1
|
Cromb D, Hall M, Story L, Shangaris P, Al-Adnani M, Rutherford MA, Fox GF, Gupta N. Clinical value of placental examination for paediatricians. Arch Dis Child Fetal Neonatal Ed 2024; 109:362-370. [PMID: 37751993 DOI: 10.1136/archdischild-2023-325674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
The placenta contains valuable clinical information that is linked to fetal development, neonatal morbidity and mortality, and future health outcomes. Both gross inspection and histopathological examination of the placenta may identify intrinsic or secondary placental lesions, which can contribute directly to adverse neonatal outcomes or indicate the presence of an unfavourable intrauterine environment. Placental examination therefore forms an essential component of the care of high-risk neonates and at perinatal post-mortem examination. In this article, we describe the clinical value of placental examination for paediatricians and perinatal clinicians. We discuss common pathological findings on general inspection of the placenta with photographic examples and provide an overview of the placental pathological examination, including how to interpret key findings. We also address the medico-legal and financial implications of placental examinations and describe current and future clinical considerations for clinicians in regard to placental examination.
Collapse
Affiliation(s)
- Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Neonatal Unit, Evelina London Children's Hospital, St Thomas' Hospital, London, UK
| | - Megan Hall
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Department of Women's Children and Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Lisa Story
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Department of Women's Children and Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Panicos Shangaris
- Department of Women's Children and Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Fetal Medicine Research Institute, King's College Hospital, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Mudher Al-Adnani
- Department of Cellular Pathology, St Thomas' Hospital, London, UK
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Department of Women's Children and Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Grenville F Fox
- Neonatal Unit, Evelina London Children's Hospital, St Thomas' Hospital, London, UK
| | - Neelam Gupta
- Neonatal Unit, Evelina London Children's Hospital, St Thomas' Hospital, London, UK
- GKT School of Medical Education, King's College London, London, UK
| |
Collapse
|
2
|
Cristodoro M, Messa M, Tossetta G, Marzioni D, Dell’Avanzo M, Inversetti A, Di Simone N. First Trimester Placental Biomarkers for Pregnancy Outcomes. Int J Mol Sci 2024; 25:6136. [PMID: 38892323 PMCID: PMC11172712 DOI: 10.3390/ijms25116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The placenta plays a key role in several adverse obstetrical outcomes, such as preeclampsia, intrauterine growth restriction and gestational diabetes mellitus. The early identification of at-risk pregnancies could significantly improve the management, therapy and prognosis of these pregnancies, especially if these at-risk pregnancies are identified in the first trimester. The aim of this review was to summarize the possible biomarkers that can be used to diagnose early placental dysfunction and, consequently, at-risk pregnancies. We divided the biomarkers into proteins and non-proteins. Among the protein biomarkers, some are already used in clinical practice, such as the sFLT1/PLGF ratio or PAPP-A; others are not yet validated, such as HTRA1, Gal-3 and CD93. In the literature, many studies analyzed the role of several protein biomarkers, but their results are contrasting. On the other hand, some non-protein biomarkers, such as miR-125b, miR-518b and miR-628-3p, seem to be linked to an increased risk of complicated pregnancy. Thus, a first trimester heterogeneous biomarkers panel containing protein and non-protein biomarkers may be more appropriate to identify and discriminate several complications that can affect pregnancies.
Collapse
Affiliation(s)
- Martina Cristodoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy; (M.C.)
| | - Martina Messa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy; (M.C.)
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | | | - Annalisa Inversetti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy; (M.C.)
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy; (M.C.)
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
3
|
Paiker M, Khan K, Mishra D, Tandon S, Khan A, Nigar A, Fiza Mustaqueem S, Haque M. Morphological, Morphometric, and Histological Evaluation of the Placenta in Cases of Intrauterine Fetal Death. Cureus 2024; 16:e62871. [PMID: 39040716 PMCID: PMC11261122 DOI: 10.7759/cureus.62871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 07/24/2024] Open
Abstract
Background The human placenta is a remarkable organ that develops during pregnancy and is crucial in supporting fetal growth and development. The placenta supplies oxygen and nutrients to the fetus and removes waste products from the fetal bloodstream. It also produces hormones that support pregnancy, such as human chorionic gonadotropin, progesterone, and estrogen. Placental insufficiency occurs when the placenta cannot deliver adequate nutrients and oxygen to the fetus. This can result in intrauterine fetal death (IUFD), stillbirth, intrauterine growth restriction, low birth weight, and premature birth. It can also be associated with developmental delays or long-term health issues for the baby. This study aimed to assess the morphologic, morphometric, and histologic changes in the placenta associated with IUFD and compare it with the placenta of live births. Methodology This study was conducted at the Department of Anatomy in collaboration with the Department of Obstetrics and Gynaecology, Integral Institute of Medical Sciences and Research and King George's Medical University Lucknow, where 60 placentas were studied. Placentas were further categorized into the following two groups: Group A, the study group in which placentas from IUFD were taken (n = 30), and Group B, the control group where placentas from live births were taken (n = 30). Morphological and morphometric features of both groups were recorded and compared. Histological features of placentas from IUFD (Group A) were examined after hematoxylin and eosin staining. Results A total of 60 placentas were observed (Group A and Group B). In Group A (IUFD) and Group B (control group), most pregnancies were multigravidas. Round-shaped placentas were the most common type in both groups (Group A = 46.67%, Group B = 66.67%). The average thickness of placentas from Group A (IUFD) cases was significantly reduced (mean thickness = 1.17 ± 0.07 cm) compared to controls in Group B (mean thickness = 2.04 ± 0.93 cm). The p-value obtained was significant at 0.0001. There was a notable reduction in the average placental diameter in Group A (mean diameter = 241.73 ± 65.54 cm) compared to Group B (mean diameter = 263.72 ± 162.67 cm). The p-value obtained was not significant at 0.49. On histopathological examination of the placentas of Group A (IUFD), perivillous fibrin deposition and high-grade calcification were seen in a significantly high number of placentas (70% and 60%, respectively). Conclusions The knowledge of the placenta's morphologic, morphometric, and histologic changes can be utilized to establish the cause of fetal death. In instances of fetal growth limitation and fetal demise that are clinically inexplicable, they can also explain the causes.
Collapse
Affiliation(s)
- Mah Paiker
- Anatomy, Integral Institute of Medical Sciences and Research, Integral University, Lucknow, IND
| | - Kamil Khan
- Anatomy, Integral Institute of Medical Sciences and Research, Integral University, Lucknow, IND
| | - Dewanshi Mishra
- Anatomy, Integral Institute of Medical Sciences and Research, Integral University, Lucknow, IND
| | - Stuti Tandon
- Anatomy, Integral Institute of Medical Sciences and Research, Integral University, Lucknow, IND
| | - Abeer Khan
- Anatomy, Integral Institute of Medical Sciences and Research, Integral University, Lucknow, IND
| | - Asma Nigar
- Obstetrics, Integral Institute of Medical Sciences and Research, Integral University, Lucknow, IND
| | - Syed Fiza Mustaqueem
- Pathology, Integral Institute of Medical Sciences and Research, Integral University, Lucknow, IND
| | - Mahboobul Haque
- Anatomy, All India Institute of Medical Sciences, Patna, Patna, IND
| |
Collapse
|
4
|
Cromb D, Slator PJ, Hall M, Price A, Alexander DC, Counsell SJ, Hutter J. Advanced magnetic resonance imaging detects altered placental development in pregnancies affected by congenital heart disease. Sci Rep 2024; 14:12357. [PMID: 38811636 PMCID: PMC11136986 DOI: 10.1038/s41598-024-63087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Congenital heart disease (CHD) is the most common congenital malformation and is associated with adverse neurodevelopmental outcomes. The placenta is crucial for healthy fetal development and placental development is altered in pregnancy when the fetus has CHD. This study utilized advanced combined diffusion-relaxation MRI and a data-driven analysis technique to test the hypothesis that placental microstructure and perfusion are altered in CHD-affected pregnancies. 48 participants (36 controls, 12 CHD) underwent 67 MRI scans (50 control, 17 CHD). Significant differences in the weighting of two independent placental and uterine-wall tissue components were identified between the CHD and control groups (both pFDR < 0.001), with changes most evident after 30 weeks gestation. A significant trend over gestation in weighting for a third independent tissue component was also observed in the CHD cohort (R = 0.50, pFDR = 0.04), but not in controls. These findings add to existing evidence that placental development is altered in CHD. The results may reflect alterations in placental perfusion or the changes in fetal-placental flow, villous structure and maturation that occur in CHD. Further research is needed to validate and better understand these findings and to understand the relationship between placental development, CHD, and its neurodevelopmental implications.
Collapse
Affiliation(s)
- Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Centre for Medical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Paddy J Slator
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Megan Hall
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Anthony Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Centre for Medical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK.
- Centre for Medical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Centre for Medical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
5
|
Cromb D, Slator P, Hall M, Price A, Alexander D, Counsell S, Hutter J. Advanced magnetic resonance imaging detects altered placental development in pregnancies affected by congenital heart disease. RESEARCH SQUARE 2024:rs.3.rs-3873412. [PMID: 38343847 PMCID: PMC10854304 DOI: 10.21203/rs.3.rs-3873412/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Congenital heart disease (CHD) is the most common congenital malformation and is associated with adverse neurodevelopmental outcomes. The placenta is crucial for healthy fetal development and placental development is altered in pregnancy when the fetus has CHD. This study utilized advanced combined diffusion-relaxation MRI and a data-driven analysis technique to test the hypothesis that placental microstructure and perfusion are altered in CHD-affected pregnancies. 48 participants (36 controls, 12 CHD) underwent 67 MRI scans (50 control, 17 CHD). Significant differences in the weighting of two independent placental and uterine-wall tissue components were identified between the CHD and control groups (both pFDR<0.001), with changes most evident after 30 weeks gestation. A Significant trend over gestation in weighting for a third independent tissue component was also observed in the CHD cohort (R = 0.50, pFDR=0.04), but not in controls. These findings add to existing evidence that placental development is altered in CHD. The results may reflect alterations in placental perfusion or the changes in fetal-placental flow, villous structure and maturation that occur in CHD. Further research is needed to validate and better understand these findings and to understand the relationship between placental development, CHD, and its neurodevelopmental implications.
Collapse
|
6
|
Freedman AN, Roell K, Engwall E, Bulka C, Kuban KCK, Herring L, Mills CA, Parsons PJ, Galusha A, O’Shea TM, Fry RC. Prenatal Metal Exposure Alters the Placental Proteome in a Sex-Dependent Manner in Extremely Low Gestational Age Newborns: Links to Gestational Age. Int J Mol Sci 2023; 24:14977. [PMID: 37834424 PMCID: PMC10573797 DOI: 10.3390/ijms241914977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Prenatal exposure to toxic metals is associated with altered placental function and adverse infant and child health outcomes. Adverse outcomes include those that are observed at the time of birth, such as low birthweight, as well as those that arise later in life, such as neurological impairment. It is often the case that these adverse outcomes show sex-specific responses in relation to toxicant exposures. While the precise molecular mechanisms linking in utero toxic metal exposures with later-in-life health are unknown, placental inflammation is posited to play a critical role. Here, we sought to understand whether in utero metal exposure is associated with alterations in the expression of the placental proteome by identifying metal associated proteins (MAPs). Within the Extremely Low Gestational Age Newborns (ELGAN) cohort (n = 230), placental and umbilical cord tissue samples were collected at birth. Arsenic (As), cadmium (Cd), lead (Pb), selenium (Se), and manganese (Mn) concentrations were measured in umbilical cord tissue samples via ICP-MS/MS. Protein expression was examined in placental samples using an LC-MS/MS-based, global, untargeted proteomics analysis measuring more than 3400 proteins. MAPs were then evaluated for associations with pregnancy and neonatal outcomes, including placental weight and gestational age. We hypothesized that metal levels would be positively associated with the altered expression of inflammation/immune-associated pathways and that sex-specific patterns of metal-associated placental protein expression would be observed. Sex-specific analyses identified 89 unique MAPs expressed in female placentas and 41 unique MAPs expressed in male placentas. Notably, many of the female-associated MAPs are known to be involved in immune-related processes, while the male-associated MAPs are associated with intracellular transport and cell localization. Further, several MAPs were significantly associated with gestational age in males and females and placental weight in males. These data highlight the linkage between prenatal metal exposure and an altered placental proteome, with implications for altering the trajectory of fetal development.
Collapse
Affiliation(s)
- Anastasia N. Freedman
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC 27599, USA; (A.N.F.); (E.E.)
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Kyle Roell
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Eiona Engwall
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC 27599, USA; (A.N.F.); (E.E.)
| | - Catherine Bulka
- College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Karl C. K. Kuban
- Department of Pediatrics, Division of Child Neurology, Boston Medical Center, Boston, MA 02118, USA;
| | - Laura Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (L.H.); (C.A.M.)
| | - Christina A. Mills
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (L.H.); (C.A.M.)
| | - Patrick J. Parsons
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; (P.J.P.); (A.G.)
- Department of Environmental Health Sciences, School of Public Health, University of Albany, Rensselaer, NY 12222, USA
| | - Aubrey Galusha
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; (P.J.P.); (A.G.)
- Department of Environmental Health Sciences, School of Public Health, University of Albany, Rensselaer, NY 12222, USA
| | - Thomas Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC 27599, USA; (A.N.F.); (E.E.)
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC 27599, USA;
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Sánchez-Trujillo L, Fraile-Martinez O, García-Montero C, García-Puente LM, Guijarro LG, De Leon-Oliva D, Boaru DL, Gardón-Alburquerque D, Del Val Toledo Lobo M, Royuela M, García-Tuñón I, Rios-Parra A, De León-Luis JA, Bravo C, Álvarez-Mon M, Bujan J, Saez MA, García-Honduvilla N, Ortega MA. Chronic Venous Disease during Pregnancy Is Related to Inflammation of the Umbilical Cord: Role of Allograft Inflammatory Factor 1 (AIF-1) and Interleukins 10 (IL-10), IL-12 and IL-18. J Pers Med 2023; 13:956. [PMID: 37373945 DOI: 10.3390/jpm13060956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic venous disease (CVD) is a common condition that affects the veins in the lower limbs, resulting in a variety of symptoms, such as swelling, pain, and varicose veins (VVs). The plenty hormonal, hemodynamic and mechanical changes occurred in pregnancy make women especially vulnerable to suffer from this condition in this period. Previous works have identified that CVD is associated with an increased inflammatory milieu and significant damage in maternofetal tissues, such as the umbilical cord. However, the inflammatory status of this structure in these patients has not been studied yet. Thus, the aim of the present study was to examine gene and protein expression of a set of inflammatory markers-Allograft inflammatory factor 1 (AIF-1), the proinflammatory cytokines interleukin 12A (IL-12A) and IL-18 and the anti-inflammatory product IL-10-in the umbilical cord of women with CVD during pregnancy (N = 62) and healthy pregnant women (HC; N = 52) by the use of real time qPCR and immunohistochemistry (IHC). Our results demonstrate that the umbilical cord tissue from CVD women exhibit an increased expression of AIF-1, IL-12A and IL-18 along with a decrease in IL-10. Therefore, our study suggests an inflammatory status of this structure related to CVD. Further studies should be conducted to evaluate the expression of other inflammatory markers, as well as to analyze the maternofetal impact of these findings.
Collapse
Affiliation(s)
- Lara Sánchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Deparment of Pediatrics, Hospital Universitario Principe de Asturias, 28801 Alcalá de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis M García-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Systems Biology, Faculty of Medicine and Health Sciences (Networking Research Center on for Liver and Digestive Diseases (CIBEREHD)), University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - David Gardón-Alburquerque
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - María Del Val Toledo Lobo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Biomedicine and Biotechnology, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Mar Royuela
- Department of Biomedicine and Biotechnology, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Ignacio García-Tuñón
- Department of Biomedicine and Biotechnology, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Antonio Rios-Parra
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Juan A De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806 Alcalá de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
8
|
Considering the Effects and Maternofoetal Implications of Vascular Disorders and the Umbilical Cord. Medicina (B Aires) 2022; 58:medicina58121754. [PMID: 36556956 PMCID: PMC9782481 DOI: 10.3390/medicina58121754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
The umbilical cord is a critical anatomical structure connecting the placenta with the foetus, fulfilling multiple functions during pregnancy and hence influencing foetal development, programming and survival. Histologically, the umbilical cord is composed of three blood vessels: two arteries and one vein, integrated in a mucous connective tissue (Wharton's jelly) upholstered by a layer of amniotic coating. Vascular alterations in the umbilical cord or damage in this tissue because of other vascular disorders during pregnancy are worryingly related with detrimental maternofoetal consequences. In the present work, we will describe the main vascular alterations presented in the umbilical cord, both in the arteries (Single umbilical artery, hypoplastic umbilical artery or aneurysms in umbilical arteries) and the vein (Vascular thrombosis, aneurysms or varicose veins in the umbilical vein), together with other possible complications (Velamentous insertion, vasa praevia, hypercoiled or hypocoiled cord, angiomyxoma and haematomas). Likewise, the effect of the main obstetric vascular disorders like hypertensive disorders of pregnancy (specially pre-eclampsia) and chronic venous disease on the umbilical cord will also be summarized herein.
Collapse
|
9
|
Ortega MA, Gómez-Lahoz AM, Sánchez-Trujillo L, Fraile-Martinez O, García-Montero C, Guijarro LG, Bravo C, De Leon-Luis JA, Saz JV, Bujan J, García-Honduvilla N, Monserrat J, Alvarez-Mon M. Chronic Venous Disease during Pregnancy Causes a Systematic Increase in Maternal and Fetal Proinflammatory Markers. Int J Mol Sci 2022; 23:ijms23168976. [PMID: 36012236 PMCID: PMC9409364 DOI: 10.3390/ijms23168976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic venous disease (CVD) is a common vascular disorder characterized by increased venous hypertension and insufficient venous return from the lower limbs. Pregnancy is a high-risk situation for developing CVD. Approximately a third of the women will develop this condition during pregnancy, and similarly to arterial hypertensive disorders, previous evidence has described a plethora of alterations in placental structure and function in women with pregnancy-induced CVD. It is widely known that arterial-induced placenta dysfunction is accompanied by an important immune system alteration along with increased inflammatory markers, which may provide detrimental consequences for the women and their offspring. However, to our knowledge, there are still no data collected regarding cytokine profiling in women with pregnancy-induced CVD. Thus, the aim of the present work was to examine cytokine signatures in the serum of pregnant women (PW) with CVD and their newborns (NB). This study was conducted through a multiplex technique in 62 PW with pregnancy-induced CVD in comparison to 52 PW without CVD (HC) as well as their NB. Our results show significant alterations in a broad spectrum of inflammatory cytokines (IL-6, IL-12, TNF-α, IL-10, IL-13, IL-2, IL-7, IFN-γ, IL-4, IL-5, IL-21, IL-23, GM-CSF, chemokines (fractalkine), MIP-3α, and MIP-1β). Overall, we demonstrate that pregnancy-induced CVD is associated with a proinflammatory environment, therefore highlighting the potentially alarming consequences of this condition for maternal and fetal wellbeing.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Correspondence:
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Lara Sánchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Service of Pediatric, Hospital Universitario Principe de Asturias, 28801 Alcalá de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Systems Biology, Faculty of Medicine and Health Sciences (Networking Research Center on for Liver and Digestive Diseases (CIBEREHD)), University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Juan A. De Leon-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Jose V. Saz
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806 Alcalá de Henares, Spain
| |
Collapse
|
10
|
Bebell LM, Ngonzi J, Meier FA, Carreon CK, Birungi A, Kerry VB, Atwine R, Roberts DJ. Building Perinatal Pathology Research Capacity in Sub-Saharan Africa. Front Med (Lausanne) 2022; 9:958840. [PMID: 35872791 PMCID: PMC9304650 DOI: 10.3389/fmed.2022.958840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Over two million stillbirths and neonatal deaths occur in sub-Saharan Africa (sSA) annually. Despite multilateral efforts, reducing perinatal mortality has been slow. Although targeted pathologic investigation can often determine the cause of perinatal death, in resource-limited settings, stillbirths, early neonatal deaths, and placentas are rarely examined pathologically. However, the placenta is a key source of diagnostic information and is the main determinant of fetal growth and development in utero, influencing child health outcomes. Methods In 2016, our collaborative intercontinental group began investigating infectious perinatal death and adverse child health outcomes in Uganda. We developed and initiated a 4-day combined didactic/practical curriculum to train health workers in placental collection, gross placental examination, and tissue sampling for histology. We also trained a local technician to perform immunohistochemistry staining. Results Overall, we trained 12 health workers who performed gross placental assessment for > 1,000 placentas, obtaining > 5,000 formalin-fixed tissue samples for research diagnostic use. Median placental weights ranged from 425 to 456 g, and 33.3% of placentas were < 10th percentile in weight, corrected for gestational age. Acute chorioamnionitis (32.3%) and maternal vascular malperfusion (25.4%) were common diagnoses. Discussion Through a targeted training program, we built capacity at a university-affiliated hospital in sSA to independently perform placental collection, gross pathologic examination, and placental tissue processing for histology and special stains. Our training model can be applied to other collaborative research endeavors in diverse resource-limited settings to improve research and clinical capacity and competency for diagnostics and management of stillbirth, neonatal death, and child health outcomes.
Collapse
Affiliation(s)
- Lisa M. Bebell
- Division of Infectious Diseases, Department of Medicine, Medical Practice Evaluation Center and Center for Global Health, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Lisa M. Bebell,
| | - Joseph Ngonzi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Frederick A. Meier
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Chrystalle Katte Carreon
- Division of Women’s and Perinatal Pathology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Abraham Birungi
- Department of Pathology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Vanessa B. Kerry
- Division of Pulmonary and Critical Care Medicine and Center for Global Health, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Seed Global Health, Boston, MA, United States
| | - Raymond Atwine
- Department of Pathology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Drucilla J. Roberts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Deeba F, Hu R, Lessoway V, Terry J, Pugash D, Mayer C, Hutcheon J, Salcudean S, Rohling R. Project SWAVE 2.0: An overview of the study design for multimodal placental image acquisition and alignment. MethodsX 2022; 9:101738. [PMID: 35677846 PMCID: PMC9168134 DOI: 10.1016/j.mex.2022.101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/18/2022] [Indexed: 11/19/2022] Open
Abstract
Development of non-invasive and in utero placenta imaging techniques can potentially identify biomarkers of placental health. Correlative imaging using multiple multiscale modalities is particularly important to advance the understanding of placenta structure, function and their relationship. The objective of the project SWAVE 2.0 was to understand human placental structure and function and thereby identify quantifiable measures of placental health using a multimodal correlative approach. In this paper, we present a multimodal image acquisition protocol designed to acquire and align data from ex vivo placenta specimens derived from both healthy and complicated pregnancies. Qualitative and quantitative validation of the alignment method were performed. The qualitative analysis showed good correlation between findings in the MRI, ultrasound and histopathology images. The proposed protocol would enable future studies on comprehensive analysis of placental anatomy, function and their relationship. ● An overview of a novel multimodal placental image acquisition protocol is presented. ● A co-registration method using surface markers and external fiducials is described. ● A preliminary correlative imaging analysis for a placenta specimen is presented.
Collapse
Affiliation(s)
- Farah Deeba
- Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
- Corresponding author.
| | - Ricky Hu
- Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
| | | | - Jefferson Terry
- Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
- Department of Ultrasound, BC Women’s Hospital, Vancouver, Canada
| | - Denise Pugash
- Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Chantal Mayer
- Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Jennifer Hutcheon
- Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Septimiu Salcudean
- Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
| | - Robert Rohling
- Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Ortega MA, Fraile-Martínez O, García-Montero C, Sáez MA, Álvarez-Mon MA, Torres-Carranza D, Álvarez-Mon M, Bujan J, García-Honduvilla N, Bravo C, Guijarro LG, De León-Luis JA. The Pivotal Role of the Placenta in Normal and Pathological Pregnancies: A Focus on Preeclampsia, Fetal Growth Restriction, and Maternal Chronic Venous Disease. Cells 2022; 11:cells11030568. [PMID: 35159377 PMCID: PMC8833914 DOI: 10.3390/cells11030568] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/01/2022] Open
Abstract
The placenta is a central structure in pregnancy and has pleiotropic functions. This organ grows incredibly rapidly during this period, acting as a mastermind behind different fetal and maternal processes. The relevance of the placenta extends far beyond the pregnancy, being crucial for fetal programming before birth. Having integrative knowledge of this maternofetal structure helps significantly in understanding the development of pregnancy either in a proper or pathophysiological context. Thus, the aim of this review is to summarize the main features of the placenta, with a special focus on its early development, cytoarchitecture, immunology, and functions in non-pathological conditions. In contraposition, the role of the placenta is examined in preeclampsia, a worrisome hypertensive disorder of pregnancy, in order to describe the pathophysiological implications of the placenta in this disease. Likewise, dysfunction of the placenta in fetal growth restriction, a major consequence of preeclampsia, is also discussed, emphasizing the potential clinical strategies derived. Finally, the emerging role of the placenta in maternal chronic venous disease either as a causative agent or as a consequence of the disease is equally treated.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28801 Alcalá de Henares, Madrid, Spain
- Correspondence: ; Tel.: +34-91-885-4540; Fax: +34-91-885-4885
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
| | - Miguel A. Sáez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
- Pathological Anatomy Service, Central University Hospital of Defence-UAH, 28047 Madrid, Spain
| | - Miguel Angel Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology and Oncology Service, University Hospital Príncipe de Asturias, CIBEREHD, 28801 Alcalá de Henares, Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain; (O.F.-M.); (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (D.T.-C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (C.B.); (J.A.D.L.-L.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), 28034 Madrid, Spain;
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Madrid, Spain
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (C.B.); (J.A.D.L.-L.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| |
Collapse
|
13
|
Patisaul HB. REPRODUCTIVE TOXICOLOGY: Endocrine disruption and reproductive disorders: impacts on sexually dimorphic neuroendocrine pathways. Reproduction 2021; 162:F111-F130. [PMID: 33929341 PMCID: PMC8484365 DOI: 10.1530/rep-20-0596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/30/2021] [Indexed: 11/08/2022]
Abstract
We are all living with hundreds of anthropogenic chemicals in our bodies every day, a situation that threatens the reproductive health of present and future generations. This review focuses on endocrine-disrupting compounds (EDCs), both naturally occurring and man-made, and summarizes how they interfere with the neuroendocrine system to adversely impact pregnancy outcomes, semen quality, age at puberty, and other aspects of human reproductive health. While obvious malformations of the genitals and other reproductive organs are a clear sign of adverse reproductive health outcomes and injury to brain sexual differentiation, the hypothalamic-pituitary-gonadal (HPG) axis can be much more difficult to discern, particularly in humans. It is well-established that, over the course of development, gonadal hormones shape the vertebrate brain such that sex-specific reproductive physiology and behaviors emerge. Decades of work in neuroendocrinology have elucidated many of the discrete and often very short developmental windows across pre- and postnatal development in which this occurs. This has allowed toxicologists to probe how EDC exposures in these critical windows can permanently alter the structure and function of the HPG axis. This review includes a discussion of key EDC principles including how latency between exposure and the emergence of consequential health effects can be long, along with a summary of the most common and less well-understood EDC modes of action. Extensive examples of how EDCs are impacting human reproductive health, and evidence that they have the potential for multi-generational physiological and behavioral effects are also provided.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
14
|
O'Shaughnessy KL, Fischer F, Zenclussen AC. Perinatal exposure to endocrine disrupting chemicals and neurodevelopment: How articles of daily use influence the development of our children. Best Pract Res Clin Endocrinol Metab 2021; 35:101568. [PMID: 34565681 PMCID: PMC10111869 DOI: 10.1016/j.beem.2021.101568] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Substances that interfere with the body's hormonal balance or their function are called endocrine disrupting chemicals (EDCs). Many EDCs are ubiquitous in the environment and are an unavoidable aspect of daily life, including during early embryogenesis. Developmental exposure to these chemicals is of critical relevance, as EDCs can permanently alter developmental programs, including those that pattern and wire the brain. Of emerging interest is how these chemicals may also affect the immune response, given the cross-talk between the endocrine and immune systems. As brain development is strongly dependent on hormones including thyroid, androgens, and estrogens, and can also be affected by immunomodulation, this complicated interplay may have long-lasting neurodevelopmental consequences. This review focuses on data available from human cohorts, in vivo models, and in vitro assays regarding the impact of EDCs after a gestational and/or lactational exposure, and how they may impact the immune system and/or neurodevelopment.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Florence Fischer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany.
| |
Collapse
|
15
|
Long J, Zhang M, Wang G, Hong X, Ji Y, Bustamante-Helfrich B, Wang X, Mueller NT. Association of Placental Pathology With Childhood Blood Pressure Among Children Born Preterm. Am J Hypertens 2021; 34:1154-1162. [PMID: 34424290 PMCID: PMC9526806 DOI: 10.1093/ajh/hpab097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/08/2021] [Accepted: 08/12/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The in utero pathologies underlying the link between preterm birth and offspring high blood pressure (BP) are still unknown. We investigated the prospective associations of placental histopathological findings with childhood BP among children born preterm. METHODS Our study sample included 546 mother-child pairs with preterm birth (before 37 weeks gestation) enrolled from 1999 to 2013 at the Boston Medical Center. Early preterm birth was defined as gestational age between 23 and 34 weeks. We histologically classified maternal placental pathology using the latest recommended categories: no placental complications, histologic chorioamnionitis, maternal vascular malperfusion, and other placental complications. We calculated age-, sex-, and height-specific systolic BP (SBP) percentiles for children using the 2017 American Academy of Pediatrics Clinical Practice Guideline. We used linear regression models with generalized estimating equations to examine the associations. RESULTS The mean (standard deviation (SD)) postnatal follow-up of the study children was 9.29 (4.1) years. After adjusting for potential confounders, histologic chorioamnionitis was associated with a 5.42 percentile higher childhood SBP (95% confidence interval: 0.32, 10.52) compared with no placental pathologic findings. This association was stronger among early preterm children. Maternal vascular malperfusion was associated with a 8.44 percentile higher childhood SBP among early preterm children (95% confidence interval: 1.54, 15.34) but the association was attenuated (6.25, 95% confidence interval: -0.76, 13.26) after additional adjustment for child standardized birthweight, a potential mediator of the association. CONCLUSIONS These findings suggest that among children born preterm, especially those born early preterm, both placental histologic chorioamnionitis and vascular malperfusion may help to differentiate a child's risk of high BP.
Collapse
Affiliation(s)
- Jingmiao Long
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mingyu Zhang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yuelong Ji
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Blandine Bustamante-Helfrich
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Clinical and Applied Science Education (Pathology), University of the Incarnate Word School of Osteopathic Medicine, San Antonio, Texas, USA
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
- Correspondence: Noel T. Mueller ()
| |
Collapse
|
16
|
Patisaul HB. Endocrine disrupting chemicals (EDCs) and the neuroendocrine system: Beyond estrogen, androgen, and thyroid. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:101-150. [PMID: 34452685 DOI: 10.1016/bs.apha.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hundreds of anthropogenic chemicals occupy our bodies, a situation that threatens the health of present and future generations. This chapter focuses on endocrine disrupting compounds (EDCs), both naturally occurring and man-made, that affect the neuroendocrine system to adversely impact health, with an emphasis on reproductive and metabolic pathways. The neuroendocrine system is highly sexually dimorphic and essential for maintaining homeostasis and appropriately responding to the environment. Comprising both neural and endocrine components, the neuroendocrine system is hormone sensitive throughout life and touches every organ system in the body. The integrative nature of the neuroendocrine system means that EDCs can have multi-system effects. Additionally, because gonadal hormones are essential for the sex-specific organization of numerous neuroendocrine pathways, endocrine disruption of this programming can lead to permanent deficits. Included in this review is a brief history of the neuroendocrine disruption field and a thorough discussion of the most common and less well understood neuroendocrine disruption modes of action. Also provided are extensive examples of how EDCs are likely contributing to neuroendocrine disorders such as obesity, and evidence that they have the potential for multi-generational effects.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
17
|
Dong L, Wang S, Qu J, You H, Liu D. New understanding of novel brominated flame retardants (NBFRs): Neuro(endocrine) toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111570. [PMID: 33396099 DOI: 10.1016/j.ecoenv.2020.111570] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
Traditional brominated flame retardants (BFRs) negatively affect the environment and human health, especially in the sensitive (developing) nervous system. Considering the physicochemical similarities between novel brominated flame retardants (NBFRs) and BFRs, more and more evidence reveals the neurotoxic effects of NBFRs. We reviewed the neuro(endocrine) toxic effects of NBFRs in vivo and in vitro and discussed their action mechanisms based on the available information. The neurotoxic potential of NBFRs has been demonstrated through direct neurotoxicity and disruption of the neuroendocrine system, with adverse effects on neurobehavioral and reproductive development. Mechanistic studies have shown that the impact of NBFRs is related to the complex interaction of neural and endocrine signals. From disrupting the gender differentiation of the brain, altering serum thyroid/sex hormone levels, gene/protein expression, and so on, to interfere with the feedback effect between different levels of the HPG/HPT axis. In this paper, the mechanism of neurotoxic effects of NBFRs is explored from a new perspective-neuro and endocrine interactions. Gaps in the toxicity data of NBFRs in the neuroendocrine system are supplemented and provide a broader dataset for a complete risk assessment.
Collapse
Affiliation(s)
- Liying Dong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shutao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jinze Qu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
18
|
Pizent A. Developmental toxicity of endocrine-disrupting chemicals: Challenges and future directions. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-34457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maternal exposure to a mixture of various endocrine disruptors (EDCs) may have a substantial impact on postnatal health of her offspring(s) and increase the risk for health disorders and diseases in adulthood. Research efforts to better understand the health risk associated with endocrine disruptor exposures in early life have increased in recent decades. This paper provides a short overview of the current challenges that researchers continue to face in selecting appropriate epidemiologic methods and study designs to identify endocrine disruptors and evaluate their adverse health effects during this critical developmental window. Major challenges involve the selection of a representative biomarker that reflects the foetal internal dose of the biologically active chemical or its metabolite(s) that may be associated with adverse health effects with regard to variable level and duration of exposure and the latency between exposure and disorder/disease manifestation. Future studies should pay more attention to identifying factors that contribute to interindividual variability in susceptibility to various EDCs and other toxicants.
Collapse
|
19
|
Jayalekshmi VS, Ramachandran S. Maternal cholesterol levels during gestation: boon or bane for the offspring? Mol Cell Biochem 2021; 476:401-416. [PMID: 32964393 DOI: 10.1007/s11010-020-03916-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
An increase in cholesterol levels is perceived during pregnancy and is considered as a normal adaptive response to the development of the fetus. In some pregnancies, excessive increase in total cholesterol with high levels of Low-Density Lipoprotein leads to maladaptation by the fetus to cholesterol demands, resulting in a pathological condition termed as maternal hypercholesterolemia (MH). MH is considered clinically irrelevant and therefore cholesterol levels are not routinely checked during pregnancy, as a consequence of which there is scarce information on its global prevalence in pregnant women. Studies have reported that MH during pregnancy can cause atherogenesis in adults emphasizing the concept of in utero programming of fetus. Moreover, Gestational Diabetes Mellitus, obesity and Polycystic Ovary Syndrome are potential risk factors which strengthen combined pathologies in placenta and fetuses of mothers with MH. However, lack of conclusive evidence on cholesterol transport and underlying programming demand substantial research to develop population-based life style strategies for women in their childbearing years. The current review focuses on the mechanisms and outcomes of MH from existing epidemiological as well as experimental data and presents a detailed insight on this novel risk factor of cardiovascular diseases.
Collapse
Affiliation(s)
- V S Jayalekshmi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- PhD Program in Biotechnology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Surya Ramachandran
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
20
|
Li Y, Yu N, Li M, Li K, Shi W, Yu H, Wei S. Metabolomic insights into the lasting impacts of early-life exposure to BDE-47 in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114524. [PMID: 32283404 DOI: 10.1016/j.envpol.2020.114524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/17/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Early-life exposure to toxicants may have lasting effects that adversely impact later development. Thus, although the production and use of a toxicant have been banned, the risk to previously exposed individuals may continue. BDE-47, a component of commercial penta-BDEs, is a persistent organic pollutant with demonstrated neurotoxicity. To investigate the persistent effects of BDE-47 and the mechanisms thereof, we employed a metabolomics approach to analyze the brain, blood and urine of mice exposed to BDE-47 for 28 days and then 3 months post-exposure. In the brain, BDE-47 was detectable just after exposure but was below the limit of detection (LOD) 3 months later. However, the metabolomic alterations caused by early-life exposure to BDE-47 persisted. Potential biomarkers related to these alterations included phosphatidylcholine, lysophosphatidylcholine, sphingomyelin and several amino acids and biogenic amines. The metabolic pathways involved in the response to BDE-47 in the brain were mainly those related to glycerophospholipid metabolism, sphingomyelin metabolism and neurotransmitter regulation. Thus, our study demonstrates the utility of metabolomics, as the omics most closely reflecting the phenotype, in exploring the mechanisms underlying the lasting effects induced by early-life BDE-47 exposure.
Collapse
Affiliation(s)
- Yuqian Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Meiying Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Kan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
21
|
Rock KD, St Armour G, Horman B, Phillips A, Ruis M, Stewart AK, Jima D, Muddiman DC, Stapleton HM, Patisaul HB. Effects of Prenatal Exposure to a Mixture of Organophosphate Flame Retardants on Placental Gene Expression and Serotonergic Innervation in the Fetal Rat Brain. Toxicol Sci 2020; 176:203-223. [PMID: 32243540 PMCID: PMC7357193 DOI: 10.1093/toxsci/kfaa046] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is a growing need to understand the potential neurotoxicity of organophosphate flame retardants (OPFRs) and plasticizers because use and, consequently, human exposure, is rapidly expanding. We have previously shown in rats that developmental exposure to the commercial flame retardant mixture Firemaster 550 (FM 550), which contains OPFRs, results in sex-specific behavioral effects, and identified the placenta as a potential target of toxicity. The placenta is a critical coordinator of fetal growth and neurodevelopment, and a source of neurotransmitters for the developing brain. We have shown in rats and humans that flame retardants accumulate in placental tissue, and induce functional changes, including altered neurotransmitter production. Here, we sought to establish if OPFRs (triphenyl phosphate and a mixture of isopropylated triarylphosphate isomers) alter placental function and fetal forebrain development, with disruption of tryptophan metabolism as a primary pathway of interest. Wistar rat dams were orally exposed to OPFRs (0, 500, 1000, or 2000 μg/day) or a serotonin (5-HT) agonist 5-methoxytryptamine for 14 days during gestation and placenta and fetal forebrain tissues collected for analysis by transcriptomics and metabolomics. Relative abundance of genes responsible for the transport and synthesis of placental 5-HT were disrupted, and multiple neuroactive metabolites in the 5-HT and kynurenine metabolic pathways were upregulated. In addition, 5-HTergic projections were significantly longer in the fetal forebrains of exposed males. These findings suggest that OPFRs have the potential to impact the 5-HTergic system in the fetal forebrain by disrupting placental tryptophan metabolism.
Collapse
Affiliation(s)
- Kylie D Rock
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27619
| | - Genevieve St Armour
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27619
| | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27619
| | - Allison Phillips
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708
| | - Matthew Ruis
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708
| | - Allison K Stewart
- Molecular Education, Technology, and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695
| | - Dereje Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695
| | - David C Muddiman
- Molecular Education, Technology, and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27619
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
22
|
Shook LL, Kislal S, Edlow AG. Fetal brain and placental programming in maternal obesity: A review of human and animal model studies. Prenat Diagn 2020; 40:1126-1137. [PMID: 32362000 DOI: 10.1002/pd.5724] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/26/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Both human epidemiologic and animal model studies demonstrate that prenatal and lactational exposure to maternal obesity and high-fat diet are associated with adverse neurodevelopmental outcomes in offspring. Neurodevelopmental outcomes described in offspring of obese women include cognitive impairment, autism spectrum disorder (ASD), attention deficit hyperactivity disorder, anxiety and depression, disordered eating, and propensity for reward-driven behavior, among others. This review synthesizes human and animal data linking maternal obesity and high-fat diet consumption to abnormal fetal brain development, and neurodevelopmental and psychiatric morbidity in offspring. It highlights key mechanisms by which maternal obesity and maternal diet impact fetal and offspring development, and sex differences in offspring programming. In addition, we review placental effects of maternal obesity, and the role the placenta might play as an indicator vs mediator of fetal programming.
Collapse
Affiliation(s)
- Lydia L Shook
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sezen Kislal
- Massachusetts General Hospital Research Institute, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrea G Edlow
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Massachusetts General Hospital Research Institute, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Rogers LM, Serezani CH, Eastman AJ, Hasty AH, Englund-Ögge L, Jacobsson B, Vickers KC, Aronoff DM. Palmitate induces apoptotic cell death and inflammasome activation in human placental macrophages. Placenta 2020; 90:45-51. [PMID: 32056551 PMCID: PMC7034939 DOI: 10.1016/j.placenta.2019.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION There is an increasing prevalence of non-communicable diseases worldwide. Metabolic diseases such as obesity and gestational diabetes mellitus (GDM) increasingly affect women during pregnancy, which can harm pregnancy outcomes and the long-term health and wellbeing of exposed offspring. Both obesity and GDM have been associated with proinflammatory effects within the placenta, the critical organ governing fetal development. METHODS The purpose of these studies was to model, in vitro, the effects of metabolic stress (high levels of glucose, insulin and saturated lipids) on placental macrophage biology, since these cells are the primary innate immune phagocyte within the placenta with roles in governing maternofetal immune tolerance and antimicrobial host defense. Macrophages were isolated from the villous core of term, human placentae delivered through nonlaboring, elective Cesarean sections and exposed to combinations of elevated glucose (30 mM), insulin (10 nM) and the saturated lipid palmitic acid (palmitate, 0.4 mM). RESULTS We found that palmitate alone induced the activation of the nucleotide-binding oligomerization domain-like receptor (NLR) Family Pyrin Domain Containing 3 (NLRP3) inflammasome in placental macrophages, which was associated with increased interleukin 1 beta release and an increase in apoptotic cell death. Glucose and insulin neither provoked these effects nor augmented the impact of palmitate itself. DISCUSSION Our findings confirm an impact of saturated fat on placental macrophage immune activation and could be relevant to the impact of metabolic stress in vivo.
Collapse
Affiliation(s)
- Lisa M Rogers
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Carlos H Serezani
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Alison J Eastman
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Linda Englund-Ögge
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Kasey C Vickers
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - David M Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
24
|
Cox B, Tsamou M, Vrijens K, Neven KY, Winckelmans E, de Kok TM, Plusquin M, Nawrot TS. A Co-expression Analysis of the Placental Transcriptome in Association With Maternal Pre-pregnancy BMI and Newborn Birth Weight. Front Genet 2019; 10:354. [PMID: 31110514 PMCID: PMC6501552 DOI: 10.3389/fgene.2019.00354] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
Maternal body mass index (BMI) before pregnancy is known to affect both fetal growth and later-life health of the newborn, yet the implicated molecular mechanisms remain largely unknown. As the master regulator of the fetal environment, the placenta is a valuable resource for the investigation of processes involved in the developmental programming of metabolic health. We conducted a genome-wide placental transcriptome study aiming at the identification of functional pathways representing the molecular link between maternal BMI and fetal growth. We used RNA microarray (Agilent 8 × 60 K), medical records, and questionnaire data from 183 mother-newborn pairs from the ENVIRONAGE birth cohort study (Flanders, Belgium). Using a weighted gene co-expression network analysis, we identified 17 correlated gene modules. Three of these modules were associated with both maternal pre-pregnancy BMI and newborn birth weight. A gene cluster enriched for genes involved in immune response and myeloid cell differentiation was positively associated with maternal BMI and negatively with low birth weight. Two other gene modules, upregulated in association with maternal BMI as well as birth weight, were involved in processes related to organ and tissue development, with blood vessel morphogenesis and extracellular matrix structure as top Gene Ontology terms. In line with this, erythrocyte-, angiogenesis-, and extracellular matrix-related genes were among the identified hub genes. The association between maternal BMI and newborn weight was significantly mediated by gene expression for 5 of the hub genes (FZD4, COL15A1, GPR124, COL6A1, and COL1A1). As some of the identified hub genes have been linked to obesity in adults, our observation in placental tissue suggests that biological processes may be affected from prenatal life onwards, thereby identifying new molecular processes linking maternal BMI and fetal metabolic programming.
Collapse
Affiliation(s)
- Bianca Cox
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Maria Tsamou
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Karen Vrijens
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Kristof Y Neven
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Ellen Winckelmans
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Theo M de Kok
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Michelle Plusquin
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S Nawrot
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium.,Department of Public Health, Environment and Health Unit, Leuven University (KU Leuven), Leuven, Belgium
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW With the incidence of neurodevelopmental disorders on the rise, it is imperative to identify and understand the mechanisms by which environmental contaminants can impact the developing brain and heighten risk. Here, we report on recent findings regarding novel mechanisms of developmental neurotoxicity and highlight chemicals of concern, beyond traditionally defined neurotoxicants. RECENT FINDINGS The perinatal window represents a critical and extremely vulnerable period of time during which chemical insult can alter the morphological and functional trajectory of the developing brain. Numerous chemical classes have been associated with alterations in neurodevelopment including metals, solvents, pesticides, and, more recently, endocrine-disrupting compounds. Although mechanisms of neurotoxicity have traditionally been identified as pathways leading to neuronal cell death, neuropathology, or severe neural injury, recent research highlights alternative mechanisms that result in more subtle but consequential changes in the brain and behavior. These emerging areas of interest include neuroendocrine and immune disruption, as well as indirect toxicity via actions on other organs such as the gut and placenta. Understanding of the myriad ways in which the developing brain is vulnerable to chemical exposures has grown tremendously over the past decade. Further progress and implementation in risk assessment is critical to reducing risk of neurodevelopmental disorders.
Collapse
|
26
|
Barke TL, Money KM, Du L, Serezani A, Gannon M, Mirnics K, Aronoff DM. Sex modifies placental gene expression in response to metabolic and inflammatory stress. Placenta 2019; 78:1-9. [PMID: 30955704 PMCID: PMC6461364 DOI: 10.1016/j.placenta.2019.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/25/2019] [Accepted: 02/18/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Metabolic stress (e.g., gestational diabetes mellitus (GDM) and obesity) and infections are common during pregnancy, impacting fetal development and the health of offspring. Such antenatal stresses can differentially impact male and female offspring. We sought to determine how metabolic stress and maternal immune activation (MIA), either alone or in combination, alters inflammatory gene expression within the placenta and whether the effects exhibited sexual dimorphism. METHODS Female C57BL/6 J mice were fed a normal diet or a high fat diet for 6 weeks prior to mating, with the latter diet inducing a GDM phenotype during pregnancy. Dams within each diet group at gestational day (GD) 12.5 received either an intraperitoneal injection of the viral mimic, polyinosinic:polycytidylic acid (poly(I:C)) or saline. Three hours post injection; placentae were collected and analyzed for changes in the expression of 248 unique immune genes. RESULTS Placental immune gene expression was significantly altered by GDM, MIA and the combination of the two (GDM+MIA). mRNA expression was generally lower in placentae of mice exposed to GDM alone compared with the other experimental groups, while mice exposed to MIA exhibited the highest transcript levels. Notably, fetal/placental sex influenced the responses of many immune genes to both metabolic and inflammatory stress. DISCUSSION GDM and MIA provoke inflammatory responses within the placenta and such effects exhibit sexual dimorphism. The combination of these stressors impacts the placenta differently than either condition alone. These findings may help explain sexual dimorphism observed in adverse pregnancy outcomes in human offspring exposed to similar stressors.
Collapse
Affiliation(s)
- Theresa L Barke
- Graduate Program in Microbiology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kelli M Money
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Liping Du
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ana Serezani
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Maureen Gannon
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David M Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
27
|
Kim S, Cho YH, Lee I, Kim W, Won S, Ku JL, Moon HB, Park J, Kim S, Choi G, Choi K. Prenatal exposure to persistent organic pollutants and methylation of LINE-1 and imprinted genes in placenta: A CHECK cohort study. ENVIRONMENT INTERNATIONAL 2018; 119:398-406. [PMID: 30005188 DOI: 10.1016/j.envint.2018.06.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Prenatal exposure to persistent organic pollutants (POPs) has been linked to numerous adverse birth outcomes among newborn infants in many epidemiological studies. Although epigenetic modifications have been suggested as possible explanations for those associations, studies have rarely reported a relationship between POP exposure during pregnancy and DNA methylation in the placenta. In the present study, we investigated the association between prenatal exposure to several POPs, including organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs), and methylation levels of long interspersed element 1 (LINE-1), as well as imprinted genes in placental DNAs among Korean mother-child pairs (N = 109). We assessed the association of DNA methylation not only with each target POP (single-POP models) but also with multiple POPs applying principal component analysis (multiple-POP models). Potential associations between placental DNA methylation and birth outcomes of newborn infants were also estimated. In single-POP models, significant associations were detected between OCP measurements and placental DNA methylation. Elevated concentrations of β-hexachlorhexane (β-HCH) in maternal serum collected during delivery were significantly associated with a decrease in methylation of LINE-1 in the placenta. Higher levels of p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT) in maternal serum were associated with hypermethylation of insulin-like growth factor 2 (IGF2). In multiple-POP models, a significant and positive association between DDTs and IGF2 methylation was also observed. Placental LINE-1 methylation was inversely associated with birth length. Our observations indicate that prenatal exposure to several POPs including DDTs is associated with the changes in methylation of genes, including major imprinted genes in the placenta. The consequences of these epigenetic alterations in placenta during development deserve further investigation.
Collapse
Affiliation(s)
- Sujin Kim
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Hee Cho
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Inae Lee
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonji Kim
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungho Won
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja-Lok Ku
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Jeongim Park
- College of Natural Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sungkyoon Kim
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyuyeon Choi
- College of Medicine, Soonchunhyang University, Seoul 04401, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
28
|
Rock KD, Horman B, Phillips AL, McRitchie SL, Watson S, Deese-Spruill J, Jima D, Sumner S, Stapleton HM, Patisaul HB. EDC IMPACT: Molecular effects of developmental FM 550 exposure in Wistar rat placenta and fetal forebrain. Endocr Connect 2018; 7:305-324. [PMID: 29351906 PMCID: PMC5817967 DOI: 10.1530/ec-17-0373] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/19/2018] [Indexed: 12/13/2022]
Abstract
Firemaster 550 (FM 550) is a flame retardant (FR) mixture that has become one of the most commonly used FRs in foam-based furniture and baby products. Human exposure to this commercial mixture, composed of brominated and organophosphate components, is widespread. We have repeatedly shown that developmental exposure can lead to sex-specific behavioral effects in rats. Accruing evidence of endocrine disruption and potential neurotoxicity has raised concerns regarding the neurodevelopmental effects of FM 550 exposure, but the specific mechanisms of action remains unclear. Additionally, we observed significant, and in some cases sex-specific, accumulation of FM 550 in placental tissue following gestational exposure. Because the placenta is an important source of hormones and neurotransmitters for the developing brain, it may be a critical target of toxicity to consider in the context of developmental neurotoxicity. Using a mixture of targeted and exploratory approaches, the goal of the present study was to identify possible mechanisms of action in the developing forebrain and placenta. Wistar rat dams were orally exposed to FM 550 (0, 300 or 1000 µg/day) for 10 days during gestation and placenta and fetal forebrain tissue collected for analysis. In placenta, evidence of endocrine, inflammatory and neurotransmitter signaling pathway disruption was identified. Notably, 5-HT turnover was reduced in placental tissue and fetal forebrains indicating that 5-HT signaling between the placenta and the embryonic brain may be disrupted. These findings demonstrate that environmental contaminants, like FM 550, have the potential to impact the developing brain by disrupting normal placental functions.
Collapse
Affiliation(s)
- Kylie D Rock
- Department of Biological SciencesNorth Carolina State University, Raleigh, North Carolina, USA
| | - Brian Horman
- Department of Biological SciencesNorth Carolina State University, Raleigh, North Carolina, USA
| | - Allison L Phillips
- Nicholas School of the EnvironmentDuke University, Durham, North Carolina, USA
| | - Susan L McRitchie
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott Watson
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jocelin Deese-Spruill
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dereje Jima
- Center for Human Health and the EnvironmentNorth Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research CenterNorth Carolina State University, Raleigh, North Carolina, USA
| | - Susan Sumner
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for Human Health and the EnvironmentNorth Carolina State University, Raleigh, North Carolina, USA
| | - Heather M Stapleton
- Nicholas School of the EnvironmentDuke University, Durham, North Carolina, USA
| | - Heather B Patisaul
- Department of Biological SciencesNorth Carolina State University, Raleigh, North Carolina, USA
- Center for Human Health and the EnvironmentNorth Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
29
|
Salafia CM, Shah RG, Misra DP, Straughen JK, Roberts DJ, Troxler L, Morgan SP, Eucker B, Thorp JM. Chorionic vascular "fit" in the human placenta: Relationship to fetoplacental outcomes. Placenta 2017; 59:13-18. [PMID: 29108632 DOI: 10.1016/j.placenta.2017.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Novel measures of the chorionic plate and vessels are used to test the hypothesis that variation in placental structure is correlated with reduced birth weight (BW) independent of placental weight (PW), suggesting functionally compromised placentas. METHODS 916 mothers recruited to the Pregnancy, Infection and Nutrition Study delivering singleton live born infants at >30 gestational weeks had placentas collected, digitally photographed and weighed prior to formalin fixation. The fetal-placental weight ratio (FPR) was calculated as birthweight/placental weight. Beta (beta) was calculated as ln(PW)/ln(BW). Chorionic disk perimeter was traced and chorionic surface shape (CS) area was calculated. "Fit" was defined as the ratio of the area of the vascular to the full chorionic surface area. The sites at which chorionic vessels dived beneath the chorionic surface were marked to calculate the chorionic surface vessel (CV) area. The centroids of shapes, the distance between centroids and other measures of shape irregularities were calculated. Principal components analysis (PCA) created three independent factors. Factors were used in regression analyses to explore relations to birth weight, trimmed placental weight, FPR, and beta. Specific measures of shape irregularity were also examined in regression analyses for interrelationships and to predict birth weight, placental weight, FPR, and beta. RESULTS Variables related to disk size (CS area, perimeter) were correlated with BW, GA, trimmed PW and beta. "Fit" (the ratio of CV area to CS area), measures of shape irregularities, and the distance between the cord insertion and the centroids of surface and vascular areas were also correlated with one or more of the clinical outcome variables. PCA yielded three factors that had independent effects on birth weight, placental weight, the fetal-placental weight ratio, and beta (each p < 0.0001). Addition of GA did not alter the factors' associations with outcomes. Chorionic "fit" (ratio of areas), also included within the factor analysis, was a positive predictor of birth weight (p = 0.005) and FPR (p = 0.002) and a negative predictor of beta (p = 0.01). Fit was statistically significantly associated with greater distances between the umbilical cord insertion site and the CS (p < 0.001) and CV centroids (p < 0.001), and to lesser displacement between CS and CV centroids (p < 0.001). CONCLUSIONS Measures of CS and CV account for variation in placental efficiency defined by beta, independent of GA. Macroscopic placenta measurements can identify suboptimal placental development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Barbara Eucker
- University of North Carolina Chapel Hill, United States.
| | - John M Thorp
- University of North Carolina Chapel Hill, United States.
| |
Collapse
|
30
|
Prenatal antimicrobial use and early-childhood body mass index. Int J Obes (Lond) 2017; 42:1-7. [PMID: 28925412 DOI: 10.1038/ijo.2017.205] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 07/27/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND/OBJECTIVES Growing evidence suggests that antibiotic use is associated with childhood body mass index (BMI), potentially via mechanisms mediated by gut microbiome alterations. Less is known on the potential role of prenatal antimicrobial use in offspring obesity risk. We examined whether prenatal antibiotic or antifungal use was associated with BMI at the age of 2 years in 527 birth cohort participants. METHODS/SUBJECTS Antimicrobial use was obtained from the prenatal medical record. Height and weight were measured at the age of 2 years. Overweight/obesity was defined as a BMI ⩾85th percentile. RESULTS A total of 303 (57.5%) women used antibiotics and 101 (19.2%) used antifungals during pregnancy. Prenatal antifungal use was not associated with child BMI at the age of 2 years. In the fully adjusted model, prenatal antibiotic use was associated with a 0.20±0.10 (P=0.046) higher mean BMI Z-score at the age of 2 years. Associations between prenatal antibiotic use and childhood BMI varied by trimester of exposure, with first or second-trimester exposure more strongly associated with larger BMI at the age of 2 years for both BMI Z-score (interaction P=0.032) and overweight/obesity (interaction P=0.098) after covariate adjustment. CONCLUSIONS Prenatal antibiotic, but not antifungal, use is associated with larger BMI at the age of 2 years; associations were stronger for antibiotic exposures in earlier trimesters. Future studies examining whether these associations are due to alterations in the maternal and/or infant microbiome are necessary. Children who are overweight at the age of 2 years are at higher risk for being overweight as they age; prenatal antibiotic use is a potentially modifiable exposure that could reduce childhood obesity.
Collapse
|
31
|
Baldwin KR, Phillips AL, Horman B, Arambula SE, Rebuli ME, Stapleton HM, Patisaul HB. Sex Specific Placental Accumulation and Behavioral Effects of Developmental Firemaster 550 Exposure in Wistar Rats. Sci Rep 2017; 7:7118. [PMID: 28769031 PMCID: PMC5540931 DOI: 10.1038/s41598-017-07216-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/23/2017] [Indexed: 12/20/2022] Open
Abstract
Firemaster® 550 (FM 550) is a commercial flame retardant mixture of brominated and organophosphate compounds applied to polyurethane foam used in furniture and baby products. Due to widespread human exposure, and structural similarities with known endocrine disruptors, concerns have been raised regarding possible toxicity. We previously reported evidence of sex specific behavioral effects in rats resulting from developmental exposure. The present study expands upon this prior finding by testing for a greater range of behavioral effects, and measuring the accumulation of FM 550 compounds in placental tissue. Wistar rat dams were orally exposed to FM 550 during gestation (0, 300 or 1000 µg/day; GD 9 – 18) for placental measurements or perinatally (0, 100, 300 or 1000 µg/day; GD 9 – PND 21) to assess activity and anxiety-like behaviors. Placental accumulation was dose dependent, and in some cases sex specific, with the brominated components reaching the highest levels. Behavioral changes were predominantly associated with a loss or reversal of sex differences in activity and anxiety-like behaviors. These findings demonstrate that environmental chemicals may sex-dependently accumulate in the placenta. That sex-biased exposure might translate to sex-specific adverse outcomes such as behavioral deficits is a possibility that merits further investigation.
Collapse
Affiliation(s)
- Kylie R Baldwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Allison L Phillips
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sheryl E Arambula
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Meghan E Rebuli
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA. .,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
32
|
Walker N, Filis P, Soffientini U, Bellingham M, O’Shaughnessy PJ, Fowler PA. Placental transporter localization and expression in the Human: the importance of species, sex, and gestational age differences†. Biol Reprod 2017; 96:733-742. [PMID: 28339967 PMCID: PMC5441296 DOI: 10.1093/biolre/iox012] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/22/2017] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
The placenta is a critical organ during pregnancy, essential for the provision of an optimal intrauterine environment, with fetal survival, growth, and development relying on correct placental function. It must allow nutritional compounds and relevant hormones to pass into the fetal bloodstream and metabolic waste products to be cleared. It also acts as a semipermeable barrier to potentially harmful chemicals, both endogenous and exogenous. Transporter proteins allow for bidirectional transport and are found in the syncytiotrophoblast of the placenta and endothelium of fetal capillaries. The major transporter families in the human placenta are ATP-binding cassette (ABC) and solute carrier (SLC), and insufficiency of these transporters may lead to deleterious effects on the fetus. Transporter expression levels are gestation-dependent and this is of considerable clinical interest as levels of drug resistance may be altered from one trimester to the next. This highlights the importance of these transporters in mediating correct and timely transplacental passage of essential compounds but also for efflux of potentially toxic drugs and xenobiotics. We review the current literature on placental molecular transporters with respect to their localization and ontogeny, the influence of fetal sex, and the relevance of animal models. We conclude that a paucity of information exists, and further studies are required to unlock the enigma of this dynamic organ.
Collapse
Affiliation(s)
- Natasha Walker
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Ugo Soffientini
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michelle Bellingham
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Peter J O’Shaughnessy
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|