1
|
Jafari S, Pourmortazavi SM, Ehsani A, Mirsadeghi S. CuO-ZIF-8 modified electrode surface as a new electrochemical sensing platform for detection of free chlorine in aqueous solution. Sci Rep 2024; 14:18961. [PMID: 39147855 PMCID: PMC11327310 DOI: 10.1038/s41598-024-69869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
This work has applied metal-organic frameworks (MOFs) with high adsorbability and catalytic activity to develop electrochemical sensors to determine free chlorine (free-Cl) concentrations in aqueous media. A zeolitic imidazolate frameworks, Zn(Hmim)2 (ZIF-8) has been synthesized and incorporated with CuO nanosheets to decorate a glassy carbon electrode (GCE) and provide a new sensor for free-Cl determination. The as-prepared ZIF-8 and CuO-ZIF-8 composites have been characterized by FESEM, EDX, XRD, and FT-IR analyses. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) utilized to characterize the CuO-ZIF-8/GC modified electrode electrochemically, demonstrated the ability of the sensor to measure free-Cl concentration. Using differential pulse voltammetry (DPV) and under the optimal conditions, the prepared CuO-ZIF-8/GC modified electrode showed a linear response in the 0.25-60 ppm range with a 12 ppb detection limit (LOD) for free-Cl concentration. Finally, the fabricated sensor was applied to analyze free-Cl from actual swimming pool water samples with promising 97.5 to 103.0% recoveries.
Collapse
Affiliation(s)
- Somayeh Jafari
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | | | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.
| | - Somayeh Mirsadeghi
- KonadHerbs Co., Sharif Innovation Area, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
2
|
Luo Q, Miao Y, Liu C, Bei E, Zhang JF, Zhang LH, Deng YL, Qiu Y, Lu WQ, Wright JM, Chen C, Zeng Q. Maternal exposure to nitrosamines in drinking water during pregnancy and birth outcomes in a Chinese cohort. CHEMOSPHERE 2023; 315:137776. [PMID: 36623593 PMCID: PMC11534404 DOI: 10.1016/j.chemosphere.2023.137776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Maternal exposure to regulated disinfection by-products (DBPs) during pregnancy has been linked with adverse birth outcomes. However, no human studies have focused on drinking water nitrosamines, a group of emerging unregulated nitrogenous DBPs that exhibits genotoxicity and developmental toxicity in experimental studies. This cohort study included 2457 mother-infant pairs from a single drinking water supply system in central China, and maternal trimester-specific and entire pregnancy exposure of drinking water nitrosamines were evaluated. Multivariable linear and Poisson regression models were used to estimate the associations between maternal exposure to nitrosamines in drinking water and birth outcomes [birth weight (BW), low birth weight (LBW), small for gestational age (SGA) and preterm delivery (PTD)]. Elevated maternal N-nitrosodimethylamine (NDMA) exposure in the second trimester and N-nitrosopiperidine (NPIP) exposure during the entire pregnancy were associated with decreased BW (e.g., β = -88.6 g; 95% CI: -151.0, -26.1 for the highest vs. lowest tertile of NDMA; p for trend = 0.01) and increased risks of PTD [e.g., risk ratio (RR) = 2.16; 95% CI: 1.23, 3.79 for the highest vs. lowest tertile of NDMA; p for trend = 0.002]. Elevated maternal exposure of N-nitrosodiethylamine (NDEA) in the second trimester was associated with increased risk of SGA (RR = 1.80; 95% CI: 1.09, 2.98 for the highest vs. lowest tertile; p for trend = 0.01). Our study detected associations of maternal exposure to drinking water nitrosamines during pregnancy with decreased BW and increased risks of SGA and PTD. These findings are novel but require replication in other study populations.
Collapse
Affiliation(s)
- Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Er Bei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China
| | - Jin-Feng Zhang
- Maternal and Child Health Care Service Centre of Xiaonan District, Xiaogan City, Hubei, PR China
| | - Ling-Hua Zhang
- Maternal and Child Health Care Service Centre of Xiaonan District, Xiaogan City, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - J Michael Wright
- Office of Research and Development, U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Cincinnati, OH, USA
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
3
|
An SL, Xiong SM, Shen XB, Ni YQ, Chen W, He CD, Zhou YZ. The associations between exposure to trihalomethanes during pregnancy and adverse birth outcomes: A systematic review and meta-analysis. CHEMOSPHERE 2022; 293:133524. [PMID: 34990723 DOI: 10.1016/j.chemosphere.2022.133524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/14/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
The study aimed to examine the associations between the level of trihalomethanes and its metabolites in pregnancy and the risks of adverse birth outcomes. We searched the databases of the China National Knowledge Infrastructure, WanFang, Vip, PubMed, and Elsevier Science Direct from database establishment to July 14, 2021 and performed a systematic review and meta-analysis of observational studies reporting associations between trihalomethanes level and abnormally low birth weight and preterm birth. The pooled odds ratio (OR), pooled risk ratio, and pooled risk difference with their 95% confidence interval (CI) were calculated for risk estimates. A total of 24 studies involving 1,118,037 pregnant women were finally enrolled in the present systematic review and meta-analysis. Our research found that abnormally low birth weight was associated with higher levels of total trihalomethanes (OR = 2.45, 95% CI: 1.28, 4.68; P = 0.007). Unexpectedly, the meta-analysis indicated that higher total trihalomethanes level was associated with lower odds of preterm birth (OR = 0.90, 95% CI: 0.81, 0.99; P = 0.03). Our findings indicate that trihalomethanes exposure might be a risk factor for abnormally low birth weight and that it would be prudent to minimize exposure to trihalomethanes during pregnancy because of the risk of abnormally low birth weight. Given some limitations of the systematic review and meta-analysis, our results should be interpreted with caution.
Collapse
Affiliation(s)
- Song-Lin An
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563060, PR China
| | - Shi-Min Xiong
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563060, PR China
| | - Xu-Bo Shen
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563060, PR China
| | - Yun-Qiao Ni
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563060, PR China
| | - Wei Chen
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563060, PR China
| | - Cai-Die He
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563060, PR China
| | - Yuan-Zhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563060, PR China.
| |
Collapse
|
4
|
Deng YL, Luo Q, Liu C, Zeng JY, Lu TT, Shi T, Cui FP, Yuan XQ, Miao Y, Zhang M, Chen PP, Li YF, Lu WQ, Zeng Q. Urinary biomarkers of exposure to drinking water disinfection byproducts and ovarian reserve: A cross-sectional study in China. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126683. [PMID: 34315024 DOI: 10.1016/j.jhazmat.2021.126683] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/21/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Experimental studies have demonstrated that disinfection byproducts (DBPs) can cause ovarian toxicity including inhibition of antral follicle growth and disruption of steroidogenesis, but there is a paucity of human evidence. We aimed to investigate whether urinary biomarkers of exposure to drinking water DBPs were associated with ovarian reserve. The present study included 956 women attending an infertility clinic in Wuhan, China from December 2018 to January 2020. Antral follicle count (AFC), ovarian volume (OV), anti-Mullerian hormone (AMH), and follicle-stimulating hormone (FSH) were measured as indicators of ovarian reserve. Urinary dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were assessed as potential biomarkers of drinking water DBP exposures. Multivariate linear and Poisson regression models were applied to estimate the associations of urinary DCAA and TCAA concentrations with indicators of ovarian reserve. Elevated urinary DCAA and TCAA levels were monotonically associated with reduced total AFC (- 5.98%; 95% CI: - 10.30%, - 1.44% in DCAA and - 12.98%; 95% CI: - 17.00%, - 8.76% in TCAA comparing the extreme tertiles; both P for trends ≤ 0.01), and the former was only observed in right AFC but not in left AFC, whereas the latter was estimated for both right and left AFC. Moreover, elevated urinary TCAA levels were monotonically associated with decreased AMH (- 14.09%; 95% CI: - 24.79%, - 1.86% comparing the extreme tertiles; P for trend = 0.03). These negative associations were still observed for the exposure biomarkers modeled as continuous variables. Our findings suggest that exposure to drinking water DBPs may be associated with decreased ovarian reserve.
Collapse
Affiliation(s)
- Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tian Shi
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Qiong Yuan
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
5
|
Säve-Söderbergh M, Toljander J, Donat-Vargas C, Berglund M, Åkesson A. Exposure to Drinking Water Chlorination by-Products and Fetal Growth and Prematurity: A Nationwide Register-Based Prospective Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:57006. [PMID: 32438832 PMCID: PMC7263457 DOI: 10.1289/ehp6012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Chlorination is globally used to produce of safe drinking water. Chlorination by-products are easily formed, and there are indications that these are associated with adverse reproductive outcomes. OBJECTIVES We conducted a nationwide register-based prospective study to assess whether gestational exposure to the four most common chlorination by-products [total trihalomethanes (TTHMs)] via tap water was associated with risk of small for gestational age (SGA), preterm delivery, and very preterm delivery. To date, this is one of the largest studies assessing drinking water TTHM-associated adverse reproductive outcomes. METHODS We included all singleton births 2005-2015 (live and stillbirths) of mothers residing in Swedish localities having >10,000 inhabitants, ≤2 operating waterworks, adequate information on chlorination treatment, and a sufficient number of routine TTHM measurements in tap water. Individual maternal second and third trimester exposure was obtained by linking TTHM measurements to residential history, categorized into no chlorination, <5, 5-15, and >15μg TTHM/L. Outcomes and covariates were obtained via the linkage to Swedish health and administrative registers. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression using inverse probability weighting. We stratified the analyses by chlorination treatment (chloramine, hypochlorite). RESULTS Based on approximately 500,000 births, we observed a TTHM dose-dependent association with increased risk of SGA, confined to treatment with hypochlorite, corresponding to a multivariable-adjusted OR=1.20 (95% CI: 1.08, 1.33) comparing drinking water TTHM >15μg to the unexposed. Similar results were obtained when, instead of unexposed, the lowest exposure category (<5μg/L TTHM) was used as reference. No clear associations were observed for preterm delivery and very preterm delivery. DISCUSSION Chlorination by-products exposure via drinking water was associated with increased risk of SGA in areas with hypochlorite treatment. https://doi.org/10.1289/EHP6012.
Collapse
Affiliation(s)
- Melle Säve-Söderbergh
- Science Division, Swedish Food Agency, Uppsala, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Carolina Donat-Vargas
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Yang P, Cao WC, Zhou B, Zheng TZ, Deng YL, Luo Q, Miao Y, Chen D, Zeng Q, Lu WQ. Urinary Biomarker of Prenatal Exposure to Disinfection Byproducts, Maternal Genetic Polymorphisms in CYP2E1 and GSTZ1, and Birth Outcomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12026-12034. [PMID: 31525872 DOI: 10.1021/acs.est.9b03847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effects of disinfection byproducts (DBPs) on adverse birth outcomes remain unsettled. Maternal genetic variants in relation to DBP metabolism may modify this effect. Pregnant women during late pregnancy (n = 1306) were included from a Chinese cohort. Maternal urinary trichloroacetic acid (TCAA) was measured as a biomarker of DBP exposure. Maternal genotyping was conducted in cytochrome P450 2E1 (CYP2E1; rs2031920, rs3813867, and rs915906) and glutathione S-transferase zeta-1 (GSTZ1; rs7975). The associations between maternal urinary TCAA and birth outcomes and statistical interactions between maternal exposure and genetic polymorphisms were estimated. We found that maternal urinary TCAA levels were associated with decreased birth weight (P for trend = 0.003) and ponderal index (P for trend = 0.004). Interaction analyses showed that maternal urinary TCAA in association with decreased birth weight was observed only among subjects with CYP2E1 rs3813867 GC/CC versus GG (Pint = 0.07) and associations with decreased birth length, ponderal index, and gestational age were observed only among subjects with GSTZ1 rs7975 GA/AA versus GG (Pint = 0.07, 0.02, and 0.02, respectively). Our results suggested that prenatal DBP exposure was negatively associated with birth weight and ponderal index, and maternal genetic polymorphisms in CYP2E1 and GSTZ1 might modify these associations.
Collapse
Affiliation(s)
| | - Wen-Cheng Cao
- Hubei Provincial Key Laboratory for Applied Toxicology , Hubei Provincial Center for Disease Control and Prevention , Wuhan 430079 , Hubei , PR China
| | | | - Tong-Zhang Zheng
- Department of Epidemiology , Brown University School of Public Health , Providence 02903 , Rhode Island , United States
| | | | | | | | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , Guangdong , PR China
| | - Qiang Zeng
- Department of Epidemiology , Brown University School of Public Health , Providence 02903 , Rhode Island , United States
| | | |
Collapse
|
7
|
Deng YL, Yang P, Cao WC, Wang YX, Liu C, Chen YJ, Huang LL, Lu WQ, Wang LQ, Zeng Q. Urinary biomarker of late pregnancy exposure to drinking water disinfection by-products and ultrasound measures of fetal growth in Wuhan, China. ENVIRONMENTAL RESEARCH 2019; 170:128-133. [PMID: 30579986 DOI: 10.1016/j.envres.2018.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/24/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Disinfection by-products (DBPs) have been shown to be reproductive and developmental toxicity. However, few studies examine the effect of prenatal exposure to DBPs on fetal growth via ultrasound measures. OBJECTIVE To investigate the associations between maternal exposure to DBPs during late pregnancy and ultrasound measures of fetal growth. METHODS We included 332 pregnant women who presented to a hospital to wait for delivery in Wuhan, China. Ultrasound parameters of fetal growth including femur length (FL), head circumference (HC), abdominal circumference (AC) and biparietal diameter (BPD) were assessed. We measured maternal TCAA concentrations in first morning urine collected from late pregnancy as a biomarker of in utero DBP exposure levels. Multivariable linear regression models were used to examine the associations between maternal urinary TCAA concentrations during late pregnancy and ultrasound parameters of fetal growth. RESULTS We found that elevated maternal creatinine (Cr)-adjusted urinary TCAA levels had negative associations with BPD, HC and FL in boys but not in girls (P interaction = 0.04, 0.05 and 0.08, respectively). Male fetal BPD, HC and FL had decreases of 0.21 cm (95% CI: -0.35, -0.07; P for trend = 0.003), 0.46 cm (95% CI: -0.81, -0.10; P for trend = 0.01) and 0.17 cm (95% CI: -0.30, -0.04; P for trend = 0.01) for the highest vs. lowest tertile of Cr-adjusted urinary TCAA, respectively. These negative associations persisted for maternal Cr-adjusted urinary TCAA concentrations modeled as continuous variables. CONCLUSION The results from our study suggest that maternal exposure to TCAA during late pregnancy may have adverse effects on male fetal growth.
Collapse
Affiliation(s)
- Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Cheng Cao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying-Jun Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li-Li Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Long-Qiang Wang
- Department of Thyroid and Breast Surgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
8
|
Williams AL, Bates CA, Pace ND, Leonhard MJ, Chang ET, DeSesso JM. Impact of chloroform exposures on reproductive and developmental outcomes: A systematic review of the scientific literature. Birth Defects Res 2018; 110:1267-1313. [PMID: 30350414 DOI: 10.1002/bdr2.1382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/26/2018] [Accepted: 07/27/2018] [Indexed: 12/26/2022]
Abstract
AIMS We assessed the animal and epidemiological data to determine if chloroform exposure causes developmental and/or reproductive toxicity. RESULTS AND DISCUSSION Initial scoping identified developmental toxicity as the primary area of concern. At levels producing maternal toxicity in rats and mice, chloroform caused decrements in fetal weights and associated delays in ossification. In a single mouse inhalation study, exposure to a high concentration of chloroform was associated with small fetuses and increased cleft palate. However, oral exposure of mice to chloroform at a dose 4 times higher was negative for cleft palate; multiple inhalation studies in rats were also negative. Epidemiologic data on low birth weight and small for gestational age were generally equivocal, preventing conclusions from being drawn for humans. The animal data also show evidence of very early (peri-implantation) total litter losses at very high exposure levels. This effect is likely maternally mediated rather than a direct effect on the offspring. Finally, the epidemiologic data indicate a possible association of higher chloroform exposure with lower risk of preterm birth (<37 weeks gestation). CONCLUSIONS The available animal data suggest that exposures lower than those causing maternal toxicity should be without developmental effects in the offspring. Also, most studies in humans rely on group-level geographic exposure data, providing only weak epidemiologic evidence for an association with development outcomes and fail to establish a causal role for chloroform in the induction of adverse developmental outcomes at environmentally relevant concentrations.
Collapse
Affiliation(s)
| | | | | | | | | | - John M DeSesso
- Exponent, Inc., Alexandria, Virginia.,Georgetown University School of Medicine, Washington, District of Columbia
| |
Collapse
|
9
|
Mashau F, Ncube EJ, Voyi K. Drinking water disinfection by-products exposure and health effects on pregnancy outcomes: a systematic review. JOURNAL OF WATER AND HEALTH 2018; 16:181-196. [PMID: 29676755 DOI: 10.2166/wh.2018.167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Epidemiological studies have found that maternal exposure to disinfection by-products (DBPs) may lead to adverse pregnancy outcomes although the findings tend to be inconsistent. The objective of this study was to systematically review the evidence in associated with drinking water DBP exposure in relation to adverse pregnancy outcomes. Peer-reviewed articles were identified using electronic databases searched for studies published in the English language. Studies selected for review were evaluated for exposure assessment, confounders, and analyses risks of bias in the selection, outcomes assessment, and attrition. A comprehensive search and screening yielded a total of 32 studies, of which 12 (38%) reported a statistical association between maternal exposure to DBPs and adverse pregnancy outcomes. A maternal exposure to trihalomethanes (THMs) shows an increased risk of small for gestational age (SGA) and slightly increased risk of pregnancy loss. Risks of bias were low among the studies included in the review. Evidence on association relating to adverse pregnancy outcomes to DBP exposure is still less significant. There is a need for future robust research in this field, with the use of urinary trichloroacetic acid (TCAA) biomarkers as a direct exposure assessment method for this field.
Collapse
Affiliation(s)
- Funanani Mashau
- School of Health Systems and Public Health, University of Pretoria, Pretoria, Gauteng, South Africa E-mail:
| | - Esper Jacobeth Ncube
- School of Health Systems and Public Health, University of Pretoria, Pretoria, Gauteng, South Africa E-mail:
| | - Kuku Voyi
- School of Health Systems and Public Health, University of Pretoria, Pretoria, Gauteng, South Africa E-mail:
| |
Collapse
|
10
|
Cao WC, Zeng Q, Luo Y, Chen HX, Miao DY, Li L, Cheng YH, Li M, Wang F, You L, Wang YX, Yang P, Lu WQ. Blood Biomarkers of Late Pregnancy Exposure to Trihalomethanes in Drinking Water and Fetal Growth Measures and Gestational Age in a Chinese Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:536-41. [PMID: 26340795 PMCID: PMC4829983 DOI: 10.1289/ehp.1409234] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 08/13/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Previous studies have suggested that elevated exposure to disinfection by-products (DBPs) in drinking water during gestation may result in adverse birth outcomes. However, the findings of these studies remain inconclusive. OBJECTIVE The purpose of our study was to examine the association between blood biomarkers of late pregnancy exposure to trihalomethanes (THMs) in drinking water and fetal growth and gestational age. METHODS We recruited 1,184 pregnant women between 2011 and 2013 in Wuhan and Xiaogan City, Hubei, China. Maternal blood THM concentrations, including chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM), were measured as exposure biomarkers during late pregnancy. We estimated associations with gestational age and fetal growth indicators [birth weight, birth length, and small for gestational age (SGA)]. RESULTS Total THMs (TTHMs; sum of TCM, BDCM, DBCM, and TBM) were associated with lower mean birth weight (-60.9 g; 95% CI: -116.2, -5.6 for the highest vs. lowest tertile; p for trend = 0.03), and BDCM and DBCM exposures were associated with smaller birth length (e.g., -0.20 cm; 95% CI: -0.37, -0.04 for the highest vs. lowest tertile of DBCM; p for trend = 0.02). SGA was increased in association with the second and third tertiles of TTHMs (OR = 2.91; 95% CI: 1.32, 6.42 and OR = 2.25; 95% CI: 1.01, 5.03; p for trend = 0.08). CONCLUSIONS Our results suggested that elevated maternal THM exposure may adversely affect fetal growth. CITATION Cao WC, Zeng Q, Luo Y, Chen HX, Miao DY, Li L, Cheng YH, Li M, Wang F, You L, Wang YX, Yang P, Lu WQ. 2016. Blood biomarkers of late pregnancy exposure to trihalomethanes in drinking water and fetal growth measures and gestational age in a Chinese cohort. Environ Health Perspect 124:536-541; http://dx.doi.org/10.1289/ehp.1409234.
Collapse
Affiliation(s)
- Wen-Cheng Cao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environment and Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environment and Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environment and Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hai-Xia Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environment and Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Dong-Yue Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environment and Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li Li
- Department of Gynecology and Obstetrics, Wuhan No.1 Hospital, Wuhan, Hubei, PR China
| | - Ying-Hui Cheng
- Department of Gynecology and Obstetrics, Xiaonan Maternal and Child Care Service Centre, Xiaogan, Hubei, PR China
| | - Min Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environment and Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fan Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environment and Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ling You
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environment and Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environment and Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environment and Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environment and Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
11
|
Binkley TL, Thiex NW, Specker BL. Validation of drinking water disinfection by-product exposure assessment for rural areas in the National Children's Study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2015; 25:303-307. [PMID: 25027449 DOI: 10.1038/jes.2014.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 06/03/2023]
Abstract
The objective of this study was to provide evidence to evaluate the proposed National Children's Study (NCS) protocol for household water sampling in rural study areas. Day-to-day variability in total trihalomethane (TTHM) concentrations in community water supplies (CWS) in rural areas was determined, and the correlation between TTHM concentrations from household taps and CWS monitoring reports was evaluated. Daily water samples were collected from 7 households serviced by 7 different CWS for 15 days. Coefficients of variation for TTHM concentration over 15 days ranged from 8% to 20% depending on the household. Correlations were tested between TTHM household concentrations and the closest date- and location-matched CWS monitoring reports for the 15-day mean (R=0.85, P<0.01). To simulate the NCS-proposed protocol, correlations were tested for 30 additional NCS household samples (polynomial fit: R=0.74, P=0.04). CWS reported TTHM concentrations >50 μg/l corresponded to measured NCS household concentrations ranging from 2 to 60 μg/l. TTHM concentrations were higher in CWS than NCS samples (11.2±3.2 μg/l, mean difference±SE, P<0.01). These results show that in rural areas there is high variability within households and poor correlation at higher concentrations, suggesting that TTHM concentrations from CWS monitoring reports are not an accurate measure of exposure in the household.
Collapse
Affiliation(s)
- Teresa L Binkley
- EA Martin Program in Human Nutrition, South Dakota State University, Brookings, South Dakota, USA
| | - Natalie W Thiex
- Biology and Microbiology Department, South Dakota State University, Brookings, South Dakota, USA
| | - Bonny L Specker
- EA Martin Program in Human Nutrition, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
12
|
Gomez Camponovo M, Seoane Muniz G, Rothenberg SJ, Umpiérrez Vazquez E, Achkar Borras M. Predictive model for chloroform during disinfection of water for consumption, city of Montevideo. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:6711-6719. [PMID: 24981876 DOI: 10.1007/s10661-014-3884-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 06/11/2014] [Indexed: 06/03/2023]
Abstract
The objective of this study was to predict chloroform formation resulting from the process of disinfecting water, particularly trihalomethane which is most frequently produced. A statistical model was used which included repeated measurements of water parameters used for monitoring water quality at 51 sites covering the municipal water system of Montevideo. Samples were taken considering different seasons from June 2009 to July 2011 in Montevideo. Total samples (n = 330) were analytically studied using the headspace-gas chromatography method coupled with mass spectrometry. Chloroform was the dependent variable and the covariables were pH, temperature, free chlorine, and total chlorine. A Tobit analysis with an unstructured correlation matrix was performed, and a significant interaction was found between pH and free chlorine for the prediction of chloroform formation. We concluded that parameters for the continuous control of water quality for consumption can be used to predict the levels of chloroform that may be present. Given the large measurement to variability found in the repeated measurements, the use of averages that include more than one season is not recommended to determine the degree of compliance with acceptable levels established by norms.
Collapse
Affiliation(s)
- Mariana Gomez Camponovo
- Social Medicine, Paysandú Center, Universidad de la República, Florida 1051, CP 60000, Paysandú, Uruguay
| | | | | | | | | |
Collapse
|
13
|
Evaluation of exposure to trihalomethanes in tap water and semen quality: A prospective study in Wuhan, China. Reprod Toxicol 2014; 46:56-63. [DOI: 10.1016/j.reprotox.2014.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 01/08/2014] [Accepted: 03/04/2014] [Indexed: 11/21/2022]
|
14
|
Association of Brominated Trihalomethane and Haloacetic Acid Exposure With Fetal Growth and Preterm Delivery in Massachusetts. J Occup Environ Med 2013; 55:1125-34. [DOI: 10.1097/jom.0b013e3182a4ffe4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Kumar S, Forand S, Babcock G, Hwang SA. Total Trihalomethanes in Public Drinking Water Supply and Birth Outcomes: A Cross-Sectional Study. Matern Child Health J 2013; 18:996-1006. [DOI: 10.1007/s10995-013-1328-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Zeng Q, Li M, Xie SH, Gu LJ, Yue J, Cao WC, Zheng D, Liu AL, Li YF, Lu WQ. Baseline blood trihalomethanes, semen parameters and serum total testosterone: a cross-sectional study in China. ENVIRONMENT INTERNATIONAL 2013; 54:134-140. [PMID: 23454109 DOI: 10.1016/j.envint.2013.01.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 01/17/2013] [Accepted: 01/29/2013] [Indexed: 06/01/2023]
Abstract
Toxicological studies showed that trihalomethanes (THMs), the most abundant classes of disinfection by-products (DBPs) in drinking water, impaired male reproductive health, but epidemiological evidence is limited and inconsistent. This study aimed to examine the associations of baseline blood THMs with semen parameters and serum total testosterone in a Chinese population. We recruited 401 men seeking semen examination from the Reproductive Center of Tongji Hospital in Wuhan, China between April 2011 and May 2012. Baseline blood concentrations of THMs, including chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM) were measured using SPME-GC/ECD method. Semen quality and serum total testosterone were analyzed. Multivariable linear regressions were used to assess the associations of baseline blood THM concentrations with semen parameters and serum total testosterone levels. We found that baseline blood THM concentrations were not associated with decrements in sperm motility, sperm straight-line and curvilinear velocity. However, moderate levels of BDCM (β=-0.13 million; 95% CI: -0.22, -0.03) and DBCM (β=-4.74%; 95% CI: -8.07, -1.42) were associated with decreased sperm count and declined sperm linearity compared with low levels, respectively. Suggestive dose-response relationships were also observed between elevated blood TCM or ∑ THMs (sum of TCM, BDCM, DBCM and TBM) concentration and decreased sperm concentration (both p for trend=0.07), and between elevated blood DBCM concentration and decreased serum total testosterone (p for trend=0.07). Our results indicate that elevated THM exposure may lead to decreased sperm concentration and serum total testosterone. However, the effects of THM exposure on male reproductive health still warrant further studies in humans.
Collapse
Affiliation(s)
- Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ferguson KK, O'Neill MS, Meeker JD. Environmental contaminant exposures and preterm birth: a comprehensive review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2013; 16:69-113. [PMID: 23682677 PMCID: PMC3889157 DOI: 10.1080/10937404.2013.775048] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Preterm birth is a significant public health concern, as it is associated with high risk of infant mortality, various morbidities in both the neonatal period and later in life, and a significant societal economic burden. As many cases are of unknown etiology, identification of the contribution of environmental contaminant exposures is a priority in the study of preterm birth. This is a comprehensive review of all known studies published from 1992 through August 2012 linking maternal exposure to environmental chemicals during pregnancy with preterm birth. Using PubMed searches, studies were identified that examined associations between preterm birth and exposure to five categories of environmental toxicants, including persistent organic pollutants, drinking-water contaminants, atmospheric pollutants, metals and metalloids, and other environmental contaminants. Individual studies were summarized and specific suggestions were made for future work in regard to exposure and outcome assessment methods as well as study design, with the recommendation of focusing on potential mediating toxicological mechanisms. In conclusion, no consistent evidence was found for positive associations between individual chemical exposures and preterm birth. By identifying limitations and addressing the gaps that may have impeded the ability to identify true associations thus far, this review can guide future epidemiologic studies of environmental exposures and preterm birth.
Collapse
Affiliation(s)
- Kelly K Ferguson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan 48109-2029, USA.
| | | | | |
Collapse
|
18
|
The effect of water disinfection by-products on pregnancy outcomes in two southeastern US communities. J Occup Environ Med 2012; 53:1172-8. [PMID: 21915074 DOI: 10.1097/jom.0b013e31822b8334] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To determine if exposure to disinfection by-products (DBPs) during gestation increases the risk of adverse birth outcomes, specifically term small for gestational age (SGA) birth, preterm birth (PTB), and very PTB (<32 weeks' gestation). METHODS We used weekly measurements total trihalomethanes (TTHMs), five haloacetic acids (HAA5), and total organic halides (TOX) collected from two distribution systems to evaluate the associations between DBP concentrations and term SGA, PTB, and very PTB using logistic regression. RESULTS We found no associations between DBPs and term-SGA. In the site with higher concentrations of bromine-containing DBPs, we found an association between TOX and PTB; this association was larger, though less precise, for very PTB. CONCLUSIONS Our results do not support an association between TTHMs or HAA5 and the birth outcomes investigated, but an association was found between increased TOX and PTB.
Collapse
|
19
|
Villanueva CM, Gracia-Lavedán E, Ibarluzea J, Santa Marina L, Ballester F, Llop S, Tardón A, Fernández MF, Freire C, Goñi F, Basagaña X, Kogevinas M, Grimalt JO, Sunyer J. Exposure to trihalomethanes through different water uses and birth weight, small for gestational age, and preterm delivery in Spain. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1824-30. [PMID: 21810554 PMCID: PMC3261969 DOI: 10.1289/ehp.1002425] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/02/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Evidence associating exposure to water disinfection by-products with reduced birth weight and altered duration of gestation remains inconclusive. OBJECTIVE We assessed exposure to trihalomethanes (THMs) during pregnancy through different water uses and evaluated the association with birth weight, small for gestational age (SGA), low birth weight (LBW), and preterm delivery. METHODS Mother-child cohorts set up in five Spanish areas during the years 2000-2008 contributed data on water ingestion, showering, bathing, and swimming in pools. We ascertained residential THM levels during pregnancy periods through ad hoc sampling campaigns (828 measurements) and regulatory data (264 measurements), which were modeled and combined with personal water use and uptake factors to estimate personal uptake. We defined outcomes following standard definitions and included 2,158 newborns in the analysis. RESULTS Median residential THM ranged from 5.9 μg/L (Valencia) to 114.7 μg/L (Sabadell), and speciation differed across areas. We estimated that 89% of residential chloroform and 96% of brominated THM uptakes were from showering/bathing. The estimated change of birth weight for a 10% increase in residential uptake was -0.45 g (95% confidence interval: -1.36, 0.45 g) for chloroform and 0.16 g (-1.38, 1.70 g) for brominated THMs. Overall, THMs were not associated with SGA, LBW, or preterm delivery. CONCLUSIONS Despite the high THM levels in some areas and the extensive exposure assessment, results suggest that residential THM exposure during pregnancy driven by inhalation and dermal contact routes is not associated with birth weight, SGA, LBW, or preterm delivery in Spain.
Collapse
|
20
|
Colman J, Rice GE, Wright JM, Hunter ES, Teuschler LK, Lipscomb JC, Hertzberg RC, Simmons JE, Fransen M, Osier M, Narotsky MG. Identification of developmentally toxic drinking water disinfection byproducts and evaluation of data relevant to mode of action. Toxicol Appl Pharmacol 2011; 254:100-26. [DOI: 10.1016/j.taap.2011.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 04/22/2010] [Accepted: 04/22/2010] [Indexed: 12/26/2022]
|
21
|
Sulsky SI, Luippold RS, Garman P, Hughes H, Amoroso PJ. Risk of disability for US army personnel vaccinated against anthrax, 1998-2005. Vaccine 2011; 29:6035-41. [PMID: 21704102 DOI: 10.1016/j.vaccine.2011.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/03/2011] [Accepted: 06/09/2011] [Indexed: 11/19/2022]
Abstract
To evaluate the potential for long-term or delayed onset health effects, we extended a previous cohort study of disability separation from the army associated with vaccination against anthrax. Analyses included stratified Cox proportional hazards and multiple logistic regression models. Forty-one percent of 1,001,546 soldiers received at least one anthrax vaccination; 5.21% were evaluated for disability. No consistent patterns or statistically significant differences in risk of disability evaluation, disability determination, or reason for disability were associated with anthrax vaccination. There was a dose-related trend in risk of disability for soldiers with 2 years' service, limited to those entering service in 2000 or later. Divergent patterns in risk suggest confounding by temporal or occupational risks of disability.
Collapse
Affiliation(s)
- Sandra I Sulsky
- ENVIRON International Corporation, Amherst, MA 01002, United States.
| | | | | | | | | |
Collapse
|
22
|
Parvez S, Rivera-Núñez Z, Meyer A, Wright JM. Temporal variability in trihalomethane and haloacetic acid concentrations in Massachusetts public drinking water systems. ENVIRONMENTAL RESEARCH 2011; 111:499-509. [PMID: 21316653 DOI: 10.1016/j.envres.2010.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 05/30/2023]
Abstract
Previous epidemiological studies in Massachusetts have reported a risk of adverse health outcomes in relation to disinfection by-product (DBP) exposures. Measurement error due to the use of indirect exposure surrogates can lead to misclassification bias in epidemiological studies; therefore, it is important to characterize exposure variability in these populations to assess the potential for exposure misclassification. We used 19,944 trihalomethane (THM) samples and 9291 haloacetic acid (HAA) samples collected in 201 public water systems (PWSs) in Massachusetts to examine temporal variability under different drinking water sources and disinfection types. Annual and seasonal variability was also examined in 46 PWSs with complete quarterly THM4 (i.e., the sum of 4 individual THMs) data from 1995 to 2004 and 19 PWSs with complete HAA5 (i.e., the sum of 5 individual HAAs) data from 2001 to 2004. The quarterly ratio of THM4 and HAA5 and correlations between THM4, HAA5 and individual DBP species were examined to determine the adequacy of using different exposure surrogates in epidemiological studies. Individual PWSs were used to examine monthly variability in relation to quarterly averages. Based on all available matched samples (n=9003) from 1995 to 2004 data, we found a correlation of 0.52 for THM4 and HAA5. The correlation was stronger among the 62 ground water systems (r(s)=0.62) compared to the 81 surface water (r(s)=0.45) and 40 mixed water (r(s)=0.39) systems. Mean THM4 levels were fairly stable over the 10-year study period for 46 PWSs including 39 PWSs that did not change disinfection. Large reductions (∼40 μg/L) in mean THM4 data were found among seven systems that switched from chlorination to alternative disinfectants. As expected, the highest mean THM4 values were detected for Quarter 3, while the lowest values were found in Quarter 1. The highest HAA5 values were detected in Quarters 2 and 3 and the lowest was found in Quarter 4. Data from four systems showed mean differences up to 66 μg/L (67% change) in successive months and by 46 μg/L compared to quarterly mean concentrations. Although longer-term disinfection by-product temporality may be minimal in this study population, the use of monthly average concentrations for exposure assessment may be needed for some PWSs to minimize misclassification of narrow critical periods of exposure in epidemiological studies.
Collapse
Affiliation(s)
- Shahid Parvez
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | | | | | | |
Collapse
|
23
|
Lewis C, Hoggatt KJ, Ritz B. The impact of different causal models on estimated effects of disinfection by-products on preterm birth. ENVIRONMENTAL RESEARCH 2011; 111:371-6. [PMID: 21256482 DOI: 10.1016/j.envres.2010.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 10/13/2010] [Accepted: 12/17/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND Previous epidemiologic studies of preterm birth and drinking water disinfection by-products (DBP) reported inconsistent results especially for third trimester exposures. These inconsistencies may have been due to differences in the underlying causal model assumed and methodological issues, including the method of analysis (cumulative vs. density-sampling of controls and matching on gestational age) and appropriate control of confounding. METHODS We use data from previously published research to illustrate how different causal models, methods of analysis, and the choice of covariates to control impact results. RESULTS Exposure at high measured TTHM levels (≥ 60 μg/l) during the last trimester - with cumulatively sampled controls - corresponded to negative effect estimates when comparing preterm to term births and averaging exposure over different length periods. In contrast, density-sampling of controls with an exposure truncated at 36 weeks gestation and adjustment for possible confounding by exposures experienced in prior trimesters led to moderate changes in risk at the highest level of exposure averaged over the four weeks prior to birth. CONCLUSIONS We recommend that future research on an exposure to DBPs and risk of preterm birth explore the sensitivity of their findings to different model specifications, specifically: (1) cumulative vs. density-sampling of controls when evaluating third trimester or whole pregnancy exposures, taking into account exposure-averaging length; (2) short-term peak exposures vs. long-term exposures; and (3) adjustment for exposure during prior pregnancy periods when evaluating later trimester exposures to account for possible 'priming' effects of early exposures.
Collapse
Affiliation(s)
- Chad Lewis
- Environmental Science and Engineering Program, Department of Environmental Health Sciences, School of Public Health, University of California, Los Angeles, CA, USA.
| | | | | |
Collapse
|
24
|
Xie SH, Li YF, Tan YF, Zheng D, Liu AL, Xie H, Lu WQ. Urinary trichloroacetic acid levels and semen quality: a hospital-based cross-sectional study in Wuhan, China. ENVIRONMENTAL RESEARCH 2011; 111:295-300. [PMID: 21238955 DOI: 10.1016/j.envres.2010.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 12/14/2010] [Accepted: 12/28/2010] [Indexed: 05/30/2023]
Abstract
Toxicological studies indicate an association between exposure to disinfection by-products (DBPs) and impaired male reproductive health in animals. However, epidemiological evidence in humans is still limited. We conducted a hospital-based cross-sectional study to investigate the effect of exposure to DBPs on semen quality in humans. Between May 2008 and July 2008, we recruited 418 male partners in sub-fertile couples seeking infertility medical instruction or assisted reproduction services from the Tongji Hospital in Wuhan, China. Major semen parameters analyzed included sperm concentration, motility, and morphology. Exposure to DBPs was estimated by their urinary creatinine-adjusted trichloroacetic (TCAA) concentrations that were measured with the gas chromatography/electron capture detection method. We used linear regression to assess the relationship between exposure to DBPs and semen quality. According to the World Health Organization criteria (<20 million/mL for sperm concentration and <50% motile for sperm motility) and threshold value recommended by Guzick (<9% for sperm morphology), there were 265 men with all parameters at or above the reference values, 33 men below the reference sperm concentration, 151 men below the reference sperm motility, and 6 men below the reference sperm morphology. The mean (median) urinary creatinine-adjusted TCAA concentration was 9.2 (5.1) μg/g creatinine. Linear regression analyses indicated no significant association of sperm concentration, sperm count, and sperm morphology with urinary TCAA levels. Compared with those in the lowest quartile of creatinine-adjusted urinary TCAA concentrations, subjects in the second and third quartiles had a decrease of 5.1% (95% CI: 0.6%, 9.7%) and 4.7% (95% CI: 0.2%, 9.2%) in percent motility, respectively. However, these associations were not significant after adjustment for age, abstinence time, and smoking status. The present study provides suggestive but inconclusive evidence of the relationship between decreased sperm motility and increased urinary TCAA levels. The effect of exposure to DBPs on human male reproductive health in Chinese populations still warrants further investigations.
Collapse
Affiliation(s)
- Shao-Hua Xie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, 430030 Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
Narotsky MG, Best DS, McDonald A, Godin EA, Hunter ES, Simmons JE. Pregnancy loss and eye malformations in offspring of F344 rats following gestational exposure to mixtures of regulated trihalomethanes and haloacetic acids. Reprod Toxicol 2010; 31:59-65. [PMID: 20850520 DOI: 10.1016/j.reprotox.2010.08.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 08/09/2010] [Accepted: 08/25/2010] [Indexed: 11/24/2022]
Abstract
Chlorination of drinking water yields hundreds of disinfection by-products (DBPs). Among the DBPs, four trihalomethanes (THMs; chloroform, bromodichloromethane, chlorodibromomethane, bromoform) and five haloacetic acids (HAAs; chloroacetic, dichloroacetic, trichloroacetic, bromoacetic, and dibromoacetic acid) are U.S. EPA regulated. We assessed the combined toxicity of these DBPs. F344 rats were treated with mixtures of the four THMs (THM4), the five HAAs (HAA5), or nine DBPs (DBP9; THM4+HAA5). Mixtures were administered in 10% Alkamuls(®) EL-620 daily by gavage on gestation days 6-20. Litters were examined postnatally. All three mixtures caused pregnancy loss at ≥ 613 μmol/kg/day. In surviving litters, resorption rates were increased in groups receiving HAA5 at 615 μmol/kg/day and DBP9 at 307 μmol/kg/day. HAA5 caused eye malformations (anophthalmia, microphthalmia) at ≥ 308 μmol/kg/day. Thus, both HAAs and THMs contributed to DBP9-induced pregnancy loss. The presence of THMs in the full mixture, however, appeared to reduce the incidence of HAA-induced eye defects.
Collapse
Affiliation(s)
- Michael G Narotsky
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Wright JM, Hoffman CS, Savitz DA. The relationship between water intake and foetal growth and preterm delivery in a prospective cohort study. BMC Pregnancy Childbirth 2010; 10:48. [PMID: 20735835 PMCID: PMC2940790 DOI: 10.1186/1471-2393-10-48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 08/24/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Interpretation of previous associations between water intake and adverse birth outcomes is challenging given that amount and type of water consumed can be non-specific markers of exposure or underlying behavioural characteristics. We examined the relationship between water intake measures and adverse birth outcomes in participants from three study sites in the United States. METHODS Using a prospective cohort study, we examined daily intake of bottled, cold tap, total tap, and total water in relation to birth weight and risk of small-for-gestational-age (SGA) among term births and risk of preterm delivery. RESULTS Based on water consumption data collected between 20-24 weeks of gestation, the adjusted mean birth weight was 27 (95% confidence interval [CI]: -34, 87), 39 (95% CI: -22, 99), and 50 (95% CI: -11, 110) grams higher for the upper three total water intake quartiles (> 51-78, > 78-114, and > 114 ounces/day) compared to the lowest quartile (≤ 51 ounces/day). Adjusted birth weight results were similar for bottled water, cold tap water, and total tap water intake. An exposure-response gradient was not detected for either preterm delivery or SGA with increasing total water intake and total tap water intake, but adjusted relative risks for all three upper quartiles were below 1.0 (range: 0.6-0.9) for SGA. CONCLUSION These data suggest that high water intake may be associated with higher mean birth weight following adjustment for confounding.
Collapse
Affiliation(s)
- J Michael Wright
- National Center for Environmental Assessment, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Caroline S Hoffman
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - David A Savitz
- Department of Community and Preventive Medicine, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
27
|
|
28
|
Xie SH, Liu AL, Chen YY, Zhang L, Zhang HJ, Jin BX, Lu WH, Li XY, Lu WQ. DNA damage and oxidative stress in human liver cell L-02 caused by surface water extracts during drinking water treatment in a waterworks in China. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:229-235. [PMID: 19844953 DOI: 10.1002/em.20537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Because of the daily and life-long exposure to disinfection by-products formed during drinking water treatment, potential adverse human health risk of drinking water disinfection is of great concern. Toxicological studies have shown that drinking water treatment increases the genotoxicity of surface water. Drinking water treatment is comprised of different potabilization steps, which greatly influence the levels of genotoxic products in the surface water and thus may alter the toxicity and genotoxicity of surface water. The aim of the present study was to understand the influence of specific steps on toxicity and genotoxicity during the treatment of surface water in a water treatment plant using liquid chlorine as the disinfectant in China. An integrated approach of the comet and oxidative stress assays was used in the study, and the results showed that both the prechlorination and postchlorination steps increased DNA damage and oxidative stress caused by water extracts in human derived L-02 cells while the tube settling and filtration steps had the opposite effect. This research also highlighted the usefulness of an integrated approach of the comet and oxidative stress assays in evaluating the genotoxicity of surface water during drinking water treatment.
Collapse
Affiliation(s)
- Shao-Hua Xie
- Department of Occupational and Environmental Health and Ministry of Education Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nieuwenhuijsen MJ, Grellier J, Smith R, Iszatt N, Bennett J, Best N, Toledano M. The epidemiology and possible mechanisms of disinfection by-products in drinking water. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:4043-4076. [PMID: 19736233 DOI: 10.1098/rsta.2009.0116] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper summarizes the epidemiological evidence for adverse health effects associated with disinfection by-products (DBPs) in drinking water and describes the potential mechanism of action. There appears to be good epidemiological evidence for a relationship between exposure to DBPs, as measured by trihalomethanes (THMs), in drinking water and bladder cancer, but the evidence for other cancers including colorectal cancer is inconclusive and inconsistent. There appears to be some evidence for an association between exposure to DBPs, specifically THMs, and little for gestational age/intrauterine growth retardation and, to a lesser extent, pre-term delivery, but evidence for relationships with other outcomes such as low birth weight, stillbirth, congenital anomalies and semen quality is inconclusive and inconsistent. Major limitations in exposure assessment, small sample sizes and potential biases may account for the inconclusive and inconsistent results in epidemiological studies. Moreover, most studies have focused on total THMs as the exposure metric, whereas other DBPs appear to be more toxic than the THMs, albeit generally occurring at lower levels in the water. The mechanisms through which DBPs may cause adverse health effects including cancer and adverse reproductive effects have not been well investigated. Several mechanisms have been suggested, including genotoxicity, oxidative stress, disruption of folate metabolism, disruption of the synthesis and/or secretion of placental syncytiotrophoblast-derived chorionic gonadotropin and lowering of testosterone levels, but further work is required in this area.
Collapse
Affiliation(s)
- Mark J Nieuwenhuijsen
- Centre for Research in Environmental Epidemiology (CREAL), Parc de Recerca Biomèdica de Barcelona-PRBB (Office 183.05), , C. Doctor Aiguader, 88, 08003 Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
30
|
Ochoa-Acuña H, Frankenberger J, Hahn L, Carbajo C. Drinking-water herbicide exposure in Indiana and prevalence of small-for-gestational-age and preterm delivery. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1619-24. [PMID: 20019915 PMCID: PMC2790519 DOI: 10.1289/ehp.0900784] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 07/31/2009] [Indexed: 05/02/2023]
Abstract
BACKGROUND Atrazine and other corn herbicides are routinely detected in drinking water. Two studies on potential association of atrazine with small-for-gestational-age (SGA) and preterm birth prevalence found inconsistent results. Moreover, these studies did not control for individual-level potential confounders. OBJECTIVES Our retrospective cohort study evaluated whether atrazine in drinking water is associated with increased prevalence of SGA and preterm birth. METHODS We developed atrazine concentration time series for 19 water systems in Indiana from 1993 to 2007 and selected all births (n = 24,154) based on geocoded mother's residences. Log-binomial models were used to estimate prevalence ratios (PRs) for SGA and preterm delivery in relation to atrazine concentrations during various periods of the pregnancy. Models controlled for maternal demographic characteristics, prenatal care and reproductive history, and behavioral risk factors (smoking, drinking, drug use). RESULTS Atrazine in drinking water during the third trimester and the entire pregnancy was associated with a significant increase in the prevalence of SGA. Atrazine in drinking water > 0.1 microg/L during the third trimester resulted in a 17-19% increase in the prevalence of SGA compared with the control group (< 0.1 microg/L). Mean atrazine concentrations over the entire pregnancy > 0.644 microg/L were associated with higher SGA prevalence than in the control group (adjusted PR = 1.14; 95% confidence interval, 1.03-1.24). No significant association was found for preterm delivery. CONCLUSIONS We found that atrazine, and perhaps other co-occurring herbicides in drinking water, is associated with an increased prevalence of SGA, but not preterm delivery.
Collapse
Affiliation(s)
- Hugo Ochoa-Acuña
- Epidemiology and Public Health Section, Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
BACKGROUND Recent studies suggest elevated exposure to drinking water disinfection by-products (DBPs) may be associated with decreased risk of preterm birth. We examined this association for exposure to total trihalomethanes (TTHMs), 5 haloacetic acids (HAA5), and total organic halides. METHODS Analysis included 2039 women in a prospective pregnancy study conducted from 2000 through 2004 in 3 study sites. Water samples were collected and analyzed for DBP concentrations. Participant data were collected through interviews, an early ultrasound, and birth records. We assessed the associations between DBPs and preterm birth (<37-weeks' gestation) using log-binomial regression. Discrete-time hazard analysis was used to model the conditional odds of delivery each week in relation to DBP exposure. RESULTS Average second trimester DBP levels were associated with lower risk of preterm birth. Adjusted risk ratios for TTHM levels of 33.1-55.0, 55.1-66.3, 66.4-74.8, and 74.9-108.8 microg/L versus 2.2-4.6 microg/L were 0.8 (95% confidence intervals = 0.5-1.3), 0.9 (0.6-1.4), 0.7 (0.4-1.1), and 0.5 (0.3-0.9), respectively. Risk ratios for HAA5 levels of 17.9-22.0, 22.1-31.5, 31.6-40.4, and 40.5-52.8 microg/L versus 0-0.9 microg/L were 1.1 (0.8-1.7), 0.8 (0.5-1.2), 0.5 (0.3-0.8), and 0.7 (0.4-1.1), respectively. The conditional odds of delivery each week were decreased for the highest TTHM and HAA5 exposure groups versus the low exposure group for gestational weeks 33-40. CONCLUSIONS The probability of preterm birth was not increased with high DBP exposure.
Collapse
|