1
|
Fang L, Kong F, Ou K, Hong L, Wang C, Tong X. Induction of insulin resistance in female mice due to prolonged phenanthrene exposure: Unveiling the low-dose effect and potential mechanisms. ENVIRONMENTAL RESEARCH 2024; 260:119597. [PMID: 39002631 DOI: 10.1016/j.envres.2024.119597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Phenanthrene (Phe) is a commonly occurring polycyclic aromatic hydrocarbon (PAH) found in various food sources and drinking water. Previous studies have shown that long-term exposure to Phe in male mice leads to insulin resistance in a dose-dependent manner. However, the effect of Phe on glucose homeostasis in female mice remains unknown. To address this knowledge gap, female Kunming mice were exposed to Phe through their drinking water at concentrations of 0.05, 0.5, and 5 ng/mL. After 270 d of exposure, we surprisingly discovered a low-dose effect of Phe on insulin resistance in female mice, which differed from the effect observed in male mice and showed sexual dimorphism. Specifically, insulin resistance was only observed in the 0.05 ng/mL treatment, and this low-dose effect was also reflected in the concentration of Phe in white adipose tissue (WAT). Differences in metabolic enzyme activities in the liver may potentially explain this effect. The observed sexual dimorphism in Phe exposure could be attributed to variations in estrogen (E2) level and estrogen receptor beta (ERβ) expression in WAT. These findings highlight the association between environmental factors and the development of insulin resistance, emphasizing the pathogenic effect of even low doses of Phe. Moreover, sex dependent-effect should be given more attention when studying the toxic effects of environmental pollutants.
Collapse
Affiliation(s)
- Lu Fang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Feifei Kong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Luning Hong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
2
|
Shi Z, Xiao S, Zhang Q. Interference with Systemic Negative Feedback Regulation as a Potential Mechanism for Nonmonotonic Dose-Responses of Endocrine-Disrupting Chemicals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611257. [PMID: 39282254 PMCID: PMC11398479 DOI: 10.1101/2024.09.04.611257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Background Endocrine-disrupting chemicals (EDCs) often exhibit nonmonotonic dose-response (NMDR) relationships, posing significant challenges to health risk assessment and regulations. Several molecular mechanisms operating locally in cells have been proposed, including opposing actions via different receptors, mixed-ligand heterodimer formation, and receptor downregulation. Systemic negative feedback regulation of hormone homeostasis, which is a common feature of many endocrine systems, has also been invoked as a mechanism; however, whether and how exactly such global feedback structure may underpin NMDRs is poorly understood. Objectives We hypothesize that an EDC may compete with the endogenous hormone for receptors (i) at the central site to interfere with the feedback regulation thus altering the physiological hormone level, and (ii) at the peripheral site to disrupt the hormone action; this dual-action may oppose each other, producing nonmonotonic endocrine effects. The objective here is to explore - through computational modeling - how NMDRs may arise through this potential mechanism and the relevant biological variabilities that enable susceptibility to nonmonotonic effects. Methods We constructed a dynamical model of a generic hypothalamic-pituitary-endocrine (HPE) axis with negative feedback regulation between a pituitary hormone and a terminal effector hormone (EH). The effects of model parameters, including receptor binding affinities and efficacies, on NMDR were examined for EDC agonists and antagonists. Monte Carlo human population simulations were then conducted to systemically explore biological parameter conditions that engender NMDR. Results When an EDC interferes sufficiently with the central feedback action of EH, the net endocrine effect at the peripheral target site can be opposite to what is expected of an agonist or antagonist at low concentrations. J/U or Bell-shaped NMDRs arise when the EDC has differential binding affinities and/or efficacies, relative to EH, for the peripheral and central receptors. Quantitative relationships between these biological variabilities and associated distributions were discovered, which can distinguish J/U and Bell-shaped NMDRs from monotonic responses. Conclusions The ubiquitous negative feedback regulation in endocrine systems can act as a universal mechanism for counterintuitive and nonmonotonic effects of EDCs. Depending on key receptor kinetic and signaling properties of EDCs and endogenous hormones, some individuals may be more susceptible to these complex endocrine effects.
Collapse
Affiliation(s)
- Zhenzhen Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, NJ 08854, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Darmani H, Alkhatib MMA. Non-monotonic effects of Bisphenol A Dimethacrylate on male mouse reproductive system and fertility leads to impaired conceptive performance. Toxicol Mech Methods 2024; 34:262-270. [PMID: 37967523 DOI: 10.1080/15376516.2023.2279723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
As an estrogenic agent, Bisphenol A Dimethacrylate (Bis-DMA) may incite alterations in both the reproductive tract and the neuroendocrine axis, and thus have the potential to affect the proper development, maturity and conceptive performance in animals. We investigated the consequences of 14 weeks of exposure to different concentrations of Bis-DMA on male mouse conceptive performance. Male mice were exposed to Bis-DMA (0, 0.1 mg/L, 1.0 mg/L or 10 mg/L) via drinking water, and the effects on fertility, reproductive organ weights, reproductive hormone levels, sperm counts and testicular histology were assessed. We clearly demonstrate that prolonged exposure of male mice to Bis-DMA negatively affects fertility and reproduction causing significant reductions in sperm counts, non-monotonic effects on serum LH and testosterone levels, increased seminal vesicle weights, lower number of embryonic implantations and viable fetuses, as well as, increased embryonal resorptions in females mated by Bis-DMA treated males. Furthermore, Bis-DMA caused abnormalities in testicular infrastructure with atrophic seminiferous tubules exhibiting intraepithelial vacuolization and disorganization, loss and shedding of germ cells into the lumen, and presence of apoptotic cells. Our data collectively suggest that Bis-DMA adversely affects male fertility and reproduction by interference with normal hormone signaling in the testis, inducing changes in testicular infrastructure and ultimately leading to impaired reproductive function and fertility.
Collapse
Affiliation(s)
- Homa Darmani
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Maysoon M A Alkhatib
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
4
|
Liu Y, Li S, Liu B, Zhang J, Wang C, Feng L. Maternal urban particulate matter (SRM 1648a) exposure disrupted the cellular immune homeostasis during early life: The potential attribution of altered placental transcriptome profile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169432. [PMID: 38135080 DOI: 10.1016/j.scitotenv.2023.169432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Ambient fine particular matter (PM2.5) exposure has been associated with numerous adverse effects including triggering functional disorders of the placenta and inducing immune imbalance in offspring. However, how maternal PM2.5 exposure impacts immune development during early life is not fully understood. In the current study, we exposed mice with low-, middle-, and high-dose PM2.5 during pregnancy to investigate the potential link between the transcriptional changes in the placenta and immune imbalance in mice offspring induced by PM2.5 exposures. Using flow cytometry, we found that the proportions of B cells, CD3+CD4+ T cells, CD3+CD8+ T cells, and macrophage (Mφ) cells were altered in the blood of PM2.5-exposed mice pups but not dendritic cells (DCs) and natural killer cells (NKs). Using bulk RNA sequencing, we found that PM2.5 exposure altered the transcriptional profile which indicated an inhibition of the complement and coagulation cascades in the placenta. Weighted gene co-expression network analysis (WGCNA) revealed the potential crosstalk between the perturbation of placental gene expression and the changes of immune cell subsets in pups on postnatal day 10 (PND10). Specifically, WGCNA identified a cluster of genes including Defb15, Defb20, Defb25, Cst8, Cst12, and Adam7 that might regulate the core immune cell types in PND10 pups. Although the underlying mechanisms of how maternal PM2.5 exposure induces peripheral lymphocyte disturbance in offspring still remain much unknown, our findings here shed light on the potential role of placental dysfunction in these adverse effects.
Collapse
Affiliation(s)
- Yongjie Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Shuman Li
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Bin Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Cuiping Wang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Liping Feng
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA.
| |
Collapse
|
5
|
Fiolet T, Nicolas G, Casagrande C, Horvath Z, Frenoy P, Weiderpass E, Gunter MJ, Manjer J, Sonestedt E, Palli D, Simeon V, Tumino R, Bueno-de-Mesquita B, Huerta JM, Rodriguez-Barranco M, Abilleira E, Sacerdote C, Schulze MB, Heath AK, Rylander C, Skeie G, Nøst TH, Tjønneland A, Olsen A, Pala V, Kvaskoff M, Huybrechts I, Mancini FR. Dietary intakes of dioxins and polychlorobiphenyls (PCBs) and mortality: EPIC cohort study in 9 European countries. Int J Hyg Environ Health 2024; 255:114287. [PMID: 37989047 DOI: 10.1016/j.ijheh.2023.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Dioxins and polychlorinated biphenyls (PCBs) are toxic, endocrine disruptors and persistent chemicals for which the main exposure source is diet due to their bioaccumulation and biomagnification in food chains. Cohort studies in the general populations have reported inconsistent associations between these chemicals in serum/plasma and mortality. Our objective was to study the association between dietary intake of 17 dioxins and 35 PCBs and all-cause, cancer-specific and cardiovascular-specific mortalities were assessed in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Dietary intake of dioxins and PCBs was assessed combining EPIC food consumption data with European food contamination data provided by the European Food Safety Authority. We applied multivariable Cox regressions. The analysis included 451,390 adults (mean ± SD age:51.1 ± 9.7 years) with 46,627 deaths and a median follow-up of 17.4 years (IQR = 15.2-19.1). A U-shaped non-linear association with all-cause mortality for dietary intake of dioxins (Pnon-linearity<0.0001), DL-PCB (Pnon-linearity = 0.0001), and NDL-PCBs (Pnon-linearity<0.01) was observed. For example, the hazard ratios (95%Confidance interval) for all-cause mortality obtained with the spline model was equal to 1.03 (1.02-1.05) for low levels of intake to dioxins (7 pg TEQ/day), 0.93 (0.90-0.96) for moderate levels of intake (25 pg TEQ/day), while for high levels of intake (55 pg TEQ/day) it was 1.03 (0.97-1.09). Intake of dioxins, DL-PCBs and NDL-PCBs was not associated with cardiovascular mortality. There was no association between intakes of dioxins and cancer mortality, but a U-shaped association was observed for intake of DL-PCBs and intakes of NDL-PCBs and cancer mortality. The PCBs and dioxins are known to have endocrine disrupting properties which can lead to non-monotonic dose responses. These results need to be interpreted with caution and further studies are needed to better clarify the association between dietary intake of dioxins and PCB and mortality in the general population.
Collapse
Affiliation(s)
- Thibault Fiolet
- Paris-Saclay University, UVSQ, Univ. Paris-Sud, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP, F-94805, Villejuif, France; European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy
| | - Geneviève Nicolas
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, CEDEX 08, 69372, Lyon, France
| | - Corinne Casagrande
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, CEDEX 08, 69372, Lyon, France
| | - Zsuzsanna Horvath
- European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy
| | - Pauline Frenoy
- Paris-Saclay University, UVSQ, Univ. Paris-Sud, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP, F-94805, Villejuif, France
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, 150 cours Albert Thomas, CEDEX 08, 69372, Lyon, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, CEDEX 08, 69372, Lyon, France
| | - Jonas Manjer
- Dept. Surgery, Skåne University Hospital Malmö. Lund University, Malmö, Sweden
| | - Emily Sonestedt
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Vittorio Simeon
- Dipartimento di salute mentale e fisica e medicina preventive, Vanvitelli University, Naples, Italy
| | - Rosario Tumino
- Hyblean Association for Cancer Epidemiology, AIRE ONLUS, Ragusa, Italy
| | - Bas Bueno-de-Mesquita
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720, BA, Bilthoven, the Netherlands
| | - José María Huerta
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Miguel Rodriguez-Barranco
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Escuela Andaluza de Salud Pública (EASP), 18011, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012, Granada, Spain
| | - Eunate Abilleira
- Ministry of Health of the Basque Government, Directorate for Public Health and Addictions, Public Health Laboratory in Gipuzkoa, San Sebastián, Spain; Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastián, Spain
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital, Via Santena 7, 10126, Turin, Italy
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition, Potsdam-Rehruecke, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Charlotta Rylander
- Department of Community Medicine, UIT The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Guri Skeie
- Department of Community Medicine, UIT The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Therese Haugdahl Nøst
- Department of Community Medicine, UIT The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Anne Tjønneland
- Danish Cancer Society Research Center Diet, Cancer and Health, Strandboulevarden 49, DK-2100, Copenhagen, Denmark; Department of Public Health, University of Copenhagen, Denmark
| | - Anja Olsen
- Danish Cancer Society Research Center Diet, Cancer and Health, Strandboulevarden 49, DK-2100, Copenhagen, Denmark; Department of Public Health, University of Aarhus, Denmark
| | - Valeria Pala
- Epidemiology and Prevention Unit. Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy
| | - Marina Kvaskoff
- Paris-Saclay University, UVSQ, Univ. Paris-Sud, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP, F-94805, Villejuif, France
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, CEDEX 08, 69372, Lyon, France
| | - Francesca Romana Mancini
- Paris-Saclay University, UVSQ, Univ. Paris-Sud, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP, F-94805, Villejuif, France.
| |
Collapse
|
6
|
Zhang W, Jie J, Xu Q, Wei R, Liao X, Zhang D, Zhang Y, Zhang J, Su G, Chen Y, Weng D. Characterizing the obesogenic and fatty liver-inducing effects of Acetyl tributyl citrate (ATBC) plasticizer using both in vivo and in vitro models. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130548. [PMID: 37055963 DOI: 10.1016/j.jhazmat.2022.130548] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/10/2022] [Accepted: 12/03/2022] [Indexed: 06/19/2023]
Abstract
The global incidence of obesity and non-alcoholic fatty liver disease (NAFLD) is rising rapidly in recent years. Environmental factors including usage of plastics and exposure to chemicals have been proposed as important contributors to the obesity pandemic. Acetyl tributyl citrate (ATBC) is a non-phthalate plasticizer widely used in food packaging, personal care products, medical devices and children's toys etc. Due to its high leakage rate from plastics, exposure risk of ATBC keeps increasing. Although there are some studies investigating the safety of ATBC on human health, these studies mainly focused on high dosages and information regarding ATBC safety at environmental-relevant low levels is still limited. In this study, we aimed to evaluate the safety of subchronic exposure to environmentally-relevant concentrations of ATBC. C57BL/6J mice were orally exposed to ATBC for 6 or 14 weeks. Results indicated that ATBC exposure increased the body weight gain, the body fat content and the size of adipocytes, induced liver steatosis in mice. Consistent with in vivo effects, ATBC treatment increased the intracellular lipid accumulation in vitro hepatocytes. Transcriptome sequencing, qRT-PCR analysis and western blotting revealed that ATBC exposure affected the expression of genes involved in de novo lipogenesis and lipid uptake. Therefore, based on our subchronic and in vitro results, it suggested that ATBC might be a potential environmental obesogen with metabolism-disturbing and fatty liver-inducing risk, and its application in many consumer products should be carefully re-evaluated.
Collapse
Affiliation(s)
- Weigao Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Jiapeng Jie
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Qian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Rong Wei
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Xin Liao
- Guangxi Mangrove Research Center, Guangxi Key Lab of Mangrove Conservation and Utilization, Beihai 536000, China
| | - Danyang Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Yayun Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Jianfa Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China.
| | - Dan Weng
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
7
|
Yadav SK, Bijalwan V, Yadav S, Sarkar K, Das S, Singh DP. Susceptibility of male reproductive system to bisphenol A, an endocrine disruptor: Updates from epidemiological and experimental evidence. J Biochem Mol Toxicol 2022; 37:e23292. [PMID: 36527247 DOI: 10.1002/jbt.23292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Bisphenol A (BPA) is an omnipresent environmental pollutant. Despite being restrictions in-force for its utilization, it is widely being used in the production of polycarbonate plastics and epoxy resins. Direct, low-dose, and long-term exposure to BPA is expected when they are used in the packaging of food products and are used as containers for food consumption. Occupationally, workers are typically exposed to BPA at higher levels and for longer periods during the manufacturing process. BPA is a known endocrine disruptor chemical (EDC), that causes male infertility, which has a negative impact on human life from emotional, physical, and societal standpoints. To minimize the use of BPA in numerous consumer products, efforts and regulations are being made. Despite legislative limits in numerous nations, BPA is still found in consumer products. This paper examines BPA's overall male reproductive toxicity, including its impact on the hypothalamic-pituitary-testicular (HPT) axis, hormonal homeostasis, testicular steroidogenesis, sperm parameters, reproductive organs, and antioxidant defense system. Furthermore, this paper highlighted the role of non-monotonic dose-response (NMDR) in BPA exposure, which will help to improve the overall understanding of the harmful effects of BPA on the male reproductive system.
Collapse
Affiliation(s)
- Shiv K. Yadav
- ICMR‐National Institute of Occupational Health (NIOH) Ahmedabad Gujarat India
| | - Vandana Bijalwan
- ICMR‐National Institute of Occupational Health (NIOH) Ahmedabad Gujarat India
| | - Suresh Yadav
- ICMR‐National Institute for Implementation Research on Non‐Communicable Disease (NIIRNCD) Jodhpur Rajasthan India
| | - Kamalesh Sarkar
- ICMR‐National Institute of Occupational Health (NIOH) Ahmedabad Gujarat India
- ICMR‐National Institute of Cholera & Enteric Diseases (NICED) Kolkata West Bengal India
| | - Santasabuj Das
- ICMR‐National Institute of Occupational Health (NIOH) Ahmedabad Gujarat India
- ICMR‐National Institute of Cholera & Enteric Diseases (NICED) Kolkata West Bengal India
| | - Dhirendra P. Singh
- ICMR‐National Institute of Occupational Health (NIOH) Ahmedabad Gujarat India
| |
Collapse
|
8
|
Sharma BM, Scheringer M, Chakraborty P, Bharat GK, Steindal EH, Trasande L, Nizzetto L. Unlocking India's Potential in Managing Endocrine-Disrupting Chemicals (EDCs): Importance, Challenges, and Opportunities. EXPOSURE AND HEALTH 2022; 15:1-15. [PMID: 36530567 PMCID: PMC9744066 DOI: 10.1007/s12403-022-00519-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/08/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are a prime concern for the environment and health globally. Research shows that in developing countries such as India both the environment and human populations are severely exposed to EDCs and consequently experience rising incidents of adverse health effects such as diabetes and cancers. In this paper, we discuss the current EDC management approach in India, critically assess its limitations, and describe opportunities for potential improvements. Foremost, current EDC management actions and interventions in India are fragmented and outdated, and far behind the modern and comprehensive approaches adopted in the European Union and other developed countries. Strong and well-planned actions are required on various fronts of science, policy, commerce, and public engagement. These actions include the adoption of a dedicated and modern regulatory framework for managing EDCs, enhancing capacity and infrastructure for EDC monitoring in the environment and human population, employing public-private partnership programs for not only managing EDCs but also in the sectors that indirectly contribute toward the mismanagement of EDCs in the country, and raising awareness on EDCs and promoting health-preserving consumption habits among the public. As India hosts a large proportion of the global human population and biodiversity, the success or failure of its actions will substantially affect the direction of global efforts to manage EDCs and set an example for other developing countries.
Collapse
Affiliation(s)
- Brij Mohan Sharma
- Faculty of Science, RECETOX, Masaryk University, Kotlarska 2, 62500 Brno, Czech Republic
| | - Martin Scheringer
- Faculty of Science, RECETOX, Masaryk University, Kotlarska 2, 62500 Brno, Czech Republic
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | | | - Eirik Hovland Steindal
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Universitetstunet 3, 1432 Ås, Norway
| | - Leonardo Trasande
- Department of Pediatrics, Environmental Medicine, and Population Health, New York University Grossman School of Medicine, New York, NY USA
- NYU College of Global Public Health, New York, NY USA
| | - Luca Nizzetto
- Faculty of Science, RECETOX, Masaryk University, Kotlarska 2, 62500 Brno, Czech Republic
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| |
Collapse
|
9
|
DiBona E, Haley C, Geist S, Seemann F. Developmental Polyethylene Microplastic Fiber Exposure Entails Subtle Reproductive Impacts in Juvenile Japanese Medaka (Oryzias latipes). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2848-2858. [PMID: 35942914 DOI: 10.1002/etc.5456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Microplastic pollution has been recognized as a potential threat to environmental and human health. Recent studies have shown that microplastics reside in all ecosystems and contaminate human food/water sources. Microplastic exposure has been shown to result in adverse effects related to endocrine disruption; however, data are limited regarding how exposure to current environmental levels of microplastics during development may impact reproductive health. To determine the impact of environmentally relevant, chronic, low-dose microplastic fibers on fish reproductive health, juvenile Japanese medaka were exposed to five concentrations of polyethylene fibers for 21 days, and reproductive maturity was examined to assess the later life consequences. Fecundity, fertility, and hatching rate were evaluated to determine the organismal level impacts. Gonadal tissue integrity and stage were assessed to provide insights into potential tissue level changes. Expression of key reproductive genes in male and female gonads provided a molecular level assessment. A significant delay in hatching was observed, indicating cross-generational and organismal level impacts. A significant decrease in 11-beta-dehydrogenase isozyme 2 (HSD11 β 2) gene expression in male medaka indicated adverse effects at the molecular level. A decrease in male expression of HSD11 β 2 could have an impact on sperm quality because this enzyme is crucial for conversion of testosterone into the androgen 11-ketotestosterone. Our study is one of the first to demonstrate subtle impacts of virgin microplastic exposure during development on later life reproductive health. The results suggest a possible risk of polyethylene fiber exposure for wild fish during reproductive development, and populations should be monitored closely, specifically in spawning and nursery regions. Environ Toxicol Chem 2022;41:2848-2858. © 2022 SETAC.
Collapse
Affiliation(s)
- Elizabeth DiBona
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Carol Haley
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Simon Geist
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Frauke Seemann
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
- Department of Life Sciences, Center for Coastal and Marine Studies, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| |
Collapse
|
10
|
Bonzini M, Leso V, Iavicoli I. Towards a toxic-free environment: perspectives for chemical risk assessment approaches. LA MEDICINA DEL LAVORO 2022; 113:e2022004. [PMID: 35226649 PMCID: PMC8902740 DOI: 10.23749/mdl.v113i1.12748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/05/2022]
Abstract
Regulatory frameworks to control chemical exposure in general living and occupational environments have changed exposure scenarios towards a widely spread contamination at relatively low doses in developed countries. In such evolving context, some critical aspects should be considered to update risk assessment and management strategies. Risk assessment in low-dose chemical exposure scenarios should take advantage of: toxicological investigations on emerging substances of interest, like those recognised as endocrine disruptors or increasingly employed nanoscale materials; human biological monitoring studies aimed to identify innovative biomarkers for known chemical exposure; "omic" technologies useful to identify hazards of chemicals and their modes of action. For updated risk assessment models, suitable toxicological studies, analyses of dose-responses at low-concentrations, environmental and biological monitoring of exposure, together with exposome studies, and the proper definition of susceptible populations may all provide helpful contributions. These may guide defining preventive measures to control the exposure and develop safe and sustainable chemicals by design. Occupational medicine can offer know-how and instruments to understand and manage such evolution towards a toxic-free environment to protect the safety and health of the workforce and, in turn, that of the general population.
Collapse
Affiliation(s)
- Matteo Bonzini
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano.
| | | | | |
Collapse
|
11
|
Bisphenol A Release from Dental Composites and Resin-Modified Glass Ionomers under Two Polymerization Conditions. Polymers (Basel) 2021; 14:polym14010046. [PMID: 35012066 PMCID: PMC8747459 DOI: 10.3390/polym14010046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 01/12/2023] Open
Abstract
Bisphenol A (BPA)-based monomers are commonly contained in dental resin-based materials. As BPA is an endocrine disruptor, its long-term release from restorative composites and resin-modified glass ionomers (RM-GICs) under two polymerization conditions was measured in this study. Specimens of two conventional composites containing BPA-based monomers, two “BPA-free” composites, and two RM-GICs were polymerized from one side for 20 s at 1300 mW/cm2 or for 5 s at 3000 mW/cm2. The amounts of BPA released in artificial saliva and methanol after 1, 4, 9, 16, 35, 65, 130, and 260 days were measured using liquid chromatography–tandem mass spectrometry. The highest amounts of BPA were released from conventional composites, followed by RM-GICs, while the least was released from “BPA-free” composites. Amounts of released BPA were significantly higher in methanol and decreased gradually after the first day. Fast polymerization (5 s at 3000 mW/cm2) resulted in a significantly higher release of BPA after 1 day, but the effect of polymerization conditions was not significant overall. In conclusion, fast polymerization increased the initial release of BPA, but the released amounts were significantly lower than the current tolerable daily intake (4 μg/kg body weight/day) even in methanol, representing the worst-case scenario of BPA release.
Collapse
|
12
|
Fiolet T, Mahamat-Saleh Y, Frenoy P, Kvaskoff M, Romana Mancini F. Background exposure to polychlorinated biphenyls and all-cause, cancer-specific, and cardiovascular-specific mortality: A systematic review and meta-analysis. ENVIRONMENT INTERNATIONAL 2021; 154:106663. [PMID: 34082240 DOI: 10.1016/j.envint.2021.106663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) are a large family of man-made organic, ubiquitous, and persistent contaminants with endocrine-disrupting properties. PCBs have been associated with numerous adverse health effects and were classified as carcinogenic to humans, but their long-term impact on mortality risk in the general population is unknown. OBJECTIVE To conduct a systematic review and meta-analysis in order to assess whether background exposure levels of PCBs increase all-cause and cancer- and cardiovascular-specific mortality risk in the general population. METHODS We searched the Pubmed, Web of Science, Cochrane Library, and Embase databases for eligible studies up to 1st of January, 2021. We included cohort and nested-case control studies comparing the lowest vs. the highest background exposure level of PCBs in the general population and reporting data for all-cause mortality and/or cancer-/cardiovascular-specific mortality. Studies reporting occupational and accidental exposures were excluded. Random-effects meta-analysis was used to estimate summary relative risks (SRRs) and 95% confidence intervals (CIs). Heterogeneity across studies was assessed by I2 statistics, and publication bias both graphically and using Egger's and Begg's tests. Quality of included studies was assessed using the National Toxicology Program/Office of Health Assessment and Translation (NTP/OHAT). Confidence in the body of evidence and related level of evidence were assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) based on the NTP/OHAT framework. The protocol was registered in PROSPERO (CRD42020178079). RESULTS The initial search led to 2,132 articles. Eight prospective cohort studies met our inclusion criteria, leading to 72,852 participants including 17,805 deaths. Overall exposure to PCBs was not statistically significantly associated with all-cause mortality (SRR = 1.13, 95% CI = 0.90-1.41, n = 7 studies, low certainty); however, dietary exposure to PCBs was associated with an increased risk of cardiovascular-specific mortality (SRR = 1.38, 95% CI = 1.14-1.66, n = 3 studies, moderate certainty), while no association was found with cancer-specific mortality (SRR = 1.07, 95% CI = 0.72-1.59, n = 5 studies, low certainty). CONCLUSION Our meta-analysis suggests that background exposure to PCBs is associated with an increased risk of cardiovascular-specific mortality in the general population with a "moderate" level of evidence. These findings should be interpreted with caution given the small number of studies on mortality in the general population.
Collapse
Affiliation(s)
- Thibault Fiolet
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, F-94805 Villejuif, France
| | - Yahya Mahamat-Saleh
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, F-94805 Villejuif, France
| | - Pauline Frenoy
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, F-94805 Villejuif, France
| | - Marina Kvaskoff
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, F-94805 Villejuif, France
| | - Francesca Romana Mancini
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, F-94805 Villejuif, France.
| |
Collapse
|
13
|
Christou M, Ropstad E, Brown S, Kamstra JH, Fraser TWK. Developmental exposure to a POPs mixture or PFOS increased body weight and reduced swimming ability but had no effect on reproduction or behavior in zebrafish adults. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105882. [PMID: 34139397 DOI: 10.1016/j.aquatox.2021.105882] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Complex mixtures of persistent organic pollutants (POPs) are regularly detected in the environment and animal tissues. Often these chemicals are associated with latent effects following early-life exposures, following the developmental origin of health and disease paradigm. We investigated the long-term effects of a human relevant mixture of 29 POPs on adult zebrafish following a developmental exposure, in addition to a single PFOS exposure for comparison, as it was the compound with the highest concentration within the mixture. Zebrafish embryos were exposed from 6 to 96 h post fertilization to x10 and x70 the level of POP mixture or PFOS (0.55 and 3.83 μM) found in human blood before being transferred to clean water. We measured growth, swimming performance, and reproductive output at different life stages. In addition, we assessed anxiety behavior of the adults and their offspring, as well as performing a transcriptomic analysis on the adult zebrafish brain, as the POP mixture and PFOS concentrations used are known to affect larval behavior. Exposure to POP mixture and PFOS reduced swimming performance and increased length and weight, compared to controls. No effect of developmental exposure was observed on reproductive output or anxiety behavior. Additionally, RNA-seq did not reveal pathways related to anxiety although pathways related to synapse biology were affected at the x10 PFOS level. Furthermore, pathway analysis of the brain transcriptome of adults exposed as larvae to the low concentration of PFOS revealed enrichment in pathways such as calcium, MAPK, and GABA signaling, all of which are important for learning and memory. Based on our results we can conclude that some effects on the endpoints measured were apparent, but if these effects lead to adversities at population levels remains elusive.
Collapse
Affiliation(s)
- Maria Christou
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102 Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102 Oslo, Norway.
| | - Stephen Brown
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102 Oslo, Norway.
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands.
| | - Thomas W K Fraser
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102 Oslo, Norway.
| |
Collapse
|
14
|
Prudencio TM, Swift LM, Guerrelli D, Cooper B, Reilly M, Ciccarelli N, Sheng J, Jaimes R, Posnack NG. Bisphenol S and bisphenol F are less disruptive to cardiac electrophysiology, as compared to bisphenol A. Toxicol Sci 2021; 183:214-226. [PMID: 34240201 DOI: 10.1093/toxsci/kfab083] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bisphenol A (BPA) is a high-production volume chemical used to manufacture consumer and medical-grade plastic products. Due to its ubiquity, the general population can incur daily environmental exposure to BPA, while heightened exposure has been reported in intensive care patients and industrial workers. Due to health concerns, structural analogues are being explored as replacements for BPA. This study aimed to examine the direct effects of BPA on cardiac electrophysiology compared with recently developed alternatives, including BPS (bisphenol S) and BPF (bisphenol F). Whole-cell voltage-clamp recordings were performed on cell lines transfected to express the voltage-gated sodium channel (Nav1.5), L-type voltage-gated calcium channel (Cav1.2), or the rapidly activating delayed rectifier potassium channel (hERG). Cardiac electrophysiology parameters were measured using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and intact, whole rat heart preparations. BPA was the most potent inhibitor of fast/peak (INa-P) and late (INa-L) sodium channel (IC50= 55.3, 23.6 µM, respectively), L-type calcium channel (IC50= 30.8 µM) and hERG channel current (IC50= 127 µM). Inhibitory effects on L-type calcium channels were supported by microelectrode array recordings, which revealed a shortening of the extracellular field potential (akin to QT interval). BPA and BPF exposures slowed atrioventricular (AV) conduction and increased AV node refractoriness in isolated rat heart preparations, in a dose-dependent manner (BPA: +9.2% 0.001 µM, +95.7% 100 µM; BPF: +20.7% 100 µM). BPS did not alter any of the cardiac electrophysiology parameters tested. Results of this study demonstrate that BPA and BPF exert an immediate inhibitory effect on cardiac ion channels, while BPS is markedly less potent. Additional studies are necessary to fully elucidate the safety profile of bisphenol analogues on the heart.
Collapse
Affiliation(s)
- Tomas M Prudencio
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | - Luther M Swift
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | - Devon Guerrelli
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA.,Department of Biomedical Engineering, George Washington University, Washington DC, USA
| | - Blake Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA.,Department of Pharmacology & Physiology, George Washington University, Washington DC, USA
| | - Marissa Reilly
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | - Nina Ciccarelli
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | | | - Rafael Jaimes
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA.,Department of Pharmacology & Physiology, George Washington University, Washington DC, USA.,Department of Pediatrics, George Washington University, Washington DC, USA
| |
Collapse
|
15
|
Mancini FR, Frenoy P, Fiolet T, Fagherazzi G, Crépet A. Identification of chemical mixtures to which women are exposed through the diet: Results from the French E3N cohort. ENVIRONMENT INTERNATIONAL 2021; 152:106467. [PMID: 33711762 DOI: 10.1016/j.envint.2021.106467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 05/12/2023]
Abstract
Due to the large number of chemical food contaminants, consumers are exposed simultaneously to a wide range of chemicals which can interact and have a negative impact on health. Nevertheless, due to the multitude of possible chemical combinations it is unrealistic to test all combined toxicological effects. It is therefore essential to identify the most relevant mixtures to which the population is exposed through the diet and investigate their impact on heath. The present study aims to identify and describe the main chemical mixtures to which women enrolled in the E3N study, a large French prospective cohort, are chronically exposed through the diet. 74522 women who had answered a validated semi-quantitative food frequency questionnaire in 1993, were included in the present study. Dietary exposure to chemical contaminates was estimated based on the food contamination measured in 186 core food in France collected between 2007 and 2009 by the French agency for food, environment and occupational health, and safety (ANSES) in the framework of the second French total diet study (2TDS). The sparse non-negative matrix under-approximation (SNMU) was used to identify mixtures of chemical substances. A k-means clustering classification of the whole study population was then performed to define clusters with similar co-exposure profiles. Overall, 8 mixtures which explained 83% of the total variance, were retained. The first mixture, entitled "Minerals, inorganic contaminants, and furans", explained the highest proportion of the total variance (38%), and was correlated in particular with the consumption of "Offal" (rho = 0.22), "Vegetables except roots" (rho = 0.20), and "Eggs" (rho = 0.19). The other seven mixtures explained between 17% and 1% of the variance. Finally, 5 clusters were identified based on the adherence to the 8 mixtures. This study, being the largest ever conducted to identify dietary exposure to chemical mixtures, represents a concrete attempt to prioritize mixtures for which it is essential to investigate combined health effects based on exposure.
Collapse
Affiliation(s)
- Francesca Romana Mancini
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805 Villejuif, France.
| | - Pauline Frenoy
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805 Villejuif, France
| | - Thibault Fiolet
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805 Villejuif, France
| | - Guy Fagherazzi
- Deep Digital Phenotyping Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B, Rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Amélie Crépet
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Risk Assessment Department, Methodology and Survey Unit, 94701 Maisons-Alfort, France
| |
Collapse
|
16
|
Marushka L, Hu X, Batal M, Tikhonov C, Sadik T, Schwartz H, Ing A, Fediuk K, Chan HM. The relationship between dietary exposure to persistent organic pollutants from fish consumption and type 2 diabetes among First Nations in Canada. CANADIAN JOURNAL OF PUBLIC HEALTH = REVUE CANADIENNE DE SANTE PUBLIQUE 2021; 112:168-182. [PMID: 34181231 PMCID: PMC8239090 DOI: 10.17269/s41997-021-00484-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We previously examined the associations between dietary dichlorodiphenyldichloroethylene (DDE) and polychlorinated biphenyls (PCBs) intake from fish consumption and type 2 diabetes (T2D) prevalence in Ontario and Manitoba. This study aims to further explore the relationship in a regionally representative sample of First Nations adults living on-reserve across Canada. METHODS Dietary, health and lifestyle data collected by the cross-sectional First Nations Food, Nutrition and Environment Study (2008-2018) were analyzed. This participatory study included 6091 First Nations adult participants who answered questions on T2D. The consumption of locally caught fish was estimated with a food frequency questionnaire. A total of 551 samples from 96 fish species were collected and analyzed for the presence of DDE and PCBs. The associations between fish and dietary DDE/PCBs intake with self-reported T2D were investigated using multiple logistic regression models adjusted for confounders. RESULTS Dietary exposure to DDE (>2.11 ng/kg/bw) and PCBs (>1.47 ng/kg/bw) vs no exposure was positively associated with T2D with ORs of 2.33 (95% CI: 1.24-4.35) for DDE and 1.43 (95% CI: 1.01-3.59) for PCBs. The associations were stronger among females (DDE OR = 3.11 (1.41-6.88); PCBs OR = 1.76 (1.10-3.65)) and older individuals (DDE OR = 2.64 (1.12-6.20); PCBs OR = 1.44 (1.01-3.91)) as compared with males and younger participants. Also, significant dose-response relationships were found for fish consumption in females only. CONCLUSION This study confirms our previous findings that dietary DDE/PCBs exposure may increase the risk of T2D. The effect of DDE/PCBs from fish consumption is driven by geographical differences in DDE/PCBs concentrations in fish and by the amount of fish consumed, and is more prominent in females than in males.
Collapse
Affiliation(s)
- Lesya Marushka
- Environmental Public Health Division, First Nations and Inuit Health Branch, Indigenous Services Canada, Ottawa, ON, Canada
| | - Xuefeng Hu
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Malek Batal
- Département de Nutrition, Faculté de Médecine, Pavillon Liliane de Stewart, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, QC, H3T 1A8, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSS du Centre-sud-de-l'Île-de-Montréal (CReSP), 7101 avenue du Parc, Montréal, QC, H3N 1X7, Canada
| | - Constantine Tikhonov
- Environmental Public Health Division, First Nations and Inuit Health Branch, Indigenous Services Canada, Ottawa, ON, Canada
| | - Tonio Sadik
- Assembly of First Nations, 55 Metcalfe Street, Suite 1600, Ottawa, ON, K1P 6L5, Canada
| | - Harold Schwartz
- Environmental Public Health Division, First Nations and Inuit Health Branch, Indigenous Services Canada, Ottawa, ON, Canada
| | - Amy Ing
- Département de Nutrition, Faculté de Médecine, Pavillon Liliane de Stewart, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, QC, H3T 1A8, Canada
| | - Karen Fediuk
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Hing Man Chan
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
17
|
Kassotis CD, Trasande L. Endocrine disruptor global policy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:1-34. [PMID: 34452684 DOI: 10.1016/bs.apha.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past several decades, scientific consensus has grown around the concept and evidence for human health impacts from exposure to endocrine disrupting chemicals (EDCs). A series of publications have now demonstrated considerable economic costs of EDC exposure-induced adverse health outcomes. This research has suggested economic burdens in the hundreds of billions, even considering only a small subset of EDCs and health. As of yet, regulatory efforts and policies to protect and decrease human exposure to most EDCs have been insufficient and have not kept pace with the science. Given the overwhelming scientific evidence, referenced throughout this collection, as well as the economic costs of inaction, described here, regulations are clearly needed. The EU and some other countries have taken promising steps towards protective regulation of EDCs, though the response of the US and many other countries has been limited or altogether lacking. Regulatory bodies that have and continue to apply risk-based approaches to regulating EDCs have also failed to consider the complete economic impacts of EDC-related health impacts. In this chapter, we will discuss broad strategies taken to regulate EDCs, examine the approaches currently taken to regulate EDCs in a global context (discussing the strengths and weaknesses of these regulations), discuss the economic costs of EDC exposures (detailing where consideration of health and economic costs could improve regulations), and discuss next steps and novel approaches to adapting existing regulatory frameworks to this class of chemicals.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States.
| | - Leonardo Trasande
- Departments of Pediatrics, New York University School of Medicine, New York, NY, United States; Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States; Department of Population Health, New York University School of Medicine, New York, NY, United States; NYU College of Global Public Health, New York, NY, United States
| |
Collapse
|
18
|
Zindler F, Stoll S, Baumann L, Knoll S, Huhn C, Braunbeck T. Do environmentally relevant concentrations of fluoxetine and citalopram impair stress-related behavior in zebrafish (Danio rerio) embryos? CHEMOSPHERE 2020; 261:127753. [PMID: 32745739 DOI: 10.1016/j.chemosphere.2020.127753] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have been shown to interfere with various physiological functions of aquatic organisms, yet the neuroactive potential of low concentrations of SSRIs in the aquatic environment is unclear. The current study investigated the effects of fluoxetine and citalopram on the visual motor response (VMR) of 107 h old zebrafish (Danio rerio) embryos. Results document a reduction in stress-related swimming activity of zebrafish embryos at environmentally relevant concentration levels, with fluoxetine being more effective than citalopram. Further experiments were designed to elucidate (1) if the lower neuroactive potential of citalopram is due to differences in uptake kinetics, (2) if the metabolite of fluoxetine, norfluoxetine, contributes to the neuroactive potential of fluoxetine, (3) and how SSRIs and their metabolites interact in equimolar mixtures. At the stage of 120 h, zebrafish embryos accumulate citalopram at significantly lower rates (up to 127 times) than fluoxetine. Moreover, it was demonstrated that norfluoxetine reduces the embryonic VMR similarly to fluoxetine resulting in additive effects of these substances on stress-related behavior in zebrafish embryos. In contrast, the interaction of fluoxetine, norfluoxetine and citalopram varied with test concentrations of the equimolar mixtures. Findings provide evidence that environmentally relevant concentrations of fluoxetine reduce stress-related behavior of zebrafish embryos, while these effects may be enhanced by the interaction of multiple SSRIs and their metabolites in environmental exposure scenarios.
Collapse
Affiliation(s)
- Florian Zindler
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany.
| | - Saskia Stoll
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany
| | - Sarah Knoll
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, Tübingen, D-72076, Germany
| | - Carolin Huhn
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, Tübingen, D-72076, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany
| |
Collapse
|
19
|
Alkimin GDD, Santos J, Soares AMVM, Nunes B. Ecotoxicological effects of the azole antifungal agent clotrimazole on the macrophyte species Lemna minor and Lemna gibba. Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108835. [PMID: 32585366 DOI: 10.1016/j.cbpc.2020.108835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
Pharmaceuticals are a large and diverse group of compounds used to treat, prevent and diagnose disease. Among these, a group that has been recently detected in the aquatic environment is that of the azole compounds, commonly used as antifungals. Clotrimazole (CLO) is a nonbiodegradable persistent azole compound, with broad-spectrum antifungal activity for which virtually no toxicological data are available, especially towards aquatic plants. The few existent data point to a documented interference with cytochrome P450 system of exposed organisms. Therefore, the aim of this paper was to evaluate the ecotoxicological effects of the fungicide CLO on two aquatic macrophyte species, namely, Lemna minor and Lemna gibba. To attain this purpose, an acute assay (96 h) was performed with both species being exposed to CLO, in a concentration range of 0 to 5 μg L-1. The analyzed endpoints were levels of chlorophyll a and b, total, carotenoids, catalase (CAT) and glutathione -s-transferases activities (GSTs). In general, CLO exposure caused some minor alterations in L. minor and L. gibba pigment contents. Antioxidant enzymes exhibited a different pattern in both species, since the highest concentrations of CLO caused an increase on CAT activity, and a decrease on GSTs activity in L. minor, and the opposite in L. gibba, reflected by a decrease on CAT activity and an increase on GSTs activity in all tested concentrations. These results demonstrate that CLO exposure resulted in potential deleterious effects on macrophytes, namely with the involvement of the antioxidant defense mechanisms that were likely deployed to cope with pro-oxidative conditions established by CLO.
Collapse
Affiliation(s)
- Gilberto Dias de Alkimin
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - João Santos
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Šimková M, Tichý A, Dušková M, Bradna P. Dental composites - a low-dose source of bisphenol A? Physiol Res 2020; 69:S295-S304. [PMID: 33094627 PMCID: PMC8603723 DOI: 10.33549/physiolres.934518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/27/2020] [Indexed: 11/25/2022] Open
Abstract
Dental composite materials often contain monomers with bisphenol A (BPA) structure in their molecules, e.g. bisphenol-A glycidyl dimethacrylate (Bis-GMA). In this study, it was examined whether dental restorative composites could be a low-dose source of BPA or alternative bisphenols, which are known to have endocrine-disrupting effects. Bis-GMA-containing composites Charisma Classic (CC) and Filtek Ultimate Universal Restorative (FU) and "BPA-free" Charisma Diamond (CD) and Admira Fusion (AF) were examined. Specimens (diameter 6 mm, height 2 mm, n=5) were light-cured from one side for 20 s and stored at 37 °C in methanol which was periodically changed over 130 days to determine the kinetics of BPA release. BPA concentrations were measured using a dansyl chloride derivatization method with liquid chromatography - tandem mass spectrometry detection. The amounts of BPA were expressed in nanograms per gram of composite (ng/g). BPA release from Bis-GMA-containing CC and FU was significantly higher compared to "BPA-free" CD and AF. The highest 1-day release was detected with FU (15.4+/-0.8 ng/g), followed by CC (9.1+/-1.1 ng/g), AF (2.1+/-1.3 ng/g), and CD (1.6+/-0.8 ng/g), and the release gradually decreased over the examined period. Detected values were several orders of magnitude below the tolerable daily intake (4 microg/kg body weight/day). Alternative bisphenols were not detected. BPA was released even from "BPA-free" composites, although in significantly lower amounts than from Bis-GMA-containing composites. Despite incubation in methanol, detected amounts of BPA were substantially lower than current limits suggesting that dental composites should not pose a health risk if adequately polymerized.
Collapse
Affiliation(s)
- M Šimková
- Institute of Endocrinology, Prague, Czech Republic. , Institute of Dental Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
| | | | | | | |
Collapse
|
21
|
Lazarevic N, Knibbs LD, Sly PD, Barnett AG. Performance of variable and function selection methods for estimating the nonlinear health effects of correlated chemical mixtures: A simulation study. Stat Med 2020; 39:3947-3967. [PMID: 32940933 DOI: 10.1002/sim.8701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 03/29/2020] [Accepted: 06/29/2020] [Indexed: 01/18/2023]
Abstract
Statistical methods for identifying harmful chemicals in a correlated mixture often assume linearity in exposure-response relationships. Nonmonotonic relationships are increasingly recognized (eg, for endocrine-disrupting chemicals); however, the impact of nonmonotonicity on exposure selection has not been evaluated. In a simulation study, we assessed the performance of Bayesian kernel machine regression (BKMR), Bayesian additive regression trees (BART), Bayesian structured additive regression with spike-slab priors (BSTARSS), generalized additive models with double penalty (GAMDP) and thin plate shrinkage smoothers (GAMTS), multivariate adaptive regression splines (MARS), and lasso penalized regression. We simulated realistic exposure data based on pregnancy exposure to 17 phthalates and phenols in the US National Health and Nutrition Examination Survey using a multivariate copula. We simulated data sets of size N = 250 and compared methods across 32 scenarios, varying by model size and sparsity, signal-to-noise ratio, correlation structure, and exposure-response relationship shapes. We compared methods in terms of their sensitivity, specificity, and estimation accuracy. In most scenarios, BKMR, BSTARSS, GAMDP, and GAMTS achieved moderate to high sensitivity (0.52-0.98) and specificity (0.21-0.99). BART and MARS achieved high specificity (≥0.90), but low sensitivity in low signal-to-noise ratio scenarios (0.20-0.51). Lasso was highly sensitive (0.71-0.99), except for quadratic relationships (≤0.27). Penalized regression methods that assume linearity, such as lasso, may not be suitable for studies of environmental chemicals hypothesized to have nonmonotonic relationships with outcomes. Instead, BKMR, BSTARSS, GAMDP, and GAMTS are attractive methods for flexibly estimating the shapes of exposure-response relationships and selecting among correlated exposures.
Collapse
Affiliation(s)
- Nina Lazarevic
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Luke D Knibbs
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
| | - Adrian G Barnett
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|
22
|
Kassotis CD, Vandenberg LN, Demeneix BA, Porta M, Slama R, Trasande L. Endocrine-disrupting chemicals: economic, regulatory, and policy implications. Lancet Diabetes Endocrinol 2020; 8:719-730. [PMID: 32707119 PMCID: PMC7437819 DOI: 10.1016/s2213-8587(20)30128-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) substantially cost society as a result of increases in disease and disability but-unlike other toxicant classes such as carcinogens-have yet to be codified into regulations as a hazard category. This Series paper examines economic, regulatory, and policy approaches to limit human EDC exposures and describes potential improvements. In the EU, general principles for EDCs call for minimisation of human exposure, identification as substances of very high concern, and ban on use in pesticides. In the USA, screening and testing programmes are focused on oestrogenic EDCs exclusively, and regulation is strictly risk-based. Minimisation of human exposure is unlikely without a clear overarching definition for EDCs and relevant pre-marketing test requirements. We call for a multifaceted international programme (eg, modelled on the International Agency for Research in Cancer) to address the effects of EDCs on human health-an approach that would proactively identify hazards for subsequent regulation.
Collapse
Affiliation(s)
| | - Laura N Vandenberg
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Barbara A Demeneix
- Centre National de la Recherche Scientifique, UMR 7221, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Sorbonne, Paris, France
| | - Miquel Porta
- Hospital del Mar Medical Research Institute, PSMAR, Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC, USA
| | - Remy Slama
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, INSERM, U1209, CNRS, UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Leonardo Trasande
- Department of Pediatrics, Environmental Medicine, and Population Health, New York University Grossman School of Medicine, New York, NY, USA; NYU College of Global Public Health, New York, NY, USA.
| |
Collapse
|
23
|
Vaillant C, Gueguen MM, Feat J, Charlier TD, Coumailleau P, Kah O, Brion F, Pellegrini E. Neurodevelopmental effects of natural and synthetic ligands of estrogen and progesterone receptors in zebrafish eleutheroembryos. Gen Comp Endocrinol 2020; 288:113345. [PMID: 31812531 DOI: 10.1016/j.ygcen.2019.113345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/03/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
Abstract
Natural and synthetic estrogens and progestins are widely used in human and veterinary medicine and are detected in waste and surface waters. Our previous studies have clearly shown that a number of these substances targets the brain to induce the estrogen-regulated brain aromatase expression but the consequences on brain development remain virtually unexplored. The aim of the present study was therefore to investigate the effect of estradiol (E2), progesterone (P4) and norethindrone (NOR), a 19-nortestosterone progestin, on zebrafish larval neurogenesis. We first demonstrated using real-time quantitative PCR that nuclear estrogen and progesterone receptor brain expression is impacted by E2, P4 and NOR. We brought evidence that brain proliferative and apoptotic activities were differentially affected depending on the steroidal hormone studied, the concentration of steroids and the region investigated. Our findings demonstrate for the first time that steroid compounds released in aquatic environment have the capacity to disrupt key cellular events involved in brain development in zebrafish embryos further questioning the short- and long-term consequences of this disruption on the physiology and behavior of organisms.
Collapse
Affiliation(s)
- Colette Vaillant
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marie-Madeleine Gueguen
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Justyne Feat
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Thierry D Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Pascal Coumailleau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Olivier Kah
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - François Brion
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550, Verneuil-en-Halatte, France
| | - Elisabeth Pellegrini
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
24
|
Hazarika J, Ganguly M, Mahanta R. A computational insight into the molecular interactions of chlorpyrifos and its degradation products with the human progesterone receptor leading to endocrine disruption. J Appl Toxicol 2019; 40:434-443. [DOI: 10.1002/jat.3916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/08/2019] [Accepted: 10/01/2019] [Indexed: 01/07/2023]
Affiliation(s)
| | - Mausumi Ganguly
- Department of ChemistryCotton University Guwahati Assam India
| | - Rita Mahanta
- Department of ZoologyCotton University Guwahati Assam India
| |
Collapse
|
25
|
Md Zin SR, Kassim NM, Mohamed Z, Fateh AH, Alshawsh MA. Potential toxicity effects of Anastatica hierochuntica aqueous extract on prenatal development of Sprague-Dawley rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112180. [PMID: 31445135 DOI: 10.1016/j.jep.2019.112180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anastatica hierochuntica (A. hierochuntica) is a plant consumed in folk medicine for the treatment of reproductive system related problems and metabolic disorders. It is of concern that the herb is commonly consumed by pregnant women towards the end of pregnancy to ease the process of labour, despite the lack of studies evaluating its safety. AIM OF THIS STUDY This study aimed to investigate the potential toxicity effects of A. hierochuntica in pregnant Sprague-Dawley rats and their developing foetuses. MATERIALS AND METHODS Experiments were conducted in accordance to the Organisation for Economic Co-operation and Development guideline 414. Animals were randomly divided into four groups (n = 10 females per group): negative control (received the vehicle only), experimental animals received 250, 500, and 1000 mg/kg A. hierochuntica aqueous extracts (AHAE), respectively. Treatment was administered daily by oral gavage from gestational day (GD) 6-20, and caesarian section performed on GD21. RESULTS There were significant reduction in the corrected maternal weight gain of dams and body weight of foetuses in the lowest and highest dose of AHAE-treated animals compared to the control. These findings were associated with the increase in anogenital distance index and multiple congenital anomalies observed in some of the offspring. On the other hand, rats treated with 500 mg/kg showed higher embryonic survival rate with absence of significant treatment-related effect. CONCLUSION Findings showed that highest and lowest doses of AHAE have prenatal toxicity effects in SD rats. Therefore, AHAE is potentially harmful to the developing foetuses especially when consumed during the period of implantation and organogenesis. As for the rats treated with 500 mg/kg AHAE, there was no significant treatment-related effect. Hence, we postulate that this finding suggests that the disruption on the hormonal regulation could have been compensated by negative feedback response. The compensated effects of AHAE at 500 mg/kg and the presence of lowest observed adverse effect level (LOAEL) at 250 mg/kg has resulted in a non-monotonous dose response curve (NMDRC), which complicates the determination of the value of no-observed-adverse effect level (NOAEL).
Collapse
Affiliation(s)
- Siti Rosmani Md Zin
- Department of Anatomy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Normadiah M Kassim
- Department of Anatomy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Abdulmannan H Fateh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohammed A Alshawsh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Qiu X, Iwasaki N, Chen K, Shimasaki Y, Oshima Y. Tributyltin and perfluorooctane sulfonate play a synergistic role in promoting excess fat accumulation in Japanese medaka (Oryzias latipes) via in ovo exposure. CHEMOSPHERE 2019; 220:687-695. [PMID: 30605811 DOI: 10.1016/j.chemosphere.2018.12.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
The ubiquitous environmental obesogens tributyltin (TBT) and perfluorooctane sulfonate (PFOS) may accumulate in parent and be transferred to their offspring, resulting in trans-generational adverse effects. In this study, we investigated the combined toxic and obesogenic effects of TBT and PFOS on the early life stages of Japanese medaka (Oryzias latipes). In ovo nanoinjection was used to simulate the maternal transfer process. Doses were controlled at 0, 0.05, 0.5, and 2.5 ng/egg (TBT) and at 0, 0.05, 0.5, and 5.0 ng/egg (PFOS), with a full factorial design for mixture formulations. Relatively high doses of agents in mixtures were needed to induce significant mortality (TBT ≥ 0.5 ng/egg) or delayed hatching (PFOS = 5.0 ng/egg) of embryos. The interaction between TBT and PFOS in mixtures had significant effects on the observed hatching delay, but not on acute mortality. Compared with controls, separate exposure to TBT (or PFOS) notably elevated adipose areas at the doses of 0.05 and 0.5 ng/egg, but not at the highest doses. Combined exposure significantly promoted the fat accumulation in newly hatched larvae, even when the doses of TBT and PFOS were both at the levels that did not show obesogenic effect. The interactive effect of TBT and PFOS could aggravate the total obesogenic effect of their mixtures, indicating a synergistic interaction. These results highlight the importance of paying close attention to interaction effects when addressing the impacts of mixtures of environmental obesogens.
Collapse
Affiliation(s)
- Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Naoto Iwasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan.
| |
Collapse
|
27
|
Danjou AMN, Coudon T, Praud D, Lévêque E, Faure E, Salizzoni P, Le Romancer M, Severi G, Mancini FR, Leffondré K, Dossus L, Fervers B. Long-term airborne dioxin exposure and breast cancer risk in a case-control study nested within the French E3N prospective cohort. ENVIRONMENT INTERNATIONAL 2019; 124:236-248. [PMID: 30658268 DOI: 10.1016/j.envint.2019.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Dioxins, Group 1 carcinogens, are emitted by industrial chlorinated combustion processes and suspected to increase breast cancer risk through receptor-mediated pathways. OBJECTIVES We estimated breast cancer risk associated with airborne dioxin exposure, using geographic information system (GIS) methods and historical exposure data. METHODS We designed a case-control study (429 breast cancer cases diagnosed between 1990 and 2008, matched to 716 controls) nested within the E3N (Etude Epidémiologique auprès de femmes de la Mutuelle Générale de l'Education Nationale) cohort. Airborne dioxin exposure was assessed using a GIS-based metric including participants' residential history, technical characteristics of 222 dioxin sources, residential proximity to dioxin sources, exposure duration and wind direction. Odds ratios (OR) and 95% confidence intervals (CI) associated with quintiles of cumulative exposure were estimated using multivariate logistic regression models. RESULTS We observed no increased risk of breast cancer for higher dioxin exposure levels overall and according to hormone-receptor status. We however observed a statistically significant OR for Q2 versus Q1 overall (1.612, 95% CI: 1.042-2.493) and for estrogen-receptor (ER) positive breast cancer (1.843, 95% CI: 1.033-3.292). CONCLUSIONS Overall, as well as according to hormone-receptor status, no increased risk was observed for higher airborne dioxin exposure. The increased risk for low exposure levels might be compatible with non-monotonic dose-response relationship. Confirmation of our findings is required. Our GIS-based metric may provide an alternative in absence of ambient dioxin monitoring and may allow assessing exposure to other pollutants.
Collapse
Affiliation(s)
- Aurélie Marcelle Nicole Danjou
- Département Cancer Environnement, Centre Léon Bérard, 28 rue Laënnec, 69373 Lyon Cedex 08, France; Université de Lyon, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne, France.
| | - Thomas Coudon
- Département Cancer Environnement, Centre Léon Bérard, 28 rue Laënnec, 69373 Lyon Cedex 08, France; Université de Lyon, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne, France.
| | - Delphine Praud
- Département Cancer Environnement, Centre Léon Bérard, 28 rue Laënnec, 69373 Lyon Cedex 08, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 28 rue Laënnec, 69373 Lyon Cedex 08, France.
| | - Emilie Lévêque
- Université de Bordeaux, Institut de Santé Publique, d'Épidémiologie et de Développement, Centre Inserm U1219 Epidemiology and Biostatistics, 146 rue Léo Saignat, 33076 Bordeaux, France.
| | - Elodie Faure
- Département Cancer Environnement, Centre Léon Bérard, 28 rue Laënnec, 69373 Lyon Cedex 08, France.
| | - Pietro Salizzoni
- Laboratoire de Mécanique des Fluides et d'Acoustique, UMR CNRS 5509, Université de Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, 36 avenue Guy de Collongue, 69134 Ecully Cedex, France.
| | - Muriel Le Romancer
- Université de Lyon, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 28 rue Laënnec, 69373 Lyon Cedex 08, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 28 rue Laënnec, 69373 Lyon Cedex 08, France.
| | - Gianluca Severi
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, 114 rue Edouard-Vaillant, 94805 Villejuif Cedex, France.
| | - Francesca Romana Mancini
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, 114 rue Edouard-Vaillant, 94805 Villejuif Cedex, France.
| | - Karen Leffondré
- Université de Bordeaux, Institut de Santé Publique, d'Épidémiologie et de Développement, Centre Inserm U1219 Epidemiology and Biostatistics, 146 rue Léo Saignat, 33076 Bordeaux, France.
| | - Laure Dossus
- Département Cancer Environnement, Centre Léon Bérard, 28 rue Laënnec, 69373 Lyon Cedex 08, France; Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, 114 rue Edouard-Vaillant, 94805 Villejuif Cedex, France.
| | - Béatrice Fervers
- Département Cancer Environnement, Centre Léon Bérard, 28 rue Laënnec, 69373 Lyon Cedex 08, France; Université de Lyon, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 28 rue Laënnec, 69373 Lyon Cedex 08, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 28 rue Laënnec, 69373 Lyon Cedex 08, France.
| |
Collapse
|
28
|
Durward-Akhurst SA, Schultz NE, Norton EM, Rendahl AK, Besselink H, Behnisch PA, Brouwer A, Geor RJ, Mickelson JR, McCue ME. Associations between endocrine disrupting chemicals and equine metabolic syndrome phenotypes. CHEMOSPHERE 2019; 218:652-661. [PMID: 30502704 PMCID: PMC6347404 DOI: 10.1016/j.chemosphere.2018.11.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 05/28/2023]
Abstract
Equine Metabolic Syndrome (EMS) is characterized by abnormalities in insulin regulation, increased adiposity and laminitis, and has several similarities to human metabolic syndrome. A large amount of environmental variability in the EMS phenotype is not explained by commonly measured factors (diet, exercise, and season), suggesting that other environmental factors play a role in EMS development. Endocrine disrupting chemicals (EDCs) are associated with metabolic syndrome and other endocrine abnormalities in humans. This led us to hypothesize that EDCs are detectable in horse plasma and play a role in the pathophysiology of EMS. EDCs acting through the aryl hydrocarbon and estrogen receptors, were measured in plasma of 301 horses from 32 farms. The median (range) TEQ (2,3,7,8-TCDD equivalent) and EEQ (17β-estradiol equivalent) were 19.29 pg/g (0.59-536.36) and 10.50 pg/ml (4.35-15000.00), respectively. TEQ was negatively associated with plasma fat extracted and batch analyzed. EEQ was positively associated with pregnancy and batch analyzed, and negatively associated with being male and superfund score ≤100 miles of the farm. Of particular interest, serum glucose and insulin, glucose and insulin post oral sugar challenge, and leptin concentrations were associated with EEQ, and serum triglyceride concentration was associated with TEQ. Overall, we demonstrated that EDCs are present in the plasma of horses and may explain some of the environmental variability in measured EMS phenotypes. This is the first example of EDCs being associated with clinical disease phenotype components in domestic animals.
Collapse
Affiliation(s)
- S A Durward-Akhurst
- Department of Veterinary Population Medicine, 225 Veterinary Medical Center, 1365 Gortner Avenue, St. Paul, MN, 55108, United States.
| | - N E Schultz
- Department of Veterinary Population Medicine, 225 Veterinary Medical Center, 1365 Gortner Avenue, St. Paul, MN, 55108, United States
| | - E M Norton
- Department of Veterinary Population Medicine, 225 Veterinary Medical Center, 1365 Gortner Avenue, St. Paul, MN, 55108, United States
| | - A K Rendahl
- College of Veterinary Medicine, 1988 Fitch Avenue, St. Paul, 55108, United States
| | - H Besselink
- BioDetection Systems b.v., Science Park 406, 1098 XH Amsterdam, the Netherlands
| | - P A Behnisch
- BioDetection Systems b.v., Science Park 406, 1098 XH Amsterdam, the Netherlands
| | - A Brouwer
- BioDetection Systems b.v., Science Park 406, 1098 XH Amsterdam, the Netherlands
| | - R J Geor
- College of Sciences, B2.13, Science Tower B, Massey University, Palmerston North, New Zealand
| | - J R Mickelson
- Department of Veterinary and Biomedical Sciences, 301 Veterinary Science Building, 1971 Commonwealth Avenue, St. Paul, 55108, United States
| | - M E McCue
- Department of Veterinary Population Medicine, 225 Veterinary Medical Center, 1365 Gortner Avenue, St. Paul, MN, 55108, United States
| |
Collapse
|
29
|
dos Santos C, Nardocci A. Prioritization of pharmaceuticals in drinking water exposure based on toxicity and environmental fate assessment by in silico tools: An integrated and transparent ranking. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2018.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Marushka L, Batal M, Schwartz H, Ing A, Fediuk K, Sharp D, Tikhonov C, Chan HM. Re: Association between fish consumption, dietary omega-3 fatty acids and persistent organic pollutants intake, and type 2 diabetes in 18 First Nations in Ontario, Canada. ENVIRONMENTAL RESEARCH 2018; 166:705-706. [PMID: 29880236 DOI: 10.1016/j.envres.2018.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Affiliation(s)
| | | | | | - Amy Ing
- Université de Montréal, Canada
| | | | | | | | | |
Collapse
|
31
|
A novel high sensitivity UPLC-MS/MS method for the evaluation of bisphenol A leaching from dental materials. Sci Rep 2018; 8:6981. [PMID: 29725047 PMCID: PMC5934439 DOI: 10.1038/s41598-018-24815-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/10/2018] [Indexed: 11/12/2022] Open
Abstract
There is a growing necessity to acquire more profound knowledge on the quantity of eluates from resin-based dental materials, especially with regard to bisphenol A (BPA). The aim of the present study was to develop a highly sensitive method to characterize the short-term release of BPA in saliva with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), using an extraction step and additional derivatization of BPA with pyridine-3-sulfonyl chloride. Light-cured resin-based composites were incubated at 37 °C in 1 mL artificial saliva, which was refreshed daily for one week. The final protocol allows accurate quantification of very low levels of BPA in samples of artificial saliva (i.e. 1.10 pmol BPA/mL or 250 pg/mL). The daily BPA-release from dental composites, ranging from 1.10 to 7.46 pmol BPA/mL, was characterized over a period of 7 days. The highest total amount of BPA was released from Solitaire 2 (24.72 ± 2.86 pmol), followed by G-ænial Posterior (15.51 ± 0.88 pmol) and Filtek Supreme XTE (12.00 ± 1.31 pmol). In contrast, only trace amounts of BPA were released from Ceram.x Universal. This UPLC-MS/MS method might be used for clinical research focusing on the evaluation of the clinical relevance of BPA release from dental materials.
Collapse
|
32
|
Carignan CC, Mínguez-Alarcón L, Williams PL, Meeker JD, Stapleton HM, Butt CM, Toth TL, Ford JB, Hauser R. Paternal urinary concentrations of organophosphate flame retardant metabolites, fertility measures, and pregnancy outcomes among couples undergoing in vitro fertilization. ENVIRONMENT INTERNATIONAL 2018; 111:232-238. [PMID: 29241080 PMCID: PMC5800983 DOI: 10.1016/j.envint.2017.12.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/20/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Use of organophosphate flame retardants (PFRs) has increased over the past decade following the phase out of some brominated flame retardants, leading to increased human exposure. We recently reported that increasing maternal PFR exposure is associated with poorer pregnancy outcomes among women from a fertility clinic. Because a small epidemiologic study previously reported an inverse association between male PFR exposures and sperm motility, we sought to examine associations of paternal urinary concentrations of PFR metabolites and their partner's pregnancy outcomes. METHODS This analysis included 201 couples enrolled in the Environment and Reproductive Health (EARTH) prospective cohort study (2005-2015) who provided one or two urine samples per IVF cycle. In both the male and female partner, we measured five urinary PFR metabolites [bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), diphenyl phosphate (DPHP), isopropylphenyl phenyl phosphate (ip-PPP), tert-butylphenyl phenyl phosphate (tb-PPP) and bis(1-chloro-2-propyl) phosphate (BCIPP)] using negative electrospray ionization liquid chromatography tandem mass spectrometry (LC-MS/MS). The sum of the molar concentrations of the urinary PFR metabolites was calculated. We used multivariable generalized linear mixed models to evaluate the association of urinary concentrations of paternal PFR metabolites with IVF outcomes, accounting for multiple in vitro fertilization (IVF) cycles per couple. Models were adjusted for year of IVF treatment cycle, primary infertility diagnosis, and maternal urinary PFR metabolites as well as paternal and maternal age, body mass index, and race/ethnicity. RESULTS Detection rates were high for paternal urinary concentrations of BDCIPP (84%), DPHP (87%) and ip-PPP (76%) but low for tb-PPP (12%) and zero for BCIPP (0%). We observed a significant 12% decline in the proportion of fertilized oocytes from the first to second quartile of male urinary ΣPFR and a 47% decline in the number of best quality embryos from the first to third quartile of male urinary BDCIPP in our adjusted models. An 8% decline in fertilization was observed for the highest compared to lowest quartile of urinary BDCIPP concentrations (95% CI: 0.01, 0.12, p-trend=0.06). CONCLUSIONS Using IVF as a model to investigate human reproduction and pregnancy outcomes, we found that paternal urinary concentrations of BDCIPP were associated with reduced fertilization. In contrast to previously reported findings for the female partners, the paternal urinary PFR metabolites were not associated with the proportion of cycles resulting in successful implantation, clinical pregnancy, and live birth. These results indicate that paternal preconception exposure to TDCIPP may adversely impact successful oocyte fertilization, whereas female preconception exposure to ΣPFRs may be more relevant to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Courtney C Carignan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Food Science and Human Nutrition, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Paige L Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | | | - Craig M Butt
- Nicholas School of the Environment, Duke University, Durham, NC, USA; SCIEX, Framingham, MA, USA.
| | - Thomas L Toth
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Evaluating the evidence for non-monotonic dose-response relationships: A systematic literature review and (re-)analysis of in vivo toxicity data in the area of food safety. Toxicol Appl Pharmacol 2018; 339:10-23. [DOI: 10.1016/j.taap.2017.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/29/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022]
|
34
|
Lichtveld K, Thomas K, Tulve NS. Chemical and non-chemical stressors affecting childhood obesity: a systematic scoping review. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2018; 28:1-12. [PMID: 28952603 PMCID: PMC6097845 DOI: 10.1038/jes.2017.18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/03/2017] [Indexed: 05/02/2023]
Abstract
Childhood obesity in the United States has doubled over the last three decades and currently affects 17% of children and adolescents. While much research has focused on individual behaviors impacting obesity, little research has emphasized the complex interactions of numerous chemical and non-chemical stressors found in a child's environment and how these interactions affect a child's health and well-being. The objectives of this systematic scoping review were to (1) identify potential chemical stressors in the context of non-chemical stressors that impact childhood obesity; and, (2) summarize our observations for chemical and non-chemical stressors in regards to child-specific environments within a community setting. A review was conducted to identify chemical and non-chemical stressors related to childhood obesity for the childhood life stages ranging from prenatal to adolescence. Stressors were identified and grouped into domains: individual behaviors, family/household behaviors, community stressors, and chemical exposures. Stressors were related to the child and the child's everyday environments and used to characterize child health and well-being. This review suggests that the interactions of chemical and non-chemical stressors are important for understanding a child's overall health and well-being. By considering these relationships, the exposure science research community can better design and implement strategies to reduce childhood obesity.
Collapse
Affiliation(s)
- Kim Lichtveld
- ORISE Post-Doctoral Participant, U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, NC, USA
- Current Affiliation: Assistant Professor, The University of Findlay, Department of Environmental, Safety and Occupational Health, Findlay, OH
| | - Kent Thomas
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, NC, USA
| | - Nicolle S. Tulve
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, NC, USA
| |
Collapse
|
35
|
Aluru N, Karchner SI, Glazer L. Early Life Exposure to Low Levels of AHR Agonist PCB126 (3,3',4,4',5-Pentachlorobiphenyl) Reprograms Gene Expression in Adult Brain. Toxicol Sci 2017; 160:386-397. [PMID: 28973690 PMCID: PMC5837202 DOI: 10.1093/toxsci/kfx192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Early life exposure to environmental chemicals can have long-term consequences that are not always apparent until later in life. We recently demonstrated that developmental exposure of zebrafish to low, nonembryotoxic levels of 3,3',4,4',5-pentachlorobiphenyl (PCB126) did not affect larval behavior, but caused changes in adult behavior. The objective of this study was to investigate the underlying molecular basis for adult behavioral phenotypes resulting from early life exposure to PCB126. We exposed zebrafish embryos to PCB126 during early development and measured transcriptional profiles in whole embryos, larvae and adult male brains using RNA-sequencing. Early life exposure to 0.3 nM PCB126 induced cyp1a transcript levels in 2-dpf embryos, but not in 5-dpf larvae, suggesting transient activation of aryl hydrocarbon receptor with this treatment. No significant induction of cyp1a was observed in the brains of adults exposed as embryos to PCB126. However, a total of 2209 and 1628 genes were differentially expressed in 0.3 and 1.2 nM PCB126-exposed groups, respectively. KEGG pathway analyses of upregulated genes in the brain suggest enrichment of calcium signaling, MAPK and notch signaling, and lysine degradation pathways. Calcium is an important signaling molecule in the brain and altered calcium homeostasis could affect neurobehavior. The downregulated genes in the brain were enriched with oxidative phosphorylation and various metabolic pathways, suggesting that the metabolic capacity of the brain is impaired. Overall, our results suggest that PCB exposure during sensitive periods of early development alters normal development of the brain by reprogramming gene expression patterns, which may result in alterations in adult behavior.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543
| | - Lilah Glazer
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543
| |
Collapse
|
36
|
Chevillotte G, Bernard A, Varret C, Ballet P, Bodin L, Roudot AC. Probabilistic assessment method of the non-monotonic dose-responses-Part II: Robustness assessment. Food Chem Toxicol 2017; 110:214-228. [PMID: 29066410 DOI: 10.1016/j.fct.2017.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 11/30/2022]
Abstract
In a previous study, we presented a new method that uses a large-scale sampling system to probabilistically assess non-monotonic dose-response curves. The statistical plausibility of the characterization was governed by the probability of the dominant category, but gave no information about the specific robustness of the curve. In this paper we propose an improvement to the method by integrating a scoring system based on 4 criteria which can be used to assess the slope robustness of each of the 10,000 sampled curves. The distribution criterion which assesses the number of doses forming a slope, the intensity criterion which assesses the amplitude of the response, and the minimum and maximum confirmation criteria which increase the certainty that the response is present. The probabilistic method was tested on 294 dose-response curves taken from 2 databases and 2 other methodologies currently proposed. A total of 544 dose-response curves have been processed. The developed method offers a concrete and probabilistic characterization of the type of curve analyzed. It evaluates its statistical plausibility and its robustness according to its sampling curves. This method is applicable to all types of data (continuous and discrete) and all experimental curves starting from theoretically 3 doses at least.
Collapse
Affiliation(s)
- Grégoire Chevillotte
- Laboratoire d'Evaluation du Risque Chimique pour le Consommateur (LERCCo), Université Européenne de Bretagne - Université de Bretagne Occidentale (UEB-UBO), UFR Sciences et Techniques, 6 Av. Victor Le Gorgeu, CS93837, 29238 Brest Cedex 3, France.
| | - Audrey Bernard
- Laboratoire d'Evaluation du Risque Chimique pour le Consommateur (LERCCo), Université Européenne de Bretagne - Université de Bretagne Occidentale (UEB-UBO), UFR Sciences et Techniques, 6 Av. Victor Le Gorgeu, CS93837, 29238 Brest Cedex 3, France
| | - Clémence Varret
- Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (Anses), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Pascal Ballet
- Laboratoire de Traitement de l'Information Medicale (LaTIM), INSERM UMR 1101, Université Européenne de Bretagne - Université de Bretagne Occidentale (UEB-UBO), Département informatique - UFR Sciences et Techniques, 20 avenue Le Gorgeu, CS93837, 29238 Brest Cedex 3, France
| | - Laurent Bodin
- Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (Anses), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Alain-Claude Roudot
- Laboratoire d'Evaluation du Risque Chimique pour le Consommateur (LERCCo), Université Européenne de Bretagne - Université de Bretagne Occidentale (UEB-UBO), UFR Sciences et Techniques, 6 Av. Victor Le Gorgeu, CS93837, 29238 Brest Cedex 3, France
| |
Collapse
|
37
|
Calhoun DM, Bucciarelli GM, Kats LB, Zimmer RK, Johnson PTJ. Noxious newts and their natural enemies: Experimental effects of tetrodotoxin exposure on trematode parasites and aquatic macroinvertebrates. Toxicon 2017; 137:120-127. [PMID: 28755852 PMCID: PMC5578716 DOI: 10.1016/j.toxicon.2017.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 01/04/2023]
Abstract
The dermal glands of many amphibian species secrete toxins or other noxious substances as a defense strategy against natural enemies. Newts in particular possess the potent neurotoxin tetrodotoxin (TTX), for which the highest concentrations are found in species within the genus Taricha. Adult Taricha are hypothesized to use TTX as a chemical defense against vertebrate predators such as garter snakes (Thamnophis spp.). However, less is known about how TTX functions to defend aquatic-developing newt larvae against natural enemies, including trematode parasites and aquatic macroinvertebrates. Here we experimentally investigated the effects of exogenous TTX exposure on survivorship of the infectious stages (cercariae) of five species of trematode parasites that infect larval amphibians. Specifically, we used dose-response curves to test the sensitivity of trematode cercariae to progressively increasing concentrations of TTX (0.0 [control], 0.63, 3.13, 6.26, 31.32, and 62.64 nmol L-1) and how this differed among parasite species. We further compared these results to the effects of TTX exposure (0 and 1000 nmolL-1) over 24 h on seven macroinvertebrate taxa commonly found in aquatic habitats with newt larvae. TTX significantly reduced the survivorship of trematode cercariae for all species, but the magnitude of such effects varied among species. Ribeiroia ondatrae - which causes mortality and limb malformations in amphibians - was the least sensitive to TTX, whereas the kidney-encysting Echinostoma trivolvis was the most sensitive. Among the macroinvertebrate taxa, only mayflies (Ephemeroptera) showed a significant increase in mortality following exogenous TTX exposure, despite the use of a concentration 16x higher than the maximum used for trematodes. Our results suggest that maternal investment of TTX into larval newts may provide protection against certain trematode infections and highlight the importance of future work assessing the effects of newt toxicity on both parasite infection success and the palatability of larval newts to invertebrate predators.
Collapse
Affiliation(s)
- Dana M Calhoun
- University of Colorado Boulder, Department of Ecology and Evolutionary Biology, Ramaley N122, CB334, Boulder, CO 80309, USA.
| | - Gary M Bucciarelli
- University of California, Los Angeles, Department of Ecology and Evolutionary Biology, 610 Charles E. Young Dr. East, Los Angeles, CA 90095, USA; University of California, Los Angeles, La Kretz Center for California Conservation Science, Institute of the Environmental Sustainability, La Kretz Hall, Los Angeles, CA 90095, USA.
| | - Lee B Kats
- Pepperdine University, Natural Science Division Pacific Coast Highway, Malibu, CA 90263, USA.
| | - Richard K Zimmer
- University of California, Los Angeles, Department of Ecology and Evolutionary Biology, 610 Charles E. Young Dr. East, Los Angeles, CA 90095, USA; University of Queensland, Moreton Bay Research Station, Centre for Marine Sciences, School of Biological Sciences, Dunwich, Queensland 4183, Australia.
| | - Pieter T J Johnson
- University of Colorado Boulder, Department of Ecology and Evolutionary Biology, Ramaley N122, CB334, Boulder, CO 80309, USA.
| |
Collapse
|
38
|
Sobolewski M, Weiss B, Martin M, Gurven M, Barrett E. Toxicoanthropology: Phthalate exposure in relation to market access in a remote forager-horticulturalist population. Int J Hyg Environ Health 2017; 220:799-809. [PMID: 28392401 PMCID: PMC5512270 DOI: 10.1016/j.ijheh.2017.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 03/04/2017] [Accepted: 03/22/2017] [Indexed: 01/07/2023]
Abstract
Phthalates are a class of plasticizing chemicals produced in high volume and widely found in consumer products. Evidence suggests that phthalates may have non-monotonic effects on reproductive hormone activity. With exposure to phthalates virtually ubiquitous among industrialized populations, identifying unexposed and/or minimally exposed human populations is essential for understanding the effects of low level exposures. Our primary objective was to quantify urinary phthalate metabolite concentrations in the Tsimane', a remote population of Bolivian forager-horticulturalists. Our secondary objectives were to determine if phthalate metabolite concentrations vary in relation to access to market goods; and to explore relationships between phthalate and reproductive hormone metabolite concentrations. Given that phthalate exposure is of particular concern during fetal development, we focused on reproductive age women in the current analyses. Phthalate metabolites were assayed in urine samples from 59 naturally cycling, reproductive age Tsimane' women. Market access was assessed as: (1) distance from residence to the largest nearby town (San Borja, Bolivia) and (2) Spanish fluency. Urinary reproductive hormone metabolite concentrations were quantified using enzyme immunoassays. We fit linear models to examine: (1) predictors of phthalate exposure; and (2) relationships between urinary phthalate and reproductive hormone metabolite concentrations. Eight phthalate metabolites were detectable in at least 75% of samples. Median concentrations were up to an order of magnitude lower than industrialized populations. Proximity to San Borja and Spanish fluency were strong predictors of exposure. In exploratory analyses, the sum of the di-2-ethylhexyl phthalate metabolites (∑DEHP) and Mono-isobutyl phthalate (MiBP) were significantly associated with altered concentrations of urinary reproductive hormone metabolites. Remote, subsistence populations, like the Tsimane', offer a unique window into the health effects of endocrine active compounds because: (1) exposures are low and likely to be first generation; (2) a natural fertility lifestyle allows for exploration of reproductive effects; and (3) ever-increasing globalization will result in increasing exposure in the next decade.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester, 575 Elmwood Ave, Box EHSC, Rochester, NY 14642, United States.
| | - Bernard Weiss
- Department of Environmental Medicine, University of Rochester, 575 Elmwood Ave, Box EHSC, Rochester, NY 14642, United States.
| | - Melanie Martin
- Department of Anthropology, University of California, Santa Barbara, CA 93106-3210, United States; Department of Anthropology, Yale University, 10 Sachem St., New Haven, CT 06511, United States.
| | - Michael Gurven
- Department of Anthropology, University of California, Santa Barbara, CA 93106-3210, United States.
| | - Emily Barrett
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY 14642, United States; Department of Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Piscataway, NJ 08854, United States.
| |
Collapse
|
39
|
Patel S, Brehm E, Gao L, Rattan S, Ziv-Gal A, Flaws JA. Bisphenol A Exposure, Ovarian Follicle Numbers, and Female Sex Steroid Hormone Levels: Results From a CLARITY-BPA Study. Endocrinology 2017; 158:1727-1738. [PMID: 28324068 PMCID: PMC5460936 DOI: 10.1210/en.2016-1887] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022]
Abstract
Bisphenol A (BPA) is an industrial chemical found in thermal receipts and food and beverage containers. Previous studies have shown that BPA can affect the numbers and health of ovarian follicles and the production of sex steroid hormones, but they often did not include a wide range of doses of BPA, used a small sample size, focused on relatively short-term exposures to BPA, and/or did not examine the consequences of chronic BPA exposure on the ovaries or steroid levels. Thus, this study was designed to examine the effects of a wide range of doses of BPA on ovarian morphology and sex steroid hormone production. Specifically, this study tested the hypothesis that prenatal and continuous BPA exposure reduces ovarian follicle numbers and sex steroid hormone levels. To test this hypothesis, rats were dosed with vehicle, ethinyl estradiol (0.05 and 0.5 μg/kg body weight/d), or BPA (2.5, 25, 250, 2500, and 25,000 μg/kg body weight/d) from gestation day 6 until 1 year as part of the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA). Ovaries and sera were collected on postnatal days 1, 21, and 90, and at 6 months and 1 year. The ovaries were subjected to histological evaluation of follicle numbers and the sera were subjected to measurements of estradiol and progesterone. Collectively, these data indicate that BPA exposure at some doses and time points affects ovarian follicle numbers and sex steroid levels, but these effects are different than those observed with ethinyl estradiol exposure and some previous studies on BPA.
Collapse
Affiliation(s)
- Shreya Patel
- Department of Comparative Biosciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61802
| | - Emily Brehm
- Department of Comparative Biosciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61802
| | - Liying Gao
- Department of Comparative Biosciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61802
| | - Saniya Rattan
- Department of Comparative Biosciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61802
| | - Ayelet Ziv-Gal
- School of Food and Nutrition, Massey University, Palmerston North 4442, New Zealand
| | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61802
| |
Collapse
|
40
|
Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, Nadal A, Palanza P, Panzica G, Sargis R, Vandenberg LN, Vom Saal F. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 2017; 68:3-33. [PMID: 27760374 PMCID: PMC5365353 DOI: 10.1016/j.reprotox.2016.10.001] [Citation(s) in RCA: 646] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/04/2016] [Accepted: 10/13/2016] [Indexed: 01/09/2023]
Abstract
The recent epidemics of metabolic diseases, obesity, type 2 diabetes(T2D), liver lipid disorders and metabolic syndrome have largely been attributed to genetic background and changes in diet, exercise and aging. However, there is now considerable evidence that other environmental factors may contribute to the rapid increase in the incidence of these metabolic diseases. This review will examine changes to the incidence of obesity, T2D and non-alcoholic fatty liver disease (NAFLD), the contribution of genetics to these disorders and describe the role of the endocrine system in these metabolic disorders. It will then specifically focus on the role of endocrine disrupting chemicals (EDCs) in the etiology of obesity, T2D and NAFLD while finally integrating the information on EDCs on multiple metabolic disorders that could lead to metabolic syndrome. We will specifically examine evidence linking EDC exposures during critical periods of development with metabolic diseases that manifest later in life and across generations.
Collapse
Affiliation(s)
- Jerrold J Heindel
- National Institute of Environmental Health Sciences, Division of Extramural Research and Training Research Triangle Park, NC, USA.
| | - Bruce Blumberg
- University of California, Department of Developmental and Cell Biology, Irvine CA, USA
| | - Mathew Cave
- University of Louisville, Division of Gastroenterology, Hepatology and Nutrition, Louisville KY, USA
| | | | | | - Michelle A Mendez
- University of North Carolina at Chapel Hill, School of Public Health, Chapel Hill NC, USA
| | - Angel Nadal
- Institute of Bioengineering and CIBERDEM, Miguel Hernandez University of Elche, Elche, Alicante, Spain
| | - Paola Palanza
- University of Parma, Department of Neurosciences, Parma, Italy
| | - Giancarlo Panzica
- University of Turin, Department of Neuroscience and Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy
| | - Robert Sargis
- University of Chicago, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine Chicago, IL, USA
| | - Laura N Vandenberg
- University of Massachusetts, Department of Environmental Health Sciences, School of Public Health & Health Sciences, Amherst, MA, USA
| | - Frederick Vom Saal
- University of Missouri, Department of Biological Sciences, Columbia, MO, USA
| |
Collapse
|
41
|
Raju J, Kocmarek A, Roberts J, Taylor M, Patry D, Chomyshyn E, Caldwell D, Cooke G, Mehta R. Lack of adverse health effects following 30-weeks of dietary exposure to acrylamide at low doses in male F344 rats. Toxicol Rep 2016; 3:673-678. [PMID: 28959591 PMCID: PMC5616078 DOI: 10.1016/j.toxrep.2016.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 12/20/2022] Open
Abstract
Understanding the health hazards following exposure to food-borne acrylamide, especially at low levels typified by human diets, is an ongoing food safety issue. We recently published results from a study that aimed to understand the effects of acrylamide short-term exposure at doses known to cause tumors in rodents, demonstrating that a number of key toxicological end points were altered by acrylamide exposure. Additionally, we reported that at much lower doses for 30 weeks of exposure, dietary acrylamide was 'not a complete carcinogen' to the colon in an organ-specific rodent carcinogenesis study but acted as a co-carcinogen along with azoxymethane (AOM, a colon-specific carcinogen). Here, we present toxicological data from a sub-set of this long-term exposure study from animals that received saline (instead of AOM). Briefly, male F344 rats were randomized to receive acrylamide at 0.5, 1.0 and 2.0 mg/kg diet (∼0.02, 0.04, and 0.09 mg/kg BW/day, respectively) or no acrylamide (control), for 30 weeks; all rats were then euthanized and their tissues harvested and processed for toxicological evaluation. We report that at the doses tested, acrylamide did not cause any changes in general well-being, body weight or food intake. Similarly, acrylamide did not cause any biologically relevant change in parameters associated with immunophenotyping, serum biochemistry or hematology. Histopathology assessment of tissues showed no changes except in the testis, where non-specific mild lesions were observed in all the groups, inclusive of the controls. No neuropathological effects of acrylamide were observed in the brain and nerve tissues. Together, these results suggest that acrylamide administered to rats through the diet at low doses for 30 weeks did not cause any toxicologically relevant changes. Given that the doses of acrylamide in the current study are low and are comparable to human dietary exposure, this null-effect study provides data that contribute to the body of scientific evidence relevant to understanding the health effects of acrylamide.
Collapse
Affiliation(s)
- Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, Canada
| | - Andrea Kocmarek
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, Canada
| | - Jennifer Roberts
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, Canada
| | - Marnie Taylor
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, Canada
| | - Dominique Patry
- Scientific Services Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, Canada
| | - Emily Chomyshyn
- Scientific Services Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, Canada
| | - Don Caldwell
- Scientific Services Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, Canada
| | - Gerard Cooke
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, Canada
| | - Rekha Mehta
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
42
|
Trasande L, Vandenberg LN, Bourguignon JP, Myers JP, Slama R, Vom Saal F, Zoeller RT. Peer-reviewed and unbiased research, rather than 'sound science', should be used to evaluate endocrine-disrupting chemicals. J Epidemiol Community Health 2016; 70:1051-1056. [PMID: 27417427 DOI: 10.1136/jech-2016-207841] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022]
Abstract
Evidence increasingly confirms that synthetic chemicals disrupt the endocrine system and contribute to disease and disability across the lifespan. Despite a United Nations Environment Programme/WHO report affirmed by over 100 countries at the Fourth International Conference on Chemicals Management, 'manufactured doubt' continues to be cast as a cloud over rigorous, peer-reviewed and independently funded scientific data. This study describes the sources of doubt and their social costs, and suggested courses of action by policymakers to prevent disease and disability. The problem is largely based on the available data, which are all too limited. Rigorous testing programmes should not simply focus on oestrogen, androgen and thyroid. Tests should have proper statistical power. 'Good laboratory practice' (GLP) hardly represents a proper or even gold standard for laboratory studies of endocrine disruption. Studies should be evaluated with regard to the contamination of negative controls, responsiveness to positive controls and dissection techniques. Flaws in many GLP studies have been identified, yet regulatory agencies rely on these flawed studies. Peer-reviewed and unbiased research, rather than 'sound science', should be used to evaluate endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA Department of Environmental Medicine and Population Health, New York University School of Medicine, New York, New York, USA Department of Population Health, New York University School of Medicine, New York, New York, USA NYU Wagner School of Public Service, New York, New York, USA Department of Nutrition, Food & Public Health, NYU Steinhardt School of Culture, Education and Human Development, New York, New York, USA NYU Global Institute of Public Health, New York, New York, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| | - Jean-Pierre Bourguignon
- Pediatric Endocrinology, CHU Liège and Neuroendocrinology Unit, GIGA Neurosciences, Universite de Liege, Liège, Belgium
| | | | - Remy Slama
- Inserm, CNRS and Univ. Grenoble Alpes joint research center (IAB), Team of Environmental Epidemiology, Grenoble, France
| | - Frederick Vom Saal
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | | |
Collapse
|
43
|
Allen JG, Gale S, Zoeller RT, Spengler JD, Birnbaum L, McNeely E. PBDE flame retardants, thyroid disease, and menopausal status in U.S. women. Environ Health 2016; 15:60. [PMID: 27215290 PMCID: PMC4877989 DOI: 10.1186/s12940-016-0141-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/22/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Women have elevated rates of thyroid disease compared to men. Environmental toxicants have been implicated as contributors to this dimorphism, including polybrominated diphenyl ethers (PBDEs), flame retardant chemicals that disrupt thyroid hormone action. PBDEs have also been implicated in the disruption of estrogenic activity, and estrogen levels regulate thyroid hormones. Post-menopausal women may therefore be particularly vulnerable to PBDE induced thyroid effects, given low estrogen reserves. The objective of this study was to test for an association between serum PBDE concentrations and thyroid disease in women from the United States (U.S.), stratified by menopause status. METHODS Serum PBDE concentrations (BDEs 47, 99, 100 and 153) from the National Health and Examination Survey (NHANES) and reports on thyroid problems were available in the NHANES 2003-2004 cycle. Odds ratios (ORs) were calculated using multivariate logistic regression models accounting for population-weighted survey techniques and controlling for age, body mass index (BMI), education, smoking, alcohol consumption and thyroid medication. Menopause status was obtained by self-reported absence of menstruation in the previous 12 months and declared menopause. RESULTS Women in the highest quartile of serum concentrations for BDEs 47, 99, and 100 had increased odds of currently having thyroid disease (ORs: 1.5, 1.8, 1.5, respectively) compared to the reference group (1st and 2nd quartiles combined); stronger associations were observed when the analysis was restricted to postmenopausal women (ORs: 2.2, 3.6, 2.0, respectively). CONCLUSION Exposure to BDEs 47, 99, and 100 is associated with thyroid disease in a national sample of U.S. women, with greater effects observed post-menopause, suggesting that the disruption of thyroid signaling by PBDEs may be enhanced by the altered estrogen levels during menopause.
Collapse
Affiliation(s)
- Joseph G Allen
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 401 Park Drive, Boston, MA, 02215, USA.
| | - Sara Gale
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 401 Park Drive, Boston, MA, 02215, USA
| | | | - John D Spengler
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 401 Park Drive, Boston, MA, 02215, USA
| | - Linda Birnbaum
- National Cancer Institute/NIEHS, Research Triangle Park, NC, USA
| | - Eileen McNeely
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 401 Park Drive, Boston, MA, 02215, USA
| |
Collapse
|
44
|
Beausoleil C, Beronius A, Bodin L, Bokkers B, Boon P, Burger M, Cao Y, De Wit L, Fischer A, Hanberg A, Leander K, Litens‐Karlsson S, Rousselle C, Slob W, Varret C, Wolterink G, Zilliacus J. Review of non‐monotonic dose‐responses of substances for human risk assessment. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-1027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- C. Beausoleil
- French Agency for Food, Environment and Occupational Health & Safety (ANSES)
| | - A. Beronius
- Institute of Environmental Medicine, Karolinska Institutet (IMM)
| | - L. Bodin
- French Agency for Food, Environment and Occupational Health & Safety (ANSES)
| | - B.G.H. Bokkers
- National Institute for Public Health and the Environment (RIVM)
| | - P.E. Boon
- National Institute for Public Health and the Environment (RIVM)
| | - M. Burger
- Austrian Agency for Health and Food Safety GmhH (AGES)
| | - Y. Cao
- Institute of Environmental Medicine, Karolinska Institutet (IMM)
| | - L. De Wit
- National Institute for Public Health and the Environment (RIVM)
| | - A. Fischer
- Austrian Agency for Health and Food Safety GmhH (AGES)
| | - A. Hanberg
- Institute of Environmental Medicine, Karolinska Institutet (IMM)
| | - K. Leander
- Institute of Environmental Medicine, Karolinska Institutet (IMM)
| | | | - C. Rousselle
- French Agency for Food, Environment and Occupational Health & Safety (ANSES)
| | - W. Slob
- National Institute for Public Health and the Environment (RIVM)
| | - C. Varret
- French Agency for Food, Environment and Occupational Health & Safety (ANSES)
| | - G. Wolterink
- National Institute for Public Health and the Environment (RIVM)
| | - J. Zilliacus
- Institute of Environmental Medicine, Karolinska Institutet (IMM)
| |
Collapse
|
45
|
Zhang Y, Xiong J, Mo J, Gong M, Cao J. Understanding and controlling airborne organic compounds in the indoor environment: mass transfer analysis and applications. INDOOR AIR 2016; 26:39-60. [PMID: 25740682 DOI: 10.1111/ina.12198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/28/2015] [Indexed: 06/04/2023]
Abstract
Mass transfer is key to understanding and controlling indoor airborne organic chemical contaminants (e.g., VVOCs, VOCs, and SVOCs). In this study, we first introduce the fundamentals of mass transfer and then present a series of representative works from the past two decades, focusing on the most recent years. These works cover: (i) predicting and controlling emissions from indoor sources, (ii) determining concentrations of indoor air pollutants, (iii) estimating dermal exposure for some indoor gas-phase SVOCs, and (iv) optimizing air-purifying approaches. The mass transfer analysis spans the micro-, meso-, and macroscales and includes normal mass transfer modeling, inverse problem solving, and dimensionless analysis. These representative works have reported some novel approaches to mass transfer. Additionally, new dimensionless parameters such as the Little number and the normalized volume of clean air being completely cleaned in a given time period were proposed to better describe the general process characteristics in emissions and control of airborne organic compounds in the indoor environment. Finally, important problems that need further study are presented, reflecting the authors' perspective on the research opportunities in this area.
Collapse
Affiliation(s)
- Y Zhang
- Institute of Built Environment, Tsinghua University, Beijing, China
| | - J Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
| | - J Mo
- Institute of Built Environment, Tsinghua University, Beijing, China
| | - M Gong
- Institute of Built Environment, Tsinghua University, Beijing, China
| | - J Cao
- Institute of Built Environment, Tsinghua University, Beijing, China
| |
Collapse
|
46
|
Teitelbaum SL, Li Q, Lambertini L, Belpoggi F, Manservisi F, Falcioni L, Bua L, Silva MJ, Ye X, Calafat AM, Chen J. Paired Serum and Urine Concentrations of Biomarkers of Diethyl Phthalate, Methyl Paraben, and Triclosan in Rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:39-45. [PMID: 26047088 PMCID: PMC4710607 DOI: 10.1289/ehp.1409586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/03/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Exposure to environmental chemicals, including phthalates and phenols such as parabens and triclosan, is ubiquitous within the U.S. general population. OBJECTIVE This proof-of-concept rodent study examined the relationship between oral doses of three widely used personal care product ingredients [diethyl phthalate (DEP), methyl paraben (MPB), and triclosan] and urine and serum concentrations of their respective biomarkers. METHODS Using female Sprague-Dawley rats, we carried out two rounds of experiments with oral gavage doses selected in accordance with no observed adverse effect levels (NOAELs) derived from previous studies: 1,735 (DEP), 1,050 (MPB), 50 (triclosan) mg/kg/day. Administered doses ranged from 0.005 to 173 mg/kg/day, 10-100,000 times below the NOAEL for each chemical. Controls for the MPB and triclosan experiments were animals treated with olive oil (vehicle) only; controls for the DEP serum experiments were animals treated with the lowest doses of MPB and triclosan. Doses were administered for 5 days with five rats in each treatment group. Urine and blood serum, collected on the last day of exposure, were analyzed for biomarkers. Relationships between oral dose and biomarker concentrations were assessed using linear regression. RESULTS Biomarkers were detected in all control urine samples at parts-per-billion levels, suggesting a low endemic environmental exposure to the three chemicals that could not be controlled even with all of the precautionary measures undertaken. Among the exposed animals, urinary concentrations of all three biomarkers were orders of magnitude higher than those in serum. A consistently positive linear relationship between oral dose and urinary concentration was observed (R2 > 0.80); this relationship was inconsistent in serum. CONCLUSIONS Our study highlights the importance of carefully considering the oral dose used in animal experiments and provides useful information in selecting doses for future studies. CITATION Teitelbaum SL, Li Q, Lambertini L, Belpoggi F, Manservisi F, Falcioni L, Bua L, Silva MJ, Ye X, Calafat AM, Chen J. 2016. Paired serum and urine concentrations of biomarkers of diethyl phthalate, methyl paraben, and triclosan in rats. Environ Health Perspect 124:39-45; http://dx.doi.org/10.1289/ehp.1409586.
Collapse
Affiliation(s)
- Susan L. Teitelbaum
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Address correspondence to S.L. Teitelbaum, Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, Box 1057, New York, NY 10029 USA. Telephone: (212) 824-7105. E-mail:
| | - Qian Li
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luca Lambertini
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Fabiana Manservisi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Laura Falcioni
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Luciano Bua
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Manori J. Silva
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xiaoyun Ye
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Antonia M. Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jia Chen
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
47
|
Marshall JD, Apte JS, Coggins JS, Goodkind AL. Blue Skies Bluer? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13929-36. [PMID: 26535809 DOI: 10.1021/acs.est.5b03154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
UNLABELLED The largest U.S. environmental health risk is cardiopulmonary mortality from ambient PM2.5. The concentration-response (C-R) for ambient PM2.5 in the U.S. is generally assumed to be linear: from any initial baseline, a given concentration reduction would yield the same improvement in health risk. Recent evidence points to the perplexing possibility that the PM2.5 C-R for cardiopulmonary mortality and some other major endpoints might be supralinear: a given concentration reduction would yield greater improvements in health risk as the initial baseline becomes cleaner. We explore the implications of supralinearity for air policy, emphasizing U.S. CONDITIONS If C-R is supralinear, an economically efficient PM2.5 target may be substantially more stringent than under current standards. Also, if a goal of air policy is to achieve the greatest health improvement per unit of PM2.5 reduction, the optimal policy might call for greater emission reductions in already-clean locales-making "blue skies bluer"-which may be at odds with environmental equity goals. Regardless of whether the C-R is linear or supralinear, the health benefits of attaining U.S. PM2.5 levels well below the current standard would be large. For the supralinear C-R considered here, attaining the current U.S. EPA standard, 12 μg m(-3), would avert only ~17% (if C-R is linear: ∼ 25%) of the total annual cardiopulmonary mortality attributable to PM2.5.
Collapse
Affiliation(s)
- Julian D Marshall
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Joshua S Apte
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Jay S Coggins
- Department of Applied Economics, University of Minnesota , St. Paul, Minnesota 55108, United States
| | - Andrew L Goodkind
- Department of Applied Economics, University of Minnesota , St. Paul, Minnesota 55108, United States
| |
Collapse
|
48
|
Beronius A, Vandenberg LN. Using systematic reviews for hazard and risk assessment of endocrine disrupting chemicals. Rev Endocr Metab Disord 2015; 16:273-87. [PMID: 26847432 PMCID: PMC4803521 DOI: 10.1007/s11154-016-9334-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The possibility that endocrine disrupting chemicals (EDCs) in our environment contribute to hormonally related effects and diseases observed in human and wildlife populations has caused concern among decision makers and researchers alike. EDCs challenge principles traditionally applied in chemical risk assessment and the identification and assessment of these compounds has been a much debated topic during the last decade. State of the science reports and risk assessments of potential EDCs have been criticized for not using systematic and transparent approaches in the evaluation of evidence. In the fields of medicine and health care, systematic review methodologies have been developed and used to enable objectivity and transparency in the evaluation of scientific evidence for decision making. Lately, such approaches have also been promoted for use in the environmental health sciences and risk assessment of chemicals. Systematic review approaches could provide a tool for improving the evaluation of evidence for decision making regarding EDCs, e.g. by enabling systematic and transparent use of academic research data in this process. In this review we discuss the advantages and challenges of applying systematic review methodology in the identification and assessment of EDCs.
Collapse
Affiliation(s)
- Anna Beronius
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, University of Massachusetts Amherst School of Public Health & Health Sciences, Amherst, MA, USA
| |
Collapse
|
49
|
Lam T, Williams PL, Lee MM, Korrick SA, Birnbaum LS, Burns JS, Sergeyev O, Revich B, Altshul LM, Patterson DG, Hauser R. Prepubertal Serum Concentrations of Organochlorine Pesticides and Age at Sexual Maturity in Russian Boys. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:1216-21. [PMID: 26009253 PMCID: PMC4629743 DOI: 10.1289/ehp.1409022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 05/19/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Few human studies have evaluated the impact of childhood exposure to organochlorine pesticides (OCP) on pubertal development. OBJECTIVE We evaluated associations of serum OCP concentrations [hexachlorobenzene (HCB), β-hexachlorocyclohexane (βHCH), and p,p-dichlorodiphenyldichloroethylene (p,p´-DDE)] with age at attainment of sexual maturity among boys. METHODS From 2003 through 2005, 350 8- to 9-year-old boys from Chapaevsk, Russia, with measured OCPs were enrolled and followed annually for 8 years. We used multivariable interval-censored models to evaluate associations of OCPs (quartiles) with three physician-assessed measures of sexual maturity: Tanner stage 5 for genitalia growth, Tanner stage 5 for pubic hair growth, or testicular volume (TV) ≥ 20 mL in either testis. RESULTS In adjusted models, boys with higher HCB concentrations achieved sexual maturity reflected by TV ≥ 20 mL a mean of 3.1 months (95% CI: -1.7, 7.8), 5.3 months (95% CI: 0.6, 10.1), and 5.0 months (95% CI: 0.2, 9.8) later for quartiles Q2, Q3, and Q4, respectively, compared with Q1 (p trend = 0.04). Tanner stage 5 for genitalia growth was attained a mean of 2.2 months (95% CI: -3.1, 7.5), 5.7 months (95% CI: 0.4, 11.0), and 3.7 months (95% CI: -1.7, 9.1) later for quartiles Q2, Q3, and Q4, respectively, of βHCH compared with Q1 (p trend = 0.09). Tanner stage 5 for pubic hair growth occurred 6-9 months later on average for boys in the highest versus lowest quartile for HCB (p trend < 0.001), βHCH (trend p = 0.01), and p,p´-DDE (p trend = 0.04). No associations were observed between p,p´-DDE and Tanner stage 5 for genitalia growth or TV ≥ 20 mL. CONCLUSIONS AND RELEVANCE Higher prepubertal serum HCB and βHCH concentrations were associated with a later age at attainment of sexual maturity. Only the highest quartile of serum p,p´-DDE was associated with later pubic hair maturation. CITATION Lam T, Williams PL, Lee MM, Korrick SA, Birnbaum LS, Burns JS, Sergeyev O, Revich B, Altshul LM, Patterson DG Jr, Hauser R. 2015. Prepubertal serum concentrations of organochlorine pesticides and age at sexual maturity in Russian boys. Environ Health Perspect 123:1216-1221; http://dx.doi.org/10.1289/ehp.1409022.
Collapse
Affiliation(s)
- Thuy Lam
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|