1
|
Nucera S, Serra M, Caminiti R, Ruga S, Passacatini LC, Macrì R, Scarano F, Maiuolo J, Bulotta R, Mollace R, Bosco F, Guarnieri L, Oppedisano F, Ilari S, Muscoli C, Palma E, Mollace V. Non-essential heavy metal effects in cardiovascular diseases: an overview of systematic reviews. Front Cardiovasc Med 2024; 11:1332339. [PMID: 38322770 PMCID: PMC10844381 DOI: 10.3389/fcvm.2024.1332339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Introduction Cardiovascular diseases (CVDs) are the most important cause of premature death and disability worldwide. Environmental degradation and cardiovascular diseases are two keys to health challenges, characterized by a constant evolution in an industrialized world that exploits natural resources regardless of the consequences for health. The etiological risk factors of CVDs are widely known and include dyslipidemia, obesity, diabetes, and chronic cigarette consumption. However, one component that is often underestimated is exposure to heavy metals. The biological perspective explains that different metals play different roles. They are therefore classified into essential heavy metals, which are present in organisms where they perform important vital functions, especially in various physiological processes, or non-essential heavy metals, with a no biological role but, nonetheless, remain in the environment in which they are absorbed. Although both types of metal ions are many times chemically similar and can bind to the same biological ligands, the attention given today to nonessential metals in several eukaryotic species is starting to raise strong concerns due to an exponential increase in their concentrations. The aim of this systematic review was to assess possible correlations between exposure to nonessential heavy metals and increased incidence of cardiovascular disease, reporting the results of studies published in the last 5 years through March 2023. Methods The studies includes reviews retrieved from PubMed, Medline, Embase, and Web of Science databases, in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement and following the PICO (Population Intervention Comparison Outcome Population) framework. Results Eight reviews, including a total of 153 studies, were identified. Seven of these review enlighted the association between CVDs and non-essential heavy metals chronic exposure. Discussion It is evident that exposure to heavy metals represent a risk factor for CVDs onset. However, further studies are needed to better understand the effects caused by these metals.
Collapse
Affiliation(s)
- Saverio Nucera
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rosamaria Caminiti
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | | | - Roberta Macrì
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Jessica Maiuolo
- Department of Health Sciences, Laboratory of Pharmaceutical Biology, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rosamaria Bulotta
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rocco Mollace
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | - Francesca Bosco
- Science of Health Department, Section of Pharmacology, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Lorenza Guarnieri
- Science of Health Department, Section of Pharmacology, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Sara Ilari
- Physiology and Pharmacology of Pain, IRCCS San Raffaele Roma, Rome, Italy
| | - Carolina Muscoli
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Physiology and Pharmacology of Pain, IRCCS San Raffaele Roma, Rome, Italy
| | - Ernesto Palma
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Renato Dulbecco Institute, Catanzaro, Italy
| |
Collapse
|
2
|
Naija A, Yalcin HC. Evaluation of cadmium and mercury on cardiovascular and neurological systems: Effects on humans and fish. Toxicol Rep 2023; 10:498-508. [PMID: 37396852 PMCID: PMC10313869 DOI: 10.1016/j.toxrep.2023.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 07/04/2023] Open
Abstract
Chemicals are at the top of public health concerns and metals have received much attention in terms of toxicological studies. Cadmium (Cd) and mercury (Hg) are among the most toxic heavy metals and are widely distributed in the environment. They are considered important factors involved in several organ disturbances. Heart and brain tissues are not among the first exposure sites to Cd and Hg but they are directly affected and may manifest intoxication reactions leading to death. Many cases of human intoxication with Cd and Hg showed that these metals have potential cardiotoxic and neurotoxic effects. Human exposure to heavy metals is through fish consumption which is considered as an excellent source of human nutrients. In the current review, we will summarize the most known cases of human intoxication with Cd and Hg, highlight their toxic effects on fish, and investigate the common signal pathways of both Cd and Hg to affect heart and brain tissues. Also, we will present the most common biomarkers used in the assessment of cardiotoxicity and neurotoxicity using Zebrafish model.
Collapse
|
3
|
Karachaliou C, Sgourou A, Kakkos S, Kalavrouziotis I. Arsenic exposure promotes the emergence of cardiovascular diseases. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:467-486. [PMID: 34253004 DOI: 10.1515/reveh-2021-0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
A large number of studies conducted in the past decade 2010-2020 refer to the impact of arsenic (As) exposure on cardiovascular risk factors. The arsenic effect on humans is complex and mainly depends on the varying individual susceptibilities, its numerous toxic expressions and the variation in arsenic metabolism between individuals. In this review we present relevant data from studies which document the association of arsenic exposure with various biomarkers, the effect of several genome polymorphisms on arsenic methylation and the underling molecular mechanisms influencing the cardiovascular pathology. The corresponding results provide strong evidence that high and moderate-high As intake induce oxidative stress, inflammation and vessel endothelial dysfunction that are associated with increased risk for cardiovascular diseases (CVDs) and in particular hypertension, myocardial infarction, carotid intima-media thickness and stroke, ventricular arrhythmias and peripheral arterial disease. In addition, As exposure during pregnancy implies risks for blood pressure abnormalities among infants and increased mortality rates from acute myocardial infarction during early adulthood. Low water As concentrations are associated with increased systolic, diastolic and pulse pressure, coronary heart disease and incident stroke. For very low As concentrations the relevant studies are few. They predict a risk for myocardial infarction, stroke and ischemic stroke and incident CVD, but they are not in agreement regarding the risk magnitude.
Collapse
Affiliation(s)
- Christiana Karachaliou
- School of Science and Technology, Lab. of Sustainable Waste Technology Management, Hellenic Open University, Patras, Greece
| | - Argyro Sgourou
- School of Science and Technology, Biology Lab, Hellenic Open University, Patras, Greece
| | - Stavros Kakkos
- Department of Vascular Surgery, Medical School of Patras, University of Patras, Patras, Greece
| | - Ioannis Kalavrouziotis
- School of Science and Technology, Lab. of Sustainable Waste Technology Management, Hellenic Open University, Patras, Greece
| |
Collapse
|
4
|
Avery CL, Howard AG, Ballou AF, Buchanan VL, Collins JM, Downie CG, Engel SM, Graff M, Highland HM, Lee MP, Lilly AG, Lu K, Rager JE, Staley BS, North KE, Gordon-Larsen P. Strengthening Causal Inference in Exposomics Research: Application of Genetic Data and Methods. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:55001. [PMID: 35533073 PMCID: PMC9084332 DOI: 10.1289/ehp9098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 05/11/2023]
Abstract
Advances in technologies to measure a broad set of exposures have led to a range of exposome research efforts. Yet, these efforts have insufficiently integrated methods that incorporate genetic data to strengthen causal inference, despite evidence that many exposome-associated phenotypes are heritable. Objective: We demonstrate how integration of methods and study designs that incorporate genetic data can strengthen causal inference in exposomics research by helping address six challenges: reverse causation and unmeasured confounding, comprehensive examination of phenotypic effects, low efficiency, replication, multilevel data integration, and characterization of tissue-specific effects. Examples are drawn from studies of biomarkers and health behaviors, exposure domains where the causal inference methods we describe are most often applied. Discussion: Technological, computational, and statistical advances in genotyping, imputation, and analysis, combined with broad data sharing and cross-study collaborations, offer multiple opportunities to strengthen causal inference in exposomics research. Full application of these opportunities will require an expanded understanding of genetic variants that predict exposome phenotypes as well as an appreciation that the utility of genetic variants for causal inference will vary by exposure and may depend on large sample sizes. However, several of these challenges can be addressed through international scientific collaborations that prioritize data sharing. Ultimately, we anticipate that efforts to better integrate methods that incorporate genetic data will extend the reach of exposomics research by helping address the challenges of comprehensively measuring the exposome and its health effects across studies, the life course, and in varied contexts and diverse populations. https://doi.org/10.1289/EHP9098.
Collapse
Affiliation(s)
- Christy L Avery
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Population Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Annie Green Howard
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Population Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anna F Ballou
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Victoria L Buchanan
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason M Collins
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carolina G Downie
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Heather M Highland
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Moa P Lee
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Adam G Lilly
- Carolina Population Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Sociology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brooke S Staley
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Population Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Abstract
Arsenic is a ubiquitously dispersed metalloid that has been implicated as the cause of various adverse health effects. Human exposure to arsenic primarily occurs through contaminated drinking water and dietary intake of rice and grains, posing a great public health risk to millions of people worldwide. High levels of arsenic have been positively associated with incident cardiovascular disease (CVD). In the last decade, a growing body of evidence has established a role for low-to-moderate arsenic exposure in CVD risk as well. The molecular mechanism of action by which arsenic induces cardiovascular toxicity is not completely understood, but epigenetic changes, increased platelet aggregation, and increased oxidative stress have all been implicated. Presently, there is a substantial amount of retrospective and prospective cohort studies supporting the role of arsenic in CVD, although randomized controlled trials have yet to be conducted. In this review, we have sought to summarize the existing high-quality evidence elucidating arsenic's role in CVD development and to evaluate the need for future research.
Collapse
Affiliation(s)
- Mariya Kononenko
- From the Department of Medicine, ICAHN School of Medicine/Mt. Sinai Hospital Center, New York, NY
| | - William H Frishman
- Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| |
Collapse
|
6
|
Roggenbeck BA, Bull Chief LK, Walk ST. Antibiotic perturbation of the murine gut microbiome introduces inter-individual susceptibility to arsenic. Toxicology 2021; 456:152798. [PMID: 33901602 PMCID: PMC8204511 DOI: 10.1016/j.tox.2021.152798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/20/2021] [Indexed: 10/29/2022]
Abstract
Arsenic is a Group 1 human carcinogen and at least 200 million people around the world are exposed to unsafe levels of arsenic, predominantly through contaminated drinking water. Arsenic has also been used for hundreds, if not thousands, of years as an intentional poison due to its odorless/tasteless properties and the general lack of technology required to identify it. Both acute and chronic arsenic-related health outcomes are highly variable among similarly exposed individuals even after controlling for important factors, like host genetics, making the mechanisms underlying this often-made epidemiologic observation difficult to experimentally address and not fully understood. Here, we describe an experimental model of arsenic exposure in C57BL/6 mice that recapitulates key aspects of inter-individuality in disease observed in humans. We show that co-administration of the antibiotic, cefoperazone, and high-level arsenic (100 ppm, inorganic sodium arsenate) results in incomplete mortality with a ratio of 60 % lethality to 40 % survival, and that survival, at least in part, depends not only on an intact microbiome but also a regulated response involved with water transport. This work provides an experimental framework for identifying critical pathways involved in generating inter-individual variability in disease outcome following arsenic exposure.
Collapse
Affiliation(s)
- Barbara A Roggenbeck
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, United States
| | - Lila K Bull Chief
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, United States
| | - Seth T Walk
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, United States.
| |
Collapse
|
7
|
Delgado DA, Chernoff M, Huang L, Tong L, Chen L, Jasmine F, Shinkle J, Cole SA, Haack K, Kent J, Umans J, Best LG, Nelson H, Griend DV, Graziano J, Kibriya MG, Navas-Acien A, Karagas MR, Ahsan H, Pierce BL. Rare, Protein-Altering Variants in AS3MT and Arsenic Metabolism Efficiency: A Multi-Population Association Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:47007. [PMID: 33826413 PMCID: PMC8041273 DOI: 10.1289/ehp8152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Common genetic variation in the arsenic methyltransferase (AS3MT) gene region is known to be associated with arsenic metabolism efficiency (AME), measured as the percentage of dimethylarsinic acid (DMA%) in the urine. Rare, protein-altering variants in AS3MT could have even larger effects on AME, but their contribution to AME has not been investigated. OBJECTIVES We estimated the impact of rare, protein-coding variation in AS3MT on AME using a multi-population approach to facilitate the discovery of population-specific and shared causal rare variants. METHODS We generated targeted DNA sequencing data for the coding regions of AS3MT for three arsenic-exposed cohorts with existing data on arsenic species measured in urine: Health Effects of Arsenic Longitudinal Study (HEALS, n = 2,434 ), Strong Heart Study (SHS, n = 868 ), and New Hampshire Skin Cancer Study (NHSCS, n = 666 ). We assessed the collective effects of rare (allele frequency < 1 % ), protein-altering AS3MT variants on DMA%, using multiple approaches, including a test of the association between rare allele carrier status (yes/no) and DMA% using linear regression (adjusted for common variants in 10q24.32 region, age, sex, and population structure). RESULTS We identified 23 carriers of rare-protein-altering AS3MT variant across all cohorts (13 in HEALS and 5 in both SHS and NHSCS), including 6 carriers of predicted loss-of-function variants. DMA% was 6-10% lower in carriers compared with noncarriers in HEALS [β = - 9.4 (95% CI: - 13.9 , - 4.8 )], SHS [β = - 6.9 (95% CI: - 13.6 , - 0.2 )], and NHSCS [β = - 8.7 (95% CI: - 15.6 , - 2.2 )]. In meta-analyses across cohorts, DMA% was 8.7% lower in carriers [β = - 8.7 (95% CI: - 11.9 , - 5.4 )]. DISCUSSION Rare, protein-altering variants in AS3MT were associated with lower mean DMA%, an indicator of reduced AME. Although a small percentage of the population (0.5-0.7%) carry these variants, they are associated with a 6-10% decrease in DMA% that is consistent across multiple ancestral and environmental backgrounds. https://doi.org/10.1289/EHP8152.
Collapse
Affiliation(s)
- Dayana A. Delgado
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Meytal Chernoff
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Lei Huang
- Center for Research Informatics, UChicago, Chicago, Illinois, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Lin Chen
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Shelley A. Cole
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Karin Haack
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jack Kent
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jason Umans
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC, USA
| | - Lyle G. Best
- Missouri Breaks Industries Research, Inc., Timber Lake, South Dakota, USA
| | - Heather Nelson
- School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Donald Vander Griend
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joseph Graziano
- Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Muhammad G. Kibriya
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Ana Navas-Acien
- Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
- Department of Human Genetics, UChicago, Chicago, Illinois, USA
- Comprehensive Cancer Center, UChicago, Chicago, Illinois, USA
- Department of Medicine, UChicago, Chicago, Illinois, USA
| | - Brandon L. Pierce
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
- Department of Human Genetics, UChicago, Chicago, Illinois, USA
- Comprehensive Cancer Center, UChicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Coryell M, Roggenbeck BA, Walk ST. The Human Gut Microbiome's Influence on Arsenic Toxicity. CURRENT PHARMACOLOGY REPORTS 2019; 5:491-504. [PMID: 31929964 PMCID: PMC6953987 DOI: 10.1007/s40495-019-00206-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Arsenic exposure is a public health concern of global proportions with a high degree of interindividual variability in pathologic outcomes. Arsenic metabolism is a key factor underlying toxicity, and the primary purpose of this review is to summarize recent discoveries concerning the influence of the human gut microbiome on the metabolism, bioavailability, and toxicity of ingested arsenic. We review and discuss the current state of knowledge along with relevant methodologies for studying these phenomena. RECENT FINDINGS Bacteria in the human gut can biochemically transform arsenic-containing compounds (arsenicals). Recent publications utilizing culture-based approaches combined with analytical biochemistry and molecular genetics have helped identify several arsenical transformations by bacteria that are at least possible in the human gut and are likely to mediate arsenic toxicity to the host. Other studies that directly incubate stool samples in vitro also demonstrate the gut microbiome's potential to alter arsenic speciation and bioavailability. In vivo disruption or elimination of the microbiome has been shown to influence toxicity and body burden of arsenic through altered excretion and biotransformation of arsenicals. Currently, few clinical or epidemiological studies have investigated relationships between the gut microbiome and arsenic-related health outcomes in humans, although current evidence provides strong rationale for this research in the future. SUMMARY The human gut microbiome can metabolize arsenic and influence arsenical oxidation state, methylation status, thiolation status, bioavailability, and excretion. We discuss the strength of current evidence and propose that the microbiome be considered in future epidemiologic and toxicologic studies of human arsenic exposure.
Collapse
Affiliation(s)
- Michael Coryell
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, MT 59717, USA
| | - Barbara A. Roggenbeck
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, MT 59717, USA
| | - Seth T. Walk
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, MT 59717, USA
| |
Collapse
|
9
|
Navas-Acien A, Spratlen MJ, Abuawad A, LoIacono NJ, Bozack AK, Gamble MV. Early-Life Arsenic Exposure, Nutritional Status, and Adult Diabetes Risk. Curr Diab Rep 2019; 19:147. [PMID: 31758285 PMCID: PMC7004311 DOI: 10.1007/s11892-019-1272-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW In utero influences, including nutrition and environmental chemicals, may induce long-term metabolic changes and increase diabetes risk in adulthood. This review evaluates the experimental and epidemiological evidence on the association of early-life arsenic exposure on diabetes and diabetes-related outcomes, as well as the influence of maternal nutritional status on arsenic-related metabolic effects. RECENT FINDINGS Five studies in rodents have evaluated the role of in utero arsenic exposure with diabetes in the offspring. In four of the studies, elevated post-natal fasting glucose was observed when comparing in utero arsenic exposure with no exposure. Rodent offspring exposed to arsenic in utero also showed elevated insulin resistance in the 4 studies evaluating it as well as microRNA changes related to glycemic control in 2 studies. Birth cohorts of arsenic-exposed pregnant mothers in New Hampshire, Mexico, and Taiwan have shown that increased prenatal arsenic exposure is related to altered cord blood gene expression, microRNA, and DNA methylation profiles in diabetes-related pathways. Thus far, no epidemiologic studies have evaluated early-life arsenic exposure with diabetes risk. Supplementation trials have shown B vitamins can reduce blood arsenic levels in highly exposed, undernourished populations. Animal evidence supports that adequate B vitamin status can rescue early-life arsenic-induced diabetes risk, although human data is lacking. Experimental animal studies and human evidence on the association of in utero arsenic exposure with alterations in gene expression pathways related to diabetes in newborns, support the potential role of early-life arsenic exposure in diabetes development, possibly through increased insulin resistance. Given pervasive arsenic exposure and the challenges to eliminate arsenic from the environment, research is needed to evaluate prevention interventions, including the possibility of low-cost, low-risk nutritional interventions that can modify arsenic-related disease risk.
Collapse
Affiliation(s)
- Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W168th Street, New York, NY, 10032, USA.
| | - Miranda J Spratlen
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W168th Street, New York, NY, 10032, USA
| | - Ahlam Abuawad
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W168th Street, New York, NY, 10032, USA
| | - Nancy J LoIacono
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W168th Street, New York, NY, 10032, USA
| | - Anne K Bozack
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W168th Street, New York, NY, 10032, USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W168th Street, New York, NY, 10032, USA
| |
Collapse
|
10
|
Pierce BL, Tong L, Dean S, Argos M, Jasmine F, Rakibuz-Zaman M, Sarwar G, Islam MT, Shahriar H, Islam T, Rahman M, Yunus M, Lynch VJ, Oglesbee D, Graziano JH, Kibriya MG, Gamble MV, Ahsan H. A missense variant in FTCD is associated with arsenic metabolism and toxicity phenotypes in Bangladesh. PLoS Genet 2019; 15:e1007984. [PMID: 30893314 PMCID: PMC6443193 DOI: 10.1371/journal.pgen.1007984] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 04/01/2019] [Accepted: 01/23/2019] [Indexed: 12/02/2022] Open
Abstract
Inorganic arsenic (iAs) is a carcinogen, and exposure to iAs via food and water is a global public health problem. iAs-contaminated drinking water alone affects >100 million people worldwide, including ~50 million in Bangladesh. Once absorbed into the blood stream, most iAs is converted to mono-methylated (MMA) and then di-methylated (DMA) forms, facilitating excretion in urine. Arsenic metabolism efficiency varies among individuals, in part due to genetic variation near AS3MT (arsenite methyltransferase; 10q24.32). To identify additional arsenic metabolism loci, we measured protein-coding variants across the human exome for 1,660 Bangladeshi individuals participating in the Health Effects of Arsenic Longitudinal Study (HEALS). Among the 19,992 coding variants analyzed exome-wide, the minor allele (A) of rs61735836 (p.Val101Met) in exon 3 of FTCD (formiminotransferase cyclodeaminase) was associated with increased urinary iAs% (P = 8x10-13), increased MMA% (P = 2x10-16) and decreased DMA% (P = 6x10-23). Among 2,401 individuals with arsenic-induced skin lesions (an indicator of arsenic toxicity and cancer risk) and 2,472 controls, carrying the low-efficiency A allele (frequency = 7%) was associated with increased skin lesion risk (odds ratio = 1.35; P = 1x10-5). rs61735836 is in weak linkage disequilibrium with all nearby variants. The high-efficiency/major allele (G/Valine) is human-specific and eliminates a start codon at the first 5´-proximal Kozak sequence in FTCD, suggesting selection against an alternative translation start site. FTCD is critical for catabolism of histidine, a process that generates one-carbon units that can enter the one-carbon/folate cycle, which provides methyl groups for arsenic metabolism. In our study population, FTCD and AS3MT SNPs together explain ~10% of the variation in DMA% and support a causal effect of arsenic metabolism efficiency on arsenic toxicity (i.e., skin lesions). In summary, this work identifies a coding variant in FTCD associated with arsenic metabolism efficiency, providing new evidence supporting the established link between one-carbon/folate metabolism and arsenic toxicity.
Collapse
Affiliation(s)
- Brandon L Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
- Department of Human Genetics, The University of Chicago, Chicago, IL, United States of America
- Comprehensive Cancer Center, The University of Chicago, Chicago, IL United States of America
| | - Lin Tong
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | - Samantha Dean
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | - Maria Argos
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Farzana Jasmine
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | | | - Golam Sarwar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | | | - Hasan Shahriar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Tariqul Islam
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Mahfuzar Rahman
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
- Research and Evaluation Division, BRAC, Dhaka, Bangladesh
| | - Md Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Vincent J Lynch
- Department of Human Genetics, The University of Chicago, Chicago, IL, United States of America
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, United States of America
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Muhammad G Kibriya
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
- Department of Human Genetics, The University of Chicago, Chicago, IL, United States of America
- Comprehensive Cancer Center, The University of Chicago, Chicago, IL United States of America
- Department of Medicine, The University of Chicago, Chicago, IL, United States of America
- Institute for Population and Precision Health, The University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
11
|
The gut microbiome is required for full protection against acute arsenic toxicity in mouse models. Nat Commun 2018; 9:5424. [PMID: 30575732 PMCID: PMC6303300 DOI: 10.1038/s41467-018-07803-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 11/21/2018] [Indexed: 01/09/2023] Open
Abstract
Arsenic poisons an estimated 200 million people worldwide through contaminated food and drinking water. Confusingly, the gut microbiome has been suggested to both mitigate and exacerbate arsenic toxicity. Here, we show that the microbiome protects mice from arsenic-induced mortality. Both antibiotic-treated and germ-free mice excrete less arsenic in stool and accumulate more arsenic in organs compared to control mice. Mice lacking the primary arsenic detoxification enzyme (As3mt) are hypersensitive to arsenic after antibiotic treatment or when derived germ-free, compared to wild-type and/or conventional counterparts. Human microbiome (stool) transplants protect germ-free As3mt-KO mice from arsenic-induced mortality, but protection depends on microbiome stability and the presence of specific bacteria, including Faecalibacterium. Our results demonstrate that both a functional As3mt and specific microbiome members are required for protection against acute arsenic toxicity in mouse models. We anticipate that the gut microbiome will become an important explanatory factor of disease (arsenicosis) penetrance in humans, and a novel target for prevention and treatment strategies. It is unclear whether the gut microbiome can mitigate or exacerbate arsenic toxicity. Here, Coryell et al. show that the human gut microbiome protects mice from arsenic-induced mortality, with protection levels correlating with the relative abundance of the human commensal Faecalibacterium.
Collapse
|
12
|
Balakrishnan P, Jones MR, Vaidya D, Tellez-Plaza M, Post WS, Kaufman JD, Bielinski SJ, Taylor K, Francesconi K, Goessler W, Navas-Acien A. Ethnic, Geographic, and Genetic Differences in Arsenic Metabolism at Low Arsenic Exposure: A Preliminary Analysis in the Multi-Ethnic Study of Atherosclerosis (MESA). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1179. [PMID: 29874848 PMCID: PMC6025014 DOI: 10.3390/ijerph15061179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 12/31/2022]
Abstract
We investigated the effect of candidate variants in AS3MT (arsenic (III) methyltransferase) with urinary arsenic metabolites and their principal components in a subset of 264 participants in the Multi-Ethnic Study of Atherosclerosis (MESA). Urinary arsenic species, including inorganic arsenic (iAs), monomethylarsonate (MMA), dimethylarsinate (DMA), and arsenobetaine (Ab), were measured using high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) and corrected for organic sources from seafood consumption by regressing Ab on arsenic species using a validated method. Principal components of arsenic metabolism were also used as independent phenotypes. We conducted linear regression of arsenic traits with allelic dosage of candidate single nucleotide polymorphisms (SNPs) rs12768205 (G > A), rs3740394 (A > G), and rs3740393 (G > C) measured using Illumina MetaboChip. Models were stratified by non-Hispanic white vs. all other race/ethnicity and adjusted for age, sex, arsenic exposure, study site, and population stratification. Consistent with previous studies, rs12768205 showed evidence for strongest association (non-Hispanic white: iAs% -0.14 (P 0.83), MMA% -0.66 (0.49), DMA% 0.81(0.49); other race/ethnicity: 0.13 (0.71), -1.21 (0.09), 1.08 (0.20)). No association, however, passed the strict Bonferroni p-value. This was a novel study among an ethnically diverse population exposed to low arsenic levels.
Collapse
Affiliation(s)
- Poojitha Balakrishnan
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY 10032, USA.
| | - Miranda R Jones
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Dhananjay Vaidya
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Maria Tellez-Plaza
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Fundación de Investigación Hospital Clínico de Valencia INCLIVA, Valencia 46010, Spain.
| | - Wendy S Post
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Joel D Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Suzette J Bielinski
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA.
| | - Kent Taylor
- Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Los Angeles, CA 90502, USA.
| | | | - Walter Goessler
- Institute of Chemistry, University of Graz, 8010 Graz, Austria.
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY 10032, USA.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
13
|
Huang CY, Lin YC, Shiue HS, Chen WJ, Su CT, Pu YS, Ao PL, Hsueh YM. Comparison of arsenic methylation capacity and polymorphisms of arsenic methylation genes between bladder cancer and upper tract urothelial carcinoma. Toxicol Lett 2018; 295:64-73. [PMID: 29859237 DOI: 10.1016/j.toxlet.2018.05.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022]
Abstract
Arsenic exposure is an environmental risk factor for urothelial carcinoma (UC). The natural history of upper tract urothelial carcinoma (UTUC) differs from that of bladder cancer (BC). However, the risk factors of BC and UTUC are not exactly the same and should be discussed separately. The aims of this study were to evaluate 1) the association between arsenic methylation capacity and UTUC and/or BC, separately, and 2) the association between polymorphisms of the arsenic metabolism-related genes AS3MT, GSTOs, and PNP against BC and/or UTUC, separately. We conducted a hospital-based study and collected 216 BC and 212 UTUC cases, and 813 healthy controls, from September 2007 to October 2011. Urinary arsenic profiles were measured using high-performance liquid chromatography-hydride generator-atomic absorption spectrometry. The polymorphisms of AS3MT, GSTO, and PNP were identified using the Sequenom MassARRAY platform with iPLEX Gold chemistry. We found that inefficient arsenic methylation capacity was associated with BC in a significant dose-response relationship, but only found that high urinary total arsenic concentration was related to the risk of UTUC, also in a significant dose-response manner. Those with a total urinary arsenic level of > 30.28 μg/L compared to ≤ 9.78 μg/L, had a odds ratio (OR), and 95% confidence interval (CI) of UTUC, of 4.80 (2.22-10.39). The polymorphisms of AS3MT rs11191438, AS3MT rs10748835, and AS3MT rs1046778 were related to the risk of BC and UTUC, while the polymorphisms of AS3MT rs3740393, AS3MT rs11191453, and AS3MT rs11191454 were associated with arsenic methylation capacity. The AS3MT gene polymorphisms and arsenic methylation capacity appear to independently affect the risk of BC and UTUC.
Collapse
Affiliation(s)
- Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan; Department of Urology, National Taiwan University Hospital, Yunlin Branch, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, Chang Gung Memorial Hospital, and Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Wei-Jen Chen
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chien-Tien Su
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Pui-Lam Ao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yu-Mei Hsueh
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
14
|
Lin YC, Chen WJ, Huang CY, Shiue HS, Su CT, Ao PL, Pu YS, Hsueh YM. Polymorphisms of Arsenic (+3 Oxidation State) Methyltransferase and Arsenic Methylation Capacity Affect the Risk of Bladder Cancer. Toxicol Sci 2018; 164:328-338. [DOI: 10.1093/toxsci/kfy087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Ying-Chin Lin
- Department of Family Medicine, Shuang Ho Hospital
- Department of Health Examination, Wan Fang Hospital
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jen Chen
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Urology, National Taiwan University Hospital, Hsin Chu Branch, Hsin Chu, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Chien-Tien Su
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Pui-Lam Ao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Mei Hsueh
- Department of Family Medicine, Shuang Ho Hospital
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Bradham KD, Diamond GL, Burgess M, Juhasz A, Klotzbach JM, Maddaloni M, Nelson C, Scheckel K, Serda SM, Stifelman M, Thomas DJ. In vivo and in vitro methods for evaluating soil arsenic bioavailability: relevant to human health risk assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:83-114. [PMID: 29553912 PMCID: PMC9347188 DOI: 10.1080/10937404.2018.1440902] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Arsenic (As) is the most frequently occurring contaminant on the priority list of hazardous substances, which lists substances of greatest public health concern to people living at or near U.S. National Priorities List site. Accurate assessment of human health risks from exposure to As-contaminated soils depends on estimating its bioavailability, defined as the fraction of ingested As absorbed across the gastrointestinal barrier and available for systemic distribution and metabolism. Arsenic bioavailability varies among soils and is influenced by site-specific soil physical and chemical characteristics and internal biological factors. This review describes the state-of-the science that supports our understanding of oral bioavailability of soil As, the methods that are currently being explored for estimating soil As relative bioavailability (RBA), and future research areas that could improve our prediction of the oral RBA of soil As in humans. The following topics are addressed: (1) As soil geochemistry; (2) As toxicology; (3) in vivo models for estimating As RBA; (4) in vitro bioaccessibility methods; and (5) conclusions and research needs.
Collapse
Affiliation(s)
- Karen D Bradham
- a Public Health Chemistry Branch, Exposure Methods and Measurements Division, National Exposure Research Laboratory , Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | | | - Michele Burgess
- c Science Policy Branch, Office of Superfund Remediation and Technology Innovation, Office of Land and Emergency Management , US Environmental Protection Agency , Arlington , VA , USA
| | - Albert Juhasz
- d Future Industries Institute , University of South Australia , Adelaide , SA , Australia
| | | | - Mark Maddaloni
- e Region 2 , U.S. Environmental Protection Agency , New York , NY , USA
| | - Clay Nelson
- a Public Health Chemistry Branch, Exposure Methods and Measurements Division, National Exposure Research Laboratory , Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Kirk Scheckel
- f Land Remediation and Pollution Control Division, National Risk Management Research Laboratory , Office of Research and Development, U.S. Environmental Protection Agency , Cincinnati , Ohio
| | - Sophia M Serda
- g Region 9 , U.S. Environmental Protection Agency , San Francisco , CA , USA
| | - Marc Stifelman
- h Region 10 , U.S. Environmental Protection Agency , Seattle , WA , USA
| | - David J Thomas
- i Pharmacokinetics Branch, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory , Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| |
Collapse
|
16
|
Balakrishnan P, Vaidya D, Franceschini N, Voruganti VS, Gribble MO, Haack K, Laston S, Umans JG, Francesconi KA, Goessler W, North KE, Lee E, Yracheta J, Best LG, MacCluer JW, Kent J, Cole SA, Navas-Acien A. Association of Cardiometabolic Genes with Arsenic Metabolism Biomarkers in American Indian Communities: The Strong Heart Family Study (SHFS). ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:15-22. [PMID: 27352405 PMCID: PMC5226702 DOI: 10.1289/ehp251] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/27/2016] [Accepted: 05/19/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Metabolism of inorganic arsenic (iAs) is subject to inter-individual variability, which is explained partly by genetic determinants. OBJECTIVES We investigated the association of genetic variants with arsenic species and principal components of arsenic species in the Strong Heart Family Study (SHFS). METHODS We examined variants previously associated with cardiometabolic traits (~ 200,000 from Illumina Cardio MetaboChip) or arsenic metabolism and toxicity (670) among 2,428 American Indian participants in the SHFS. Urine arsenic species were measured by high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS), and percent arsenic species [iAs, monomethylarsonate (MMA), and dimethylarsinate (DMA), divided by their sum × 100] were logit transformed. We created two orthogonal principal components that summarized iAs, MMA, and DMA and were also phenotypes for genetic analyses. Linear regression was performed for each phenotype, dependent on allele dosage of the variant. Models accounted for familial relatedness and were adjusted for age, sex, total arsenic levels, and population stratification. Single nucleotide polymorphism (SNP) associations were stratified by study site and were meta-analyzed. Bonferroni correction was used to account for multiple testing. RESULTS Variants at 10q24 were statistically significant for all percent arsenic species and principal components of arsenic species. The index SNP for iAs%, MMA%, and DMA% (rs12768205) and for the principal components (rs3740394, rs3740393) were located near AS3MT, whose gene product catalyzes methylation of iAs to MMA and DMA. Among the candidate arsenic variant associations, functional SNPs in AS3MT and 10q24 were most significant (p < 9.33 × 10-5). CONCLUSIONS This hypothesis-driven association study supports the role of common variants in arsenic metabolism, particularly AS3MT and 10q24. Citation: Balakrishnan P, Vaidya D, Franceschini N, Voruganti VS, Gribble MO, Haack K, Laston S, Umans JG, Francesconi KA, Goessler W, North KE, Lee E, Yracheta J, Best LG, MacCluer JW, Kent J Jr., Cole SA, Navas-Acien A. 2017. Association of cardiometabolic genes with arsenic metabolism biomarkers in American Indian communities: the Strong Heart Family Study (SHFS). Environ Health Perspect 125:15-22; http://dx.doi.org/10.1289/EHP251.
Collapse
Affiliation(s)
- Poojitha Balakrishnan
- Department of Environmental Health Sciences, and
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- The Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Dhananjay Vaidya
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Clinical and Translational Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - V. Saroja Voruganti
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Matthew O. Gribble
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Karin Haack
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Sandra Laston
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Jason G. Umans
- MedStar Health Research Institute, Hyattsville, Maryland, USA
- Georgetown and Howard Universities Center for Clinical and Translational Science, Washington, DC, USA
| | | | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry, University of Graz, Austria
| | | | - Elisa Lee
- Center for American Indian Health Research, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joseph Yracheta
- Missouri Breaks Industries Research, Inc., Timber Lake, South Dakota, USA
| | - Lyle G. Best
- Missouri Breaks Industries Research, Inc., Timber Lake, South Dakota, USA
| | - Jean W. MacCluer
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jack Kent
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Shelley A. Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, and
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- The Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Newman JD, Navas-Acien A, Kuo CC, Guallar E, Howard BV, Fabsitz RR, Devereux RB, Umans JG, Francesconi KA, Goessler W, Best LT, Tellez-Plaza M. Peripheral Arterial Disease and Its Association With Arsenic Exposure and Metabolism in the Strong Heart Study. Am J Epidemiol 2016; 184:806-817. [PMID: 27810857 DOI: 10.1093/aje/kww002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/06/2016] [Indexed: 12/25/2022] Open
Abstract
At high levels, inorganic arsenic exposure is linked to peripheral arterial disease (PAD) and cardiovascular disease. To our knowledge, no prior study has evaluated the association between low-to-moderate arsenic exposure and incident PAD by ankle brachial index (ABI). We evaluated this relationship in the Strong Heart Study, a large population-based cohort study of American Indian communities. A total of 2,977 and 2,966 PAD-free participants who were aged 45-74 years in 1989-1991 were reexamined in 1993-1995 and 1997-1999, respectively, for incident PAD defined as either ABI <0.9 or ABI >1.4. A total of 286 and 206 incident PAD cases were identified for ABI <0.9 and ABI >1.4, respectively. The sum of inorganic and methylated urinary arsenic species (∑As) at baseline was used as a biomarker of long-term exposure. Comparing the highest tertile of ∑As with the lowest, the adjusted hazard ratios were 0.57 (95% confidence interval (CI): 0.32, 1.01) for ABI <0.9 and 2.24 (95% CI: 1.01, 4.32) for ABI >1.4. Increased arsenic methylation (as percent dimethylarsinate) was associated with a 2-fold increased risk of ABI >1.4 (hazard ratio = 2.04, 95% CI: 1.02, 3.41). Long-term low-to-moderate ∑As and increased arsenic methylation were associated with ABI >1.4 but not with ABI <0.9. Further studies are needed to clarify whether diabetes and enhanced arsenic metabolism increase susceptibility to the vasculotoxic effects of arsenic exposure.
Collapse
|
18
|
Jones MR, Tellez-Plaza M, Vaidya D, Grau M, Francesconi KA, Goessler W, Guallar E, Post WS, Kaufman JD, Navas-Acien A. Estimation of Inorganic Arsenic Exposure in Populations With Frequent Seafood Intake: Evidence From MESA and NHANES. Am J Epidemiol 2016; 184:590-602. [PMID: 27702745 DOI: 10.1093/aje/kww097] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 04/11/2016] [Indexed: 01/13/2023] Open
Abstract
The sum of urinary inorganic arsenic (iAs) and methylated arsenic (monomethylarsonate and dimethylarsinate (DMA)) species is the main biomarker of iAs exposure. Assessing iAs exposure, however, is difficult in populations with moderate-to-high seafood intakes. In the present study, we used subsamples from the Multi-Ethnic Study of Atherosclerosis (2000-2002) (n = 310) and the 2003-2006 National Health and Nutrition Examination Survey (n = 1,175). We calibrated urinary concentrations of non-seafood-derived iAs, DMA, and methylarsonate, as well as the sum of inorganic and methylated arsenic species, in the Multi-Ethnic Study of Atherosclerosis and of DMA in the National Health and Nutrition Examination Survey by regressing their original concentrations by arsenobetaine and extracting model residuals. To confirm that calibrated biomarkers reflected iAs exposure but not seafood intake, we compared urinary arsenic concentrations by levels of seafood and rice intakes. Self-reported seafood intakes, estimated n-3 polyunsaturated fatty acid levels, and measured n-3 polyunsaturated fatty acid levels were positively associated with the original urinary arsenic biomarkers. Using the calibrated arsenic biomarkers, we found a marked attenuation of the associations with self-reported seafood intake and estimated or measured n-3 fatty acids, whereas associations with self-reported rice intake remained similar. Our residual-based method provides estimates of iAs exposure and metabolism for each participant that no longer reflect seafood intake and can facilitate research about low-to-moderate levels of iAs exposure in populations with high seafood intakes.
Collapse
|
19
|
Skröder Löveborn H, Kippler M, Lu Y, Ahmed S, Kuehnelt D, Raqib R, Vahter M. Arsenic Metabolism in Children Differs From That in Adults. Toxicol Sci 2016; 152:29-39. [PMID: 27056082 PMCID: PMC4922540 DOI: 10.1093/toxsci/kfw060] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Arsenic toxicity in adults is associated with methylation efficiency, influenced by factors such as gender, genetics, and nutrition. The aim of this study was to evaluate influencing factors for arsenic metabolism in children. For 488 children (9 years), whose mothers participated in a study on arsenic exposure during pregnancy (nested into the MINIMat trial) in rural Bangladesh, we measured urinary concentrations of inorganic arsenic (iAs) and its metabolites methylarsonic acid (MMA) and dimethylarsinic acid (DMA) by HPLC-HG-ICPMS. Methylation efficiency was assessed by relative amounts (%) of the metabolites. We evaluated the impact of factors such as maternal urinary metabolite pattern, arsenic exposure, gender, socioeconomic status, season of sampling, and nutritional factors, including erythrocyte selenium (Ery-Se), and plasma folate and vitamin B12. Children had higher %DMA and lower %iAs in urine compared to their mothers, unrelated to their lower exposure [median urinary arsenic (U-As) 53 vs 78 µg/l]. Surprisingly, selenium status (Ery-Se) was strongly associated with children’s arsenic methylation; an increase in Ery-Se from the 5–95th percentile was associated with: +1.8 percentage points (pp) for %iAs (P = .001), +1.4 pp for %MMA (P = .003), and −3.2 pp for %DMA (P < .001). Despite this, Ery-Se was positively associated with U-As (5–95th percentile: +41 µg/l, P = .026). As expected, plasma folate was inversely associated with %iAs (5–95th percentile: −1.9 pp, P = .001) and positively associated with %DMA (5–95th percentile: +2.2 pp, P = .008). Children methylated arsenic more efficiently than their mothers. Also influencing factors, mainly selenium and folate, differed. This warrants further research.
Collapse
Affiliation(s)
| | - Maria Kippler
- *Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden;
| | - Ying Lu
- *Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Sultan Ahmed
- *Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden; International Center for Diarrhoeal Disease Research, Bangladesh (Icddr,B), Dhaka 1000, Bangladesh
| | - Doris Kuehnelt
- Institute of Chemistry, Analytical Chemistry, NAWI Graz, University of Graz, Universitaetsplatz 1, Graz 8010, Austria
| | - Rubhana Raqib
- International Center for Diarrhoeal Disease Research, Bangladesh (Icddr,B), Dhaka 1000, Bangladesh
| | - Marie Vahter
- *Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden;
| |
Collapse
|
20
|
Jansen RJ, Argos M, Tong L, Li J, Rakibuz-Zaman M, Islam MT, Slavkovich V, Ahmed A, Navas-Acien A, Parvez F, Chen Y, Gamble MV, Graziano JH, Pierce BL, Ahsan H. Determinants and Consequences of Arsenic Metabolism Efficiency among 4,794 Individuals: Demographics, Lifestyle, Genetics, and Toxicity. Cancer Epidemiol Biomarkers Prev 2015; 25:381-90. [PMID: 26677206 DOI: 10.1158/1055-9965.epi-15-0718] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/18/2015] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Exposure to inorganic arsenic (iAs), a class I carcinogen, affects several hundred million people worldwide. Once absorbed, iAs is converted to monomethylated (MMA) and then dimethylated forms (DMA), with methylation facilitating urinary excretion. The abundance of each species in urine relative to their sum (iAs%, MMA%, and DMA%) varies across individuals, reflecting differences in arsenic metabolism capacity. METHODS The association of arsenic metabolism phenotypes with participant characteristics and arsenical skin lesions was characterized among 4,794 participants in the Health Effects of Arsenic Longitudinal Study (Araihazar, Bangladesh). Metabolism phenotypes include those obtained from principal component (PC) analysis of arsenic species. RESULTS Two independent PCs were identified: PC1 appears to represent capacity to produce DMA (second methylation step), and PC2 appears to represent capacity to convert iAs to MMA (first methylation step). PC1 was positively associated (P <0.05) with age, female sex, and BMI, while negatively associated with smoking, arsenic exposure, education, and land ownership. PC2 was positively associated with age and education but negatively associated with female sex and BMI. PC2 was positively associated with skin lesion status, while PC1 was not. 10q24.32/AS3MT region polymorphisms were strongly associated with PC1, but not PC2. Patterns of association for most variables were similar for PC1 and DMA%, and for PC2 and MMA% with the exception of arsenic exposure and SNP associations. CONCLUSIONS Two distinct arsenic metabolism phenotypes show unique associations with age, sex, BMI, 10q24.32 polymorphisms, and skin lesions. IMPACT This work enhances our understanding of arsenic metabolism kinetics and toxicity risk profiles.
Collapse
Affiliation(s)
- Rick J Jansen
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Maria Argos
- Divison of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois
| | - Lin Tong
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Jiabei Li
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | | | | | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | | | - Ana Navas-Acien
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yu Chen
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, New York
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Brandon L Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois. Department of Human Genetics and Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois.
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois. Department of Human Genetics and Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois. Department of Medicine, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
21
|
Gao J, Tong L, Argos M, Scannell Bryan M, Ahmed A, Rakibuz-Zaman M, Kibriya MG, Jasmine F, Slavkovich V, Graziano JH, Ahsan H, Pierce BL. The Genetic Architecture of Arsenic Metabolism Efficiency:A SNP-Based Heritability Study of Bangladeshi Adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:985-92. [PMID: 25768001 PMCID: PMC4590755 DOI: 10.1289/ehp.1408909] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 03/11/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Consumption of arsenic-contaminated drinking water adversely affects health. There is interindividual variation in arsenic metabolism efficiency, partially due to genetic variation in the arsenic methyltransferase (AS3MT) gene region. OBJECTIVES The goal of this study was to assess the overall contribution of genetic factors to variation in arsenic metabolism efficiency, as measured by the relative concentration of dimethylarsinic acid (DMA%) in urine. METHODS Using data on genome-wide single nucleotide polymorphisms (SNPs) and urinary DMA% for 2,053 arsenic-exposed Bangladeshi individuals, we employed various SNP-based approaches for heritability estimation and polygenic modeling. RESULTS Using data on all participants, the percent variance explained (PVE) for DMA% by all measured and imputed SNPs was 16% (p = 0.08), which was reduced to 5% (p = 0.34) after adjusting for AS3MT SNPs. Using information on close relatives only, the PVE was 63% (p = 0.0002), but decreased to 41% (p = 0.01) after adjusting for AS3MT SNPs. Regional heritability analysis confirmed 10q24.32 (AS3MT) as a major arsenic metabolism locus (PVE = 7%, p = 4.4 × 10(-10)), but revealed no additional regions. We observed a moderate association between a polygenic score reflecting elevated DMA% (composed of thousands of non-AS3MT SNPs) and reduced skin lesion risk in an independent sample (p < 0.05). We observed no associations for SNPs reported in prior candidate gene studies of arsenic metabolism. CONCLUSIONS Our results suggest that there are common variants outside of the AS3MT region that influence arsenic metabolism in Bangladeshi individuals, but the effects of these variants are very weak compared with variants near AS3MT. The high heritability estimates observed using family-based heritability approaches suggest substantial effects for rare variants and/or unmeasured environmental factors.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mazumdar M, Valeri L, Rodrigues EG, Ibne Hasan MOS, Hamid R, Paul L, Selhub J, Silva F, Mostofa MG, Quamruzzaman Q, Rahman M, Christiani DC. Polymorphisms in maternal folate pathway genes interact with arsenic in drinking water to influence risk of myelomeningocele. ACTA ACUST UNITED AC 2015; 103:754-62. [PMID: 26250961 DOI: 10.1002/bdra.23399] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/06/2015] [Accepted: 05/29/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Arsenic induces neural tube defects in many animal models. Additionally, studies have shown that mice with specific genetic defects in folate metabolism and transport are more susceptible to arsenic-induced neural tube defects. We sought to determine whether 14 single-nucleotide polymorphisms in genes involved in folate metabolism modified the effect of exposure to drinking water contaminated with inorganic arsenic and posterior neural tube defect (myelomeningocele) risk. METHODS Fifty-four mothers of children with myelomeningocele and 55 controls were enrolled through clinical sites in rural Bangladesh in a case-control study of the association between environmental arsenic exposure and risk of myelomeningocele. We assessed participants for level of myelomeningocele, administered questionnaires, conducted biological and environmental sample collection, and performed genotyping. Inductively coupled plasma mass spectrometry was used to measure inorganic arsenic concentration in drinking water. Candidate single-nucleotide polymorphisms were identified through review of the literature. RESULTS Drinking water inorganic arsenic concentration was associated with increased risk of myelomeningocele for participants with 4 of the 14 studied single-nucleotide polymorphisms in genes involved in folate metabolism: the AA/AG genotype of rs2236225 (MTHFD1), the GG genotype of rs1051266 (SLC19A1), the TT genotype of rs7560488 (DNMT3A), and the GG genotype of rs3740393 (AS3MT) with adjusted odds ratio of 1.13, 1.31, 1.20, and 1.25 for rs2236225, rs1051266, rs7560488, and rs3740393, respectively. CONCLUSION Our results support the hypothesis that environmental arsenic exposure increases the risk of myelomeningocele by means of interaction with folate metabolic pathways.
Collapse
Affiliation(s)
- Maitreyi Mazumdar
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Linda Valeri
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Ema G Rodrigues
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | | | - Ligi Paul
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Jacob Selhub
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Fareesa Silva
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | | | | | | | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
23
|
Gribble MO, Voruganti VS, Cole SA, Haack K, Balakrishnan P, Laston SL, Tellez-Plaza M, Francesconi KA, Goessler W, Umans JG, Thomas DC, Gilliland F, North KE, Franceschini N, Navas-Acien A. Linkage Analysis of Urine Arsenic Species Patterns in the Strong Heart Family Study. Toxicol Sci 2015. [PMID: 26209557 DOI: 10.1093/toxsci/kfv164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Arsenic toxicokinetics are important for disease risks in exposed populations, but genetic determinants are not fully understood. We examined urine arsenic species patterns measured by HPLC-ICPMS among 2189 Strong Heart Study participants 18 years of age and older with data on ~400 genome-wide microsatellite markers spaced ~10 cM and arsenic speciation (683 participants from Arizona, 684 from Oklahoma, and 822 from North and South Dakota). We logit-transformed % arsenic species (% inorganic arsenic, %MMA, and %DMA) and also conducted principal component analyses of the logit % arsenic species. We used inverse-normalized residuals from multivariable-adjusted polygenic heritability analysis for multipoint variance components linkage analysis. We also examined the contribution of polymorphisms in the arsenic metabolism gene AS3MT via conditional linkage analysis. We localized a quantitative trait locus (QTL) on chromosome 10 (LOD 4.12 for %MMA, 4.65 for %DMA, and 4.84 for the first principal component of logit % arsenic species). This peak was partially but not fully explained by measured AS3MT variants. We also localized a QTL for the second principal component of logit % arsenic species on chromosome 5 (LOD 4.21) that was not evident from considering % arsenic species individually. Some other loci were suggestive or significant for 1 geographical area but not overall across all areas, indicating possible locus heterogeneity. This genome-wide linkage scan suggests genetic determinants of arsenic toxicokinetics to be identified by future fine-mapping, and illustrates the utility of principal component analysis as a novel approach that considers % arsenic species jointly.
Collapse
Affiliation(s)
- Matthew O Gribble
- *Department of Preventive Medicine, University of Southern California, Los Angeles, California;
| | - Venkata Saroja Voruganti
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina; UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Shelley A Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas
| | - Karin Haack
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas
| | - Poojitha Balakrishnan
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Sandra L Laston
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center, San Antonio-Regional Academic Health Center, Brownsville, Texas
| | - Maria Tellez-Plaza
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland; Biomedical Research Institute, Hospital Clinic de Valencia-INCLIVA, Valencia, Spain
| | - Kevin A Francesconi
- Institute of Chemistry-Analytical Chemistry, University of Graz, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry-Analytical Chemistry, University of Graz, Graz, Austria
| | - Jason G Umans
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, District of Columbia; MedStar Health Research Institute, Hyattsville, Maryland
| | - Duncan C Thomas
- *Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Frank Gilliland
- *Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland; Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
24
|
Kuo CC, Howard BV, Umans JG, Gribble MO, Best LG, Francesconi KA, Goessler W, Lee E, Guallar E, Navas-Acien A. Arsenic Exposure, Arsenic Metabolism, and Incident Diabetes in the Strong Heart Study. Diabetes Care 2015; 38:620-7. [PMID: 25583752 PMCID: PMC4370323 DOI: 10.2337/dc14-1641] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Little is known about arsenic metabolism in diabetes development. We investigated the prospective associations of low-moderate arsenic exposure and arsenic metabolism with diabetes incidence in the Strong Heart Study. RESEARCH DESIGN AND METHODS A total of 1,694 diabetes-free participants aged 45-75 years were recruited in 1989-1991 and followed through 1998-1999. We used the proportions of urine inorganic arsenic (iAs), monomethylarsonate (MMA), and dimethylarsinate (DMA) over their sum (expressed as iAs%, MMA%, and DMA%) as the biomarkers of arsenic metabolism. Diabetes was defined as fasting glucose ≥ 126 mg/dL, 2-h glucose ≥ 200 mg/dL, self-reported diabetes history, or self-reported use of antidiabetic medications. RESULTS Over 11,263.2 person-years of follow-up, 396 participants developed diabetes. Using the leave-one-out approach to model the dynamics of arsenic metabolism, we found that lower MMA% was associated with higher diabetes incidence. The hazard ratios (95% CI) of diabetes incidence for a 5% increase in MMA% were 0.77 (0.63-0.93) and 0.82 (0.73-0.92) when iAs% and DMA%, respectively, were left out of the model. DMA% was associated with higher diabetes incidence only when MMA% decreased (left out of the model) but not when iAs% decreased. iAs% was also associated with higher diabetes incidence when MMA% decreased. The association between MMA% and diabetes incidence was similar by age, sex, study site, obesity, and urine iAs concentrations. CONCLUSIONS Arsenic metabolism, particularly lower MMA%, was prospectively associated with increased incidence of diabetes. Research is needed to evaluate whether arsenic metabolism is related to diabetes incidence per se or through its close connections with one-carbon metabolism.
Collapse
Affiliation(s)
- Chin-Chi Kuo
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD Kidney Institute and Division of Nephrology, Department of Internal Medicine, China Medical University Hospital and College of Medicine, China Medical University, Taichung, Taiwan
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, MD Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC
| | | | - Lyle G Best
- Missouri Breaks Industries Research, Inc., Timber Lake, SD
| | - Kevin A Francesconi
- Institute of Chemistry - Analytical Chemistry, Karl-Franzens University Graz, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry, Karl-Franzens University Graz, Graz, Austria
| | - Elisa Lee
- Center for American Indian Health Research, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, MD Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ana Navas-Acien
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, MD Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
25
|
Schlebusch CM, Gattepaille LM, Engström K, Vahter M, Jakobsson M, Broberg K. Human adaptation to arsenic-rich environments. Mol Biol Evol 2015; 32:1544-55. [PMID: 25739736 DOI: 10.1093/molbev/msv046] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adaptation drives genomic changes; however, evidence of specific adaptations in humans remains limited. We found that inhabitants of the northern Argentinean Andes, an arid region where elevated arsenic concentrations in available drinking water is common, have unique arsenic metabolism, with efficient methylation and excretion of the major metabolite dimethylated arsenic and a less excretion of the highly toxic monomethylated metabolite. We genotyped women from this population for 4,301,332 single nucleotide polymorphisms (SNPs) and found a strong association between the AS3MT (arsenic [+3 oxidation state] methyltransferase) gene and mono- and dimethylated arsenic in urine, suggesting that AS3MT functions as the major gene for arsenic metabolism in humans. We found strong genetic differentiation around AS3MT in the Argentinean Andes population, compared with a highly related Peruvian population (FST = 0.014) from a region with much less environmental arsenic. Also, 13 of the 100 SNPs with the highest genome-wide Locus-Specific Branch Length occurred near AS3MT. In addition, our examination of extended haplotype homozygosity indicated a selective sweep of the Argentinean Andes population, in contrast to Peruvian and Colombian populations. Our data show that adaptation to tolerate the environmental stressor arsenic has likely driven an increase in the frequencies of protective variants of AS3MT, providing the first evidence of human adaptation to a toxic chemical.
Collapse
Affiliation(s)
- Carina M Schlebusch
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Lucie M Gattepaille
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Karin Engström
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Marie Vahter
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Jakobsson
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Broberg
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Solenkova NV, Newman JD, Berger JS, Thurston G, Hochman JS, Lamas GA. Metal pollutants and cardiovascular disease: mechanisms and consequences of exposure. Am Heart J 2014; 168:812-22. [PMID: 25458643 PMCID: PMC4254412 DOI: 10.1016/j.ahj.2014.07.007] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/11/2014] [Indexed: 02/05/2023]
Abstract
INTRODUCTION There is epidemiological evidence that metal contaminants may play a role in the development of atherosclerosis and its complications. Moreover, a recent clinical trial of a metal chelator had a surprisingly positive result in reducing cardiovascular events in a secondary prevention population, strengthening the link between metal exposure and cardiovascular disease (CVD). This is, therefore, an opportune moment to review evidence that exposure to metal pollutants, such as arsenic, lead, cadmium, and mercury, is a significant risk factor for CVD. METHODS We reviewed the English-speaking medical literature to assess and present the epidemiological evidence that 4 metals having no role in the human body (xenobiotic), mercury, lead, cadmium, and arsenic, have epidemiologic and mechanistic links to atherosclerosis and CVD. Moreover, we briefly review how the results of the Trial to Assess Chelation Therapy (TACT) strengthen the link between atherosclerosis and xenobiotic metal contamination in humans. CONCLUSIONS There is strong evidence that xenobiotic metal contamination is linked to atherosclerotic disease and is a modifiable risk factor.
Collapse
Affiliation(s)
| | - Jonathan D Newman
- Leon H Charney Division of Cardiology, New York University School of Medicine, New York, NY
| | - Jeffrey S Berger
- Leon H Charney Division of Cardiology, New York University School of Medicine, New York, NY
| | - George Thurston
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY
| | - Judith S Hochman
- Leon H Charney Division of Cardiology, New York University School of Medicine, New York, NY
| | - Gervasio A Lamas
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, FL; Columbia University Division of Cardiology at Mount Sinai Medical Center, Miami Beach FL
| |
Collapse
|
27
|
Tellez-Plaza M, Tang WY, Shang Y, Umans JG, Francesconi KA, Goessler W, Ledesma M, Leon M, Laclaustra M, Pollak J, Guallar E, Cole SA, Fallin MD, Navas-Acien A. Association of global DNA methylation and global DNA hydroxymethylation with metals and other exposures in human blood DNA samples. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:946-54. [PMID: 24769358 PMCID: PMC4154208 DOI: 10.1289/ehp.1306674] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/22/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND The association between human blood DNA global methylation and global hydroxymethylation has not been evaluated in population-based studies. No studies have evaluated environmental determinants of global DNA hydroxymethylation, including exposure to metals. OBJECTIVE We evaluated the association between global DNA methylation and global DNA hydroxymethylation in 48 Strong Heart Study participants for which selected metals had been measured in urine at baseline and DNA was available from 1989-1991 (visit 1) and 1998-1999 (visit 3). METHODS We measured the percentage of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in samples using capture and detection antibodies followed by colorimetric quantification. We explored the association of participant characteristics (i.e., age, adiposity, smoking, and metal exposure) with both global DNA methylation and global DNA hydroxymethylation. RESULTS The Spearman's correlation coefficient for 5-mC and 5-hmC levels was 0.32 (p = 0.03) at visit 1 and 0.54 (p < 0.001) at visit 3. Trends for both epigenetic modifications were consistent across potential determinants. In cross-sectional analyses, the odds ratios of methylated and hydroxymethylated DNA were 1.56 (95% CI: 0.95, 2.57) and 1.76 (95% CI: 1.07, 2.88), respectively, for the comparison of participants above and below the median percentage of dimethylarsinate. The corresponding odds ratios were 1.64 (95% CI: 1.02, 2.65) and 1.16 (95% CI: 0.70, 1.94), respectively, for the comparison of participants above and below the median cadmium level. Arsenic exposure and metabolism were consistently associated with both epigenetic markers in cross-sectional and prospective analyses. The positive correlation of 5-mC and 5-hmC levels was confirmed in an independent study population. CONCLUSIONS Our findings support that both epigenetic measures are related at the population level. The consistent trends in the associations between these two epigenetic modifications and the characteristics evaluated, especially arsenic exposure and metabolism, suggest the need for understanding which of the two measures is a better biomarker for environmental epigenetic effects in future large-scale epidemiologic studies.
Collapse
Affiliation(s)
- Maria Tellez-Plaza
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Moon KA, Guallar E, Umans JG, Devereux RB, Best LG, Francesconi KA, Goessler W, Pollak J, Silbergeld EK, Howard BV, Navas-Acien A. Association between exposure to low to moderate arsenic levels and incident cardiovascular disease. A prospective cohort study. Ann Intern Med 2013; 159:649-59. [PMID: 24061511 PMCID: PMC4157936 DOI: 10.7326/0003-4819-159-10-201311190-00719] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Long-term exposure to high levels of arsenic is associated with increased risk for cardiovascular disease, whereas risk from long-term exposure to low to moderate arsenic levels (< 100μg/L in drinking water) is unclear. OBJECTIVE To evaluate the association between long-term exposure to low to moderate arsenic levels and incident cardiovascular disease. DESIGN Prospective cohort study. SETTING The Strong Heart Study baseline visit between 1989 and 1991, with follow-up through 2008. PATIENTS 3575 American Indian men and women aged 45 to 74 years living in Arizona, Oklahoma, and North and South Dakota. MEASUREMENTS The sum of inorganic and methylated arsenic species in urine at baseline was used as a biomarker of long-term arsenic exposure. Outcomes were incident fatal and nonfatal cardiovascular disease. RESULTS A total of 1184 participants developed fatal and nonfatal cardiovascular disease. When the highest and lowest quartiles of arsenic concentrations (> 15.7 vs. < 5.8 μg/g creatinine) were compared,the hazard ratios for cardiovascular disease, coronary heart disease, and stroke mortality after adjustment for sociodemographic factors, smoking, body mass index, and lipid levels were 1.65 (95%CI, 1.20 to 2.27; P for trend < 0.001), 1.71 (CI, 1.19 to 2.44; P for trend < 0.001), and 3.03 (CI, 1.08 to 8.50; P for trend = 0.061),respectively. The corresponding hazard ratios for incident cardiovascular disease, coronary heart disease, and stroke were 1.32 (CI,1.09 to 1.59; P for trend = 0.002), 1.30 (CI, 1.04 to 1.62; P for trend = 0.006), and 1.47 (CI, 0.97 to 2.21; P for trend = 0.032).These associations varied by study region and were attenuated after further adjustment for diabetes, hypertension, and kidney disease measures. LIMITATION Direct measurement of individual arsenic levels in drinking water was unavailable. CONCLUSION Long-term exposure to low to moderate arsenic levels was associated with cardiovascular disease incidence and mortality.
Collapse
|
29
|
Gribble MO, Voruganti VS, Cropp CD, Francesconi KA, Goessler W, Umans JG, Silbergeld EK, Laston SL, Haack K, Kao WHL, Fallin MD, Maccluer JW, Cole SA, Navas-Acien A. SLCO1B1 variants and urine arsenic metabolites in the Strong Heart Family Study. Toxicol Sci 2013; 136:19-25. [PMID: 23970802 DOI: 10.1093/toxsci/kft181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Arsenic species patterns in urine are associated with risk for cancer and cardiovascular diseases. The organic anion transporter coded by the gene SLCO1B1 may transport arsenic species, but its association with arsenic metabolites in human urine has not yet been studied. The objective of this study is to evaluate associations of urine arsenic metabolites with variants in the candidate gene SLCO1B1 in adults from the Strong Heart Family Study. We estimated associations between % arsenic species biomarker traits and 5 single-nucleotide polymorphisms (SNPs) in the SLCO1B1 gene in 157 participants, assuming additive genetics. Linear regression models for each SNP accounted for kinships and were adjusted for sex, body mass index, and study center. The minor allele of rs1564370 was associated with lower %MMA (p = .0003) and higher %DMA (p = .0002), accounting for 8% of the variance for %MMA and 9% for %DMA. The rs1564370 minor allele homozygote frequency was 17% and the heterozygote frequency was 43%. The minor allele of rs2291075 was associated with lower %MMA (p = .0006) and higher %DMA (p = .0014), accounting for 7% of the variance for %MMA and 5% for %DMA. The frequency of rs2291075 minor allele homozygotes was 1% and of heterozygotes was 15%. Common variants in SLCO1B1 were associated with differences in arsenic metabolites in a preliminary candidate gene study. Replication of this finding in other populations and analyses with respect to disease outcomes are needed to determine whether this novel candidate gene is important for arsenic-associated disease risks.
Collapse
Affiliation(s)
- Matthew O Gribble
- * Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dani SU, März W, Neves PMS, Walter GF. Pairomics, the omics way to mate choice. J Hum Genet 2013; 58:643-56. [PMID: 23945982 DOI: 10.1038/jhg.2013.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 06/17/2013] [Accepted: 07/03/2013] [Indexed: 11/09/2022]
Abstract
The core aspects of the biology and evolution of sexual reproduction are reviewed with a focus on the diploid, sexually reproducing, outbreeding, polymorphic, unspecialized, altricial and cultural human species. Human mate choice and pair bonding are viewed as central to individuals' lives and to the evolution of the species, and genetic assistance in reproduction is viewed as a universal human right. Pairomics is defined as an emerging branch of the omics science devoted to the study of mate choice at the genomic level and its consequences for present and future generations. In pairomics, comprehensive genetic information of individual genomes is stored in a database. Computational tools are employed to analyze the mating schemes and rules that govern mating among the members of the database. Mating models and algorithms simulate the outcomes of mating any given genome with each of a number of genomes represented in the database. The analyses and simulations may help to understand mating schemes and their outcomes, and also contribute a new cue to the multicued schemes of mate choice. The scientific, medical, evolutionary, ethical, legal and social implications of pairomics are far reaching. The use of genetic information as a search tool in mate choice may influence our health, lifestyle, behavior and culture. As knowledge on genomics, population genetics and gene-environment interactions, as well as the size of genomic databases expand, so does the ability of pairomics to investigate and predict the consequences of mate choice for the present and future generations.
Collapse
Affiliation(s)
- Sergio Ulhoa Dani
- Medawar Institute for Medical and Environmental Research, Acangau Foundation, Paracatu, Brazil
| | | | | | | |
Collapse
|