 201203, China
| | - Yongqing Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xinyu Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yiping Zhu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Juntao Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
16
|
Chen M, Yang Y, Baral K, Fu Y, Meng Y, Zhang Y, Sun F, Zhao M. Relationship between bisphenol A and the cardiovascular disease metabolic risk factors in American adults: A population-based study. CHEMOSPHERE 2023; 324:138289. [PMID: 36870620 DOI: 10.1016/j.chemosphere.2023.138289] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is widely used in personal care and consumer products. However, no study has reported a specific relationship between BPA concentrations and metabolic hazardous elements for cardiovascular diseases (CVDs). Consequently, in this study, we used six years of population-based NHANES data (2011-2016) to analyse the association between BPA concentrations and metabolic risk factors for CVDs. METHODS A total of 1467 participants were enrolled in our project. The participants in the study were divided into quartiles based on BPA levels (Q1: ≤0.6 ng/ml, Q2: 0.7-1.2 ng/ml, Q3: 1.3-2.3 ng/ml, Q4: ≥2.4 ng/ml). This study used multiple linear and multivariate logistic regression models to determine the association among BPA concentrations and CVD metabolic risk factors. RESULTS When the concentration of BPA was in Q3, fasting glucose concentrations were decreased by 3.87 mg/dl, and 2-h glucose concentrations were decreased by 16.24 mg/dl. When the concentration of BPA was in Q4, fasting glucose concentrations were decreased by 12.15 mg/dl, and diastolic blood pressure was increased by 2.08 mmHg. At the same time, compared to participants in the first quartile (Q1), those from the fourth quartile (Q4) of BPA concentrations had 21% higher odds of hypertension, 30% higher odds of obesity, 30.2% higher odds of central obesity, 4.5% higher odds of elevated HbA1c, 17% higher odds of elevated non-HDL cholesterol, and 60.8% higher odds of diabetes (compared to the lowest quartile, Q1). CONCLUSIONS We found that higher concentrations of BPA were linked with a higher metabolic risk for CVDs. Further regulation of BPA may need to be considered for the prevention of CVDs in adults.
Collapse
Affiliation(s)
- Mingcong Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan China
| | - Yang Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan China
| | - Krishna Baral
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan China
| | - Yicheng Fu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan China
| | - Yang Meng
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan China
| | - Yang Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan China
| | - Fang Sun
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan China.
| |
Collapse
|
17
|
Mao M, Qu X, Zhang Y, Gu B, Li C, Liu R, Li X, Zhu H, He J, Li D. Leaf-venation-directed cellular alignment for macroscale cardiac constructs with tissue-like functionalities. Nat Commun 2023; 14:2077. [PMID: 37045852 PMCID: PMC10097867 DOI: 10.1038/s41467-023-37716-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Recapitulating the complex structural, mechanical, and electrophysiological properties of native myocardium is crucial to engineering functional cardiac tissues. Here, we report a leaf-venation-directed strategy that enables the compaction and remodeling of cell-hydrogel hybrids into highly aligned and densely packed organizations in predetermined patterns. This strategy contributes to interconnected tubular structures with cell alignment along the hierarchical channels. Compared to randomly-distributed cells, the engineered leaf-venation-directed-cardiac tissues from neonatal rat cardiomyocytes manifest advanced maturation and functionality as evidenced by detectable electrophysiological activity, macroscopically synchronous contractions, and upregulated maturation genes. As a demonstration, human induced pluripotent stem cell-derived leaf-venation-directed-cardiac tissues are engineered with evident structural and functional improvement over time. With the elastic scaffolds, leaf-venation-directed tissues are assembled into 3D centimeter-scale cardiac constructs with programmed mechanical properties, which can be delivered through tubing without affecting cell viability. The present strategy may generate cardiac constructs with multifaceted functionalities to meet clinical demands.
Collapse
Affiliation(s)
- Mao Mao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yabo Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Bingsong Gu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Chen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Rongzhi Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Hui Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| |
Collapse
|
18
|
Harris SM, Su AL, Dou JF, Loch-Caruso R, Elkin ER, Jaber S, Bakulski KM. Placental Cell Conditioned Media Modifies Hematopoietic Stem Cell Transcriptome In Vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534393. [PMID: 37034658 PMCID: PMC10081206 DOI: 10.1101/2023.03.27.534393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Hematopoietic stem cells are cells that differentiate into all blood cell types. Although the placenta secretes hormones, proteins and other factors important for maternal and fetal health, cross-talk between placental cells and hematopoietic stem cells is poorly understood. Moreover, toxicant impacts on placental-hematopoietic stem cell communication is understudied. The goals of this study were to determine if factors secreted from placental cells alter transcriptomic responses in hematopoietic stem cells and if monoethylhexyl phthalate (MEHP), the bioactive metabolite of the pollutant diethylhexyl phthalate, modifies these effects. Methods We used K-562 and BeWo cells as in vitro models of hematopoietic stem cells and placental syncytiotrophoblasts, respectively. We treated K-562 cells with medium conditioned by incubation with BeWo cells, medium conditioned with BeWo cells treated with 10 μM MEHP for 24 hours, or controls treated with unconditioned medium. We extracted K-562 cell RNA, performed RNA sequencing, then conducted differential gene expression and pathway analysis by treatment group. Results Relative to controls, K-562 cells treated with BeWo cell conditioned medium differentially expressed 173 genes (FDR<0.05 and fold-change>2.0), including 2.4 fold upregulatation of TPM4 and 3.3 fold upregulatation of S1PR3. Upregulated genes were enriched for pathways including stem cell maintenance, cell proliferation and immune processes. Downregulated genes were enriched for terms involved in protein translation and transcriptional regulation. MEHP treatment differentially expressed eight genes (FDR<0.05), including genes involved in lipid metabolism (PLIN2, fold-change: 1.4; CPT1A, fold-change: 1.4). Conclusion K-562 cells, a model of hematopoietic stem cells, are responsive to media conditioned by placental cells, potentially impacting pathways like stem cell maintenance and proliferation.
Collapse
Affiliation(s)
- Sean M. Harris
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Anthony L. Su
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104
| | - John F. Dou
- School of Public Health, Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Rita Loch-Caruso
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Elana R. Elkin
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Sammy Jaber
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Kelly M. Bakulski
- School of Public Health, Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| |
Collapse
|
19
|
The potential role of environmental factors in modulating mitochondrial DNA epigenetic marks. VITAMINS AND HORMONES 2023; 122:107-145. [PMID: 36863791 DOI: 10.1016/bs.vh.2023.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Many studies implicate mitochondrial dysfunction in the development and progression of numerous chronic diseases. Mitochondria are responsible for most cellular energy production, and unlike other cytoplasmic organelles, mitochondria contain their own genome. Most research to date, through investigating mitochondrial DNA copy number, has focused on larger structural changes or alterations to the entire mitochondrial genome and their role in human disease. Using these methods, mitochondrial dysfunction has been linked to cancers, cardiovascular disease, and metabolic health. However, like the nuclear genome, the mitochondrial genome may experience epigenetic alterations, including DNA methylation that may partially explain some of the health effects of various exposures. Recently, there has been a movement to understand human health and disease within the context of the exposome, which aims to describe and quantify the entirety of all exposures people encounter throughout their lives. These include, among others, environmental pollutants, occupational exposures, heavy metals, and lifestyle and behavioral factors. In this chapter, we summarize the current research on mitochondria and human health, provide an overview of the current knowledge on mitochondrial epigenetics, and describe the experimental and epidemiologic studies that have investigated particular exposures and their relationships with mitochondrial epigenetic modifications. We conclude the chapter with suggestions for future directions in epidemiologic and experimental research that is needed to advance the growing field of mitochondrial epigenetics.
Collapse
|
20
|
Wang JX, Zhao Y, Chen MS, Zhang H, Cui JG, Li JL. Heme-oxygenase-1 as a target for phthalate-induced cardiomyocytes ferroptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120717. [PMID: 36423886 DOI: 10.1016/j.envpol.2022.120717] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Phthalates as a large group of environmental pollutants are used primarily as plasticizers and solvents, which have become a growing problem worldwide. Epidemiological results show that severity of heart disease is related to degree of environmental contamination. As the most usually used phthalate, di(2-ethylhexyl) phthalate (DEHP) has toxic effects on organism health and is also a major cause of heart damage. Ingestion of food, liquid, or dust contaminated with DEHP are major routes of exposure. The purpose of the present research was to determine the mechanism of cardiotoxicity in mice after exposure to DEHP. Here, male mice were treated by gavage with three different doses of (50, 200 and 500 mg/kg b.w.) DEHP for 28 days. Our research showed that DEHP brought about histopathological changes involving cardiomyocyte lysis and rupture, and ultrastructural damage such as dissolution and loss of mitochondrial cristae. Furthermore, DEHP induced oxidative stress and a significant decline in the antioxidant function, which activates nuclear factor E2-related factor 2 (Nrf2)/heme-oxygense-1 (HO-1) signaling pathways. Interestingly, DEHP resulted in lipid peroxidation and increased ferrous ion content, suggesting that ferroptosis occurred in mouse hearts. Therefore, our findings demonstrated that DEHP could induce cardiac ferroptosis via upregulation of HO-1. The present study provides novel evidence of HO-1 as a target for DEHP-induced cardiotoxicity.
Collapse
Affiliation(s)
- Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
21
|
Thomson S, Drummond K, O'Hely M, Symeonides C, Chandran C, Mansell T, Saffery R, Sly P, Mueller J, Vuillermin P, Ponsonby AL. Increased maternal non-oxidative energy metabolism mediates association between prenatal di-(2-ethylhexyl) phthalate (DEHP) exposure and offspring autism spectrum disorder symptoms in early life: A birth cohort study. ENVIRONMENT INTERNATIONAL 2023; 171:107678. [PMID: 36516674 DOI: 10.1016/j.envint.2022.107678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Prenatal phthalate exposure has previously been linked to the development of autism spectrum disorder (ASD). However, the underlying biological mechanisms remain unclear. We investigated whether maternal and child central carbon metabolism is involved as part of the Barwon Infant Study (BIS), a population-based birth cohort of 1,074 Australian children. We estimated phthalate daily intakes using third-trimester urinary phthalate metabolite concentrations and other relevant indices. The metabolome of maternal serum in the third trimester, cord serum at birth and child plasma at 1 year were measured by nuclear magnetic resonance. We used the Small Molecule Pathway Database and principal component analysis to construct composite metabolite scores reflecting metabolic pathways. ASD symptoms at 2 and 4 years were measured in 596 and 674 children by subscales of the Child Behavior Checklist and the Strengths and Difficulties Questionnaire, respectively. Multivariable linear regression analyses demonstrated (i) prospective associations between higher prenatal di-(2-ethylhexyl) phthalate (DEHP) levels and upregulation of maternal non-oxidative energy metabolism pathways, and (ii) prospective associations between upregulation of these pathways and increased offspring ASD symptoms at 2 and 4 years of age. Counterfactual mediation analyses indicated that part of the mechanism by which higher prenatal DEHP exposure influences the development of ASD symptoms in early childhood is through a maternal metabolic shift in pregnancy towards non-oxidative energy pathways, which are inefficient compared to oxidative metabolism. These results highlight the importance of the prenatal period and suggest that further investigation of maternal energy metabolism as a molecular mediator of the adverse impact of prenatal environmental exposures such as phthalates is warranted.
Collapse
Affiliation(s)
- Sarah Thomson
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Katherine Drummond
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Martin O'Hely
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Chitra Chandran
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Peter Sly
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia; Child Health Research Centre, The University of Queensland, 62 Graham St, South Brisbane, QLD 4101, Australia
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Vuillermin
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia.
| |
Collapse
|
22
|
Wen ZJ, Wang ZY, Zhang YF. Adverse cardiovascular effects and potential molecular mechanisms of DEHP and its metabolites-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157443. [PMID: 35868369 DOI: 10.1016/j.scitotenv.2022.157443] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Currently, cardiovascular disease (CVD) is a health hazard that is associated with progressive deterioration upon exposure to environmental pollutants. Di(2-ethylhexyl) phthalate (DEHP) has been one of the focuses of emerging concern due to its ubiquitous nature and its toxicity to the cardiovascular (CV) system. DEHP has been noted as a causative risk factor or a risk indicator for the initiation and augment of CVDs. DEHP represents a precursor that contributes to the pathogenesis of CVDs through its active metabolites, which mainly include mono (2-ethylhexyl) phthalate (MEHP). Herein, we systematically presented the association between DEHP and its metabolites and adverse CV outcomes and discussed the corresponding effects, underlying mechanisms and possibly interventions. Epidemiological and experimental evidence has suggested that DEHP and its metabolites have significant impacts on processes and factors involved in CVD, such as cardiac developmental toxicity, cardiac injury and apoptosis, cardiac arrhythmogenesis, cardiac metabolic disorders, vascular structural damage, atherogenesis, coronary heart disease and hypertension. DNA methylation, PPAR-related pathways, oxidative stress and inflammation, Ca2+ homeostasis disturbance may pinpoint the relevant mechanisms. The preventive and therapeutic measures are potentially related with P-glycoprotein, heat-shock proteins, some antioxidants, curcumin, apigenin, β-thujaplicin, glucagon-like peptide-1 receptor agonists and Ang-converting enzyme inhibitors and so on. Promisingly, future investigations should aid in thoroughly assessing the causal relationship and molecular interactions between CVD and DEHP and its metabolites and explore feasible prevention and treatment measures accordingly.
Collapse
Affiliation(s)
- Zeng-Jin Wen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Zhong-Yu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
23
|
Savin M, Vrkatić A, Dedić D, Vlaški T, Vorgučin I, Bjelanović J, Jevtic M. Additives in Children's Nutrition-A Review of Current Events. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13452. [PMID: 36294032 PMCID: PMC9603407 DOI: 10.3390/ijerph192013452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Additives are defined as substances added to food with the aim of preserving and improving safety, freshness, taste, texture, or appearance. While indirect additives can be found in traces in food and come from materials used for packaging, storage, and technological processing of food, direct additives are added to food with a special purpose (canning). The use of additives is justified if it is in accordance with legal regulations and does not pose a health or danger to consumers in the prescribed concentration. However, due to the specificity of the child's metabolic system, there is a greater risk that the negative effects of the additive will manifest. Considering the importance of the potential negative impact of additives on children's health and the increased interest in the control and monitoring of additives in food for children, we have reviewed the latest available literature available through PubMed, Scopus, and Google Scholar. Expert data were taken from publicly available documents published from January 2010 to April 2022 by internationally recognized professional organizations. It was found that the most frequently present additives in the food consumed by children are bisphenols, phthalates, perfluoroalkyl chemicals, perchlorates, pesticides, nitrates and nitrites, artificial food colors, monosodium glutamate, and aspartame. Increasing literacy about the presence and potential risk through continuous education of parents and young people as well as active monitoring of newly registered additives and harmonization of existing legal regulations by competent authorities can significantly prevent the unwanted effects of additives on children's health.
Collapse
Affiliation(s)
- Marijana Savin
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Institute for Child and Youth Health Care of Vojvodina, Hajduk Veljkova 10, 21000 Novi Sad, Serbia
| | - Aleksandra Vrkatić
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Danijela Dedić
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Emergency Service, Community Health Center Šid, Alekse Šantića 1, 22239 Šid, Serbia
| | - Tomislav Vlaški
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Ivana Vorgučin
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Institute for Child and Youth Health Care of Vojvodina, Hajduk Veljkova 10, 21000 Novi Sad, Serbia
| | - Jelena Bjelanović
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Institute of Public Health of Vojvodina, Futoška 121, 21000 Novi Sad, Serbia
| | - Marija Jevtic
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Institute of Public Health of Vojvodina, Futoška 121, 21000 Novi Sad, Serbia
- Research Center on Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
| |
Collapse
|
24
|
Poitou K, Rogez-Florent T, Dirninger A, Corbière C, Monteil C. Effects of DEHP, DEHT and DINP Alone or in a Mixture on Cell Viability and Mitochondrial Metabolism of Endothelial Cells In Vitro. TOXICS 2022; 10:toxics10070373. [PMID: 35878278 PMCID: PMC9316248 DOI: 10.3390/toxics10070373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023]
Abstract
Plasticizers are chemicals in high demand, used in a wide range of commercial products. Human are exposed through multiple pathways, from numerous sources, to multiple plasticizers. This is a matter of concern, as it may contribute to adverse health effects. The vascular system carries plasticizers throughout the body and therefore can interact with the endothelium. The aim of the study was to evaluate the in vitro toxicity on endothelial cells by considering the individual and the mixture effects of bis-(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP) or bis-(2-ethylhexyl) terephthalate (DEHT). In this study, their cytotoxicity on HMEC-1 cells was evaluated on cell function (viability, cell counting, total glutathione and intracellular adenosines) and mitochondrial function (mitochondrial respiration). Results showed cellular physiological perturbations induced with all the condition tested, excepted for DEHT. Plasticizers induced a cytotoxicity by targeting mitochondrial respiration, depleting mitochondrial ATP production and increasing glycolytic metabolism. Additionally, delayed effects were observed between the cellular and the mitochondrial parameters. These results suggest that endothelial cells could go through a metabolic adaptation to face plasticizer-induced cellular stress, to effectively maintain their cellular processes. This study provides additional information on the adverse effects of plasticizers on endothelial cells.
Collapse
|
25
|
Zhang T, Wang S, Li L, Zhu A, Wang Q. Associating diethylhexyl phthalate to gestational diabetes mellitus via adverse outcome pathways using a network-based approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153932. [PMID: 35182638 DOI: 10.1016/j.scitotenv.2022.153932] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Gestational diabetes mellitus (GDM) is a common pregnancy complication that is harmful to both the woman and fetus. Several epidemiological studies have found that exposure to diethylhexyl phthalate (DEHP), an endocrine disruptor ubiquitous in the environment, may be associated with GDM. This study aims to investigate the mechanism between DEHP and GDM using the adverse outcome pathway (AOP) framework, which can integrate information from different sources to elucidate the causal pathways between chemicals and adverse outcomes. We applied a network-based workflow to integrate diverse information to generate computational AOPs and accelerate the AOP development. The interactions among DEHP, genes, phenotypes, and GDM were retrieved from several publicly available databases, including the Comparative Toxicogenomics Database (CTD), Computational Toxicology (CompTox) Chemicals Dashboard, DisGeNET, MalaCards, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). Based on the above interactions, a DEHP-Gene-Phenotype-GDM network consisting of 52 nodes and 227 edges was formed to support AOP construction. The filtered genes and phenotypes were assembled as molecular initiating events (MIEs) and key events (KEs) according to the upstream and downstream relationships, generating a computational AOP (cAOP) network. Based on the Organization for Economic Co-operation and Development handbook of AOPs, a cAOP was assessed and applied to determine the effects of DEHP on GDM. DEHP could increase TNF-α, downregulate the glucose uptake process, and lead to GDM. Overall, this study revealed the utility of computational methods in integrating a variety of datasets, supporting AOP development, and facilitating a better understanding of the underlying mechanism of exposure to chemicals on human health.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Shuo Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - An Zhu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Key laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
26
|
Cui JG, Zhao Y, Zhang H, Li XN, Li JL. Lycopene regulates the mitochondrial unfolded protein response to prevent DEHP-induced cardiac mitochondrial damage in mice. Food Funct 2022; 13:4527-4536. [PMID: 35348563 DOI: 10.1039/d1fo03054j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lycopene (LYC), as a kind of carotene, has antioxidant effects. Di(2-ethylhexyl) phthalate (DEHP) was used to improve the flexibility of plastics. However, the potential role of LYC in DEHP induced cardiac injury in mice remains unclear. Therefore, the aim of this study was to investigate the role and mechanism of LYC in DEHP induced cardiac injury. Male ICR mice were treated with DEHP (500 or 1000 mg per kg BW per day) and/or LYC (5 mg per kg BW per day) for 28 days. The results of histopathology and ultrastructure showed that LYC relieved the decrease of mitochondrial volume density and myocardial fibre disorder induced by DEHP. Subsequently, LYC attenuated DEHP-induced mitochondrial damage, mitochondrial unfolded protein response (UPRmt) activation, nuclear factor erythroid 2-related factor 2 (Nrf2) mediated oxidative stress and heat shock response (HSR) activation induced by DEHP. LYC regulates UPRmt to prevent DEHP-induced cardiac mitochondrial damage. Thus, this study provided new evidence of UPRmt as a target for LYC treatment preventing DEHP-induced cardiac disease.
Collapse
Affiliation(s)
- Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China. .,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
27
|
Martyniuk CJ, Martínez R, Navarro-Martín L, Kamstra JH, Schwendt A, Reynaud S, Chalifour L. Emerging concepts and opportunities for endocrine disruptor screening of the non-EATS modalities. ENVIRONMENTAL RESEARCH 2022; 204:111904. [PMID: 34418449 PMCID: PMC8669078 DOI: 10.1016/j.envres.2021.111904] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 05/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and involve diverse chemical-receptor interactions that can perturb hormone signaling. The Organization for Economic Co-operation and Development has validated several EDC-receptor bioassays to detect endocrine active chemicals and has established guidelines for regulatory testing of EDCs. Focus on testing over the past decade has been initially directed to EATS modalities (estrogen, androgen, thyroid, and steroidogenesis) and validated tests for chemicals that exert effects through non-EATS modalities are less established. Due to recognition that EDCs are vast in their mechanisms of action, novel bioassays are needed to capture the full scope of activity. Here, we highlight the need for validated assays that detect non-EATS modalities and discuss major international efforts underway to develop such tools for regulatory purposes, focusing on non-EATS modalities of high concern (i.e., retinoic acid, aryl hydrocarbon receptor, peroxisome proliferator-activated receptor, and glucocorticoid signaling). Two case studies are presented with strong evidence amongst animals and human studies for non-EATS disruption and associations with wildlife and human disease. This includes metabolic syndrome and insulin signaling (case study 1) and chemicals that impact the cardiovascular system (case study 2). This is relevant as obesity and cardiovascular disease represent two of the most significant health-related crises of our time. Lastly, emerging topics related to EDCs are discussed, including recognition of crosstalk between the EATS and non-EATS axis, complex mixtures containing a variety of EDCs, adverse outcome pathways for chemicals acting through non-EATS mechanisms, and novel models for testing chemicals. Recommendations and considerations for evaluating non-EATS modalities are proposed. Moving forward, improved understanding of the non-EATS modalities will lead to integrated testing strategies that can be used in regulatory bodies to protect environmental, animal, and human health from harmful environmental chemicals.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| | - Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Adam Schwendt
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Lorraine Chalifour
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| |
Collapse
|
28
|
Trasande L, Liu B, Bao W. Phthalates and attributable mortality: A population-based longitudinal cohort study and cost analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118021. [PMID: 34654571 PMCID: PMC8616787 DOI: 10.1016/j.envpol.2021.118021] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 05/12/2023]
Abstract
CONTEXT Accelerating evidence of endocrine-related morbidity has raised alarm about the ubiquitous use of phthalates in the human environment, but studies have not directly evaluated mortality in relation to these exposures. OBJECTIVES To evaluate associations of phthalate exposure with mortality, and quantify attributable mortality and lost economic productivity in 2013-4 among 55-64 year olds. DESIGN This nationally representative cohort study included 5303 adults aged 20 years or older who participated in the US National Health and Nutrition Examination Survey 2001-2010 and provided urine samples for phthalate metabolite measurements. Participants were linked to mortality data from survey date through December 31, 2015. Data analyses were conducted in July 2020. MAIN OUTCOME MEASURES Mortality from all causes, cardiovascular disease, and cancer. RESULTS Multivariable models identified increased mortality in relation to high-molecular weight (HMW) phthalate metabolites, especially those of di-2-ethylhexylphthalate (DEHP). Hazard ratios (HR) for continuous HMW and DEHP metabolites were 1.14 (95% CI 1.06-1.23) and 1.10 (95% CI 1.03-1.19), respectively, with consistently higher mortality in the third tertile (1.48, 95% CI 1.19-1.86; and 1.42, 95% CI 1.13-1.78). Cardiovascular mortality was significantly increased in relation to a prominent DEHP metabolite, mono-(2-ethyl-5-oxohexyl)phthalate. Extrapolating to the population of 55-64 year old Americans, we identified 90,761-107,283 attributable deaths and $39.9-47.1 billion in lost economic productivity. CONCLUSIONS In a nationally representative sample, phthalate exposures were associated with all-cause and cardiovascular mortality, with societal costs approximating $39 billion/year or more. While further studies are needed to corroborate observations and identify mechanisms, regulatory action is urgently needed.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, USA; Department of Environmental Medicine, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; New York University School of Global Public Health, New York, NY, USA.
| | - Buyun Liu
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
29
|
Svoboda LK, Ishikawa T, Dolinoy DC. Developmental toxicant exposures and sex-specific effects on epigenetic programming and cardiovascular health across generations. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac017. [PMID: 36325489 PMCID: PMC9600458 DOI: 10.1093/eep/dvac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/12/2022] [Accepted: 10/01/2022] [Indexed: 05/15/2023]
Abstract
Despite substantial strides in diagnosis and treatment, cardiovascular diseases (CVDs) continue to represent the leading cause of death in the USA and around the world, resulting in significant morbidity and loss of productive years of life. It is increasingly evident that environmental exposures during early development can influence CVD risk across the life course. CVDs exhibit marked sexual dimorphism, but how sex interacts with environmental exposures to affect cardiovascular health is a critical and understudied area of environmental health. Emerging evidence suggests that developmental exposures may have multi- and transgenerational effects on cardiovascular health, with potential sex differences; however, further research in this important area is urgently needed. Lead (Pb), phthalate plasticizers, and perfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants with numerous adverse human health effects. Notably, recent evidence suggests that developmental exposure to each of these toxicants has sex-specific effects on cardiovascular outcomes, but the underlying mechanisms, and their effects on future generations, require further investigation. This review article will highlight the role for the developmental environment in influencing cardiovascular health across generations, with a particular emphasis on sex differences and epigenetic mechanisms. In particular, we will focus on the current evidence for adverse multi and transgenerational effects of developmental exposures to Pb, phthalates, and PFAS and highlight areas where further research is needed.
Collapse
Affiliation(s)
- Laurie K Svoboda
- *Correspondence address. Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA. Tel: +734-764-2032; E-mail:
| | - Tomoko Ishikawa
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Chen CY, Sun CY, Hsu HJ, Wu IW, Chen YC, Lee CC. Xenoestrogen exposure and kidney function in the general population: Results of a community-based study by laboratory tests and questionnaire-based interviewing. ENVIRONMENT INTERNATIONAL 2021; 155:106585. [PMID: 33910077 DOI: 10.1016/j.envint.2021.106585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a growing concern worldwide. Exposure to xenoestrogens (XEs), such as phthalates, parabens, and phenols, lead to CKD. However, kidney function and its complex relationship with XEs, lifestyle, and dietary habits are not well understood. METHODS In the present cross-sectional community-based cohort study, we enrolled 887 subjects for a questionnaire-based interview and laboratory tests. XE exposure concerning lifestyle/dietary habits were evaluated using questionnaires. Urinary levels of 17XE metabolites were measured in 60 subjects with high exposure risk scores and 60 subjects with low exposure risk scores. RESULTS Univariate and multivariate linear regression showed that a high exposure score (β ± SE: 4.226 ± 1.830, P = 0.021) was independently negatively associated with eGFR in 887 subjects. Univariate and multivariate linear regression to urinary XEs and urine albumin creatinine excretion ratio (UACR) in 120 subjects indicated that ethylparaben (EP) (β: 1.934, 95% CI: 0.135-3.733, P = 0.035) was significantly associated with increased UACR. Multivariate regression analyses of the CKD subgroup (n = 38), after adjusting for age, showed that higher levels of mono-(2-ethylhexyl) phthalate (MEHP), EP, nonylphenol (NP), and benzophenone-3 (BP-3) were significantly associated with lower estimated glomerular filtration rate (eGFR). Higher urinary levels of MEHP (OR: 3.037, 95% CI: 1.274-7.241) were more likely associated with high exposure scores (>5 points), after adjusting for diabetes, gender, eGFR, age, Na, Ca, albumin, vitamin D, systolic blood pressure (SBP), white blood cell count, total bilirubin, aspartate transaminase, and heart rate. MEHP (β ± SE: 0.033 ± 0.009, P < 0.001) was also significantly positively associated with total exposure scores after applying multivariate linear regression analyses. CONCLUSION XE exposure scores obtained from the questionnaires were negatively associated with kidney function. Urinary metabolites of XEs, including EP, NP, BP-3, and MEHP, are potential risk factors for microalbuminuria and decline in kidney function. MEHP seemed to have the strongest correlation with high exposure scores and decline in kidney function.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, ROC; College of Medicine, Chang Gung University, Taipei, Taiwan, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, ROC; College of Medicine, Chang Gung University, Taipei, Taiwan, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Heng-Jung Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, ROC; College of Medicine, Chang Gung University, Taipei, Taiwan, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - I-Wen Wu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, ROC; College of Medicine, Chang Gung University, Taipei, Taiwan, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Yung-Chang Chen
- College of Medicine, Chang Gung University, Taipei, Taiwan, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fuxing St., Guishan Dist., Taoyuan City 333423, Taiwan, ROC
| | - Chin-Chan Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, ROC; College of Medicine, Chang Gung University, Taipei, Taiwan, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC.
| |
Collapse
|
31
|
Zhou Z, Goodrich JM, Strakovsky RS. Mitochondrial Epigenetics and Environmental Health: Making a Case for Endocrine Disrupting Chemicals. Toxicol Sci 2021; 178:16-25. [PMID: 32777053 DOI: 10.1093/toxsci/kfaa129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent studies implicate mitochondrial dysfunction in the development and progression of numerous chronic diseases, which may be partially due to modifications in mitochondrial DNA (mtDNA). There is also mounting evidence that epigenetic modifications to mtDNA may be an additional layer of regulation that controls mitochondrial biogenesis and function. Several environmental factors (eg, smoking, air pollution) have been associated with altered mtDNA methylation in a handful of mechanistic studies and in observational human studies. However, little is understood about other environmental contaminants that induce mtDNA epigenetic changes. Numerous environmental toxicants are classified as endocrine disrupting chemicals (EDCs). Beyond their actions on hormonal pathways, EDC exposure is associated with elevated oxidative stress, which may occur through or result in mitochondrial dysfunction. Although only a few studies have assessed the impacts of EDCs on mtDNA methylation, the current review provides reasons to consider mtDNA epigenetic disruption as a mechanism of action of EDCs and reviews potential limitations related to currently available evidence. First, there is sufficient evidence that EDCs (including bisphenols and phthalates) directly target mitochondrial function, and more direct evidence is needed to connect this to mtDNA methylation. Second, these and other EDCs are potent modulators of nuclear DNA epigenetics, including DNA methylation and histone modifications. Finally, EDCs have been shown to disrupt several modulators of mtDNA methylation, including DNA methyltransferases and the mitochondrial transcription factor A/nuclear respiratory factor 1 pathway. Taken together, these studies highlight the need for future research evaluating mtDNA epigenetic disruption by EDCs and to detail specific mechanisms responsible for such disruptions.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Animal Sciences, Michigan State University, East Lansing, Michigan 48824
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition.,Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
32
|
Mohammadi H, Ashari S. Mechanistic insight into toxicity of phthalates, the involved receptors, and the role of Nrf2, NF-κB, and PI3K/AKT signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35488-35527. [PMID: 34024001 DOI: 10.1007/s11356-021-14466-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The wide use of phthalates, as phthalates are used in the manufacturing of not only plastics but also many others goods, has become a main concern in the current century because of their potency to induce deleterious effects on organism health. The toxic effects of phthalates such as reproductive toxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, teratogenicity, and tumor development have been widely indicated by previous experimental studies. Some of the important mechanisms of toxicity by phthalates are the induction and promotion of inflammation, oxidative stress, and apoptosis. Awareness of the involved molecular pathways of these mechanisms will permit the detection of exact molecular targets of phthalates to protect or treat their toxicity. Up to now, various transcription factors and signaling pathways have been associated with phthalate-induced toxicity which by influencing on nuclear surface and the expression of different genes can alter cell hemostasis. In different studies, the role of nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor-κB (NF-κB), and phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathways in processes of oxidative stress, inflammation, apoptosis, and cancer has been shown following exposure to phthalates. In the present review, we aim to survey experimental studies (in vitro and in vivo) in order to show firstly the most involved receptors and also the importance and the role of the mentioned signaling pathways in phthalate-induced toxicity, and with considering this point, the future studies can focus on these molecular targets as a strategic method to reduce environmental chemicals-induced toxicity especially phthalates toxic effects.
Collapse
Affiliation(s)
- Hamidreza Mohammadi
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology/Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sorour Ashari
- Department of Toxicology/Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
33
|
Sarigiannis DA, Papaioannou N, Handakas E, Anesti O, Polanska K, Hanke W, Salifoglou A, Gabriel C, Karakitsios S. Neurodevelopmental exposome: The effect of in utero co-exposure to heavy metals and phthalates on child neurodevelopment. ENVIRONMENTAL RESEARCH 2021; 197:110949. [PMID: 33716031 DOI: 10.1016/j.envres.2021.110949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/27/2020] [Accepted: 02/25/2021] [Indexed: 05/22/2023]
Abstract
In this study, the exposome paradigm has been applied on a mother-child cohort adopting an optimised untargeted metabolomics approach for human urine followed by advanced bioinformatics analysis. Exposome-wide association algorithms were used to draw links between in utero co-exposure to metals and phthalates, metabolic pathways deregulation, and clinically observed phenotypes of neurodevelopmental disorders such as problems in linguistic, motor development and cognitive capacity. Children (n = 148) were tested at the first and second year of their life using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). Their mothers had been exposed to metals and phthalates during the pregnancy, according to human biomonitoring results from previously performed studies. Untargeted metabolomics analysis of biobanked urine samples from the mothers was performed using a combination of the high throughput analytical methods liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR). Most perturbed metabolic pathways from co-exposure heavy metals and phthalates were pathways related to the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation, indicating the possibility of disruption of mitochondrial respiration. Overproduction of reactive oxygen species (ROS); the presence of glutathione peroxidase 3 (GPx3) during pregnancy and presence of glutathione peroxidase 1 (GPx1) in the umbilical cord were linked to verbal development problems. Another finding of the study is that in real life, adverse outcomes occur as a combination of environmental and social factors, all of them acting synergistically towards the deployment of an observed phenotype. Finally, the two-steps association process (exposure to pathways and pathways to adverse outcomes) was able to (a) provide associations that are not evident by directly associating exposure to outcomes and (b) provides additional insides on the mechanisms of environmental disease.
Collapse
Affiliation(s)
- Denis A Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece; School for Advanced Study (IUSS), Science, Technology and Society Department, Environmental Health Engineering, Piazza Della Vittoria 15, Pavia, 27100, Italy.
| | - Nafsika Papaioannou
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece
| | - Evangelos Handakas
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece
| | - Ourania Anesti
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece; School of Medicine, University of Crete, Voutes, Heraklion, 71003, Greece
| | - Kinga Polanska
- Nofer Institute of Occupational Medicine, 91348, Lodz, Poland
| | - Woijcek Hanke
- Nofer Institute of Occupational Medicine, 91348, Lodz, Poland
| | - Athanasios Salifoglou
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Inorganic Chemistry Laboratory, University Campus, Thessaloniki, 54124, Greece
| | - Catherine Gabriel
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece
| | - Spyros Karakitsios
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece
| |
Collapse
|
34
|
Frye RE, Cakir J, Rose S, Palmer RF, Austin C, Curtin P, Arora M. Mitochondria May Mediate Prenatal Environmental Influences in Autism Spectrum Disorder. J Pers Med 2021; 11:218. [PMID: 33803789 PMCID: PMC8003154 DOI: 10.3390/jpm11030218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
We propose that the mitochondrion, an essential cellular organelle, mediates the long-term prenatal environmental effects of disease in autism spectrum disorder (ASD). Many prenatal environmental factors which increase the risk of developing ASD influence mitochondria physiology, including toxicant exposures, immune activation, and nutritional factors. Unique types of mitochondrial dysfunction have been associated with ASD and recent studies have linked prenatal environmental exposures to long-term changes in mitochondrial physiology in children with ASD. A better understanding of the role of the mitochondria in the etiology of ASD can lead to targeted therapeutics and strategies to potentially prevent the development of ASD.
Collapse
Affiliation(s)
- Richard E. Frye
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Janet Cakir
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA;
| | - Shannon Rose
- Department of Pediatrics, Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
| | - Raymond F. Palmer
- Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| |
Collapse
|
35
|
Chen Y, Zhang W, Chen J, Wang N, Chen C, Wang Y, Wan H, Chen B, Lu Y. Association of Phthalate Exposure with Thyroid Function and Thyroid Homeostasis Parameters in Type 2 Diabetes. J Diabetes Res 2021; 2021:4027380. [PMID: 34746318 PMCID: PMC8566079 DOI: 10.1155/2021/4027380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
AIMS Phthalates, which are recognized environmental endocrine-disrupting chemicals, are associated with thyroid hormone disruption. We aimed to evaluate the relationship of phthalate metabolites with thyroid function and thyroid homeostasis parameters in type 2 diabetes and to explore whether thyroid autoimmunity status and metformin, the most common antidiabetic drug, may influence such associations. METHODS Concurrent urine and blood samples were collected from 639 participants with type 2 diabetes in the METAL (Environmental Pollutant Exposure and Metabolic Diseases in Shanghai) study. We measured urinary concentrations of thirteen phthalate metabolites along with serum levels of thyroid-stimulating hormone (TSH), total T4 and T3, free T4 (FT4) and T3 (FT3), thyroid peroxidase antibody (TPOAb), and thyroglobulin antibody (TgAb). Four parameters of thyroid homeostasis, including the sum activity of step-up deiodinases (SPINA-GD), thyroid secretory capacity (SPINA-GT), Jostel's TSH index (TSHI), and thyrotroph thyroid hormone resistance index (TTSI), were also calculated. RESULTS Among all participants, after full adjustment, multivariable regression analysis showed that some urine phthalate metabolites were negatively associated with TSH, TSHI, and TTSI levels and positively associated with FT3, T3, SPINA-GD, and SPINA-GT levels. None of the urine phthalate metabolites exhibited a significant association with thyroid autoimmunity. The associations of phthalate metabolites with thyroid function and thyroid homeostasis parameters differed based on thyroid autoantibody and metformin treatment status. CONCLUSIONS Urinary phthalate metabolites may be associated with thyroid function and thyroid homeostasis parameters among participants with type 2 diabetes. Furthermore, our present study suggested that thyroid autoantibody status and metformin treatment status are potential mediators of such associations.
Collapse
Affiliation(s)
- Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Wen Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - JingSi Chen
- Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Heng Wan
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bo Chen
- Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Zhang Z, Su H, Ahmed RZ, Zheng Y, Jin X. Critical biomarkers for myocardial damage by fine particulate matter: Focused on PPARα-regulated energy metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114659. [PMID: 32380395 DOI: 10.1016/j.envpol.2020.114659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate matter is one of the leading threats to cardiovascular health worldwide. The exploration of novel and sensitive biomarkers to detect damaging effect of fine particulate matter on cardiac tissues is of great importance in the better understanding of haze-caused myocardial injury. A link between heart failure and PPARα-regulated energy metabolism has been confirmed previously. Herein, the study intends to reveal the critical biomarkers of fine particulate matter induced myocardial damage from the PPARα-regulated energy metabolism. Ambient fine particulate matter induced severe pathological alterations in cultured cells, accompanied by the decrease in ATP content. Additionally, the expressions of CPT1/CPT2 and levels of CS and MDH, crucial members in β-oxidation and the TCA cycle, were significantly decreased. In direct contrast, fine particulate matter increased the biomarkers of glycolysis, as measured by the accumulation of pyruvate and lactate contents, and the enhanced activities of HK and PKM1/2. Importantly, fine particulate matter-exposed cardiomyocytes exhibited the reduced PPARα level, that increased when cardiomyocytes were co-incubation with WY-14643 and fine particulate matter. Simultaneously, the adverse impact of fine particulate matter on critical biomarkers were observed in β-oxidation, TCA cycle and glycolysis, associated with WY-14643 additional complement. Fine particulate matter caused the myocardial energy metabolism transformation through the regulation of PPARα expression and translation, which provided novel and critical biomarkers for haze particles-caused myocardial damage.
Collapse
Affiliation(s)
- Ze Zhang
- School of Public Health, Qingdao University, Qingdao, China
| | - Huilan Su
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Rifat Zubair Ahmed
- Dept. of Genetics, University of Karachi, Karachi, Pakistan; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
37
|
Phthalates Implications in the Cardiovascular System. J Cardiovasc Dev Dis 2020; 7:jcdd7030026. [PMID: 32707888 PMCID: PMC7570088 DOI: 10.3390/jcdd7030026] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Today’s sedentary lifestyle and eating habits have been implicated as some of the causes of the increased incidence of several diseases, including cancer and cardiovascular diseases. However, environmental pollutants have also been identified as another possible cause for this increase in recent decades. The constant human exposure to plastics has been raising attention regarding human health, particularly when it comes to phthalates. These are plasticizers used in the manufacture of industrial and consumer products, such as PVC (Polyvinyl Chloride) plastics and personal care products, with endocrine-disrupting properties, as they can bind molecular targets in the body and interfere with hormonal function. Since these compounds are not covalently bound to the plastic, they are easily released into the environment during their manufacture, use, or disposal, leading to increased human exposure and enhancing health risks. In fact, some studies have related phthalate exposure with cardiovascular health, having already shown a positive association with the development of hypertension and atherosclerosis in adults and some cardiometabolic risk factors in children and adolescents. Therefore, the main purpose of this review is to present and relate the most recent studies concerning the implications of phthalates effects on the cardiovascular system.
Collapse
|
38
|
Ramadan M, Cooper B, Posnack NG. Bisphenols and phthalates: Plastic chemical exposures can contribute to adverse cardiovascular health outcomes. Birth Defects Res 2020; 112:1362-1385. [PMID: 32691967 DOI: 10.1002/bdr2.1752] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
Phthalates and bisphenols are high production volume chemicals that are used in the manufacturing of consumer and medical products. Given the ubiquity of bisphenol and phthalate chemicals in the environment, biomonitoring studies routinely detect these chemicals in 75-90% of the general population. Accumulating evidence suggests that such chemical exposures may influence human health outcomes, including cardiovascular health. These associations are particularly worrisome for sensitive populations, including fetal, infant and pediatric groups-with underdeveloped metabolic capabilities and developing organ systems. In the presented article, we aimed to review the literature on environmental and clinical exposures to bisphenols and phthalates, highlight experimental work that suggests that these chemicals may exert a negative influence on cardiovascular health, and emphasize areas of concern that relate to vulnerable pediatric groups. Gaps in our current knowledge are also discussed, so that future endeavors may resolve the relationship between chemical exposures and the impact on pediatric cardiovascular physiology.
Collapse
Affiliation(s)
- Manelle Ramadan
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA.,Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, USA
| | - Blake Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA.,Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, George Washington University, School of Medicine, Washington, District of Columbia, USA.,Department of Pharmacology & Physiology, George Washington University, School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
39
|
Wang H, Guan TQ, Sun JX, Talukder M, Huang YQ, Li YH, Li JL. Di-(2-ethylhexyl) phthalate induced nephrotoxicity in quail (Coturnix japonica) by triggering nuclear xenobiotic receptors and modulating the cytochrome P450 system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114162. [PMID: 32078881 DOI: 10.1016/j.envpol.2020.114162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a plasticizer that is mainly used in the production of polyvinyl alcohol-containing chloride products, has attracted attention due to potential threats to human health and the environment. Nevertheless, knowledge of DEHP-induced nephrotoxicity is still limited. To explore the mechanism of DEHP-induced nephrotoxicity, quail were treated with 0, 250, 500 and 1000 mg/kg DEHP by oral gavage for 45 days. Based on the results of histopathological analysis, DEHP exposure induced a disorganized renal structure, a partially dilated glomerulus and an atrophied Bowman's space. Renal tubular epithelial cells were unclear, and swelling of columnar epithelial cells was observed, suggesting that DEHP exposure caused renal disease and renal injury. Notably, DEHP interfered with the homeostasis of cytochrome P450 systems (CYP450s) by increasing the activities or contents of CYP450s (total CYP450, Cyt b5, ERND, APND, AH and NCR). The expression levels of certain CYP450 isoforms (CYP1A, CYP1B, CYP2C, CYP2D, CYP2J and CYP3A) were significantly downregulated in the kidney in DEHP-treated quail. Furthermore, DEHP induced the expression of nuclear receptors (AHR, CAR and PXR) in a dose-dependent manner. The results of this study suggested that DEHP-induced nephrotoxicity in quail was associated with the induction of nuclear xenobiotic receptor (NXR) responses and interference with CYP450 homeostasis. In conclusion, all data indicated that DEHP induced nephrotoxicity by triggering NXRs and modulating the cytochrome P450 system. The results of this study provide a new basis for understanding the nephrotoxicity of DEHP.
Collapse
Affiliation(s)
- Hui Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Tian-Qi Guan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Jin-Xu Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh.
| | - Yue-Qiang Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yan-Hua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
40
|
Xi Y, Zhang Y, Zhu S, Luo Y, Xu P, Huang Z. PPAR-Mediated Toxicology and Applied Pharmacology. Cells 2020; 9:cells9020352. [PMID: 32028670 PMCID: PMC7072218 DOI: 10.3390/cells9020352] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/26/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs), members of the nuclear hormone receptor family, attract wide attention as promising therapeutic targets for the treatment of multiple diseases, and their target selective ligands were also intensively developed for pharmacological agents such as the approved drugs fibrates and thiazolidinediones (TZDs). Despite their potent pharmacological activities, PPARs are reported to be involved in agent- and pollutant-induced multiple organ toxicity or protective effects against toxicity. A better understanding of the protective and the detrimental role of PPARs will help to preserve efficacy of the PPAR modulators but diminish adverse effects. The present review summarizes and critiques current findings related to PPAR-mediated types of toxicity and protective effects against toxicity for a systematic understanding of PPARs in toxicology and applied pharmacology.
Collapse
Affiliation(s)
- Yue Xi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yunhui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sirui Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuping Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence: (P.X.); (Z.H.); Tel.: +1-412-708-4694(P.X.); +86-20-39943092 (Z.H.)
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Correspondence: (P.X.); (Z.H.); Tel.: +1-412-708-4694(P.X.); +86-20-39943092 (Z.H.)
| |
Collapse
|
41
|
Kabakçı R, Varışlı Ö, Kaya A, Baştan İ, Şimşek S. Effect of diethylhexyl phthalate on sperm motility parameters in bull. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2019. [DOI: 10.24880/maeuvfd.637406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
42
|
Azevedo R, Oliveira N, Maia C, Verde I. Effects of di(2-etilhexil) phthalate on human umbilical artery. CHEMOSPHERE 2019; 228:278-286. [PMID: 31035166 DOI: 10.1016/j.chemosphere.2019.04.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/15/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Di(2-etilhexil) phthalate (DEHP) is a compound used in plastic materials, which has endocrine disrupting properties. The human DEHP exposure depend on the use of plastics in toys, medical devices and food and beverage containers. The DEHP effects were studied in some physiological systems; nevertheless, the actions in human arteries were never described. We analysed the DEHP effect on endothelium denuded human umbilical artery (HUA), an important artery to ensure gases and nutrients exchange with fetus. We assessed DEHP short-term effects on contractility, occurring few minutes after DEHP is in contact with HUA in the organ bath receptacles. The long-term effects on HUA, observed after 24 h in presence of DEHP, were assessed in the organ bath system, and also through the analysis of receptors expression (5-HT2A and H1) and of cellular viability, by using HUA smooth muscle cells. DEHP (1 nM-100 μM) induced a short-term relaxing effect on HUA contracted by 5-HT, histamine or KCl. DEHP long-term exposure of arteries (1 nM, 10 μM and 100 μM) reduced its own relaxant effect on HUA contracted by 5-HT and histamine and, precisely, 24 h exposure to DEHP 1 nM reverted the relaxant effect on 5-HT contractility. Long-term exposure at more than 10 nM of DEHP decreased 5HT2A receptors expression. In conclusion, DEHP short-term exposition elicit vasodilation of HUA contracted by different agents. DEHP long-term exposition reduced the expression of 5HT2A receptors. The DEHP long-term exposition decrease the short-term relaxant effect and, at low concentrations can increase the contractile effect of 5-HT.
Collapse
Affiliation(s)
- R Azevedo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - N Oliveira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - C Maia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - I Verde
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
43
|
Wang F, Chang C, Li R, Zhang Z, Jiang H, Zeng N, Li D, Chen L, Xiao Y, Chen W, Wang Q. Retinol binding protein 4 mediates MEHP-induced glucometabolic abnormalities in HepG2 cells. Toxicology 2019; 424:152236. [DOI: 10.1016/j.tox.2019.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022]
|
44
|
Reilly L, Narichania AD, Eckhardt LL. Shocking Aspects of Nonconductive Plastics: Electrophysiologic Implications of Plasticizers. Circ Arrhythm Electrophysiol 2019; 12:e007522. [PMID: 31248278 DOI: 10.1161/circep.119.007522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Louise Reilly
- Cellular and Molecular Arrhythmia Research Program (CMARP) (L.R., L.L.E.), Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Aalap D Narichania
- Cardiac Electrophysiology Service (A.D.N., L.L.E.), Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Lee L Eckhardt
- Cellular and Molecular Arrhythmia Research Program (CMARP) (L.R., L.L.E.), Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison.,Cardiac Electrophysiology Service (A.D.N., L.L.E.), Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| |
Collapse
|
45
|
Xie X, Deng T, Duan J, Ding S, Yuan J, Chen M. Comparing the effects of diethylhexyl phthalate and dibutyl phthalate exposure on hypertension in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:75-82. [PMID: 30822670 DOI: 10.1016/j.ecoenv.2019.02.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Epidemiological studies have shown that high molecular weight phthalates (HMW) such as diethylhexyl phthalate (DEHP), are associated with hypertension in humans, while low molecular weight phthalates (LMW) such as dibutyl phthalate (DBP), have hardly any impact on the elevation of blood pressure. However, the molecular mechanisms responsible for this difference are not completely understood. In this experiment, mice were exposed to 0.1/1/10 mg/kg/day DEHP and 0.1/1/10 mg/kg/day DBP for 6 weeks, and their blood pressure was monitored using the tail pressure method. The results showed that exposure to DEHP dosages of 1 or 10 mg/kg/day resulted in a sharp increase in blood pressure, while exposure to DBP did not induce any significant changes in blood pressure. Investigating the renin-angiotensin-aldosterone system (RAAS) and NO pathway in mice exposed to DEHP, we found that levels of angiotensin-converting enzyme (ACE) and angiotensin II (AngII) increased with increasing exposure to DEHP, and the expression of nitric oxide synthase (eNOS) and the level of NO decreased. Treatment with ACE inhibitor (ACEI) to block the ACE pathway inhibited the enhancement of RAAS expression, inhibited the increase in blood pressure, and inhibited the decrease in NO levels induced by DEHP. However, the expression of ACE, AngII, AT1R, and eNOS in the DBP treatment groups showed no significant changes. When examining estradiol in vivo, we found that exposure to DBP resulted in a significant increase in the level of estradiol, while exposure to DEHP did not lead to a significant change. When ICI182780 was used to block the estradiol receptors, any increase in the level of NO induced by DBP exposure, was inhibited. These results indicate that exposure to DEHP induces an increase in mouse blood pressure through RAAS, and the different effects of DEHP and DBP on blood pressure are partly due to the different estradiol levels induced by DEHP and DBP.
Collapse
Affiliation(s)
- Xiaoman Xie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Ting Deng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Jiufei Duan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Shumao Ding
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Junlin Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| |
Collapse
|
46
|
Aviles A, Boulogne I, Durand N, Maria A, Cordeiro A, Bozzolan F, Goutte A, Alliot F, Dacher M, Renault D, Maibeche M, Siaussat D. Effects of DEHP on post-embryonic development, nuclear receptor expression, metabolite and ecdysteroid concentrations of the moth Spodoptera littoralis. CHEMOSPHERE 2019; 215:725-738. [PMID: 30347366 DOI: 10.1016/j.chemosphere.2018.10.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is recognized in vertebrates as an Endocrine Disrupting Chemical (EDC). DEHP can alter steroid hormones production, development, reproduction and behavior in vertebrates. Only few studies investigated DEHP effects on insects. However, some recent studies on aquatic insects showed that DEHP could also act as an EDC by interfering with the signaling pathways of ecdysteroids, the main hormones involved in the control of insect post-embryonic development and physiology. The aim of the study was to investigate (1) the fate of DEHP within a terrestrial insect species by exposing larvae to food containing a wide range of DEHP concentrations and (2) the effects of this chemical on their post-embryonic development and metamorphosis, by using a multi-level approach. DEHP was shown to be present both in larvae and resulting stages, with higher concentrations in chrysalises and adults than in larvae. DEHP concentrations also decreased at the end of the last larval instar, suggesting the metabolic transformation or excretion of this chemical during this time. Only the two highest DEHP doses induced higher insect mortality, whereas low and intermediate concentrations increased larval food consumption without affecting body weight. Metabolic profiles showed that in control insects, the last three days before metamorphosis correspond to a metabolic transition, but with time-dependent changes in treated insects. Interestingly, DEHP treatments also alter both hemolymphatic ecdysteroid titers and expression levels of ecdysteroid response genes. These results confirm that DEHP can alter insect post-embryonic development and metamorphosis, by interfering with ecdysteroid pathways.
Collapse
Affiliation(s)
- Amandine Aviles
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Isabelle Boulogne
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France; Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED 4277, 76000 Rouen, France
| | - Nicolas Durand
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Annick Maria
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Alexandra Cordeiro
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Aurélie Goutte
- École Pratique des Hautes Études (EPHE), PSL Research University, UMR 7619 METIS, Sorbonne Université, Paris, France
| | - Fabrice Alliot
- École Pratique des Hautes Études (EPHE), PSL Research University, UMR 7619 METIS, Sorbonne Université, Paris, France
| | - Matthieu Dacher
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France; Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - David Renault
- Université de Rennes 1, UMR CNRS 6553 Ecobio, 263 Avenue du Gal Leclerc, CS 74205, 35042 Rennes Cedex, France; Institut Universitaire de France, 1 Rue Descartes, Paris, France
| | - Martine Maibeche
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - David Siaussat
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Univ. P7, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France.
| |
Collapse
|
47
|
Wang H, Li XN, Li PC, Liu W, Du ZH, Li JL. Modulation of heat-shock response is associated with Di (2-ethylhexyl) phthalate (DEHP)-induced cardiotoxicity in quail (Coturnix japonica). CHEMOSPHERE 2019; 214:812-820. [PMID: 30300839 DOI: 10.1016/j.chemosphere.2018.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is an omnipresent environmental pollutant with endocrine disrupting properties. As a plasticizer, DEHP can be leach from the plastic to transfer the external environment and thus enters the animal food chain, causing serious damage to the animal organs. The heat-shock response (HSR) comprising heat-shock protein (HSPs) and heat-shock transcription factor (HSFs) plays a pivotal role in various toxic stress conditions. For the sake of investigating the effects of DEHP exposure on cardiac toxicity and the regulation of HSR, male quail were fed the diet with 0, 250, 500 and 750 mg/kg DEHP by gavage administration for 45 days. Histopathological changes including cardiomyocyte swelling and muscle fiber dilatation were observed in the hearts exposed to DEHP. During the DEHP treatment, the mRNA expression of HSP60 and HSP70 were universally reduced, while the expression of other HSPs (HSP10, HSP25, HSP27, HSP40, HSP47, HSP90, HSP110) had different degrees of growth. In addition, the levels of HSF1, HSF2, and HSF3 were significantly increased. Given the facts above, DEHP exposure induced the toxic effects of quail heart. DEHP exposure did great harm to HSR via affecting the synthesis of HSFs to mediate the transcription of the HSPs. Ultimately, this study provided new evidence that DEHP-induced cardiotoxicity in quail was related to activation of HSR and playing a protective role.
Collapse
Affiliation(s)
- Hui Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Peng-Cheng Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wei Liu
- Energy & Environmental Research Institute of Heilongjiang Province, Harbin, 150027, PR China
| | - Zheng-Hai Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
48
|
Parsanathan R, Maria Joseph A, Karundevi B. Postnatal exposure to di-(2-ethylhexyl)phthalate alters cardiac insulin signaling molecules and GLUT4 Ser488 phosphorylation in male rat offspring. J Cell Biochem 2018; 120:5802-5812. [PMID: 30362281 DOI: 10.1002/jcb.27866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/19/2018] [Indexed: 01/16/2023]
Abstract
Di-(2-ethylhexyl)phthalate (DEHP), a distinctive endocrine-disrupting chemical, is widely used as a plasticizer in a variety of consumer products. It can easily cross the placenta and enter breast milk and then it is rapidly absorbed by offspring. Since it is generally accepted that individuals are more sensitive to chemical exposure during vital developmental periods, we investigated whether DEHP exposure during lactation affects cardiac insulin signaling and glucose homeostasis in the F1 male rat offspring at postnatal day 22 (PND22). Lactating Wistar rats were administered with DEHP (1, 10, and 100 mg/kg/d) or olive oil from lactation day 1 to 21 by oral gavage. All the male pups were perfused and killed on PND22. On the day before the killing, they were kept for fasting overnight and blood was collected. The cardiac muscle was dissected out, washed in ice-cold physiological saline repeatedly and used for the assay of various parameters. DEHP-exposed offspring had significantly lower body weight than the control. DEHP-exposed offspring showed elevated blood glucose, decreased 14 C-2-deoxyglucose uptake and 14 C-glucose oxidation in cardiac muscle at PND22. The concentration of upstream insulin signaling molecules such as insulin receptor subunit β (InsRβ) and insulin receptor substrate 1 (IRS1) were downregulated in DEHP-exposed offspring. However, no significant alterations were observed in protein kinase B (Akt) and Akt substrate of 160 kDa (AS160). Surprisingly, phosphorylation of IRS1 Tyr632 and Akt Ser473 were diminished. Low levels of glucose transporter type 4 (GLUT4) protein and increased GLUT4 Ser488 phosphorylation which decreases its intrinsic activity and translocation towards plasma membrane were also recorded. Lactational DEHP exposure predisposes F 1 male offspring to cardiac glucometabolic disorders at PND22, which may impair cardiac function.
Collapse
Affiliation(s)
- Rajesh Parsanathan
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences University of Madras, Taramani, India
| | - Angelaalincy Maria Joseph
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences University of Madras, Taramani, India
| | - Balasubramanian Karundevi
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences University of Madras, Taramani, India
| |
Collapse
|
49
|
Li W, Zhang W, Chang M, Ren J, Zhuang X, Zhang Z, Cui Y, Chen H, Xu B, Song N, Li H, Shen G. Quadrupole Orbitrap Mass Spectrometer-Based Metabonomic Elucidation of Influences of Short-Term Di(2-ethylhexyl) phthalate Exposure on Cardiac Metabolism in Male Mice. Chem Res Toxicol 2018; 31:1185-1194. [DOI: 10.1021/acs.chemrestox.8b00184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wentao Li
- Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Mengyang Chang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Juan Ren
- Pneumology Department, The Rocket Army General Hospital of the PLA, Beijing, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhenqing Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuan Cui
- Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Huiming Chen
- Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Baoliang Xu
- Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Naining Song
- Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Haishan Li
- Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Guolin Shen
- Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| |
Collapse
|
50
|
Tereshchenko LG, Posnack NG. Does plastic chemical exposure contribute to sudden death of patients on dialysis? Heart Rhythm 2018; 16:312-317. [PMID: 30144582 DOI: 10.1016/j.hrthm.2018.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Larisa G Tereshchenko
- Oregon Health and Science University, Knight Cardiovascular Institute, Portland, Oregon.
| | - Nikki G Posnack
- Children's National Health System, Sheikh Zayed Institute, Heart Institute, Washington, District of Columbia
| |
Collapse
|